xref: /linux/fs/fs-writeback.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	unsigned long *older_than_this;
49 	enum writeback_sync_modes sync_mode;
50 	unsigned int tagged_writepages:1;
51 	unsigned int for_kupdate:1;
52 	unsigned int range_cyclic:1;
53 	unsigned int for_background:1;
54 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55 	unsigned int auto_free:1;	/* free on completion */
56 	enum wb_reason reason;		/* why was writeback initiated? */
57 
58 	struct list_head list;		/* pending work list */
59 	struct wb_completion *done;	/* set if the caller waits */
60 };
61 
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
70 	struct wb_completion cmpl = {					\
71 		.cnt		= ATOMIC_INIT(1),			\
72 	}
73 
74 
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86 
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 	return list_entry(head, struct inode, i_io_list);
90 }
91 
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101 
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 	if (wb_has_dirty_io(wb)) {
105 		return false;
106 	} else {
107 		set_bit(WB_has_dirty_io, &wb->state);
108 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 		atomic_long_add(wb->avg_write_bandwidth,
110 				&wb->bdi->tot_write_bandwidth);
111 		return true;
112 	}
113 }
114 
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 		clear_bit(WB_has_dirty_io, &wb->state);
120 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 					&wb->bdi->tot_write_bandwidth) < 0);
122 	}
123 }
124 
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 				      struct bdi_writeback *wb,
137 				      struct list_head *head)
138 {
139 	assert_spin_locked(&wb->list_lock);
140 
141 	list_move(&inode->i_io_list, head);
142 
143 	/* dirty_time doesn't count as dirty_io until expiration */
144 	if (head != &wb->b_dirty_time)
145 		return wb_io_lists_populated(wb);
146 
147 	wb_io_lists_depopulated(wb);
148 	return false;
149 }
150 
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160 				     struct bdi_writeback *wb)
161 {
162 	assert_spin_locked(&wb->list_lock);
163 
164 	list_del_init(&inode->i_io_list);
165 	wb_io_lists_depopulated(wb);
166 }
167 
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 	spin_lock_bh(&wb->work_lock);
171 	if (test_bit(WB_registered, &wb->state))
172 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 	spin_unlock_bh(&wb->work_lock);
174 }
175 
176 static void finish_writeback_work(struct bdi_writeback *wb,
177 				  struct wb_writeback_work *work)
178 {
179 	struct wb_completion *done = work->done;
180 
181 	if (work->auto_free)
182 		kfree(work);
183 	if (done && atomic_dec_and_test(&done->cnt))
184 		wake_up_all(&wb->bdi->wb_waitq);
185 }
186 
187 static void wb_queue_work(struct bdi_writeback *wb,
188 			  struct wb_writeback_work *work)
189 {
190 	trace_writeback_queue(wb, work);
191 
192 	if (work->done)
193 		atomic_inc(&work->done->cnt);
194 
195 	spin_lock_bh(&wb->work_lock);
196 
197 	if (test_bit(WB_registered, &wb->state)) {
198 		list_add_tail(&work->list, &wb->work_list);
199 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 	} else
201 		finish_writeback_work(wb, work);
202 
203 	spin_unlock_bh(&wb->work_lock);
204 }
205 
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 				   struct wb_completion *done)
219 {
220 	atomic_dec(&done->cnt);		/* put down the initial count */
221 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223 
224 #ifdef CONFIG_CGROUP_WRITEBACK
225 
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
231 
232 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 					/* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
236 					/* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 					/* one round can affect upto 5 slots */
239 
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242 
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245 	struct backing_dev_info *bdi = inode_to_bdi(inode);
246 	struct bdi_writeback *wb = NULL;
247 
248 	if (inode_cgwb_enabled(inode)) {
249 		struct cgroup_subsys_state *memcg_css;
250 
251 		if (page) {
252 			memcg_css = mem_cgroup_css_from_page(page);
253 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 		} else {
255 			/* must pin memcg_css, see wb_get_create() */
256 			memcg_css = task_get_css(current, memory_cgrp_id);
257 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 			css_put(memcg_css);
259 		}
260 	}
261 
262 	if (!wb)
263 		wb = &bdi->wb;
264 
265 	/*
266 	 * There may be multiple instances of this function racing to
267 	 * update the same inode.  Use cmpxchg() to tell the winner.
268 	 */
269 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 		wb_put(wb);
271 }
272 
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 	__releases(&inode->i_lock)
284 	__acquires(&wb->list_lock)
285 {
286 	while (true) {
287 		struct bdi_writeback *wb = inode_to_wb(inode);
288 
289 		/*
290 		 * inode_to_wb() association is protected by both
291 		 * @inode->i_lock and @wb->list_lock but list_lock nests
292 		 * outside i_lock.  Drop i_lock and verify that the
293 		 * association hasn't changed after acquiring list_lock.
294 		 */
295 		wb_get(wb);
296 		spin_unlock(&inode->i_lock);
297 		spin_lock(&wb->list_lock);
298 
299 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
300 		if (likely(wb == inode->i_wb)) {
301 			wb_put(wb);	/* @inode already has ref */
302 			return wb;
303 		}
304 
305 		spin_unlock(&wb->list_lock);
306 		wb_put(wb);
307 		cpu_relax();
308 		spin_lock(&inode->i_lock);
309 	}
310 }
311 
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 	__acquires(&wb->list_lock)
321 {
322 	spin_lock(&inode->i_lock);
323 	return locked_inode_to_wb_and_lock_list(inode);
324 }
325 
326 struct inode_switch_wbs_context {
327 	struct inode		*inode;
328 	struct bdi_writeback	*new_wb;
329 
330 	struct rcu_head		rcu_head;
331 	struct work_struct	work;
332 };
333 
334 static void inode_switch_wbs_work_fn(struct work_struct *work)
335 {
336 	struct inode_switch_wbs_context *isw =
337 		container_of(work, struct inode_switch_wbs_context, work);
338 	struct inode *inode = isw->inode;
339 	struct address_space *mapping = inode->i_mapping;
340 	struct bdi_writeback *old_wb = inode->i_wb;
341 	struct bdi_writeback *new_wb = isw->new_wb;
342 	XA_STATE(xas, &mapping->i_pages, 0);
343 	struct page *page;
344 	bool switched = false;
345 
346 	/*
347 	 * By the time control reaches here, RCU grace period has passed
348 	 * since I_WB_SWITCH assertion and all wb stat update transactions
349 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
350 	 * synchronizing against the i_pages lock.
351 	 *
352 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
353 	 * gives us exclusion against all wb related operations on @inode
354 	 * including IO list manipulations and stat updates.
355 	 */
356 	if (old_wb < new_wb) {
357 		spin_lock(&old_wb->list_lock);
358 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
359 	} else {
360 		spin_lock(&new_wb->list_lock);
361 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
362 	}
363 	spin_lock(&inode->i_lock);
364 	xa_lock_irq(&mapping->i_pages);
365 
366 	/*
367 	 * Once I_FREEING is visible under i_lock, the eviction path owns
368 	 * the inode and we shouldn't modify ->i_io_list.
369 	 */
370 	if (unlikely(inode->i_state & I_FREEING))
371 		goto skip_switch;
372 
373 	/*
374 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
375 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
376 	 * pages actually under writeback.
377 	 */
378 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
379 		if (PageDirty(page)) {
380 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
381 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
382 		}
383 	}
384 
385 	xas_set(&xas, 0);
386 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
387 		WARN_ON_ONCE(!PageWriteback(page));
388 		dec_wb_stat(old_wb, WB_WRITEBACK);
389 		inc_wb_stat(new_wb, WB_WRITEBACK);
390 	}
391 
392 	wb_get(new_wb);
393 
394 	/*
395 	 * Transfer to @new_wb's IO list if necessary.  The specific list
396 	 * @inode was on is ignored and the inode is put on ->b_dirty which
397 	 * is always correct including from ->b_dirty_time.  The transfer
398 	 * preserves @inode->dirtied_when ordering.
399 	 */
400 	if (!list_empty(&inode->i_io_list)) {
401 		struct inode *pos;
402 
403 		inode_io_list_del_locked(inode, old_wb);
404 		inode->i_wb = new_wb;
405 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
406 			if (time_after_eq(inode->dirtied_when,
407 					  pos->dirtied_when))
408 				break;
409 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
410 	} else {
411 		inode->i_wb = new_wb;
412 	}
413 
414 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
415 	inode->i_wb_frn_winner = 0;
416 	inode->i_wb_frn_avg_time = 0;
417 	inode->i_wb_frn_history = 0;
418 	switched = true;
419 skip_switch:
420 	/*
421 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
422 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
423 	 */
424 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
425 
426 	xa_unlock_irq(&mapping->i_pages);
427 	spin_unlock(&inode->i_lock);
428 	spin_unlock(&new_wb->list_lock);
429 	spin_unlock(&old_wb->list_lock);
430 
431 	if (switched) {
432 		wb_wakeup(new_wb);
433 		wb_put(old_wb);
434 	}
435 	wb_put(new_wb);
436 
437 	iput(inode);
438 	kfree(isw);
439 
440 	atomic_dec(&isw_nr_in_flight);
441 }
442 
443 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
444 {
445 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
446 				struct inode_switch_wbs_context, rcu_head);
447 
448 	/* needs to grab bh-unsafe locks, bounce to work item */
449 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
450 	queue_work(isw_wq, &isw->work);
451 }
452 
453 /**
454  * inode_switch_wbs - change the wb association of an inode
455  * @inode: target inode
456  * @new_wb_id: ID of the new wb
457  *
458  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
459  * switching is performed asynchronously and may fail silently.
