1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/sched.h> 20 #include <linux/fs.h> 21 #include <linux/mm.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/backing-dev.h> 27 #include <linux/buffer_head.h> 28 #include "internal.h" 29 30 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info) 31 32 /* 33 * We don't actually have pdflush, but this one is exported though /proc... 34 */ 35 int nr_pdflush_threads; 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_args { 41 long nr_pages; 42 struct super_block *sb; 43 enum writeback_sync_modes sync_mode; 44 int for_kupdate:1; 45 int range_cyclic:1; 46 int for_background:1; 47 }; 48 49 /* 50 * Work items for the bdi_writeback threads 51 */ 52 struct bdi_work { 53 struct list_head list; /* pending work list */ 54 struct rcu_head rcu_head; /* for RCU free/clear of work */ 55 56 unsigned long seen; /* threads that have seen this work */ 57 atomic_t pending; /* number of threads still to do work */ 58 59 struct wb_writeback_args args; /* writeback arguments */ 60 61 unsigned long state; /* flag bits, see WS_* */ 62 }; 63 64 enum { 65 WS_USED_B = 0, 66 WS_ONSTACK_B, 67 }; 68 69 #define WS_USED (1 << WS_USED_B) 70 #define WS_ONSTACK (1 << WS_ONSTACK_B) 71 72 static inline bool bdi_work_on_stack(struct bdi_work *work) 73 { 74 return test_bit(WS_ONSTACK_B, &work->state); 75 } 76 77 static inline void bdi_work_init(struct bdi_work *work, 78 struct wb_writeback_args *args) 79 { 80 INIT_RCU_HEAD(&work->rcu_head); 81 work->args = *args; 82 work->state = WS_USED; 83 } 84 85 /** 86 * writeback_in_progress - determine whether there is writeback in progress 87 * @bdi: the device's backing_dev_info structure. 88 * 89 * Determine whether there is writeback waiting to be handled against a 90 * backing device. 91 */ 92 int writeback_in_progress(struct backing_dev_info *bdi) 93 { 94 return !list_empty(&bdi->work_list); 95 } 96 97 static void bdi_work_clear(struct bdi_work *work) 98 { 99 clear_bit(WS_USED_B, &work->state); 100 smp_mb__after_clear_bit(); 101 /* 102 * work can have disappeared at this point. bit waitq functions 103 * should be able to tolerate this, provided bdi_sched_wait does 104 * not dereference it's pointer argument. 105 */ 106 wake_up_bit(&work->state, WS_USED_B); 107 } 108 109 static void bdi_work_free(struct rcu_head *head) 110 { 111 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head); 112 113 if (!bdi_work_on_stack(work)) 114 kfree(work); 115 else 116 bdi_work_clear(work); 117 } 118 119 static void wb_work_complete(struct bdi_work *work) 120 { 121 const enum writeback_sync_modes sync_mode = work->args.sync_mode; 122 int onstack = bdi_work_on_stack(work); 123 124 /* 125 * For allocated work, we can clear the done/seen bit right here. 126 * For on-stack work, we need to postpone both the clear and free 127 * to after the RCU grace period, since the stack could be invalidated 128 * as soon as bdi_work_clear() has done the wakeup. 129 */ 130 if (!onstack) 131 bdi_work_clear(work); 132 if (sync_mode == WB_SYNC_NONE || onstack) 133 call_rcu(&work->rcu_head, bdi_work_free); 134 } 135 136 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work) 137 { 138 /* 139 * The caller has retrieved the work arguments from this work, 140 * drop our reference. If this is the last ref, delete and free it 141 */ 142 if (atomic_dec_and_test(&work->pending)) { 143 struct backing_dev_info *bdi = wb->bdi; 144 145 spin_lock(&bdi->wb_lock); 146 list_del_rcu(&work->list); 147 spin_unlock(&bdi->wb_lock); 148 149 wb_work_complete(work); 150 } 151 } 152 153 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work) 154 { 155 work->seen = bdi->wb_mask; 156 BUG_ON(!work->seen); 157 atomic_set(&work->pending, bdi->wb_cnt); 158 BUG_ON(!bdi->wb_cnt); 159 160 /* 161 * list_add_tail_rcu() contains the necessary barriers to 162 * make sure the above stores are seen before the item is 163 * noticed on the list 164 */ 165 spin_lock(&bdi->wb_lock); 166 list_add_tail_rcu(&work->list, &bdi->work_list); 167 spin_unlock(&bdi->wb_lock); 168 169 /* 170 * If the default thread isn't there, make sure we add it. When 171 * it gets created and wakes up, we'll run this work. 172 */ 173 if (unlikely(list_empty_careful(&bdi->wb_list))) 174 wake_up_process(default_backing_dev_info.wb.task); 175 else { 176 struct bdi_writeback *wb = &bdi->wb; 177 178 if (wb->task) 179 wake_up_process(wb->task); 180 } 181 } 182 183 /* 184 * Used for on-stack allocated work items. The caller needs to wait until 185 * the wb threads have acked the work before it's safe to continue. 