1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include <linux/memcontrol.h> 31 #include "internal.h" 32 33 /* 34 * 4MB minimal write chunk size 35 */ 36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 37 38 struct wb_completion { 39 atomic_t cnt; 40 }; 41 42 /* 43 * Passed into wb_writeback(), essentially a subset of writeback_control 44 */ 45 struct wb_writeback_work { 46 long nr_pages; 47 struct super_block *sb; 48 unsigned long *older_than_this; 49 enum writeback_sync_modes sync_mode; 50 unsigned int tagged_writepages:1; 51 unsigned int for_kupdate:1; 52 unsigned int range_cyclic:1; 53 unsigned int for_background:1; 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 55 unsigned int auto_free:1; /* free on completion */ 56 enum wb_reason reason; /* why was writeback initiated? */ 57 58 struct list_head list; /* pending work list */ 59 struct wb_completion *done; /* set if the caller waits */ 60 }; 61 62 /* 63 * If one wants to wait for one or more wb_writeback_works, each work's 64 * ->done should be set to a wb_completion defined using the following 65 * macro. Once all work items are issued with wb_queue_work(), the caller 66 * can wait for the completion of all using wb_wait_for_completion(). Work 67 * items which are waited upon aren't freed automatically on completion. 68 */ 69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \ 70 struct wb_completion cmpl = { \ 71 .cnt = ATOMIC_INIT(1), \ 72 } 73 74 75 /* 76 * If an inode is constantly having its pages dirtied, but then the 77 * updates stop dirtytime_expire_interval seconds in the past, it's 78 * possible for the worst case time between when an inode has its 79 * timestamps updated and when they finally get written out to be two 80 * dirtytime_expire_intervals. We set the default to 12 hours (in 81 * seconds), which means most of the time inodes will have their 82 * timestamps written to disk after 12 hours, but in the worst case a 83 * few inodes might not their timestamps updated for 24 hours. 84 */ 85 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 86 87 static inline struct inode *wb_inode(struct list_head *head) 88 { 89 return list_entry(head, struct inode, i_io_list); 90 } 91 92 /* 93 * Include the creation of the trace points after defining the 94 * wb_writeback_work structure and inline functions so that the definition 95 * remains local to this file. 96 */ 97 #define CREATE_TRACE_POINTS 98 #include <trace/events/writeback.h> 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 101 102 static bool wb_io_lists_populated(struct bdi_writeback *wb) 103 { 104 if (wb_has_dirty_io(wb)) { 105 return false; 106 } else { 107 set_bit(WB_has_dirty_io, &wb->state); 108 WARN_ON_ONCE(!wb->avg_write_bandwidth); 109 atomic_long_add(wb->avg_write_bandwidth, 110 &wb->bdi->tot_write_bandwidth); 111 return true; 112 } 113 } 114 115 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 116 { 117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 119 clear_bit(WB_has_dirty_io, &wb->state); 120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 121 &wb->bdi->tot_write_bandwidth) < 0); 122 } 123 } 124 125 /** 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 127 * @inode: inode to be moved 128 * @wb: target bdi_writeback 129 * @head: one of @wb->b_{dirty|io|more_io} 130 * 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 132 * Returns %true if @inode is the first occupant of the !dirty_time IO 133 * lists; otherwise, %false. 134 */ 135 static bool inode_io_list_move_locked(struct inode *inode, 136 struct bdi_writeback *wb, 137 struct list_head *head) 138 { 139 assert_spin_locked(&wb->list_lock); 140 141 list_move(&inode->i_io_list, head); 142 143 /* dirty_time doesn't count as dirty_io until expiration */ 144 if (head != &wb->b_dirty_time) 145 return wb_io_lists_populated(wb); 146 147 wb_io_lists_depopulated(wb); 148 return false; 149 } 150 151 /** 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 153 * @inode: inode to be removed 154 * @wb: bdi_writeback @inode is being removed from 155 * 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 157 * clear %WB_has_dirty_io if all are empty afterwards. 158 */ 159 static void inode_io_list_del_locked(struct inode *inode, 160 struct bdi_writeback *wb) 161 { 162 assert_spin_locked(&wb->list_lock); 163 164 list_del_init(&inode->i_io_list); 165 wb_io_lists_depopulated(wb); 166 } 167 168 static void wb_wakeup(struct bdi_writeback *wb) 169 { 170 spin_lock_bh(&wb->work_lock); 171 if (test_bit(WB_registered, &wb->state)) 172 mod_delayed_work(bdi_wq, &wb->dwork, 0); 173 spin_unlock_bh(&wb->work_lock); 174 } 175 176 static void wb_queue_work(struct bdi_writeback *wb, 177 struct wb_writeback_work *work) 178 { 179 trace_writeback_queue(wb, work); 180 181 spin_lock_bh(&wb->work_lock); 182 if (!test_bit(WB_registered, &wb->state)) 183 goto out_unlock; 184 if (work->done) 185 atomic_inc(&work->done->cnt); 186 list_add_tail(&work->list, &wb->work_list); 187 mod_delayed_work(bdi_wq, &wb->dwork, 0); 188 out_unlock: 189 spin_unlock_bh(&wb->work_lock); 190 } 191 192 /** 193 * wb_wait_for_completion - wait for completion of bdi_writeback_works 194 * @bdi: bdi work items were issued to 195 * @done: target wb_completion 196 * 197 * Wait for one or more work items issued to @bdi with their ->done field 198 * set to @done, which should have been defined with 199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such 200 * work items are completed. Work items which are waited upon aren't freed 201 * automatically on completion. 