460  */
461 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
462 {
463 	struct backing_dev_info *bdi = inode_to_bdi(inode);
464 	struct cgroup_subsys_state *memcg_css;
465 	struct inode_switch_wbs_context *isw;
466 
467 	/* noop if seems to be already in progress */
468 	if (inode->i_state & I_WB_SWITCH)
469 		return;
470 
471 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
472 	if (!isw)
473 		return;
474 
475 	/* find and pin the new wb */
476 	rcu_read_lock();
477 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
478 	if (memcg_css)
479 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
480 	rcu_read_unlock();
481 	if (!isw->new_wb)
482 		goto out_free;
483 
484 	/* while holding I_WB_SWITCH, no one else can update the association */
485 	spin_lock(&inode->i_lock);
486 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
487 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
488 	    inode_to_wb(inode) == isw->new_wb) {
489 		spin_unlock(&inode->i_lock);
490 		goto out_free;
491 	}
492 	inode->i_state |= I_WB_SWITCH;
493 	__iget(inode);
494 	spin_unlock(&inode->i_lock);
495 
496 	isw->inode = inode;
497 
498 	atomic_inc(&isw_nr_in_flight);
499 
500 	/*
501 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
502 	 * the RCU protected stat update paths to grab the i_page
503 	 * lock so that stat transfer can synchronize against them.
504 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
505 	 */
506 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
507 	return;
508 
509 out_free:
510 	if (isw->new_wb)
511 		wb_put(isw->new_wb);
512 	kfree(isw);
513 }
514 
515 /**
516  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
517  * @wbc: writeback_control of interest
518  * @inode: target inode
519  *
520  * @inode is locked and about to be written back under the control of @wbc.
521  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
522  * writeback completion, wbc_detach_inode() should be called.  This is used
523  * to track the cgroup writeback context.
524  */
525 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
526 				 struct inode *inode)
527 {
528 	if (!inode_cgwb_enabled(inode)) {
529 		spin_unlock(&inode->i_lock);
530 		return;
531 	}
532 
533 	wbc->wb = inode_to_wb(inode);
534 	wbc->inode = inode;
535 
536 	wbc->wb_id = wbc->wb->memcg_css->id;
537 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
538 	wbc->wb_tcand_id = 0;
539 	wbc->wb_bytes = 0;
540 	wbc->wb_lcand_bytes = 0;
541 	wbc->wb_tcand_bytes = 0;
542 
543 	wb_get(wbc->wb);
544 	spin_unlock(&inode->i_lock);
545 
546 	/*
547 	 * A dying wb indicates that the memcg-blkcg mapping has changed
548 	 * and a new wb is already serving the memcg.  Switch immediately.
549 	 */
550 	if (unlikely(wb_dying(wbc->wb)))
551 		inode_switch_wbs(inode, wbc->wb_id);
552 }
553 
554 /**
555  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
556  * @wbc: writeback_control of the just finished writeback
557  *
558  * To be called after a writeback attempt of an inode finishes and undoes
559  * wbc_attach_and_unlock_inode().  Can be called under any context.
560  *
561  * As concurrent write sharing of an inode is expected to be very rare and
562  * memcg only tracks page ownership on first-use basis severely confining
563  * the usefulness of such sharing, cgroup writeback tracks ownership
564  * per-inode.  While the support for concurrent write sharing of an inode
565  * is deemed unnecessary, an inode being written to by different cgroups at
566  * different points in time is a lot more common, and, more importantly,
567  * charging only by first-use can too readily lead to grossly incorrect
568  * behaviors (single foreign page can lead to gigabytes of writeback to be
569  * incorrectly attributed).
570  *
571  * To resolve this issue, cgroup writeback detects the majority dirtier of
572  * an inode and transfers the ownership to it.  To avoid unnnecessary
573  * oscillation, the detection mechanism keeps track of history and gives
574  * out the switch verdict only if the foreign usage pattern is stable over
575  * a certain amount of time and/or writeback attempts.
576  *
577  * On each writeback attempt, @wbc tries to detect the majority writer
578  * using Boyer-Moore majority vote algorithm.  In addition to the byte
579  * count from the majority voting, it also counts the bytes written for the
580  * current wb and the last round's winner wb (max of last round's current
581  * wb, the winner from two rounds ago, and the last round's majority
582  * candidate).  Keeping track of the historical winner helps the algorithm
583  * to semi-reliably detect the most active writer even when it's not the
584  * absolute majority.
585  *
586  * Once the winner of the round is determined, whether the winner is
587  * foreign or not and how much IO time the round consumed is recorded in
588  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
589  * over a certain threshold, the switch verdict is given.
590  */
591 void wbc_detach_inode(struct writeback_control *wbc)
592 {
593 	struct bdi_writeback *wb = wbc->wb;
594 	struct inode *inode = wbc->inode;
595 	unsigned long avg_time, max_bytes, max_time;
596 	u16 history;
597 	int max_id;
598 
599 	if (!wb)
600 		return;
601 
602 	history = inode->i_wb_frn_history;
603 	avg_time = inode->i_wb_frn_avg_time;
604 
605 	/* pick the winner of this round */
606 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
607 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
608 		max_id = wbc->wb_id;
609 		max_bytes = wbc->wb_bytes;
610 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
611 		max_id = wbc->wb_lcand_id;
612 		max_bytes = wbc->wb_lcand_bytes;
613 	} else {
614 		max_id = wbc->wb_tcand_id;
615 		max_bytes = wbc->wb_tcand_bytes;
616 	}
617 
618 	/*
619 	 * Calculate the amount of IO time the winner consumed and fold it
620 	 * into the running average kept per inode.  If the consumed IO
621 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
622 	 * deciding whether to switch or not.  This is to prevent one-off
623 	 * small dirtiers from skewing the verdict.
624 	 */
625 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
626 				wb->avg_write_bandwidth);
627 	if (avg_time)
628 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
629 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
630 	else
631 		avg_time = max_time;	/* immediate catch up on first run */
632 
633 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
634 		int slots;
635 
636 		/*
637 		 * The switch verdict is reached if foreign wb's consume
638 		 * more than a certain proportion of IO time in a
639 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
640 		 * history mask where each bit represents one sixteenth of
641 		 * the period.  Determine the number of slots to shift into
642 		 * history from @max_time.
643 		 */
644 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
645 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
646 		history <<= slots;
647 		if (wbc->wb_id != max_id)
648 			history |= (1U << slots) - 1;
649 
650 		/*
651 		 * Switch if the current wb isn't the consistent winner.
652 		 * If there are multiple closely competing dirtiers, the
653 		 * inode may switch across them repeatedly over time, which
654 		 * is okay.  The main goal is avoiding keeping an inode on
655 		 * the wrong wb for an extended period of time.
656 		 */
657 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
658 			inode_switch_wbs(inode, max_id);
659 	}
660 
661 	/*
662 	 * Multiple instances of this function may race to update the
663 	 * following fields but we don't mind occassional inaccuracies.
664 	 */
665 	inode->i_wb_frn_winner = max_id;
666 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
667 	inode->i_wb_frn_history = history;
668 
669 	wb_put(wbc->wb);
670 	wbc->wb = NULL;
671 }
672 
673 /**
674  * wbc_account_io - account IO issued during writeback
675  * @wbc: writeback_control of the writeback in progress
676  * @page: page being written out
677  * @bytes: number of bytes being written out
678  *
679  * @bytes from @page are about to written out during the writeback
680  * controlled by @wbc.  Keep the book for foreign inode detection.  See
681  * wbc_detach_inode().
682  */
683 void wbc_account_io(struct writeback_control *wbc, struct page *page,
684 		    size_t bytes)
685 {
686 	int id;
687 
688 	/*
689 	 * pageout() path doesn't attach @wbc to the inode being written
690 	 * out.  This is intentional as we don't want the function to block
691 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
692 	 * regular writeback instead of writing things out itself.
693 	 */
694 	if (!wbc->wb)
695 		return;
696 
697 	id = mem_cgroup_css_from_page(page)->id;
698 
699 	if (id == wbc->wb_id) {
700 		wbc->wb_bytes += bytes;
701 		return;
702 	}
703 
704 	if (id == wbc->wb_lcand_id)
705 		wbc->wb_lcand_bytes += bytes;
706 
707 	/* Boyer-Moore majority vote algorithm */
708 	if (!wbc->wb_tcand_bytes)
709 		wbc->wb_tcand_id = id;
710 	if (id == wbc->wb_tcand_id)
711 		wbc->wb_tcand_bytes += bytes;
712 	else
713 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
714 }
715 EXPORT_SYMBOL_GPL(wbc_account_io);
716 
717 /**
718  * inode_congested - test whether an inode is congested
719  * @inode: inode to test for congestion (may be NULL)
720  * @cong_bits: mask of WB_[a]sync_congested bits to test
721  *
722  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
723  * bits to test and the return value is the mask of set bits.
724  *
725  * If cgroup writeback is enabled for @inode, the congestion state is
726  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
727  * associated with @inode is congested; otherwise, the root wb's congestion
728  * state is used.
729  *
730  * @inode is allowed to be NULL as this function is often called on
731  * mapping->host which is NULL for the swapper space.
732  */
733 int inode_congested(struct inode *inode, int cong_bits)
734 {
735 	/*
736 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
737 	 * Start transaction iff ->i_wb is visible.