186 */ 187 static void bdi_wait_on_work_clear(struct bdi_work *work) 188 { 189 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait, 190 TASK_UNINTERRUPTIBLE); 191 } 192 193 static void bdi_alloc_queue_work(struct backing_dev_info *bdi, 194 struct wb_writeback_args *args) 195 { 196 struct bdi_work *work; 197 198 /* 199 * This is WB_SYNC_NONE writeback, so if allocation fails just 200 * wakeup the thread for old dirty data writeback 201 */ 202 work = kmalloc(sizeof(*work), GFP_ATOMIC); 203 if (work) { 204 bdi_work_init(work, args); 205 bdi_queue_work(bdi, work); 206 } else { 207 struct bdi_writeback *wb = &bdi->wb; 208 209 if (wb->task) 210 wake_up_process(wb->task); 211 } 212 } 213 214 /** 215 * bdi_sync_writeback - start and wait for writeback 216 * @bdi: the backing device to write from 217 * @sb: write inodes from this super_block 218 * 219 * Description: 220 * This does WB_SYNC_ALL data integrity writeback and waits for the 221 * IO to complete. Callers must hold the sb s_umount semaphore for 222 * reading, to avoid having the super disappear before we are done. 223 */ 224 static void bdi_sync_writeback(struct backing_dev_info *bdi, 225 struct super_block *sb) 226 { 227 struct wb_writeback_args args = { 228 .sb = sb, 229 .sync_mode = WB_SYNC_ALL, 230 .nr_pages = LONG_MAX, 231 .range_cyclic = 0, 232 }; 233 struct bdi_work work; 234 235 bdi_work_init(&work, &args); 236 work.state |= WS_ONSTACK; 237 238 bdi_queue_work(bdi, &work); 239 bdi_wait_on_work_clear(&work); 240 } 241 242 /** 243 * bdi_start_writeback - start writeback 244 * @bdi: the backing device to write from 245 * @nr_pages: the number of pages to write 246 * 247 * Description: 248 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 249 * started when this function returns, we make no guarentees on 250 * completion. Caller need not hold sb s_umount semaphore. 251 * 252 */ 253 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb, 254 long nr_pages) 255 { 256 struct wb_writeback_args args = { 257 .sb = sb, 258 .sync_mode = WB_SYNC_NONE, 259 .nr_pages = nr_pages, 260 .range_cyclic = 1, 261 }; 262 263 /* 264 * We treat @nr_pages=0 as the special case to do background writeback, 265 * ie. to sync pages until the background dirty threshold is reached. 266 */ 267 if (!nr_pages) { 268 args.nr_pages = LONG_MAX; 269 args.for_background = 1; 270 } 271 272 bdi_alloc_queue_work(bdi, &args); 273 } 274 275 /* 276 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 277 * furthest end of its superblock's dirty-inode list. 278 * 279 * Before stamping the inode's ->dirtied_when, we check to see whether it is 280 * already the most-recently-dirtied inode on the b_dirty list. If that is 281 * the case then the inode must have been redirtied while it was being written 282 * out and we don't reset its dirtied_when. 283 */ 284 static void redirty_tail(struct inode *inode) 285 { 286 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 287 288 if (!list_empty(&wb->b_dirty)) { 289 struct inode *tail; 290 291 tail = list_entry(wb->b_dirty.next, struct inode, i_list); 292 if (time_before(inode->dirtied_when, tail->dirtied_when)) 293 inode->dirtied_when = jiffies; 294 } 295 list_move(&inode->i_list, &wb->b_dirty); 296 } 297 298 /* 299 * requeue inode for re-scanning after bdi->b_io list is exhausted. 300 */ 301 static void requeue_io(struct inode *inode) 302 { 303 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 304 305 list_move(&inode->i_list, &wb->b_more_io); 306 } 307 308 static void inode_sync_complete(struct inode *inode) 309 { 310 /* 311 * Prevent speculative execution through spin_unlock(&inode_lock); 312 */ 313 smp_mb(); 314 wake_up_bit(&inode->i_state, __I_SYNC); 315 } 316 317 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 318 { 319 bool ret = time_after(inode->dirtied_when, t); 320 #ifndef CONFIG_64BIT 321 /* 322 * For inodes being constantly redirtied, dirtied_when can get stuck. 323 * It _appears_ to be in the future, but is actually in distant past. 324 * This test is necessary to prevent such wrapped-around relative times 325 * from permanently stopping the whole bdi writeback. 