202 */ 203 static void wb_wait_for_completion(struct backing_dev_info *bdi, 204 struct wb_completion *done) 205 { 206 atomic_dec(&done->cnt); /* put down the initial count */ 207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt)); 208 } 209 210 #ifdef CONFIG_CGROUP_WRITEBACK 211 212 /* parameters for foreign inode detection, see wb_detach_inode() */ 213 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 214 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 215 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */ 216 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 217 218 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 219 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 220 /* each slot's duration is 2s / 16 */ 221 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 222 /* if foreign slots >= 8, switch */ 223 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 224 /* one round can affect upto 5 slots */ 225 226 void __inode_attach_wb(struct inode *inode, struct page *page) 227 { 228 struct backing_dev_info *bdi = inode_to_bdi(inode); 229 struct bdi_writeback *wb = NULL; 230 231 if (inode_cgwb_enabled(inode)) { 232 struct cgroup_subsys_state *memcg_css; 233 234 if (page) { 235 memcg_css = mem_cgroup_css_from_page(page); 236 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 237 } else { 238 /* must pin memcg_css, see wb_get_create() */ 239 memcg_css = task_get_css(current, memory_cgrp_id); 240 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 241 css_put(memcg_css); 242 } 243 } 244 245 if (!wb) 246 wb = &bdi->wb; 247 248 /* 249 * There may be multiple instances of this function racing to 250 * update the same inode. Use cmpxchg() to tell the winner. 251 */ 252 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 253 wb_put(wb); 254 } 255 256 /** 257 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 258 * @inode: inode of interest with i_lock held 259 * 260 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 261 * held on entry and is released on return. The returned wb is guaranteed 262 * to stay @inode's associated wb until its list_lock is released. 263 */ 264 static struct bdi_writeback * 265 locked_inode_to_wb_and_lock_list(struct inode *inode) 266 __releases(&inode->i_lock) 267 __acquires(&wb->list_lock) 268 { 269 while (true) { 270 struct bdi_writeback *wb = inode_to_wb(inode); 271 272 /* 273 * inode_to_wb() association is protected by both 274 * @inode->i_lock and @wb->list_lock but list_lock nests 275 * outside i_lock. Drop i_lock and verify that the 276 * association hasn't changed after acquiring list_lock. 277 */ 278 wb_get(wb); 279 spin_unlock(&inode->i_lock); 280 spin_lock(&wb->list_lock); 281 wb_put(wb); /* not gonna deref it anymore */ 282 283 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 284 if (likely(wb == inode->i_wb)) 285 return wb; /* @inode already has ref */ 286 287 spin_unlock(&wb->list_lock); 288 cpu_relax(); 289 spin_lock(&inode->i_lock); 290 } 291 } 292 293 /** 294 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 295 * @inode: inode of interest 296 * 297 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 298 * on entry. 299 */ 300 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 301 __acquires(&wb->list_lock) 302 { 303 spin_lock(&inode->i_lock); 304 return locked_inode_to_wb_and_lock_list(inode); 305 } 306 307 struct inode_switch_wbs_context { 308 struct inode *inode; 309 struct bdi_writeback *new_wb; 310 311 struct rcu_head rcu_head; 312 struct work_struct work; 313 }; 314 315 static void inode_switch_wbs_work_fn(struct work_struct *work) 316 { 317 struct inode_switch_wbs_context *isw = 318 container_of(work, struct inode_switch_wbs_context, work); 319 struct inode *inode = isw->inode; 320 struct address_space *mapping = inode->i_mapping; 321 struct bdi_writeback *old_wb = inode->i_wb; 322 struct bdi_writeback *new_wb = isw->new_wb; 323 struct radix_tree_iter iter; 324 bool switched = false; 325 void **slot; 326 327 /* 328 * By the time control reaches here, RCU grace period has passed 329 * since I_WB_SWITCH assertion and all wb stat update transactions 330 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 331 * synchronizing against mapping->tree_lock. 332 * 333 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock 334 * gives us exclusion against all wb related operations on @inode 335 * including IO list manipulations and stat updates. 336 */ 337 if (old_wb < new_wb) { 338 spin_lock(&old_wb->list_lock); 339 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 340 } else { 341 spin_lock(&new_wb->list_lock); 342 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 343 } 344 spin_lock(&inode->i_lock); 345 spin_lock_irq(&mapping->tree_lock); 346 347 /* 348 * Once I_FREEING is visible under i_lock, the eviction path owns 349 * the inode and we shouldn't modify ->i_io_list. 350 */ 351 if (unlikely(inode->i_state & I_FREEING)) 352 goto skip_switch; 353 354 /* 355 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 356 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 357 * pages actually under underwriteback. 358 */ 359 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0, 360 PAGECACHE_TAG_DIRTY) { 361 struct page *page = radix_tree_deref_slot_protected(slot, 362 &mapping->tree_lock); 363 if (likely(page) && PageDirty(page)) { 364 __dec_wb_stat(old_wb, WB_RECLAIMABLE); 365 __inc_wb_stat(new_wb, WB_RECLAIMABLE); 366 } 367 } 368 369 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0, 370 PAGECACHE_TAG_WRITEBACK) { 371 struct page *page = radix_tree_deref_slot_protected(slot, 372 &mapping->tree_lock); 373 if (likely(page)) { 374 WARN_ON_ONCE(!PageWriteback(page)); 375 __dec_wb_stat(old_wb, WB_WRITEBACK); 376 __inc_wb_stat(new_wb, WB_WRITEBACK); 377 } 378 } 379 380 wb_get(new_wb); 381 382 /* 383 * Transfer to @new_wb's IO list if necessary. The specific list 384 * @inode was on is ignored and the inode is put on ->b_dirty which 385 * is always correct including from ->b_dirty_time. The transfer 386 * preserves @inode->dirtied_when ordering. 387 */ 388 if (!list_empty(&inode->i_io_list)) { 389 struct inode *pos; 390 391 inode_io_list_del_locked(inode, old_wb); 392 inode->i_wb = new_wb; 393 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 394 if (time_after_eq(inode->dirtied_when, 395 pos->dirtied_when)) 396 break; 397 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 398 } else { 399 inode->i_wb = new_wb; 400 } 401 402 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 403 inode->i_wb_frn_winner = 0; 404 inode->i_wb_frn_avg_time = 0; 405 inode->i_wb_frn_history = 0; 406 switched = true; 407 skip_switch: 408 /* 409 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 410 * ensures that the new wb is visible if they see !I_WB_SWITCH. 