738 	 */
739 	if (inode && inode_to_wb_is_valid(inode)) {
740 		struct bdi_writeback *wb;
741 		struct wb_lock_cookie lock_cookie = {};
742 		bool congested;
743 
744 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
745 		congested = wb_congested(wb, cong_bits);
746 		unlocked_inode_to_wb_end(inode, &lock_cookie);
747 		return congested;
748 	}
749 
750 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
751 }
752 EXPORT_SYMBOL_GPL(inode_congested);
753 
754 /**
755  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
756  * @wb: target bdi_writeback to split @nr_pages to
757  * @nr_pages: number of pages to write for the whole bdi
758  *
759  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
760  * relation to the total write bandwidth of all wb's w/ dirty inodes on
761  * @wb->bdi.
762  */
763 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
764 {
765 	unsigned long this_bw = wb->avg_write_bandwidth;
766 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
767 
768 	if (nr_pages == LONG_MAX)
769 		return LONG_MAX;
770 
771 	/*
772 	 * This may be called on clean wb's and proportional distribution
773 	 * may not make sense, just use the original @nr_pages in those
774 	 * cases.  In general, we wanna err on the side of writing more.
775 	 */
776 	if (!tot_bw || this_bw >= tot_bw)
777 		return nr_pages;
778 	else
779 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
780 }
781 
782 /**
783  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
784  * @bdi: target backing_dev_info
785  * @base_work: wb_writeback_work to issue
786  * @skip_if_busy: skip wb's which already have writeback in progress
787  *
788  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
789  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
790  * distributed to the busy wbs according to each wb's proportion in the
791  * total active write bandwidth of @bdi.
792  */
793 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
794 				  struct wb_writeback_work *base_work,
795 				  bool skip_if_busy)
796 {
797 	struct bdi_writeback *last_wb = NULL;
798 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
799 					      struct bdi_writeback, bdi_node);
800 
801 	might_sleep();
802 restart:
803 	rcu_read_lock();
804 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
805 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
806 		struct wb_writeback_work fallback_work;
807 		struct wb_writeback_work *work;
808 		long nr_pages;
809 
810 		if (last_wb) {
811 			wb_put(last_wb);
812 			last_wb = NULL;
813 		}
814 
815 		/* SYNC_ALL writes out I_DIRTY_TIME too */
816 		if (!wb_has_dirty_io(wb) &&
817 		    (base_work->sync_mode == WB_SYNC_NONE ||
818 		     list_empty(&wb->b_dirty_time)))
819 			continue;
820 		if (skip_if_busy && writeback_in_progress(wb))
821 			continue;
822 
823 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
824 
825 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
826 		if (work) {
827 			*work = *base_work;
828 			work->nr_pages = nr_pages;
829 			work->auto_free = 1;
830 			wb_queue_work(wb, work);
831 			continue;
832 		}
833 
834 		/* alloc failed, execute synchronously using on-stack fallback */
835 		work = &fallback_work;
836 		*work = *base_work;
837 		work->nr_pages = nr_pages;
838 		work->auto_free = 0;
839 		work->done = &fallback_work_done;
840 
841 		wb_queue_work(wb, work);
842 
843 		/*
844 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
845 		 * continuing iteration from @wb after dropping and
846 		 * regrabbing rcu read lock.
847 		 */
848 		wb_get(wb);
849 		last_wb = wb;
850 
851 		rcu_read_unlock();
852 		wb_wait_for_completion(bdi, &fallback_work_done);
853 		goto restart;
854 	}
855 	rcu_read_unlock();
856 
857 	if (last_wb)
858 		wb_put(last_wb);
859 }
860 
861 /**
862  * cgroup_writeback_umount - flush inode wb switches for umount
863  *
864  * This function is called when a super_block is about to be destroyed and
865  * flushes in-flight inode wb switches.  An inode wb switch goes through
866  * RCU and then workqueue, so the two need to be flushed in order to ensure
867  * that all previously scheduled switches are finished.  As wb switches are
868  * rare occurrences and synchronize_rcu() can take a while, perform
869  * flushing iff wb switches are in flight.
870  */
871 void cgroup_writeback_umount(void)
872 {
873 	if (atomic_read(&isw_nr_in_flight)) {
874 		synchronize_rcu();
875 		flush_workqueue(isw_wq);
876 	}
877 }
878 
879 static int __init cgroup_writeback_init(void)
880 {
881 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
882 	if (!isw_wq)
883 		return -ENOMEM;
884 	return 0;
885 }
886 fs_initcall(cgroup_writeback_init);
887 
888 #else	/* CONFIG_CGROUP_WRITEBACK */
889 
890 static struct bdi_writeback *
891 locked_inode_to_wb_and_lock_list(struct inode *inode)
892 	__releases(&inode->i_lock)
893 	__acquires(&wb->list_lock)
894 {
895 	struct bdi_writeback *wb = inode_to_wb(inode);
896 
897 	spin_unlock(&inode->i_lock);
898 	spin_lock(&wb->list_lock);
899 	return wb;
900 }
901 
902 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
903 	__acquires(&wb->list_lock)
904 {
905 	struct bdi_writeback *wb = inode_to_wb(inode);
906 
907 	spin_lock(&wb->list_lock);
908 	return wb;
909 }
910 
911 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
912 {
913 	return nr_pages;
914 }
915 
916 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
917 				  struct wb_writeback_work *base_work,
918 				  bool skip_if_busy)
919 {
920 	might_sleep();
921 
922 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
923 		base_work->auto_free = 0;
924 		wb_queue_work(&bdi->wb, base_work);
925 	}
926 }
927 
928 #endif	/* CONFIG_CGROUP_WRITEBACK */
929 
930 /*
931  * Add in the number of potentially dirty inodes, because each inode
932  * write can dirty pagecache in the underlying blockdev.
933  */
934 static unsigned long get_nr_dirty_pages(void)
935 {
936 	return global_node_page_state(NR_FILE_DIRTY) +
937 		global_node_page_state(NR_UNSTABLE_NFS) +
938 		get_nr_dirty_inodes();
939 }
940 
941 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
942 {
943 	if (!wb_has_dirty_io(wb))
944 		return;
945 
946 	/*
947 	 * All callers of this function want to start writeback of all
948 	 * dirty pages. Places like vmscan can call this at a very
949 	 * high frequency, causing pointless allocations of tons of
950 	 * work items and keeping the flusher threads busy retrieving
951 	 * that work. Ensure that we only allow one of them pending and
952 	 * inflight at the time.
953 	 */
954 	if (test_bit(WB_start_all, &wb->state) ||
955 	    test_and_set_bit(WB_start_all, &wb->state))
956 		return;
957 
958 	wb->start_all_reason = reason;
959 	wb_wakeup(wb);
960 }
961 
962 /**
963  * wb_start_background_writeback - start background writeback
964  * @wb: bdi_writback to write from
965  *
966  * Description:
967  *   This makes sure WB_SYNC_NONE background writeback happens. When
968  *   this function returns, it is only guaranteed that for given wb
969  *   some IO is happening if we are over background dirty threshold.
970  *   Caller need not hold sb s_umount semaphore.
971  */
972 void wb_start_background_writeback(struct bdi_writeback *wb)
973 {
974 	/*
975 	 * We just wake up the flusher thread. It will perform background
976 	 * writeback as soon as there is no other work to do.
977 	 */
978 	trace_writeback_wake_background(wb);
979 	wb_wakeup(wb);
980 }
981 
982 /*
983  * Remove the inode from the writeback list it is on.
984  */
985 void inode_io_list_del(struct inode *inode)
986 {
987 	struct bdi_writeback *wb;
988 
989 	wb = inode_to_wb_and_lock_list(inode);
990 	inode_io_list_del_locked(inode, wb);
991 	spin_unlock(&wb->list_lock);
992 }
993 
994 /*
995  * mark an inode as under writeback on the sb
996  */
997 void sb_mark_inode_writeback(struct inode *inode)
998 {
999 	struct super_block *sb = inode->i_sb;
1000 	unsigned long flags;
1001 
1002 	if (list_empty(&inode->i_wb_list)) {
1003 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1004 		if (list_empty(&inode->i_wb_list)) {
1005 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1006 			trace_sb_mark_inode_writeback(inode);
1007 		}
1008 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1009 	}
1010 }
1011 
1012 /*
1013  * clear an inode as under writeback on the sb
1014  */
1015 void sb_clear_inode_writeback(struct inode *inode)
1016 {
1017 	struct super_block *sb = inode->i_sb;
1018 	unsigned long flags;
1019 
1020 	if (!list_empty(&inode->i_wb_list)) {
1021 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1022 		if (!list_empty(&inode->i_wb_list)) {
1023 			list_del_init(&inode->i_wb_list);
1024 			trace_sb_clear_inode_writeback(inode);
1025 		}
1026 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1027 	}
1028 }
1029 
1030 /*
1031  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1032  * furthest end of its superblock's dirty-inode list.
1033  *
1034  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1035  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1036  * the case then the inode must have been redirtied while it was being written
1037  * out and we don't reset its dirtied_when.
1038  */
1039 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1040 {
1041 	if (!list_empty(&wb->b_dirty)) {
1042 		struct inode *tail;
1043 
1044 		tail = wb_inode(wb->b_dirty.next);
1045 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1046 			inode->dirtied_when = jiffies;
1047 	}
1048 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1049 }
1050 
1051 /*
1052  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1053  */
1054 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1055 {
1056 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1057 }
1058 
1059 static void inode_sync_complete(struct inode *inode)
1060 {
1061 	inode->i_state &= ~I_SYNC;
1062 	/* If inode is clean an unused, put it into LRU now... */
1063 	inode_add_lru(inode);
1064 	/* Waiters must see I_SYNC cleared before being woken up */
1065 	smp_mb();
1066 	wake_up_bit(&inode->i_state, __I_SYNC);
1067 }
1068 
1069 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1070 {
1071 	bool ret = time_after(inode->dirtied_when, t);
1072 #ifndef CONFIG_64BIT
1073 	/*
1074 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1075 	 * It _appears_ to be in the future, but is actually in distant past.