326 */ 327 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 328 #endif 329 return ret; 330 } 331 332 /* 333 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 334 */ 335 static void move_expired_inodes(struct list_head *delaying_queue, 336 struct list_head *dispatch_queue, 337 unsigned long *older_than_this) 338 { 339 LIST_HEAD(tmp); 340 struct list_head *pos, *node; 341 struct super_block *sb = NULL; 342 struct inode *inode; 343 int do_sb_sort = 0; 344 345 while (!list_empty(delaying_queue)) { 346 inode = list_entry(delaying_queue->prev, struct inode, i_list); 347 if (older_than_this && 348 inode_dirtied_after(inode, *older_than_this)) 349 break; 350 if (sb && sb != inode->i_sb) 351 do_sb_sort = 1; 352 sb = inode->i_sb; 353 list_move(&inode->i_list, &tmp); 354 } 355 356 /* just one sb in list, splice to dispatch_queue and we're done */ 357 if (!do_sb_sort) { 358 list_splice(&tmp, dispatch_queue); 359 return; 360 } 361 362 /* Move inodes from one superblock together */ 363 while (!list_empty(&tmp)) { 364 inode = list_entry(tmp.prev, struct inode, i_list); 365 sb = inode->i_sb; 366 list_for_each_prev_safe(pos, node, &tmp) { 367 inode = list_entry(pos, struct inode, i_list); 368 if (inode->i_sb == sb) 369 list_move(&inode->i_list, dispatch_queue); 370 } 371 } 372 } 373 374 /* 375 * Queue all expired dirty inodes for io, eldest first. 376 */ 377 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 378 { 379 list_splice_init(&wb->b_more_io, wb->b_io.prev); 380 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 381 } 382 383 static int write_inode(struct inode *inode, int sync) 384 { 385 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 386 return inode->i_sb->s_op->write_inode(inode, sync); 387 return 0; 388 } 389 390 /* 391 * Wait for writeback on an inode to complete. 392 */ 393 static void inode_wait_for_writeback(struct inode *inode) 394 { 395 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 396 wait_queue_head_t *wqh; 397 398 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 399 do { 400 spin_unlock(&inode_lock); 401 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 402 spin_lock(&inode_lock); 403 } while (inode->i_state & I_SYNC); 404 } 405 406 /* 407 * Write out an inode's dirty pages. Called under inode_lock. Either the 408 * caller has ref on the inode (either via __iget or via syscall against an fd) 409 * or the inode has I_WILL_FREE set (via generic_forget_inode) 410 * 411 * If `wait' is set, wait on the writeout. 412 * 413 * The whole writeout design is quite complex and fragile. We want to avoid 414 * starvation of particular inodes when others are being redirtied, prevent 415 * livelocks, etc. 416 * 417 * Called under inode_lock. 418 */ 419 static int 420 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 421 { 422 struct address_space *mapping = inode->i_mapping; 423 int wait = wbc->sync_mode == WB_SYNC_ALL; 424 unsigned dirty; 425 int ret; 426 427 if (!atomic_read(&inode->i_count)) 428 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 429 else 430 WARN_ON(inode->i_state & I_WILL_FREE); 431 432 if (inode->i_state & I_SYNC) { 433 /* 434 * If this inode is locked for writeback and we are not doing 435 * writeback-for-data-integrity, move it to b_more_io so that 436 * writeback can proceed with the other inodes on s_io. 437 * 438 * We'll have another go at writing back this inode when we 439 * completed a full scan of b_io. 440 */ 441 if (!wait) { 442 requeue_io(inode); 443 return 0; 444 } 445 446 /* 447 * It's a data-integrity sync. We must wait. 448 */ 449 inode_wait_for_writeback(inode); 450 } 451 452 BUG_ON(inode->i_state & I_SYNC); 453 454 /* Set I_SYNC, reset I_DIRTY */ 455 dirty = inode->i_state & I_DIRTY; 456 inode->i_state |= I_SYNC; 457 inode->i_state &= ~I_DIRTY; 458 459 spin_unlock(&inode_lock); 460 461 ret = do_writepages(mapping, wbc); 462 463 /* Don't write the inode if only I_DIRTY_PAGES was set */ 464 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 465 int err = write_inode(inode, wait); 466 if (ret == 0) 467 ret = err; 468 } 469 470 if (wait) { 471 int err = filemap_fdatawait(mapping); 472 if (ret == 0) 473 ret = err; 474 } 475 476 spin_lock(&inode_lock); 477 inode->i_state &= ~I_SYNC; 478 if (!(inode->i_state & (I_FREEING | I_CLEAR))) { 479 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) { 480 /* 481 * More pages get dirtied by a fast dirtier. 482 */ 483 goto select_queue; 484 } else if (inode->i_state & I_DIRTY) { 485 /* 486 * At least XFS will redirty the inode during the 487 * writeback (delalloc) and on io completion (isize). 488 */ 489 redirty_tail(inode); 490 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 491 /* 492 * We didn't write back all the pages. nfs_writepages() 493 * sometimes bales out without doing anything. Redirty 494 * the inode; Move it from b_io onto b_more_io/b_dirty. 