411 */ 412 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 413 414 spin_unlock_irq(&mapping->tree_lock); 415 spin_unlock(&inode->i_lock); 416 spin_unlock(&new_wb->list_lock); 417 spin_unlock(&old_wb->list_lock); 418 419 if (switched) { 420 wb_wakeup(new_wb); 421 wb_put(old_wb); 422 } 423 wb_put(new_wb); 424 425 iput(inode); 426 kfree(isw); 427 } 428 429 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 430 { 431 struct inode_switch_wbs_context *isw = container_of(rcu_head, 432 struct inode_switch_wbs_context, rcu_head); 433 434 /* needs to grab bh-unsafe locks, bounce to work item */ 435 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 436 schedule_work(&isw->work); 437 } 438 439 /** 440 * inode_switch_wbs - change the wb association of an inode 441 * @inode: target inode 442 * @new_wb_id: ID of the new wb 443 * 444 * Switch @inode's wb association to the wb identified by @new_wb_id. The 445 * switching is performed asynchronously and may fail silently. 446 */ 447 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 448 { 449 struct backing_dev_info *bdi = inode_to_bdi(inode); 450 struct cgroup_subsys_state *memcg_css; 451 struct inode_switch_wbs_context *isw; 452 453 /* noop if seems to be already in progress */ 454 if (inode->i_state & I_WB_SWITCH) 455 return; 456 457 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 458 if (!isw) 459 return; 460 461 /* find and pin the new wb */ 462 rcu_read_lock(); 463 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 464 if (memcg_css) 465 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 466 rcu_read_unlock(); 467 if (!isw->new_wb) 468 goto out_free; 469 470 /* while holding I_WB_SWITCH, no one else can update the association */ 471 spin_lock(&inode->i_lock); 472 if (inode->i_state & (I_WB_SWITCH | I_FREEING) || 473 inode_to_wb(inode) == isw->new_wb) { 474 spin_unlock(&inode->i_lock); 475 goto out_free; 476 } 477 inode->i_state |= I_WB_SWITCH; 478 spin_unlock(&inode->i_lock); 479 480 ihold(inode); 481 isw->inode = inode; 482 483 /* 484 * In addition to synchronizing among switchers, I_WB_SWITCH tells 485 * the RCU protected stat update paths to grab the mapping's 486 * tree_lock so that stat transfer can synchronize against them. 487 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 488 */ 489 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 490 return; 491 492 out_free: 493 if (isw->new_wb) 494 wb_put(isw->new_wb); 495 kfree(isw); 496 } 497 498 /** 499 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 500 * @wbc: writeback_control of interest 501 * @inode: target inode 502 * 503 * @inode is locked and about to be written back under the control of @wbc. 504 * Record @inode's writeback context into @wbc and unlock the i_lock. On 505 * writeback completion, wbc_detach_inode() should be called. This is used 506 * to track the cgroup writeback context. 507 */ 508 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 509 struct inode *inode) 510 { 511 if (!inode_cgwb_enabled(inode)) { 512 spin_unlock(&inode->i_lock); 513 return; 514 } 515 516 wbc->wb = inode_to_wb(inode); 517 wbc->inode = inode; 518 519 wbc->wb_id = wbc->wb->memcg_css->id; 520 wbc->wb_lcand_id = inode->i_wb_frn_winner; 521 wbc->wb_tcand_id = 0; 522 wbc->wb_bytes = 0; 523 wbc->wb_lcand_bytes = 0; 524 wbc->wb_tcand_bytes = 0; 525 526 wb_get(wbc->wb); 527 spin_unlock(&inode->i_lock); 528 529 /* 530 * A dying wb indicates that the memcg-blkcg mapping has changed 531 * and a new wb is already serving the memcg. Switch immediately. 532 */ 533 if (unlikely(wb_dying(wbc->wb))) 534 inode_switch_wbs(inode, wbc->wb_id); 535 } 536 537 /** 538 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 539 * @wbc: writeback_control of the just finished writeback 540 * 541 * To be called after a writeback attempt of an inode finishes and undoes 542 * wbc_attach_and_unlock_inode(). Can be called under any context. 543 * 544 * As concurrent write sharing of an inode is expected to be very rare and 545 * memcg only tracks page ownership on first-use basis severely confining 546 * the usefulness of such sharing, cgroup writeback tracks ownership 547 * per-inode. While the support for concurrent write sharing of an inode 548 * is deemed unnecessary, an inode being written to by different cgroups at 549 * different points in time is a lot more common, and, more importantly, 550 * charging only by first-use can too readily lead to grossly incorrect 551 * behaviors (single foreign page can lead to gigabytes of writeback to be 552 * incorrectly attributed). 553 * 554 * To resolve this issue, cgroup writeback detects the majority dirtier of 555 * an inode and transfers the ownership to it. To avoid unnnecessary 556 * oscillation, the detection mechanism keeps track of history and gives 557 * out the switch verdict only if the foreign usage pattern is stable over 558 * a certain amount of time and/or writeback attempts. 559 * 560 * On each writeback attempt, @wbc tries to detect the majority writer 561 * using Boyer-Moore majority vote algorithm. In addition to the byte 562 * count from the majority voting, it also counts the bytes written for the 563 * current wb and the last round's winner wb (max of last round's current 564 * wb, the winner from two rounds ago, and the last round's majority 565 * candidate). Keeping track of the historical winner helps the algorithm 566 * to semi-reliably detect the most active writer even when it's not the 567 * absolute majority. 568 * 569 * Once the winner of the round is determined, whether the winner is 570 * foreign or not and how much IO time the round consumed is recorded in 571 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 572 * over a certain threshold, the switch verdict is given. 573 */ 574 void wbc_detach_inode(struct writeback_control *wbc) 575 { 576 struct bdi_writeback *wb = wbc->wb; 577 struct inode *inode = wbc->inode; 578 unsigned long avg_time, max_bytes, max_time; 579 u16 history; 580 int max_id; 581 582 if (!wb) 583 return; 584 585 history = inode->i_wb_frn_history; 586 avg_time = inode->i_wb_frn_avg_time; 587 588 /* pick the winner of this round */ 589 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 590 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 591 max_id = wbc->wb_id; 592 max_bytes = wbc->wb_bytes; 593 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 594 max_id = wbc->wb_lcand_id; 595 max_bytes = wbc->wb_lcand_bytes; 596 } else { 597 max_id = wbc->wb_tcand_id; 598 max_bytes = wbc->wb_tcand_bytes; 599 } 600 601 /* 602 * Calculate the amount of IO time the winner consumed and fold it 603 * into the running average kept per inode. If the consumed IO 604 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 605 * deciding whether to switch or not. This is to prevent one-off 606 * small dirtiers from skewing the verdict. 