1076 	 * This test is necessary to prevent such wrapped-around relative times
1077 	 * from permanently stopping the whole bdi writeback.
1078 	 */
1079 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1080 #endif
1081 	return ret;
1082 }
1083 
1084 #define EXPIRE_DIRTY_ATIME 0x0001
1085 
1086 /*
1087  * Move expired (dirtied before work->older_than_this) dirty inodes from
1088  * @delaying_queue to @dispatch_queue.
1089  */
1090 static int move_expired_inodes(struct list_head *delaying_queue,
1091 			       struct list_head *dispatch_queue,
1092 			       int flags,
1093 			       struct wb_writeback_work *work)
1094 {
1095 	unsigned long *older_than_this = NULL;
1096 	unsigned long expire_time;
1097 	LIST_HEAD(tmp);
1098 	struct list_head *pos, *node;
1099 	struct super_block *sb = NULL;
1100 	struct inode *inode;
1101 	int do_sb_sort = 0;
1102 	int moved = 0;
1103 
1104 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1105 		older_than_this = work->older_than_this;
1106 	else if (!work->for_sync) {
1107 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1108 		older_than_this = &expire_time;
1109 	}
1110 	while (!list_empty(delaying_queue)) {
1111 		inode = wb_inode(delaying_queue->prev);
1112 		if (older_than_this &&
1113 		    inode_dirtied_after(inode, *older_than_this))
1114 			break;
1115 		list_move(&inode->i_io_list, &tmp);
1116 		moved++;
1117 		if (flags & EXPIRE_DIRTY_ATIME)
1118 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1119 		if (sb_is_blkdev_sb(inode->i_sb))
1120 			continue;
1121 		if (sb && sb != inode->i_sb)
1122 			do_sb_sort = 1;
1123 		sb = inode->i_sb;
1124 	}
1125 
1126 	/* just one sb in list, splice to dispatch_queue and we're done */
1127 	if (!do_sb_sort) {
1128 		list_splice(&tmp, dispatch_queue);
1129 		goto out;
1130 	}
1131 
1132 	/* Move inodes from one superblock together */
1133 	while (!list_empty(&tmp)) {
1134 		sb = wb_inode(tmp.prev)->i_sb;
1135 		list_for_each_prev_safe(pos, node, &tmp) {
1136 			inode = wb_inode(pos);
1137 			if (inode->i_sb == sb)
1138 				list_move(&inode->i_io_list, dispatch_queue);
1139 		}
1140 	}
1141 out:
1142 	return moved;
1143 }
1144 
1145 /*
1146  * Queue all expired dirty inodes for io, eldest first.
1147  * Before
1148  *         newly dirtied     b_dirty    b_io    b_more_io
1149  *         =============>    gf         edc     BA
1150  * After
1151  *         newly dirtied     b_dirty    b_io    b_more_io
1152  *         =============>    g          fBAedc
1153  *                                           |
1154  *                                           +--> dequeue for IO
1155  */
1156 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1157 {
1158 	int moved;
1159 
1160 	assert_spin_locked(&wb->list_lock);
1161 	list_splice_init(&wb->b_more_io, &wb->b_io);
1162 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1163 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1164 				     EXPIRE_DIRTY_ATIME, work);
1165 	if (moved)
1166 		wb_io_lists_populated(wb);
1167 	trace_writeback_queue_io(wb, work, moved);
1168 }
1169 
1170 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1171 {
1172 	int ret;
1173 
1174 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1175 		trace_writeback_write_inode_start(inode, wbc);
1176 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1177 		trace_writeback_write_inode(inode, wbc);
1178 		return ret;
1179 	}
1180 	return 0;
1181 }
1182 
1183 /*
1184  * Wait for writeback on an inode to complete. Called with i_lock held.
1185  * Caller must make sure inode cannot go away when we drop i_lock.
1186  */
1187 static void __inode_wait_for_writeback(struct inode *inode)
1188 	__releases(inode->i_lock)
1189 	__acquires(inode->i_lock)
1190 {
1191 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1192 	wait_queue_head_t *wqh;
1193 
1194 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1195 	while (inode->i_state & I_SYNC) {
1196 		spin_unlock(&inode->i_lock);
1197 		__wait_on_bit(wqh, &wq, bit_wait,
1198 			      TASK_UNINTERRUPTIBLE);
1199 		spin_lock(&inode->i_lock);
1200 	}
1201 }
1202 
1203 /*
1204  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1205  */
1206 void inode_wait_for_writeback(struct inode *inode)
1207 {
1208 	spin_lock(&inode->i_lock);
1209 	__inode_wait_for_writeback(inode);
1210 	spin_unlock(&inode->i_lock);
1211 }
1212 
1213 /*
1214  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1215  * held and drops it. It is aimed for callers not holding any inode reference
1216  * so once i_lock is dropped, inode can go away.
1217  */
1218 static void inode_sleep_on_writeback(struct inode *inode)
1219 	__releases(inode->i_lock)
1220 {
1221 	DEFINE_WAIT(wait);
1222 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1223 	int sleep;
1224 
1225 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1226 	sleep = inode->i_state & I_SYNC;
1227 	spin_unlock(&inode->i_lock);
1228 	if (sleep)
1229 		schedule();
1230 	finish_wait(wqh, &wait);
1231 }
1232 
1233 /*
1234  * Find proper writeback list for the inode depending on its current state and
1235  * possibly also change of its state while we were doing writeback.  Here we
1236  * handle things such as livelock prevention or fairness of writeback among
1237  * inodes. This function can be called only by flusher thread - noone else
1238  * processes all inodes in writeback lists and requeueing inodes behind flusher
1239  * thread's back can have unexpected consequences.
1240  */
1241 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1242 			  struct writeback_control *wbc)
1243 {
1244 	if (inode->i_state & I_FREEING)
1245 		return;
1246 
1247 	/*
1248 	 * Sync livelock prevention. Each inode is tagged and synced in one
1249 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1250 	 * the dirty time to prevent enqueue and sync it again.
1251 	 */
1252 	if ((inode->i_state & I_DIRTY) &&
1253 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1254 		inode->dirtied_when = jiffies;
1255 
1256 	if (wbc->pages_skipped) {
1257 		/*
1258 		 * writeback is not making progress due to locked
1259 		 * buffers. Skip this inode for now.
1260 		 */
1261 		redirty_tail(inode, wb);
1262 		return;
1263 	}
1264 
1265 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1266 		/*
1267 		 * We didn't write back all the pages.  nfs_writepages()
1268 		 * sometimes bales out without doing anything.
1269 		 */
1270 		if (wbc->nr_to_write <= 0) {
1271 			/* Slice used up. Queue for next turn. */
1272 			requeue_io(inode, wb);
1273 		} else {
1274 			/*
1275 			 * Writeback blocked by something other than
1276 			 * congestion. Delay the inode for some time to
1277 			 * avoid spinning on the CPU (100% iowait)
1278 			 * retrying writeback of the dirty page/inode
1279 			 * that cannot be performed immediately.
1280 			 */
1281 			redirty_tail(inode, wb);
1282 		}
1283 	} else if (inode->i_state & I_DIRTY) {
1284 		/*
1285 		 * Filesystems can dirty the inode during writeback operations,
1286 		 * such as delayed allocation during submission or metadata
1287 		 * updates after data IO completion.
1288 		 */
1289 		redirty_tail(inode, wb);
1290 	} else if (inode->i_state & I_DIRTY_TIME) {
1291 		inode->dirtied_when = jiffies;
1292 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1293 	} else {
1294 		/* The inode is clean. Remove from writeback lists. */
1295 		inode_io_list_del_locked(inode, wb);
1296 	}
1297 }
1298 
1299 /*
1300  * Write out an inode and its dirty pages. Do not update the writeback list
1301  * linkage. That is left to the caller. The caller is also responsible for
1302  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1303  */
1304 static int
1305 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1306 {
1307 	struct address_space *mapping = inode->i_mapping;
1308 	long nr_to_write = wbc->nr_to_write;
1309 	unsigned dirty;
1310 	int ret;
1311 
1312 	WARN_ON(!(inode->i_state & I_SYNC));
1313 
1314 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1315 
1316 	ret = do_writepages(mapping, wbc);
1317 
1318 	/*
1319 	 * Make sure to wait on the data before writing out the metadata.
1320 	 * This is important for filesystems that modify metadata on data
1321 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1322 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1323 	 * inode metadata is written back correctly.
1324 	 */
1325 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1326 		int err = filemap_fdatawait(mapping);
1327 		if (ret == 0)
1328 			ret = err;
1329 	}
1330 
1331 	/*
1332 	 * Some filesystems may redirty the inode during the writeback
1333 	 * due to delalloc, clear dirty metadata flags right before
1334 	 * write_inode()
1335 	 */
1336 	spin_lock(&inode->i_lock);
1337 
1338 	dirty = inode->i_state & I_DIRTY;
1339 	if (inode->i_state & I_DIRTY_TIME) {
1340 		if ((dirty & I_DIRTY_INODE) ||
1341 		    wbc->sync_mode == WB_SYNC_ALL ||
1342 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1343 		    unlikely(time_after(jiffies,
1344 					(inode->dirtied_time_when +
1345 					 dirtytime_expire_interval * HZ)))) {
1346 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1347 			trace_writeback_lazytime(inode);
1348 		}
1349 	} else
1350 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1351 	inode->i_state &= ~dirty;
1352 
1353 	/*
1354 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1355 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1356 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1357 	 * inode.