495 */ 496 /* 497 * akpm: if the caller was the kupdate function we put 498 * this inode at the head of b_dirty so it gets first 499 * consideration. Otherwise, move it to the tail, for 500 * the reasons described there. I'm not really sure 501 * how much sense this makes. Presumably I had a good 502 * reasons for doing it this way, and I'd rather not 503 * muck with it at present. 504 */ 505 if (wbc->for_kupdate) { 506 /* 507 * For the kupdate function we move the inode 508 * to b_more_io so it will get more writeout as 509 * soon as the queue becomes uncongested. 510 */ 511 inode->i_state |= I_DIRTY_PAGES; 512 select_queue: 513 if (wbc->nr_to_write <= 0) { 514 /* 515 * slice used up: queue for next turn 516 */ 517 requeue_io(inode); 518 } else { 519 /* 520 * somehow blocked: retry later 521 */ 522 redirty_tail(inode); 523 } 524 } else { 525 /* 526 * Otherwise fully redirty the inode so that 527 * other inodes on this superblock will get some 528 * writeout. Otherwise heavy writing to one 529 * file would indefinitely suspend writeout of 530 * all the other files. 531 */ 532 inode->i_state |= I_DIRTY_PAGES; 533 redirty_tail(inode); 534 } 535 } else if (atomic_read(&inode->i_count)) { 536 /* 537 * The inode is clean, inuse 538 */ 539 list_move(&inode->i_list, &inode_in_use); 540 } else { 541 /* 542 * The inode is clean, unused 543 */ 544 list_move(&inode->i_list, &inode_unused); 545 } 546 } 547 inode_sync_complete(inode); 548 return ret; 549 } 550 551 static void unpin_sb_for_writeback(struct super_block **psb) 552 { 553 struct super_block *sb = *psb; 554 555 if (sb) { 556 up_read(&sb->s_umount); 557 put_super(sb); 558 *psb = NULL; 559 } 560 } 561 562 /* 563 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned 564 * before calling writeback. So make sure that we do pin it, so it doesn't 565 * go away while we are writing inodes from it. 566 * 567 * Returns 0 if the super was successfully pinned (or pinning wasn't needed), 568 * 1 if we failed. 569 */ 570 static int pin_sb_for_writeback(struct writeback_control *wbc, 571 struct inode *inode, struct super_block **psb) 572 { 573 struct super_block *sb = inode->i_sb; 574 575 /* 576 * If this sb is already pinned, nothing more to do. If not and 577 * *psb is non-NULL, unpin the old one first 578 */ 579 if (sb == *psb) 580 return 0; 581 else if (*psb) 582 unpin_sb_for_writeback(psb); 583 584 /* 585 * Caller must already hold the ref for this 586 */ 587 if (wbc->sync_mode == WB_SYNC_ALL) { 588 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 589 return 0; 590 } 591 592 spin_lock(&sb_lock); 593 sb->s_count++; 594 if (down_read_trylock(&sb->s_umount)) { 595 if (sb->s_root) { 596 spin_unlock(&sb_lock); 597 goto pinned; 598 } 599 /* 600 * umounted, drop rwsem again and fall through to failure 601 */ 602 up_read(&sb->s_umount); 603 } 604 605 sb->s_count--; 606 spin_unlock(&sb_lock); 607 return 1; 608 pinned: 609 *psb = sb; 610 return 0; 611 } 612 613 static void writeback_inodes_wb(struct bdi_writeback *wb, 614 struct writeback_control *wbc) 615 { 616 struct super_block *sb = wbc->sb, *pin_sb = NULL; 617 const int is_blkdev_sb = sb_is_blkdev_sb(sb); 618 const unsigned long start = jiffies; /* livelock avoidance */ 619 620 spin_lock(&inode_lock); 621 622 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 623 queue_io(wb, wbc->older_than_this); 624 625 while (!list_empty(&wb->b_io)) { 626 struct inode *inode = list_entry(wb->b_io.prev, 627 struct inode, i_list); 628 long pages_skipped; 629 630 /* 631 * super block given and doesn't match, skip this inode 632 */ 633 if (sb && sb != inode->i_sb) { 634 redirty_tail(inode); 635 continue; 636 } 637 638 if (!bdi_cap_writeback_dirty(wb->bdi)) { 639 redirty_tail(inode); 640 if (is_blkdev_sb) { 641 /* 642 * Dirty memory-backed blockdev: the ramdisk 643 * driver does this. Skip just this inode 644 */ 645 continue; 646 } 647 /* 648 * Dirty memory-backed inode against a filesystem other 649 * than the kernel-internal bdev filesystem. Skip the 650 * entire superblock. 651 */ 652 break; 653 } 654 655 if (inode->i_state & (I_NEW | I_WILL_FREE)) { 656 requeue_io(inode); 657 continue; 658 } 659 660 if (wbc->nonblocking && bdi_write_congested(wb->bdi)) { 661 wbc->encountered_congestion = 1; 662 if (!is_blkdev_sb) 663 break; /* Skip a congested fs */ 664 requeue_io(inode); 665 continue; /* Skip a congested blockdev */ 666 } 667 668 /* 669 * Was this inode dirtied after sync_sb_inodes was called? 