607 */ 608 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 609 wb->avg_write_bandwidth); 610 if (avg_time) 611 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 612 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 613 else 614 avg_time = max_time; /* immediate catch up on first run */ 615 616 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 617 int slots; 618 619 /* 620 * The switch verdict is reached if foreign wb's consume 621 * more than a certain proportion of IO time in a 622 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 623 * history mask where each bit represents one sixteenth of 624 * the period. Determine the number of slots to shift into 625 * history from @max_time. 626 */ 627 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 628 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 629 history <<= slots; 630 if (wbc->wb_id != max_id) 631 history |= (1U << slots) - 1; 632 633 /* 634 * Switch if the current wb isn't the consistent winner. 635 * If there are multiple closely competing dirtiers, the 636 * inode may switch across them repeatedly over time, which 637 * is okay. The main goal is avoiding keeping an inode on 638 * the wrong wb for an extended period of time. 639 */ 640 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 641 inode_switch_wbs(inode, max_id); 642 } 643 644 /* 645 * Multiple instances of this function may race to update the 646 * following fields but we don't mind occassional inaccuracies. 647 */ 648 inode->i_wb_frn_winner = max_id; 649 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 650 inode->i_wb_frn_history = history; 651 652 wb_put(wbc->wb); 653 wbc->wb = NULL; 654 } 655 656 /** 657 * wbc_account_io - account IO issued during writeback 658 * @wbc: writeback_control of the writeback in progress 659 * @page: page being written out 660 * @bytes: number of bytes being written out 661 * 662 * @bytes from @page are about to written out during the writeback 663 * controlled by @wbc. Keep the book for foreign inode detection. See 664 * wbc_detach_inode(). 665 */ 666 void wbc_account_io(struct writeback_control *wbc, struct page *page, 667 size_t bytes) 668 { 669 int id; 670 671 /* 672 * pageout() path doesn't attach @wbc to the inode being written 673 * out. This is intentional as we don't want the function to block 674 * behind a slow cgroup. Ultimately, we want pageout() to kick off 675 * regular writeback instead of writing things out itself. 676 */ 677 if (!wbc->wb) 678 return; 679 680 rcu_read_lock(); 681 id = mem_cgroup_css_from_page(page)->id; 682 rcu_read_unlock(); 683 684 if (id == wbc->wb_id) { 685 wbc->wb_bytes += bytes; 686 return; 687 } 688 689 if (id == wbc->wb_lcand_id) 690 wbc->wb_lcand_bytes += bytes; 691 692 /* Boyer-Moore majority vote algorithm */ 693 if (!wbc->wb_tcand_bytes) 694 wbc->wb_tcand_id = id; 695 if (id == wbc->wb_tcand_id) 696 wbc->wb_tcand_bytes += bytes; 697 else 698 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 699 } 700 EXPORT_SYMBOL_GPL(wbc_account_io); 701 702 /** 703 * inode_congested - test whether an inode is congested 704 * @inode: inode to test for congestion (may be NULL) 705 * @cong_bits: mask of WB_[a]sync_congested bits to test 706 * 707 * Tests whether @inode is congested. @cong_bits is the mask of congestion 708 * bits to test and the return value is the mask of set bits. 709 * 710 * If cgroup writeback is enabled for @inode, the congestion state is 711 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 712 * associated with @inode is congested; otherwise, the root wb's congestion 713 * state is used. 714 * 715 * @inode is allowed to be NULL as this function is often called on 716 * mapping->host which is NULL for the swapper space. 717 */ 718 int inode_congested(struct inode *inode, int cong_bits) 719 { 720 /* 721 * Once set, ->i_wb never becomes NULL while the inode is alive. 722 * Start transaction iff ->i_wb is visible. 723 */ 724 if (inode && inode_to_wb_is_valid(inode)) { 725 struct bdi_writeback *wb; 726 bool locked, congested; 727 728 wb = unlocked_inode_to_wb_begin(inode, &locked); 729 congested = wb_congested(wb, cong_bits); 730 unlocked_inode_to_wb_end(inode, locked); 731 return congested; 732 } 733 734 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 735 } 736 EXPORT_SYMBOL_GPL(inode_congested); 737 738 /** 739 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 740 * @wb: target bdi_writeback to split @nr_pages to 741 * @nr_pages: number of pages to write for the whole bdi 742 * 743 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 744 * relation to the total write bandwidth of all wb's w/ dirty inodes on 745 * @wb->bdi. 746 */ 747 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 748 { 749 unsigned long this_bw = wb->avg_write_bandwidth; 750 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 751 752 if (nr_pages == LONG_MAX) 753 return LONG_MAX; 754 755 /* 756 * This may be called on clean wb's and proportional distribution 757 * may not make sense, just use the original @nr_pages in those 758 * cases. In general, we wanna err on the side of writing more. 759 */ 760 if (!tot_bw || this_bw >= tot_bw) 761 return nr_pages; 762 else 763 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 764 } 765 766 /** 767 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 768 * @bdi: target backing_dev_info 769 * @base_work: wb_writeback_work to issue 770 * @skip_if_busy: skip wb's which already have writeback in progress 771 * 772 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 773 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 774 * distributed to the busy wbs according to each wb's proportion in the 775 * total active write bandwidth of @bdi. 776 */ 777 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 778 struct wb_writeback_work *base_work, 779 bool skip_if_busy) 