1358 	 *
1359 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1360 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1361 	 * necessary.  This guarantees that either __mark_inode_dirty()
1362 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1363 	 */
1364 	smp_mb();
1365 
1366 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1367 		inode->i_state |= I_DIRTY_PAGES;
1368 
1369 	spin_unlock(&inode->i_lock);
1370 
1371 	if (dirty & I_DIRTY_TIME)
1372 		mark_inode_dirty_sync(inode);
1373 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1374 	if (dirty & ~I_DIRTY_PAGES) {
1375 		int err = write_inode(inode, wbc);
1376 		if (ret == 0)
1377 			ret = err;
1378 	}
1379 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1380 	return ret;
1381 }
1382 
1383 /*
1384  * Write out an inode's dirty pages. Either the caller has an active reference
1385  * on the inode or the inode has I_WILL_FREE set.
1386  *
1387  * This function is designed to be called for writing back one inode which
1388  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1389  * and does more profound writeback list handling in writeback_sb_inodes().
1390  */
1391 static int writeback_single_inode(struct inode *inode,
1392 				  struct writeback_control *wbc)
1393 {
1394 	struct bdi_writeback *wb;
1395 	int ret = 0;
1396 
1397 	spin_lock(&inode->i_lock);
1398 	if (!atomic_read(&inode->i_count))
1399 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1400 	else
1401 		WARN_ON(inode->i_state & I_WILL_FREE);
1402 
1403 	if (inode->i_state & I_SYNC) {
1404 		if (wbc->sync_mode != WB_SYNC_ALL)
1405 			goto out;
1406 		/*
1407 		 * It's a data-integrity sync. We must wait. Since callers hold
1408 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1409 		 * away under us.
1410 		 */
1411 		__inode_wait_for_writeback(inode);
1412 	}
1413 	WARN_ON(inode->i_state & I_SYNC);
1414 	/*
1415 	 * Skip inode if it is clean and we have no outstanding writeback in
1416 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1417 	 * function since flusher thread may be doing for example sync in
1418 	 * parallel and if we move the inode, it could get skipped. So here we
1419 	 * make sure inode is on some writeback list and leave it there unless
1420 	 * we have completely cleaned the inode.
1421 	 */
1422 	if (!(inode->i_state & I_DIRTY_ALL) &&
1423 	    (wbc->sync_mode != WB_SYNC_ALL ||
1424 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1425 		goto out;
1426 	inode->i_state |= I_SYNC;
1427 	wbc_attach_and_unlock_inode(wbc, inode);
1428 
1429 	ret = __writeback_single_inode(inode, wbc);
1430 
1431 	wbc_detach_inode(wbc);
1432 
1433 	wb = inode_to_wb_and_lock_list(inode);
1434 	spin_lock(&inode->i_lock);
1435 	/*
1436 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1437 	 * touch it. See comment above for explanation.
1438 	 */
1439 	if (!(inode->i_state & I_DIRTY_ALL))
1440 		inode_io_list_del_locked(inode, wb);
1441 	spin_unlock(&wb->list_lock);
1442 	inode_sync_complete(inode);
1443 out:
1444 	spin_unlock(&inode->i_lock);
1445 	return ret;
1446 }
1447 
1448 static long writeback_chunk_size(struct bdi_writeback *wb,
1449 				 struct wb_writeback_work *work)
1450 {
1451 	long pages;
1452 
1453 	/*
1454 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1455 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1456 	 * here avoids calling into writeback_inodes_wb() more than once.
1457 	 *
1458 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1459 	 *
1460 	 *      wb_writeback()
1461 	 *          writeback_sb_inodes()       <== called only once
1462 	 *              write_cache_pages()     <== called once for each inode
1463 	 *                   (quickly) tag currently dirty pages
1464 	 *                   (maybe slowly) sync all tagged pages
1465 	 */
1466 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1467 		pages = LONG_MAX;
1468 	else {
1469 		pages = min(wb->avg_write_bandwidth / 2,
1470 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1471 		pages = min(pages, work->nr_pages);
1472 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1473 				   MIN_WRITEBACK_PAGES);
1474 	}
1475 
1476 	return pages;
1477 }
1478 
1479 /*
1480  * Write a portion of b_io inodes which belong to @sb.
1481  *
1482  * Return the number of pages and/or inodes written.
1483  *
1484  * NOTE! This is called with wb->list_lock held, and will
1485  * unlock and relock that for each inode it ends up doing
1486  * IO for.
1487  */
1488 static long writeback_sb_inodes(struct super_block *sb,
1489 				struct bdi_writeback *wb,
1490 				struct wb_writeback_work *work)
1491 {
1492 	struct writeback_control wbc = {
1493 		.sync_mode		= work->sync_mode,
1494 		.tagged_writepages	= work->tagged_writepages,
1495 		.for_kupdate		= work->for_kupdate,
1496 		.for_background		= work->for_background,
1497 		.for_sync		= work->for_sync,
1498 		.range_cyclic		= work->range_cyclic,
1499 		.range_start		= 0,
1500 		.range_end		= LLONG_MAX,
1501 	};
1502 	unsigned long start_time = jiffies;
1503 	long write_chunk;
1504 	long wrote = 0;  /* count both pages and inodes */
1505 
1506 	while (!list_empty(&wb->b_io)) {
1507 		struct inode *inode = wb_inode(wb->b_io.prev);
1508 		struct bdi_writeback *tmp_wb;
1509 
1510 		if (inode->i_sb != sb) {
1511 			if (work->sb) {
1512 				/*
1513 				 * We only want to write back data for this
1514 				 * superblock, move all inodes not belonging
1515 				 * to it back onto the dirty list.
1516 				 */
1517 				redirty_tail(inode, wb);
1518 				continue;
1519 			}
1520 
1521 			/*
1522 			 * The inode belongs to a different superblock.
1523 			 * Bounce back to the caller to unpin this and
1524 			 * pin the next superblock.
1525 			 */
1526 			break;
1527 		}
1528 
1529 		/*
1530 		 * Don't bother with new inodes or inodes being freed, first
1531 		 * kind does not need periodic writeout yet, and for the latter
1532 		 * kind writeout is handled by the freer.
1533 		 */
1534 		spin_lock(&inode->i_lock);
1535 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1536 			spin_unlock(&inode->i_lock);
1537 			redirty_tail(inode, wb);
1538 			continue;
1539 		}
1540 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1541 			/*
1542 			 * If this inode is locked for writeback and we are not
1543 			 * doing writeback-for-data-integrity, move it to
1544 			 * b_more_io so that writeback can proceed with the
1545 			 * other inodes on s_io.
1546 			 *
1547 			 * We'll have another go at writing back this inode
1548 			 * when we completed a full scan of b_io.
1549 			 */
1550 			spin_unlock(&inode->i_lock);
1551 			requeue_io(inode, wb);
1552 			trace_writeback_sb_inodes_requeue(inode);
1553 			continue;
1554 		}
1555 		spin_unlock(&wb->list_lock);
1556 
1557 		/*
1558 		 * We already requeued the inode if it had I_SYNC set and we
1559 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1560 		 * WB_SYNC_ALL case.
1561 		 */
1562 		if (inode->i_state & I_SYNC) {
1563 			/* Wait for I_SYNC. This function drops i_lock... */
1564 			inode_sleep_on_writeback(inode);
1565 			/* Inode may be gone, start again */
1566 			spin_lock(&wb->list_lock);
1567 			continue;
1568 		}
1569 		inode->i_state |= I_SYNC;
1570 		wbc_attach_and_unlock_inode(&wbc, inode);
1571 
1572 		write_chunk = writeback_chunk_size(wb, work);
1573 		wbc.nr_to_write = write_chunk;
1574 		wbc.pages_skipped = 0;
1575 
1576 		/*
1577 		 * We use I_SYNC to pin the inode in memory. While it is set
1578 		 * evict_inode() will wait so the inode cannot be freed.
1579 		 */
1580 		__writeback_single_inode(inode, &wbc);
1581 
1582 		wbc_detach_inode(&wbc);
1583 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1584 		wrote += write_chunk - wbc.nr_to_write;
1585 
1586 		if (need_resched()) {
1587 			/*
1588 			 * We're trying to balance between building up a nice
1589 			 * long list of IOs to improve our merge rate, and
1590 			 * getting those IOs out quickly for anyone throttling
1591 			 * in balance_dirty_pages().  cond_resched() doesn't
1592 			 * unplug, so get our IOs out the door before we
1593 			 * give up the CPU.
1594 			 */
1595 			blk_flush_plug(current);
1596 			cond_resched();
1597 		}
1598 
1599 		/*
1600 		 * Requeue @inode if still dirty.  Be careful as @inode may
1601 		 * have been switched to another wb in the meantime.
1602 		 */
1603 		tmp_wb = inode_to_wb_and_lock_list(inode);
1604 		spin_lock(&inode->i_lock);
1605 		if (!(inode->i_state & I_DIRTY_ALL))
1606 			wrote++;
1607 		requeue_inode(inode, tmp_wb, &wbc);
1608 		inode_sync_complete(inode);
1609 		spin_unlock(&inode->i_lock);
1610 
1611 		if (unlikely(tmp_wb != wb)) {
1612 			spin_unlock(&tmp_wb->list_lock);
1613 			spin_lock(&wb->list_lock);
1614 		}
1615 
1616 		/*
1617 		 * bail out to wb_writeback() often enough to check
1618 		 * background threshold and other termination conditions.