670 * This keeps sync from extra jobs and livelock. 671 */ 672 if (inode_dirtied_after(inode, start)) 673 break; 674 675 if (pin_sb_for_writeback(wbc, inode, &pin_sb)) { 676 requeue_io(inode); 677 continue; 678 } 679 680 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR)); 681 __iget(inode); 682 pages_skipped = wbc->pages_skipped; 683 writeback_single_inode(inode, wbc); 684 if (wbc->pages_skipped != pages_skipped) { 685 /* 686 * writeback is not making progress due to locked 687 * buffers. Skip this inode for now. 688 */ 689 redirty_tail(inode); 690 } 691 spin_unlock(&inode_lock); 692 iput(inode); 693 cond_resched(); 694 spin_lock(&inode_lock); 695 if (wbc->nr_to_write <= 0) { 696 wbc->more_io = 1; 697 break; 698 } 699 if (!list_empty(&wb->b_more_io)) 700 wbc->more_io = 1; 701 } 702 703 unpin_sb_for_writeback(&pin_sb); 704 705 spin_unlock(&inode_lock); 706 /* Leave any unwritten inodes on b_io */ 707 } 708 709 void writeback_inodes_wbc(struct writeback_control *wbc) 710 { 711 struct backing_dev_info *bdi = wbc->bdi; 712 713 writeback_inodes_wb(&bdi->wb, wbc); 714 } 715 716 /* 717 * The maximum number of pages to writeout in a single bdi flush/kupdate 718 * operation. We do this so we don't hold I_SYNC against an inode for 719 * enormous amounts of time, which would block a userspace task which has 720 * been forced to throttle against that inode. Also, the code reevaluates 721 * the dirty each time it has written this many pages. 722 */ 723 #define MAX_WRITEBACK_PAGES 1024 724 725 static inline bool over_bground_thresh(void) 726 { 727 unsigned long background_thresh, dirty_thresh; 728 729 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 730 731 return (global_page_state(NR_FILE_DIRTY) + 732 global_page_state(NR_UNSTABLE_NFS) >= background_thresh); 733 } 734 735 /* 736 * Explicit flushing or periodic writeback of "old" data. 737 * 738 * Define "old": the first time one of an inode's pages is dirtied, we mark the 739 * dirtying-time in the inode's address_space. So this periodic writeback code 740 * just walks the superblock inode list, writing back any inodes which are 741 * older than a specific point in time. 742 * 743 * Try to run once per dirty_writeback_interval. But if a writeback event 744 * takes longer than a dirty_writeback_interval interval, then leave a 745 * one-second gap. 746 * 747 * older_than_this takes precedence over nr_to_write. So we'll only write back 748 * all dirty pages if they are all attached to "old" mappings. 749 */ 750 static long wb_writeback(struct bdi_writeback *wb, 751 struct wb_writeback_args *args) 752 { 753 struct writeback_control wbc = { 754 .bdi = wb->bdi, 755 .sb = args->sb, 756 .sync_mode = args->sync_mode, 757 .older_than_this = NULL, 758 .for_kupdate = args->for_kupdate, 759 .range_cyclic = args->range_cyclic, 760 }; 761 unsigned long oldest_jif; 762 long wrote = 0; 763 struct inode *inode; 764 765 if (wbc.for_kupdate) { 766 wbc.older_than_this = &oldest_jif; 767 oldest_jif = jiffies - 768 msecs_to_jiffies(dirty_expire_interval * 10); 769 } 770 if (!wbc.range_cyclic) { 771 wbc.range_start = 0; 772 wbc.range_end = LLONG_MAX; 773 } 774 775 for (;;) { 776 /* 777 * Stop writeback when nr_pages has been consumed 778 */ 779 if (args->nr_pages <= 0) 780 break; 781 782 /* 783 * For background writeout, stop when we are below the 784 * background dirty threshold 785 */ 786 if (args->for_background && !over_bground_thresh()) 787 break; 788 789 wbc.more_io = 0; 790 wbc.encountered_congestion = 0; 791 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 792 wbc.pages_skipped = 0; 793 writeback_inodes_wb(wb, &wbc); 794 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 795 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write; 796 797 /* 798 * If we consumed everything, see if we have more 799 */ 800 if (wbc.nr_to_write <= 0) 801 continue; 802 /* 803 * Didn't write everything and we don't have more IO, bail 804 */ 805 if (!wbc.more_io) 806 break; 807 /* 808 * Did we write something? Try for more 809 */ 810 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES) 811 continue; 812 /* 813 * Nothing written. Wait for some inode to 814 * become available for writeback. Otherwise 815 * we'll just busyloop. 