780 { 781 struct bdi_writeback *last_wb = NULL; 782 struct bdi_writeback *wb = list_entry_rcu(&bdi->wb_list, 783 struct bdi_writeback, bdi_node); 784 785 might_sleep(); 786 restart: 787 rcu_read_lock(); 788 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 789 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done); 790 struct wb_writeback_work fallback_work; 791 struct wb_writeback_work *work; 792 long nr_pages; 793 794 if (last_wb) { 795 wb_put(last_wb); 796 last_wb = NULL; 797 } 798 799 /* SYNC_ALL writes out I_DIRTY_TIME too */ 800 if (!wb_has_dirty_io(wb) && 801 (base_work->sync_mode == WB_SYNC_NONE || 802 list_empty(&wb->b_dirty_time))) 803 continue; 804 if (skip_if_busy && writeback_in_progress(wb)) 805 continue; 806 807 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 808 809 work = kmalloc(sizeof(*work), GFP_ATOMIC); 810 if (work) { 811 *work = *base_work; 812 work->nr_pages = nr_pages; 813 work->auto_free = 1; 814 wb_queue_work(wb, work); 815 continue; 816 } 817 818 /* alloc failed, execute synchronously using on-stack fallback */ 819 work = &fallback_work; 820 *work = *base_work; 821 work->nr_pages = nr_pages; 822 work->auto_free = 0; 823 work->done = &fallback_work_done; 824 825 wb_queue_work(wb, work); 826 827 /* 828 * Pin @wb so that it stays on @bdi->wb_list. This allows 829 * continuing iteration from @wb after dropping and 830 * regrabbing rcu read lock. 831 */ 832 wb_get(wb); 833 last_wb = wb; 834 835 rcu_read_unlock(); 836 wb_wait_for_completion(bdi, &fallback_work_done); 837 goto restart; 838 } 839 rcu_read_unlock(); 840 841 if (last_wb) 842 wb_put(last_wb); 843 } 844 845 #else /* CONFIG_CGROUP_WRITEBACK */ 846 847 static struct bdi_writeback * 848 locked_inode_to_wb_and_lock_list(struct inode *inode) 849 __releases(&inode->i_lock) 850 __acquires(&wb->list_lock) 851 { 852 struct bdi_writeback *wb = inode_to_wb(inode); 853 854 spin_unlock(&inode->i_lock); 855 spin_lock(&wb->list_lock); 856 return wb; 857 } 858 859 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 860 __acquires(&wb->list_lock) 861 { 862 struct bdi_writeback *wb = inode_to_wb(inode); 863 864 spin_lock(&wb->list_lock); 865 return wb; 866 } 867 868 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 869 { 870 return nr_pages; 871 } 872 873 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 874 struct wb_writeback_work *base_work, 875 bool skip_if_busy) 876 { 877 might_sleep(); 878 879 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 880 base_work->auto_free = 0; 881 wb_queue_work(&bdi->wb, base_work); 882 } 883 } 884 885 #endif /* CONFIG_CGROUP_WRITEBACK */ 886 887 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages, 888 bool range_cyclic, enum wb_reason reason) 889 { 890 struct wb_writeback_work *work; 891 892 if (!wb_has_dirty_io(wb)) 893 return; 894 895 /* 896 * This is WB_SYNC_NONE writeback, so if allocation fails just 897 * wakeup the thread for old dirty data writeback 898 */ 899 work = kzalloc(sizeof(*work), GFP_ATOMIC); 900 if (!work) { 901 trace_writeback_nowork(wb); 902 wb_wakeup(wb); 903 return; 904 } 905 906 work->sync_mode = WB_SYNC_NONE; 907 work->nr_pages = nr_pages; 908 work->range_cyclic = range_cyclic; 909 work->reason = reason; 910 work->auto_free = 1; 911 912 wb_queue_work(wb, work); 913 } 914 915 /** 916 * wb_start_background_writeback - start background writeback 917 * @wb: bdi_writback to write from 918 * 919 * Description: 920 * This makes sure WB_SYNC_NONE background writeback happens. When 921 * this function returns, it is only guaranteed that for given wb 922 * some IO is happening if we are over background dirty threshold. 923 * Caller need not hold sb s_umount semaphore. 924 */ 925 void wb_start_background_writeback(struct bdi_writeback *wb) 926 { 927 /* 928 * We just wake up the flusher thread. It will perform background 929 * writeback as soon as there is no other work to do. 930 */ 931 trace_writeback_wake_background(wb); 932 wb_wakeup(wb); 933 } 934 935 /* 936 * Remove the inode from the writeback list it is on. 937 */ 938 void inode_io_list_del(struct inode *inode) 939 { 940 struct bdi_writeback *wb; 941 942 wb = inode_to_wb_and_lock_list(inode); 943 inode_io_list_del_locked(inode, wb); 944 spin_unlock(&wb->list_lock); 945 } 946 947 /* 948 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 949 * furthest end of its superblock's dirty-inode list. 950 * 951 * Before stamping the inode's ->dirtied_when, we check to see whether it is 952 * already the most-recently-dirtied inode on the b_dirty list. If that is 953 * the case then the inode must have been redirtied while it was being written 954 * out and we don't reset its dirtied_when. 955 */ 956 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 957 { 958 if (!list_empty(&wb->b_dirty)) { 959 struct inode *tail; 960 961 tail = wb_inode(wb->b_dirty.next); 962 if (time_before(inode->dirtied_when, tail->dirtied_when)) 963 inode->dirtied_when = jiffies; 964 } 965 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 966 } 967 968 /* 969 * requeue inode for re-scanning after bdi->b_io list is exhausted. 970 */ 971 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 972 { 973 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 974 } 975 976 static void inode_sync_complete(struct inode *inode) 977 { 978 inode->i_state &= ~I_SYNC; 979 /* If inode is clean an unused, put it into LRU now... */ 980 inode_add_lru(inode); 981 /* Waiters must see I_SYNC cleared before being woken up */ 982 smp_mb(); 983 wake_up_bit(&inode->i_state, __I_SYNC); 984 } 985 986 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 987 { 988 bool ret = time_after(inode->dirtied_when, t); 989 #ifndef CONFIG_64BIT 990 /* 991 * For inodes being constantly redirtied, dirtied_when can get stuck. 992 * It _appears_ to be in the future, but is actually in distant past. 993 * This test is necessary to prevent such wrapped-around relative times 994 * from permanently stopping the whole bdi writeback. 995 */ 996 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 997 #endif 998 return ret; 999 } 1000 1001 #define EXPIRE_DIRTY_ATIME 0x0001 1002 1003 /* 1004 * Move expired (dirtied before work->older_than_this) dirty inodes from 1005 * @delaying_queue to @dispatch_queue. 