1619 		 */
1620 		if (wrote) {
1621 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1622 				break;
1623 			if (work->nr_pages <= 0)
1624 				break;
1625 		}
1626 	}
1627 	return wrote;
1628 }
1629 
1630 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1631 				  struct wb_writeback_work *work)
1632 {
1633 	unsigned long start_time = jiffies;
1634 	long wrote = 0;
1635 
1636 	while (!list_empty(&wb->b_io)) {
1637 		struct inode *inode = wb_inode(wb->b_io.prev);
1638 		struct super_block *sb = inode->i_sb;
1639 
1640 		if (!trylock_super(sb)) {
1641 			/*
1642 			 * trylock_super() may fail consistently due to
1643 			 * s_umount being grabbed by someone else. Don't use
1644 			 * requeue_io() to avoid busy retrying the inode/sb.
1645 			 */
1646 			redirty_tail(inode, wb);
1647 			continue;
1648 		}
1649 		wrote += writeback_sb_inodes(sb, wb, work);
1650 		up_read(&sb->s_umount);
1651 
1652 		/* refer to the same tests at the end of writeback_sb_inodes */
1653 		if (wrote) {
1654 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1655 				break;
1656 			if (work->nr_pages <= 0)
1657 				break;
1658 		}
1659 	}
1660 	/* Leave any unwritten inodes on b_io */
1661 	return wrote;
1662 }
1663 
1664 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1665 				enum wb_reason reason)
1666 {
1667 	struct wb_writeback_work work = {
1668 		.nr_pages	= nr_pages,
1669 		.sync_mode	= WB_SYNC_NONE,
1670 		.range_cyclic	= 1,
1671 		.reason		= reason,
1672 	};
1673 	struct blk_plug plug;
1674 
1675 	blk_start_plug(&plug);
1676 	spin_lock(&wb->list_lock);
1677 	if (list_empty(&wb->b_io))
1678 		queue_io(wb, &work);
1679 	__writeback_inodes_wb(wb, &work);
1680 	spin_unlock(&wb->list_lock);
1681 	blk_finish_plug(&plug);
1682 
1683 	return nr_pages - work.nr_pages;
1684 }
1685 
1686 /*
1687  * Explicit flushing or periodic writeback of "old" data.
1688  *
1689  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1690  * dirtying-time in the inode's address_space.  So this periodic writeback code
1691  * just walks the superblock inode list, writing back any inodes which are
1692  * older than a specific point in time.
1693  *
1694  * Try to run once per dirty_writeback_interval.  But if a writeback event
1695  * takes longer than a dirty_writeback_interval interval, then leave a
1696  * one-second gap.
1697  *
1698  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1699  * all dirty pages if they are all attached to "old" mappings.
1700  */
1701 static long wb_writeback(struct bdi_writeback *wb,
1702 			 struct wb_writeback_work *work)
1703 {
1704 	unsigned long wb_start = jiffies;
1705 	long nr_pages = work->nr_pages;
1706 	unsigned long oldest_jif;
1707 	struct inode *inode;
1708 	long progress;
1709 	struct blk_plug plug;
1710 
1711 	oldest_jif = jiffies;
1712 	work->older_than_this = &oldest_jif;
1713 
1714 	blk_start_plug(&plug);
1715 	spin_lock(&wb->list_lock);
1716 	for (;;) {
1717 		/*
1718 		 * Stop writeback when nr_pages has been consumed
1719 		 */
1720 		if (work->nr_pages <= 0)
1721 			break;
1722 
1723 		/*
1724 		 * Background writeout and kupdate-style writeback may
1725 		 * run forever. Stop them if there is other work to do
1726 		 * so that e.g. sync can proceed. They'll be restarted
1727 		 * after the other works are all done.
1728 		 */
1729 		if ((work->for_background || work->for_kupdate) &&
1730 		    !list_empty(&wb->work_list))
1731 			break;
1732 
1733 		/*
1734 		 * For background writeout, stop when we are below the
1735 		 * background dirty threshold
1736 		 */
1737 		if (work->for_background && !wb_over_bg_thresh(wb))
1738 			break;
1739 
1740 		/*
1741 		 * Kupdate and background works are special and we want to
1742 		 * include all inodes that need writing. Livelock avoidance is
1743 		 * handled by these works yielding to any other work so we are
1744 		 * safe.
1745 		 */
1746 		if (work->for_kupdate) {
1747 			oldest_jif = jiffies -
1748 				msecs_to_jiffies(dirty_expire_interval * 10);
1749 		} else if (work->for_background)
1750 			oldest_jif = jiffies;
1751 
1752 		trace_writeback_start(wb, work);
1753 		if (list_empty(&wb->b_io))
1754 			queue_io(wb, work);
1755 		if (work->sb)
1756 			progress = writeback_sb_inodes(work->sb, wb, work);
1757 		else
1758 			progress = __writeback_inodes_wb(wb, work);
1759 		trace_writeback_written(wb, work);
1760 
1761 		wb_update_bandwidth(wb, wb_start);
1762 
1763 		/*
1764 		 * Did we write something? Try for more
1765 		 *
1766 		 * Dirty inodes are moved to b_io for writeback in batches.
1767 		 * The completion of the current batch does not necessarily
1768 		 * mean the overall work is done. So we keep looping as long
1769 		 * as made some progress on cleaning pages or inodes.
1770 		 */
1771 		if (progress)
1772 			continue;
1773 		/*
1774 		 * No more inodes for IO, bail
1775 		 */
1776 		if (list_empty(&wb->b_more_io))
1777 			break;
1778 		/*
1779 		 * Nothing written. Wait for some inode to
1780 		 * become available for writeback. Otherwise
1781 		 * we'll just busyloop.
1782 		 */
1783 		trace_writeback_wait(wb, work);
1784 		inode = wb_inode(wb->b_more_io.prev);
1785 		spin_lock(&inode->i_lock);
1786 		spin_unlock(&wb->list_lock);
1787 		/* This function drops i_lock... */
1788 		inode_sleep_on_writeback(inode);
1789 		spin_lock(&wb->list_lock);
1790 	}
1791 	spin_unlock(&wb->list_lock);
1792 	blk_finish_plug(&plug);
1793 
1794 	return nr_pages - work->nr_pages;
1795 }
1796 
1797 /*
1798  * Return the next wb_writeback_work struct that hasn't been processed yet.
1799  */
1800 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1801 {
1802 	struct wb_writeback_work *work = NULL;
1803 
1804 	spin_lock_bh(&wb->work_lock);
1805 	if (!list_empty(&wb->work_list)) {
1806 		work = list_entry(wb->work_list.next,
1807 				  struct wb_writeback_work, list);
1808 		list_del_init(&work->list);
1809 	}
1810 	spin_unlock_bh(&wb->work_lock);
1811 	return work;
1812 }
1813 
1814 static long wb_check_background_flush(struct bdi_writeback *wb)
1815 {
1816 	if (wb_over_bg_thresh(wb)) {
1817 
1818 		struct wb_writeback_work work = {
1819 			.nr_pages	= LONG_MAX,
1820 			.sync_mode	= WB_SYNC_NONE,
1821 			.for_background	= 1,
1822 			.range_cyclic	= 1,
1823 			.reason		= WB_REASON_BACKGROUND,
1824 		};
1825 
1826 		return wb_writeback(wb, &work);
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1833 {
1834 	unsigned long expired;
1835 	long nr_pages;
1836 
1837 	/*
1838 	 * When set to zero, disable periodic writeback
1839 	 */
1840 	if (!dirty_writeback_interval)
1841 		return 0;
1842 
1843 	expired = wb->last_old_flush +
1844 			msecs_to_jiffies(dirty_writeback_interval * 10);
1845 	if (time_before(jiffies, expired))
1846 		return 0;
1847 
1848 	wb->last_old_flush = jiffies;
1849 	nr_pages = get_nr_dirty_pages();
1850 
1851 	if (nr_pages) {
1852 		struct wb_writeback_work work = {
1853 			.nr_pages	= nr_pages,
1854 			.sync_mode	= WB_SYNC_NONE,
1855 			.for_kupdate	= 1,
1856 			.range_cyclic	= 1,
1857 			.reason		= WB_REASON_PERIODIC,
1858 		};
1859 
1860 		return wb_writeback(wb, &work);
1861 	}
1862 
1863 	return 0;
1864 }
1865 
1866 static long wb_check_start_all(struct bdi_writeback *wb)
1867 {
1868 	long nr_pages;
1869 
1870 	if (!test_bit(WB_start_all, &wb->state))
1871 		return 0;
1872 
1873 	nr_pages = get_nr_dirty_pages();
1874 	if (nr_pages) {
1875 		struct wb_writeback_work work = {
1876 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
1877 			.sync_mode	= WB_SYNC_NONE,
1878 			.range_cyclic	= 1,
1879 			.reason		= wb->start_all_reason,
1880 		};
1881 
1882 		nr_pages = wb_writeback(wb, &work);
1883 	}
1884 
1885 	clear_bit(WB_start_all, &wb->state);
1886 	return nr_pages;
1887 }
1888 
1889 
1890 /*
1891  * Retrieve work items and do the writeback they describe
1892  */
1893 static long wb_do_writeback(struct bdi_writeback *wb)
1894 {
1895 	struct wb_writeback_work *work;
1896 	long wrote = 0;
1897 
1898 	set_bit(WB_writeback_running, &wb->state);
1899 	while ((work = get_next_work_item(wb)) != NULL) {
1900 		trace_writeback_exec(wb, work);
1901 		wrote += wb_writeback(wb, work);
1902 		finish_writeback_work(wb, work);
1903 	}
1904 
1905 	/*
1906 	 * Check for a flush-everything request
1907 	 */
1908 	wrote += wb_check_start_all(wb);
1909 
1910 	/*
1911 	 * Check for periodic writeback, kupdated() style
1912 	 */
1913 	wrote += wb_check_old_data_flush(wb);
1914 	wrote += wb_check_background_flush(wb);
1915 	clear_bit(WB_writeback_running, &wb->state);
1916 
1917 	return wrote;
1918 }
1919 
1920 /*
1921  * Handle writeback of dirty data for the device backed by this bdi. Also
1922  * reschedules periodically and does kupdated style flushing.