816 */ 817 spin_lock(&inode_lock); 818 if (!list_empty(&wb->b_more_io)) { 819 inode = list_entry(wb->b_more_io.prev, 820 struct inode, i_list); 821 inode_wait_for_writeback(inode); 822 } 823 spin_unlock(&inode_lock); 824 } 825 826 return wrote; 827 } 828 829 /* 830 * Return the next bdi_work struct that hasn't been processed by this 831 * wb thread yet. ->seen is initially set for each thread that exists 832 * for this device, when a thread first notices a piece of work it 833 * clears its bit. Depending on writeback type, the thread will notify 834 * completion on either receiving the work (WB_SYNC_NONE) or after 835 * it is done (WB_SYNC_ALL). 836 */ 837 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi, 838 struct bdi_writeback *wb) 839 { 840 struct bdi_work *work, *ret = NULL; 841 842 rcu_read_lock(); 843 844 list_for_each_entry_rcu(work, &bdi->work_list, list) { 845 if (!test_bit(wb->nr, &work->seen)) 846 continue; 847 clear_bit(wb->nr, &work->seen); 848 849 ret = work; 850 break; 851 } 852 853 rcu_read_unlock(); 854 return ret; 855 } 856 857 static long wb_check_old_data_flush(struct bdi_writeback *wb) 858 { 859 unsigned long expired; 860 long nr_pages; 861 862 expired = wb->last_old_flush + 863 msecs_to_jiffies(dirty_writeback_interval * 10); 864 if (time_before(jiffies, expired)) 865 return 0; 866 867 wb->last_old_flush = jiffies; 868 nr_pages = global_page_state(NR_FILE_DIRTY) + 869 global_page_state(NR_UNSTABLE_NFS) + 870 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 871 872 if (nr_pages) { 873 struct wb_writeback_args args = { 874 .nr_pages = nr_pages, 875 .sync_mode = WB_SYNC_NONE, 876 .for_kupdate = 1, 877 .range_cyclic = 1, 878 }; 879 880 return wb_writeback(wb, &args); 881 } 882 883 return 0; 884 } 885 886 /* 887 * Retrieve work items and do the writeback they describe 888 */ 889 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 890 { 891 struct backing_dev_info *bdi = wb->bdi; 892 struct bdi_work *work; 893 long wrote = 0; 894 895 while ((work = get_next_work_item(bdi, wb)) != NULL) { 896 struct wb_writeback_args args = work->args; 897 898 /* 899 * Override sync mode, in case we must wait for completion 900 */ 901 if (force_wait) 902 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL; 903 904 /* 905 * If this isn't a data integrity operation, just notify 906 * that we have seen this work and we are now starting it. 907 */ 908 if (args.sync_mode == WB_SYNC_NONE) 909 wb_clear_pending(wb, work); 910 911 wrote += wb_writeback(wb, &args); 912 913 /* 914 * This is a data integrity writeback, so only do the 915 * notification when we have completed the work. 916 */ 917 if (args.sync_mode == WB_SYNC_ALL) 918 wb_clear_pending(wb, work); 919 } 920 921 /* 922 * Check for periodic writeback, kupdated() style 923 */ 924 wrote += wb_check_old_data_flush(wb); 925 926 return wrote; 927 } 928 929 /* 930 * Handle writeback of dirty data for the device backed by this bdi. Also 931 * wakes up periodically and does kupdated style flushing. 932 */ 933 int bdi_writeback_task(struct bdi_writeback *wb) 934 { 935 unsigned long last_active = jiffies; 936 unsigned long wait_jiffies = -1UL; 937 long pages_written; 938 939 while (!kthread_should_stop()) { 940 pages_written = wb_do_writeback(wb, 0); 941 942 if (pages_written) 943 last_active = jiffies; 944 else if (wait_jiffies != -1UL) { 945 unsigned long max_idle; 946 947 /* 948 * Longest period of inactivity that we tolerate. If we 949 * see dirty data again later, the task will get 950 * recreated automatically. 951 */ 952 max_idle = max(5UL * 60 * HZ, wait_jiffies); 953 if (time_after(jiffies, max_idle + last_active)) 954 break; 955 } 956 957 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10); 958 schedule_timeout_interruptible(wait_jiffies); 959 try_to_freeze(); 960 } 961 962 return 0; 963 } 964 965 /* 966 * Schedule writeback for all backing devices. This does WB_SYNC_NONE 967 * writeback, for integrity writeback see bdi_sync_writeback(). 968 */ 969 static void bdi_writeback_all(struct super_block *sb, long nr_pages) 970 { 971 struct wb_writeback_args args = { 972 .sb = sb, 973 .nr_pages = nr_pages, 974 .sync_mode = WB_SYNC_NONE, 975 }; 976 struct backing_dev_info *bdi; 977 978 rcu_read_lock(); 979 980 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 981 if (!bdi_has_dirty_io(bdi)) 982 continue; 983 984 bdi_alloc_queue_work(bdi, &args); 985 } 986 987 rcu_read_unlock(); 988 } 989 990 /* 991 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 992 * the whole world. 