1006 */ 1007 static int move_expired_inodes(struct list_head *delaying_queue, 1008 struct list_head *dispatch_queue, 1009 int flags, 1010 struct wb_writeback_work *work) 1011 { 1012 unsigned long *older_than_this = NULL; 1013 unsigned long expire_time; 1014 LIST_HEAD(tmp); 1015 struct list_head *pos, *node; 1016 struct super_block *sb = NULL; 1017 struct inode *inode; 1018 int do_sb_sort = 0; 1019 int moved = 0; 1020 1021 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1022 older_than_this = work->older_than_this; 1023 else if (!work->for_sync) { 1024 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1025 older_than_this = &expire_time; 1026 } 1027 while (!list_empty(delaying_queue)) { 1028 inode = wb_inode(delaying_queue->prev); 1029 if (older_than_this && 1030 inode_dirtied_after(inode, *older_than_this)) 1031 break; 1032 list_move(&inode->i_io_list, &tmp); 1033 moved++; 1034 if (flags & EXPIRE_DIRTY_ATIME) 1035 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1036 if (sb_is_blkdev_sb(inode->i_sb)) 1037 continue; 1038 if (sb && sb != inode->i_sb) 1039 do_sb_sort = 1; 1040 sb = inode->i_sb; 1041 } 1042 1043 /* just one sb in list, splice to dispatch_queue and we're done */ 1044 if (!do_sb_sort) { 1045 list_splice(&tmp, dispatch_queue); 1046 goto out; 1047 } 1048 1049 /* Move inodes from one superblock together */ 1050 while (!list_empty(&tmp)) { 1051 sb = wb_inode(tmp.prev)->i_sb; 1052 list_for_each_prev_safe(pos, node, &tmp) { 1053 inode = wb_inode(pos); 1054 if (inode->i_sb == sb) 1055 list_move(&inode->i_io_list, dispatch_queue); 1056 } 1057 } 1058 out: 1059 return moved; 1060 } 1061 1062 /* 1063 * Queue all expired dirty inodes for io, eldest first. 1064 * Before 1065 * newly dirtied b_dirty b_io b_more_io 1066 * =============> gf edc BA 1067 * After 1068 * newly dirtied b_dirty b_io b_more_io 1069 * =============> g fBAedc 1070 * | 1071 * +--> dequeue for IO 1072 */ 1073 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1074 { 1075 int moved; 1076 1077 assert_spin_locked(&wb->list_lock); 1078 list_splice_init(&wb->b_more_io, &wb->b_io); 1079 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1080 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1081 EXPIRE_DIRTY_ATIME, work); 1082 if (moved) 1083 wb_io_lists_populated(wb); 1084 trace_writeback_queue_io(wb, work, moved); 1085 } 1086 1087 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1088 { 1089 int ret; 1090 1091 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1092 trace_writeback_write_inode_start(inode, wbc); 1093 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1094 trace_writeback_write_inode(inode, wbc); 1095 return ret; 1096 } 1097 return 0; 1098 } 1099 1100 /* 1101 * Wait for writeback on an inode to complete. Called with i_lock held. 1102 * Caller must make sure inode cannot go away when we drop i_lock. 1103 */ 1104 static void __inode_wait_for_writeback(struct inode *inode) 1105 __releases(inode->i_lock) 1106 __acquires(inode->i_lock) 1107 { 1108 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1109 wait_queue_head_t *wqh; 1110 1111 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1112 while (inode->i_state & I_SYNC) { 1113 spin_unlock(&inode->i_lock); 1114 __wait_on_bit(wqh, &wq, bit_wait, 1115 TASK_UNINTERRUPTIBLE); 1116 spin_lock(&inode->i_lock); 1117 } 1118 } 1119 1120 /* 1121 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1122 */ 1123 void inode_wait_for_writeback(struct inode *inode) 1124 { 1125 spin_lock(&inode->i_lock); 1126 __inode_wait_for_writeback(inode); 1127 spin_unlock(&inode->i_lock); 1128 } 1129 1130 /* 1131 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1132 * held and drops it. It is aimed for callers not holding any inode reference 1133 * so once i_lock is dropped, inode can go away. 1134 */ 1135 static void inode_sleep_on_writeback(struct inode *inode) 1136 __releases(inode->i_lock) 1137 { 1138 DEFINE_WAIT(wait); 1139 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1140 int sleep; 1141 1142 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1143 sleep = inode->i_state & I_SYNC; 1144 spin_unlock(&inode->i_lock); 1145 if (sleep) 1146 schedule(); 1147 finish_wait(wqh, &wait); 1148 } 1149 1150 /* 1151 * Find proper writeback list for the inode depending on its current state and 1152 * possibly also change of its state while we were doing writeback. Here we 1153 * handle things such as livelock prevention or fairness of writeback among 1154 * inodes. This function can be called only by flusher thread - noone else 1155 * processes all inodes in writeback lists and requeueing inodes behind flusher 1156 * thread's back can have unexpected consequences. 1157 */ 1158 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1159 struct writeback_control *wbc) 1160 { 1161 if (inode->i_state & I_FREEING) 1162 return; 1163 1164 /* 1165 * Sync livelock prevention. Each inode is tagged and synced in one 1166 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1167 * the dirty time to prevent enqueue and sync it again. 1168 */ 1169 if ((inode->i_state & I_DIRTY) && 1170 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1171 inode->dirtied_when = jiffies; 1172 1173 if (wbc->pages_skipped) { 1174 /* 1175 * writeback is not making progress due to locked 1176 * buffers. Skip this inode for now. 1177 */ 1178 redirty_tail(inode, wb); 1179 return; 1180 } 1181 1182 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1183 /* 1184 * We didn't write back all the pages. nfs_writepages() 1185 * sometimes bales out without doing anything. 1186 */ 1187 if (wbc->nr_to_write <= 0) { 1188 /* Slice used up. Queue for next turn. */ 1189 requeue_io(inode, wb); 1190 } else { 1191 /* 1192 * Writeback blocked by something other than 1193 * congestion. Delay the inode for some time to 1194 * avoid spinning on the CPU (100% iowait) 1195 * retrying writeback of the dirty page/inode 1196 * that cannot be performed immediately. 1197 */ 1198 redirty_tail(inode, wb); 1199 } 1200 } else if (inode->i_state & I_DIRTY) { 1201 /* 1202 * Filesystems can dirty the inode during writeback operations, 1203 * such as delayed allocation during submission or metadata 1204 * updates after data IO completion. 