1923  */
1924 void wb_workfn(struct work_struct *work)
1925 {
1926 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1927 						struct bdi_writeback, dwork);
1928 	long pages_written;
1929 
1930 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1931 	current->flags |= PF_SWAPWRITE;
1932 
1933 	if (likely(!current_is_workqueue_rescuer() ||
1934 		   !test_bit(WB_registered, &wb->state))) {
1935 		/*
1936 		 * The normal path.  Keep writing back @wb until its
1937 		 * work_list is empty.  Note that this path is also taken
1938 		 * if @wb is shutting down even when we're running off the
1939 		 * rescuer as work_list needs to be drained.
1940 		 */
1941 		do {
1942 			pages_written = wb_do_writeback(wb);
1943 			trace_writeback_pages_written(pages_written);
1944 		} while (!list_empty(&wb->work_list));
1945 	} else {
1946 		/*
1947 		 * bdi_wq can't get enough workers and we're running off
1948 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1949 		 * enough for efficient IO.
1950 		 */
1951 		pages_written = writeback_inodes_wb(wb, 1024,
1952 						    WB_REASON_FORKER_THREAD);
1953 		trace_writeback_pages_written(pages_written);
1954 	}
1955 
1956 	if (!list_empty(&wb->work_list))
1957 		wb_wakeup(wb);
1958 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1959 		wb_wakeup_delayed(wb);
1960 
1961 	current->flags &= ~PF_SWAPWRITE;
1962 }
1963 
1964 /*
1965  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
1966  * write back the whole world.
1967  */
1968 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
1969 					 enum wb_reason reason)
1970 {
1971 	struct bdi_writeback *wb;
1972 
1973 	if (!bdi_has_dirty_io(bdi))
1974 		return;
1975 
1976 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1977 		wb_start_writeback(wb, reason);
1978 }
1979 
1980 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
1981 				enum wb_reason reason)
1982 {
1983 	rcu_read_lock();
1984 	__wakeup_flusher_threads_bdi(bdi, reason);
1985 	rcu_read_unlock();
1986 }
1987 
1988 /*
1989  * Wakeup the flusher threads to start writeback of all currently dirty pages
1990  */
1991 void wakeup_flusher_threads(enum wb_reason reason)
1992 {
1993 	struct backing_dev_info *bdi;
1994 
1995 	/*
1996 	 * If we are expecting writeback progress we must submit plugged IO.
1997 	 */
1998 	if (blk_needs_flush_plug(current))
1999 		blk_schedule_flush_plug(current);
2000 
2001 	rcu_read_lock();
2002 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2003 		__wakeup_flusher_threads_bdi(bdi, reason);
2004 	rcu_read_unlock();
2005 }
2006 
2007 /*
2008  * Wake up bdi's periodically to make sure dirtytime inodes gets
2009  * written back periodically.  We deliberately do *not* check the
2010  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2011  * kernel to be constantly waking up once there are any dirtytime
2012  * inodes on the system.  So instead we define a separate delayed work
2013  * function which gets called much more rarely.  (By default, only
2014  * once every 12 hours.)
2015  *
2016  * If there is any other write activity going on in the file system,
2017  * this function won't be necessary.  But if the only thing that has
2018  * happened on the file system is a dirtytime inode caused by an atime
2019  * update, we need this infrastructure below to make sure that inode
2020  * eventually gets pushed out to disk.
2021  */
2022 static void wakeup_dirtytime_writeback(struct work_struct *w);
2023 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2024 
2025 static void wakeup_dirtytime_writeback(struct work_struct *w)
2026 {
2027 	struct backing_dev_info *bdi;
2028 
2029 	rcu_read_lock();
2030 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2031 		struct bdi_writeback *wb;
2032 
2033 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2034 			if (!list_empty(&wb->b_dirty_time))
2035 				wb_wakeup(wb);
2036 	}
2037 	rcu_read_unlock();
2038 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2039 }
2040 
2041 static int __init start_dirtytime_writeback(void)
2042 {
2043 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2044 	return 0;
2045 }
2046 __initcall(start_dirtytime_writeback);
2047 
2048 int dirtytime_interval_handler(struct ctl_table *table, int write,
2049 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2050 {
2051 	int ret;
2052 
2053 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2054 	if (ret == 0 && write)
2055 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2056 	return ret;
2057 }
2058 
2059 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2060 {
2061 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2062 		struct dentry *dentry;
2063 		const char *name = "?";
2064 
2065 		dentry = d_find_alias(inode);
2066 		if (dentry) {
2067 			spin_lock(&dentry->d_lock);
2068 			name = (const char *) dentry->d_name.name;
2069 		}
2070 		printk(KERN_DEBUG
2071 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2072 		       current->comm, task_pid_nr(current), inode->i_ino,
2073 		       name, inode->i_sb->s_id);
2074 		if (dentry) {
2075 			spin_unlock(&dentry->d_lock);
2076 			dput(dentry);
2077 		}
2078 	}
2079 }
2080 
2081 /**
2082  * __mark_inode_dirty -	internal function
2083  *
2084  * @inode: inode to mark
2085  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2086  *
2087  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2088  * mark_inode_dirty_sync.
2089  *
2090  * Put the inode on the super block's dirty list.
2091  *
2092  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2093  * dirty list only if it is hashed or if it refers to a blockdev.
2094  * If it was not hashed, it will never be added to the dirty list
2095  * even if it is later hashed, as it will have been marked dirty already.
2096  *
2097  * In short, make sure you hash any inodes _before_ you start marking
2098  * them dirty.
2099  *
2100  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2101  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2102  * the kernel-internal blockdev inode represents the dirtying time of the
2103  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2104  * page->mapping->host, so the page-dirtying time is recorded in the internal
2105  * blockdev inode.
2106  */
2107 void __mark_inode_dirty(struct inode *inode, int flags)
2108 {
2109 	struct super_block *sb = inode->i_sb;
2110 	int dirtytime;
2111 
2112 	trace_writeback_mark_inode_dirty(inode, flags);
2113 
2114 	/*
2115 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2116 	 * dirty the inode itself
2117 	 */
2118 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2119 		trace_writeback_dirty_inode_start(inode, flags);
2120 
2121 		if (sb->s_op->dirty_inode)
2122 			sb->s_op->dirty_inode(inode, flags);
2123 
2124 		trace_writeback_dirty_inode(inode, flags);
2125 	}
2126 	if (flags & I_DIRTY_INODE)
2127 		flags &= ~I_DIRTY_TIME;
2128 	dirtytime = flags & I_DIRTY_TIME;
2129 
2130 	/*
2131 	 * Paired with smp_mb() in __writeback_single_inode() for the
2132 	 * following lockless i_state test.  See there for details.
2133 	 */
2134 	smp_mb();
2135 
2136 	if (((inode->i_state & flags) == flags) ||
2137 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2138 		return;
2139 
2140 	if (unlikely(block_dump))
2141 		block_dump___mark_inode_dirty(inode);
2142 
2143 	spin_lock(&inode->i_lock);
2144 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2145 		goto out_unlock_inode;
2146 	if ((inode->i_state & flags) != flags) {
2147 		const int was_dirty = inode->i_state & I_DIRTY;
2148 
2149 		inode_attach_wb(inode, NULL);
2150 
2151 		if (flags & I_DIRTY_INODE)
2152 			inode->i_state &= ~I_DIRTY_TIME;
2153 		inode->i_state |= flags;
2154 
2155 		/*
2156 		 * If the inode is being synced, just update its dirty state.
2157 		 * The unlocker will place the inode on the appropriate
2158 		 * superblock list, based upon its state.
2159 		 */
2160 		if (inode->i_state & I_SYNC)
2161 			goto out_unlock_inode;
2162 
2163 		/*
2164 		 * Only add valid (hashed) inodes to the superblock's
2165 		 * dirty list.  Add blockdev inodes as well.
2166 		 */
2167 		if (!S_ISBLK(inode->i_mode)) {
2168 			if (inode_unhashed(inode))
2169 				goto out_unlock_inode;
2170 		}
2171 		if (inode->i_state & I_FREEING)
2172 			goto out_unlock_inode;
2173 
2174 		/*
2175 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2176 		 * reposition it (that would break b_dirty time-ordering).