993 */ 994 void wakeup_flusher_threads(long nr_pages) 995 { 996 if (nr_pages == 0) 997 nr_pages = global_page_state(NR_FILE_DIRTY) + 998 global_page_state(NR_UNSTABLE_NFS); 999 bdi_writeback_all(NULL, nr_pages); 1000 } 1001 1002 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1003 { 1004 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1005 struct dentry *dentry; 1006 const char *name = "?"; 1007 1008 dentry = d_find_alias(inode); 1009 if (dentry) { 1010 spin_lock(&dentry->d_lock); 1011 name = (const char *) dentry->d_name.name; 1012 } 1013 printk(KERN_DEBUG 1014 "%s(%d): dirtied inode %lu (%s) on %s\n", 1015 current->comm, task_pid_nr(current), inode->i_ino, 1016 name, inode->i_sb->s_id); 1017 if (dentry) { 1018 spin_unlock(&dentry->d_lock); 1019 dput(dentry); 1020 } 1021 } 1022 } 1023 1024 /** 1025 * __mark_inode_dirty - internal function 1026 * @inode: inode to mark 1027 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1028 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1029 * mark_inode_dirty_sync. 1030 * 1031 * Put the inode on the super block's dirty list. 1032 * 1033 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1034 * dirty list only if it is hashed or if it refers to a blockdev. 1035 * If it was not hashed, it will never be added to the dirty list 1036 * even if it is later hashed, as it will have been marked dirty already. 1037 * 1038 * In short, make sure you hash any inodes _before_ you start marking 1039 * them dirty. 1040 * 1041 * This function *must* be atomic for the I_DIRTY_PAGES case - 1042 * set_page_dirty() is called under spinlock in several places. 1043 * 1044 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1045 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1046 * the kernel-internal blockdev inode represents the dirtying time of the 1047 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1048 * page->mapping->host, so the page-dirtying time is recorded in the internal 1049 * blockdev inode. 1050 */ 1051 void __mark_inode_dirty(struct inode *inode, int flags) 1052 { 1053 struct super_block *sb = inode->i_sb; 1054 1055 /* 1056 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1057 * dirty the inode itself 1058 */ 1059 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1060 if (sb->s_op->dirty_inode) 1061 sb->s_op->dirty_inode(inode); 1062 } 1063 1064 /* 1065 * make sure that changes are seen by all cpus before we test i_state 1066 * -- mikulas 1067 */ 1068 smp_mb(); 1069 1070 /* avoid the locking if we can */ 1071 if ((inode->i_state & flags) == flags) 1072 return; 1073 1074 if (unlikely(block_dump)) 1075 block_dump___mark_inode_dirty(inode); 1076 1077 spin_lock(&inode_lock); 1078 if ((inode->i_state & flags) != flags) { 1079 const int was_dirty = inode->i_state & I_DIRTY; 1080 1081 inode->i_state |= flags; 1082 1083 /* 1084 * If the inode is being synced, just update its dirty state. 1085 * The unlocker will place the inode on the appropriate 1086 * superblock list, based upon its state. 1087 */ 1088 if (inode->i_state & I_SYNC) 1089 goto out; 1090 1091 /* 1092 * Only add valid (hashed) inodes to the superblock's 1093 * dirty list. Add blockdev inodes as well. 1094 */ 1095 if (!S_ISBLK(inode->i_mode)) { 1096 if (hlist_unhashed(&inode->i_hash)) 1097 goto out; 1098 } 1099 if (inode->i_state & (I_FREEING|I_CLEAR)) 1100 goto out; 1101 1102 /* 1103 * If the inode was already on b_dirty/b_io/b_more_io, don't 1104 * reposition it (that would break b_dirty time-ordering). 1105 */ 1106 if (!was_dirty) { 1107 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1108 struct backing_dev_info *bdi = wb->bdi; 1109 1110 if (bdi_cap_writeback_dirty(bdi) && 1111 !test_bit(BDI_registered, &bdi->state)) { 1112 WARN_ON(1); 1113 printk(KERN_ERR "bdi-%s not registered\n", 1114 bdi->name); 1115 } 1116 1117 inode->dirtied_when = jiffies; 1118 list_move(&inode->i_list, &wb->b_dirty); 1119 } 1120 } 1121 out: 1122 spin_unlock(&inode_lock); 1123 } 1124 EXPORT_SYMBOL(__mark_inode_dirty); 1125 1126 /* 1127 * Write out a superblock's list of dirty inodes. A wait will be performed 1128 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1129 * 1130 * If older_than_this is non-NULL, then only write out inodes which 1131 * had their first dirtying at a time earlier than *older_than_this. 1132 * 1133 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1134 * This function assumes that the blockdev superblock's inodes are backed by 1135 * a variety of queues, so all inodes are searched. For other superblocks, 1136 * assume that all inodes are backed by the same queue. 