1205 */ 1206 redirty_tail(inode, wb); 1207 } else if (inode->i_state & I_DIRTY_TIME) { 1208 inode->dirtied_when = jiffies; 1209 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1210 } else { 1211 /* The inode is clean. Remove from writeback lists. */ 1212 inode_io_list_del_locked(inode, wb); 1213 } 1214 } 1215 1216 /* 1217 * Write out an inode and its dirty pages. Do not update the writeback list 1218 * linkage. That is left to the caller. The caller is also responsible for 1219 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1220 */ 1221 static int 1222 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1223 { 1224 struct address_space *mapping = inode->i_mapping; 1225 long nr_to_write = wbc->nr_to_write; 1226 unsigned dirty; 1227 int ret; 1228 1229 WARN_ON(!(inode->i_state & I_SYNC)); 1230 1231 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1232 1233 ret = do_writepages(mapping, wbc); 1234 1235 /* 1236 * Make sure to wait on the data before writing out the metadata. 1237 * This is important for filesystems that modify metadata on data 1238 * I/O completion. We don't do it for sync(2) writeback because it has a 1239 * separate, external IO completion path and ->sync_fs for guaranteeing 1240 * inode metadata is written back correctly. 1241 */ 1242 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1243 int err = filemap_fdatawait(mapping); 1244 if (ret == 0) 1245 ret = err; 1246 } 1247 1248 /* 1249 * Some filesystems may redirty the inode during the writeback 1250 * due to delalloc, clear dirty metadata flags right before 1251 * write_inode() 1252 */ 1253 spin_lock(&inode->i_lock); 1254 1255 dirty = inode->i_state & I_DIRTY; 1256 if (inode->i_state & I_DIRTY_TIME) { 1257 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 1258 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1259 unlikely(time_after(jiffies, 1260 (inode->dirtied_time_when + 1261 dirtytime_expire_interval * HZ)))) { 1262 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1263 trace_writeback_lazytime(inode); 1264 } 1265 } else 1266 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1267 inode->i_state &= ~dirty; 1268 1269 /* 1270 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1271 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1272 * either they see the I_DIRTY bits cleared or we see the dirtied 1273 * inode. 1274 * 1275 * I_DIRTY_PAGES is always cleared together above even if @mapping 1276 * still has dirty pages. The flag is reinstated after smp_mb() if 1277 * necessary. This guarantees that either __mark_inode_dirty() 1278 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1279 */ 1280 smp_mb(); 1281 1282 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1283 inode->i_state |= I_DIRTY_PAGES; 1284 1285 spin_unlock(&inode->i_lock); 1286 1287 if (dirty & I_DIRTY_TIME) 1288 mark_inode_dirty_sync(inode); 1289 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1290 if (dirty & ~I_DIRTY_PAGES) { 1291 int err = write_inode(inode, wbc); 1292 if (ret == 0) 1293 ret = err; 1294 } 1295 trace_writeback_single_inode(inode, wbc, nr_to_write); 1296 return ret; 1297 } 1298 1299 /* 1300 * Write out an inode's dirty pages. Either the caller has an active reference 1301 * on the inode or the inode has I_WILL_FREE set. 1302 * 1303 * This function is designed to be called for writing back one inode which 1304 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1305 * and does more profound writeback list handling in writeback_sb_inodes(). 1306 */ 1307 static int 1308 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 1309 struct writeback_control *wbc) 1310 { 1311 int ret = 0; 1312 1313 spin_lock(&inode->i_lock); 1314 if (!atomic_read(&inode->i_count)) 1315 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1316 else 1317 WARN_ON(inode->i_state & I_WILL_FREE); 1318 1319 if (inode->i_state & I_SYNC) { 1320 if (wbc->sync_mode != WB_SYNC_ALL) 1321 goto out; 1322 /* 1323 * It's a data-integrity sync. We must wait. Since callers hold 1324 * inode reference or inode has I_WILL_FREE set, it cannot go 1325 * away under us. 1326 */ 1327 __inode_wait_for_writeback(inode); 1328 } 1329 WARN_ON(inode->i_state & I_SYNC); 1330 /* 1331 * Skip inode if it is clean and we have no outstanding writeback in 1332 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1333 * function since flusher thread may be doing for example sync in 1334 * parallel and if we move the inode, it could get skipped. So here we 1335 * make sure inode is on some writeback list and leave it there unless 1336 * we have completely cleaned the inode. 1337 */ 1338 if (!(inode->i_state & I_DIRTY_ALL) && 1339 (wbc->sync_mode != WB_SYNC_ALL || 1340 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1341 goto out; 1342 inode->i_state |= I_SYNC; 1343 wbc_attach_and_unlock_inode(wbc, inode); 1344 1345 ret = __writeback_single_inode(inode, wbc); 1346 1347 wbc_detach_inode(wbc); 1348 spin_lock(&wb->list_lock); 1349 spin_lock(&inode->i_lock); 1350 /* 1351 * If inode is clean, remove it from writeback lists. Otherwise don't 1352 * touch it. See comment above for explanation. 1353 */ 1354 if (!(inode->i_state & I_DIRTY_ALL)) 1355 inode_io_list_del_locked(inode, wb); 1356 spin_unlock(&wb->list_lock); 1357 inode_sync_complete(inode); 1358 out: 1359 spin_unlock(&inode->i_lock); 1360 return ret; 1361 } 1362 1363 static long writeback_chunk_size(struct bdi_writeback *wb, 1364 struct wb_writeback_work *work) 1365 { 1366 long pages; 1367 1368 /* 1369 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1370 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1371 * here avoids calling into writeback_inodes_wb() more than once. 1372 * 1373 * The intended call sequence for WB_SYNC_ALL writeback is: 1374 * 1375 * wb_writeback() 1376 * writeback_sb_inodes() <== called only once 1377 * write_cache_pages() <== called once for each inode 1378 * (quickly) tag currently dirty pages 1379 * (maybe slowly) sync all tagged pages 1380 */ 1381 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1382 pages = LONG_MAX; 1383 else { 1384 pages = min(wb->avg_write_bandwidth / 2, 1385 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1386 pages = min(pages, work->nr_pages); 1387 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1388 MIN_WRITEBACK_PAGES); 1389 } 1390 1391 return pages; 1392 } 1393 1394 /* 1395 * Write a portion of b_io inodes which belong to @sb. 1396 * 1397 * Return the number of pages and/or inodes written. 