2177 		 */
2178 		if (!was_dirty) {
2179 			struct bdi_writeback *wb;
2180 			struct list_head *dirty_list;
2181 			bool wakeup_bdi = false;
2182 
2183 			wb = locked_inode_to_wb_and_lock_list(inode);
2184 
2185 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2186 			     !test_bit(WB_registered, &wb->state),
2187 			     "bdi-%s not registered\n", wb->bdi->name);
2188 
2189 			inode->dirtied_when = jiffies;
2190 			if (dirtytime)
2191 				inode->dirtied_time_when = jiffies;
2192 
2193 			if (inode->i_state & I_DIRTY)
2194 				dirty_list = &wb->b_dirty;
2195 			else
2196 				dirty_list = &wb->b_dirty_time;
2197 
2198 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2199 							       dirty_list);
2200 
2201 			spin_unlock(&wb->list_lock);
2202 			trace_writeback_dirty_inode_enqueue(inode);
2203 
2204 			/*
2205 			 * If this is the first dirty inode for this bdi,
2206 			 * we have to wake-up the corresponding bdi thread
2207 			 * to make sure background write-back happens
2208 			 * later.
2209 			 */
2210 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2211 				wb_wakeup_delayed(wb);
2212 			return;
2213 		}
2214 	}
2215 out_unlock_inode:
2216 	spin_unlock(&inode->i_lock);
2217 }
2218 EXPORT_SYMBOL(__mark_inode_dirty);
2219 
2220 /*
2221  * The @s_sync_lock is used to serialise concurrent sync operations
2222  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2223  * Concurrent callers will block on the s_sync_lock rather than doing contending
2224  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2225  * has been issued up to the time this function is enter is guaranteed to be
2226  * completed by the time we have gained the lock and waited for all IO that is
2227  * in progress regardless of the order callers are granted the lock.
2228  */
2229 static void wait_sb_inodes(struct super_block *sb)
2230 {
2231 	LIST_HEAD(sync_list);
2232 
2233 	/*
2234 	 * We need to be protected against the filesystem going from
2235 	 * r/o to r/w or vice versa.
2236 	 */
2237 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2238 
2239 	mutex_lock(&sb->s_sync_lock);
2240 
2241 	/*
2242 	 * Splice the writeback list onto a temporary list to avoid waiting on
2243 	 * inodes that have started writeback after this point.
2244 	 *
2245 	 * Use rcu_read_lock() to keep the inodes around until we have a
2246 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2247 	 * the local list because inodes can be dropped from either by writeback
2248 	 * completion.
2249 	 */
2250 	rcu_read_lock();
2251 	spin_lock_irq(&sb->s_inode_wblist_lock);
2252 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2253 
2254 	/*
2255 	 * Data integrity sync. Must wait for all pages under writeback, because
2256 	 * there may have been pages dirtied before our sync call, but which had
2257 	 * writeout started before we write it out.  In which case, the inode
2258 	 * may not be on the dirty list, but we still have to wait for that
2259 	 * writeout.
2260 	 */
2261 	while (!list_empty(&sync_list)) {
2262 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2263 						       i_wb_list);
2264 		struct address_space *mapping = inode->i_mapping;
2265 
2266 		/*
2267 		 * Move each inode back to the wb list before we drop the lock
2268 		 * to preserve consistency between i_wb_list and the mapping
2269 		 * writeback tag. Writeback completion is responsible to remove
2270 		 * the inode from either list once the writeback tag is cleared.
2271 		 */
2272 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2273 
2274 		/*
2275 		 * The mapping can appear untagged while still on-list since we
2276 		 * do not have the mapping lock. Skip it here, wb completion
2277 		 * will remove it.
2278 		 */
2279 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2280 			continue;
2281 
2282 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2283 
2284 		spin_lock(&inode->i_lock);
2285 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2286 			spin_unlock(&inode->i_lock);
2287 
2288 			spin_lock_irq(&sb->s_inode_wblist_lock);
2289 			continue;
2290 		}
2291 		__iget(inode);
2292 		spin_unlock(&inode->i_lock);
2293 		rcu_read_unlock();
2294 
2295 		/*
2296 		 * We keep the error status of individual mapping so that
2297 		 * applications can catch the writeback error using fsync(2).
2298 		 * See filemap_fdatawait_keep_errors() for details.
2299 		 */
2300 		filemap_fdatawait_keep_errors(mapping);
2301 
2302 		cond_resched();
2303 
2304 		iput(inode);
2305 
2306 		rcu_read_lock();
2307 		spin_lock_irq(&sb->s_inode_wblist_lock);
2308 	}
2309 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2310 	rcu_read_unlock();
2311 	mutex_unlock(&sb->s_sync_lock);
2312 }
2313 
2314 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2315 				     enum wb_reason reason, bool skip_if_busy)
2316 {
2317 	DEFINE_WB_COMPLETION_ONSTACK(done);
2318 	struct wb_writeback_work work = {
2319 		.sb			= sb,
2320 		.sync_mode		= WB_SYNC_NONE,
2321 		.tagged_writepages	= 1,
2322 		.done			= &done,
2323 		.nr_pages		= nr,
2324 		.reason			= reason,
2325 	};
2326 	struct backing_dev_info *bdi = sb->s_bdi;
2327 
2328 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2329 		return;
2330 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2331 
2332 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2333 	wb_wait_for_completion(bdi, &done);
2334 }
2335 
2336 /**
2337  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2338  * @sb: the superblock
2339  * @nr: the number of pages to write
2340  * @reason: reason why some writeback work initiated
2341  *
2342  * Start writeback on some inodes on this super_block. No guarantees are made
2343  * on how many (if any) will be written, and this function does not wait
2344  * for IO completion of submitted IO.
2345  */
2346 void writeback_inodes_sb_nr(struct super_block *sb,
2347 			    unsigned long nr,
2348 			    enum wb_reason reason)
2349 {
2350 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2351 }
2352 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2353 
2354 /**
2355  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2356  * @sb: the superblock
2357  * @reason: reason why some writeback work was initiated
2358  *
2359  * Start writeback on some inodes on this super_block. No guarantees are made
2360  * on how many (if any) will be written, and this function does not wait
2361  * for IO completion of submitted IO.
2362  */
2363 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2364 {
2365 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2366 }
2367 EXPORT_SYMBOL(writeback_inodes_sb);
2368 
2369 /**
2370  * try_to_writeback_inodes_sb - try to start writeback if none underway
2371  * @sb: the superblock
2372  * @reason: reason why some writeback work was initiated
2373  *
2374  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2375  */
2376 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2377 {
2378 	if (!down_read_trylock(&sb->s_umount))
2379 		return;
2380 
2381 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2382 	up_read(&sb->s_umount);
2383 }
2384 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2385 
2386 /**
2387  * sync_inodes_sb	-	sync sb inode pages
2388  * @sb: the superblock
2389  *
2390  * This function writes and waits on any dirty inode belonging to this
2391  * super_block.
2392  */
2393 void sync_inodes_sb(struct super_block *sb)
2394 {
2395 	DEFINE_WB_COMPLETION_ONSTACK(done);
2396 	struct wb_writeback_work work = {
2397 		.sb		= sb,
2398 		.sync_mode	= WB_SYNC_ALL,
2399 		.nr_pages	= LONG_MAX,
2400 		.range_cyclic	= 0,
2401 		.done		= &done,
2402 		.reason		= WB_REASON_SYNC,
2403 		.for_sync	= 1,
2404 	};
2405 	struct backing_dev_info *bdi = sb->s_bdi;
2406 
2407 	/*
2408 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2409 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2410 	 * bdi_has_dirty() need to be written out too.
2411 	 */
2412 	if (bdi == &noop_backing_dev_info)
2413 		return;
2414 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2415 
2416 	bdi_split_work_to_wbs(bdi, &work, false);
2417 	wb_wait_for_completion(bdi, &done);
2418 
2419 	wait_sb_inodes(sb);
2420 }
2421 EXPORT_SYMBOL(sync_inodes_sb);
2422 
2423 /**
2424  * write_inode_now	-	write an inode to disk
2425  * @inode: inode to write to disk
2426  * @sync: whether the write should be synchronous or not
2427  *
2428  * This function commits an inode to disk immediately if it is dirty. This is
2429  * primarily needed by knfsd.
2430  *
2431  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2432  */
2433 int write_inode_now(struct inode *inode, int sync)
2434 {
2435 	struct writeback_control wbc = {
2436 		.nr_to_write = LONG_MAX,
2437 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2438 		.range_start = 0,
2439 		.range_end = LLONG_MAX,
2440 	};
2441 
2442 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2443 		wbc.nr_to_write = 0;
2444 
2445 	might_sleep();
2446 	return writeback_single_inode(inode, &wbc);
2447 }
2448 EXPORT_SYMBOL(write_inode_now);
2449 
2450 /**
2451  * sync_inode - write an inode and its pages to disk.
2452  * @inode: the inode to sync
2453  * @wbc: controls the writeback mode
2454  *
2455  * sync_inode() will write an inode and its pages to disk.  It will also
2456  * correctly update the inode on its superblock's dirty inode lists and will
2457  * update inode->i_state.
2458  *
2459  * The caller must have a ref on the inode.
2460  */
2461 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2462 {
2463 	return writeback_single_inode(inode, wbc);
2464 }
2465 EXPORT_SYMBOL(sync_inode);
2466 
2467 /**
2468  * sync_inode_metadata - write an inode to disk
2469  * @inode: the inode to sync
2470  * @wait: wait for I/O to complete.
2471  *
2472  * Write an inode to disk and adjust its dirty state after completion.
2473  *
2474  * Note: only writes the actual inode, no associated data or other metadata.
2475  */
2476 int sync_inode_metadata(struct inode *inode, int wait)
2477 {
2478 	struct writeback_control wbc = {
2479 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2480 		.nr_to_write = 0, /* metadata-only */
2481 	};
2482 
2483 	return sync_inode(inode, &wbc);
2484 }
2485 EXPORT_SYMBOL(sync_inode_metadata);
2486