1137 * 1138 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1139 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1140 * on the writer throttling path, and we get decent balancing between many 1141 * throttled threads: we don't want them all piling up on inode_sync_wait. 1142 */ 1143 static void wait_sb_inodes(struct super_block *sb) 1144 { 1145 struct inode *inode, *old_inode = NULL; 1146 1147 /* 1148 * We need to be protected against the filesystem going from 1149 * r/o to r/w or vice versa. 1150 */ 1151 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1152 1153 spin_lock(&inode_lock); 1154 1155 /* 1156 * Data integrity sync. Must wait for all pages under writeback, 1157 * because there may have been pages dirtied before our sync 1158 * call, but which had writeout started before we write it out. 1159 * In which case, the inode may not be on the dirty list, but 1160 * we still have to wait for that writeout. 1161 */ 1162 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1163 struct address_space *mapping; 1164 1165 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW)) 1166 continue; 1167 mapping = inode->i_mapping; 1168 if (mapping->nrpages == 0) 1169 continue; 1170 __iget(inode); 1171 spin_unlock(&inode_lock); 1172 /* 1173 * We hold a reference to 'inode' so it couldn't have 1174 * been removed from s_inodes list while we dropped the 1175 * inode_lock. We cannot iput the inode now as we can 1176 * be holding the last reference and we cannot iput it 1177 * under inode_lock. So we keep the reference and iput 1178 * it later. 1179 */ 1180 iput(old_inode); 1181 old_inode = inode; 1182 1183 filemap_fdatawait(mapping); 1184 1185 cond_resched(); 1186 1187 spin_lock(&inode_lock); 1188 } 1189 spin_unlock(&inode_lock); 1190 iput(old_inode); 1191 } 1192 1193 /** 1194 * writeback_inodes_sb - writeback dirty inodes from given super_block 1195 * @sb: the superblock 1196 * 1197 * Start writeback on some inodes on this super_block. No guarantees are made 1198 * on how many (if any) will be written, and this function does not wait 1199 * for IO completion of submitted IO. The number of pages submitted is 1200 * returned. 1201 */ 1202 void writeback_inodes_sb(struct super_block *sb) 1203 { 1204 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 1205 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 1206 long nr_to_write; 1207 1208 nr_to_write = nr_dirty + nr_unstable + 1209 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 1210 1211 bdi_start_writeback(sb->s_bdi, sb, nr_to_write); 1212 } 1213 EXPORT_SYMBOL(writeback_inodes_sb); 1214 1215 /** 1216 * sync_inodes_sb - sync sb inode pages 1217 * @sb: the superblock 1218 * 1219 * This function writes and waits on any dirty inode belonging to this 1220 * super_block. The number of pages synced is returned. 1221 */ 1222 void sync_inodes_sb(struct super_block *sb) 1223 { 1224 bdi_sync_writeback(sb->s_bdi, sb); 1225 wait_sb_inodes(sb); 1226 } 1227 EXPORT_SYMBOL(sync_inodes_sb); 1228 1229 /** 1230 * write_inode_now - write an inode to disk 1231 * @inode: inode to write to disk 1232 * @sync: whether the write should be synchronous or not 1233 * 1234 * This function commits an inode to disk immediately if it is dirty. This is 1235 * primarily needed by knfsd. 1236 * 1237 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1238 */ 1239 int write_inode_now(struct inode *inode, int sync) 1240 { 1241 int ret; 1242 struct writeback_control wbc = { 1243 .nr_to_write = LONG_MAX, 1244 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1245 .range_start = 0, 1246 .range_end = LLONG_MAX, 1247 }; 1248 1249 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1250 wbc.nr_to_write = 0; 1251 1252 might_sleep(); 1253 spin_lock(&inode_lock); 1254 ret = writeback_single_inode(inode, &wbc); 1255 spin_unlock(&inode_lock); 1256 if (sync) 1257 inode_sync_wait(inode); 1258 return ret; 1259 } 1260 EXPORT_SYMBOL(write_inode_now); 1261 1262 /** 1263 * sync_inode - write an inode and its pages to disk. 1264 * @inode: the inode to sync 1265 * @wbc: controls the writeback mode 1266 * 1267 * sync_inode() will write an inode and its pages to disk. It will also 1268 * correctly update the inode on its superblock's dirty inode lists and will 1269 * update inode->i_state. 1270 * 1271 * The caller must have a ref on the inode. 1272 */ 1273 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1274 { 1275 int ret; 1276 1277 spin_lock(&inode_lock); 1278 ret = writeback_single_inode(inode, wbc); 1279 spin_unlock(&inode_lock); 1280 return ret; 1281 } 1282 EXPORT_SYMBOL(sync_inode); 1283