1398 * 1399 * NOTE! This is called with wb->list_lock held, and will 1400 * unlock and relock that for each inode it ends up doing 1401 * IO for. 1402 */ 1403 static long writeback_sb_inodes(struct super_block *sb, 1404 struct bdi_writeback *wb, 1405 struct wb_writeback_work *work) 1406 { 1407 struct writeback_control wbc = { 1408 .sync_mode = work->sync_mode, 1409 .tagged_writepages = work->tagged_writepages, 1410 .for_kupdate = work->for_kupdate, 1411 .for_background = work->for_background, 1412 .for_sync = work->for_sync, 1413 .range_cyclic = work->range_cyclic, 1414 .range_start = 0, 1415 .range_end = LLONG_MAX, 1416 }; 1417 unsigned long start_time = jiffies; 1418 long write_chunk; 1419 long wrote = 0; /* count both pages and inodes */ 1420 1421 while (!list_empty(&wb->b_io)) { 1422 struct inode *inode = wb_inode(wb->b_io.prev); 1423 1424 if (inode->i_sb != sb) { 1425 if (work->sb) { 1426 /* 1427 * We only want to write back data for this 1428 * superblock, move all inodes not belonging 1429 * to it back onto the dirty list. 1430 */ 1431 redirty_tail(inode, wb); 1432 continue; 1433 } 1434 1435 /* 1436 * The inode belongs to a different superblock. 1437 * Bounce back to the caller to unpin this and 1438 * pin the next superblock. 1439 */ 1440 break; 1441 } 1442 1443 /* 1444 * Don't bother with new inodes or inodes being freed, first 1445 * kind does not need periodic writeout yet, and for the latter 1446 * kind writeout is handled by the freer. 1447 */ 1448 spin_lock(&inode->i_lock); 1449 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1450 spin_unlock(&inode->i_lock); 1451 redirty_tail(inode, wb); 1452 continue; 1453 } 1454 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1455 /* 1456 * If this inode is locked for writeback and we are not 1457 * doing writeback-for-data-integrity, move it to 1458 * b_more_io so that writeback can proceed with the 1459 * other inodes on s_io. 1460 * 1461 * We'll have another go at writing back this inode 1462 * when we completed a full scan of b_io. 1463 */ 1464 spin_unlock(&inode->i_lock); 1465 requeue_io(inode, wb); 1466 trace_writeback_sb_inodes_requeue(inode); 1467 continue; 1468 } 1469 spin_unlock(&wb->list_lock); 1470 1471 /* 1472 * We already requeued the inode if it had I_SYNC set and we 1473 * are doing WB_SYNC_NONE writeback. So this catches only the 1474 * WB_SYNC_ALL case. 1475 */ 1476 if (inode->i_state & I_SYNC) { 1477 /* Wait for I_SYNC. This function drops i_lock... */ 1478 inode_sleep_on_writeback(inode); 1479 /* Inode may be gone, start again */ 1480 spin_lock(&wb->list_lock); 1481 continue; 1482 } 1483 inode->i_state |= I_SYNC; 1484 wbc_attach_and_unlock_inode(&wbc, inode); 1485 1486 write_chunk = writeback_chunk_size(wb, work); 1487 wbc.nr_to_write = write_chunk; 1488 wbc.pages_skipped = 0; 1489 1490 /* 1491 * We use I_SYNC to pin the inode in memory. While it is set 1492 * evict_inode() will wait so the inode cannot be freed. 1493 */ 1494 __writeback_single_inode(inode, &wbc); 1495 1496 wbc_detach_inode(&wbc); 1497 work->nr_pages -= write_chunk - wbc.nr_to_write; 1498 wrote += write_chunk - wbc.nr_to_write; 1499 1500 if (need_resched()) { 1501 /* 1502 * We're trying to balance between building up a nice 1503 * long list of IOs to improve our merge rate, and 1504 * getting those IOs out quickly for anyone throttling 1505 * in balance_dirty_pages(). cond_resched() doesn't 1506 * unplug, so get our IOs out the door before we 1507 * give up the CPU. 1508 */ 1509 blk_flush_plug(current); 1510 cond_resched(); 1511 } 1512 1513 1514 spin_lock(&wb->list_lock); 1515 spin_lock(&inode->i_lock); 1516 if (!(inode->i_state & I_DIRTY_ALL)) 1517 wrote++; 1518 requeue_inode(inode, wb, &wbc); 1519 inode_sync_complete(inode); 1520 spin_unlock(&inode->i_lock); 1521 1522 /* 1523 * bail out to wb_writeback() often enough to check 1524 * background threshold and other termination conditions. 1525 */ 1526 if (wrote) { 1527 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1528 break; 1529 if (work->nr_pages <= 0) 1530 break; 1531 } 1532 } 1533 return wrote; 1534 } 1535 1536 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1537 struct wb_writeback_work *work) 1538 { 1539 unsigned long start_time = jiffies; 1540 long wrote = 0; 1541 1542 while (!list_empty(&wb->b_io)) { 1543 struct inode *inode = wb_inode(wb->b_io.prev); 1544 struct super_block *sb = inode->i_sb; 1545 1546 if (!trylock_super(sb)) { 1547 /* 1548 * trylock_super() may fail consistently due to 1549 * s_umount being grabbed by someone else. Don't use 1550 * requeue_io() to avoid busy retrying the inode/sb. 1551 */ 1552 redirty_tail(inode, wb); 1553 continue; 1554 } 1555 wrote += writeback_sb_inodes(sb, wb, work); 1556 up_read(&sb->s_umount); 1557 1558 /* refer to the same tests at the end of writeback_sb_inodes */ 1559 if (wrote) { 1560 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1561 break; 1562 if (work->nr_pages <= 0) 1563 break; 1564 } 1565 } 1566 /* Leave any unwritten inodes on b_io */ 1567 return wrote; 1568 } 1569 1570 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1571 enum wb_reason reason) 1572 { 1573 struct wb_writeback_work work = { 1574 .nr_pages = nr_pages, 1575 .sync_mode = WB_SYNC_NONE, 1576 .range_cyclic = 1, 1577 .reason = reason, 1578 }; 1579 struct blk_plug plug; 1580 1581 blk_start_plug(&plug); 1582 spin_lock(&wb->list_lock); 1583 if (list_empty(&wb->b_io)) 1584 queue_io(wb, &work); 1585 __writeback_inodes_wb(wb, &work); 1586 spin_unlock(&wb->list_lock); 1587 blk_finish_plug(&plug); 1588 1589 return nr_pages - work.nr_pages; 1590 } 1591 1592 /* 1593 * Explicit flushing or periodic writeback of "old" data. 1594 * 1595 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1596 * dirtying-time in the inode's address_space. So this periodic writeback code 1597 * just walks the superblock inode list, writing back any inodes which are 1598 * older than a specific point in time. 1599 * 1600 * Try to run once per dirty_writeback_interval. But if a writeback event 1601 * takes longer than a dirty_writeback_interval interval, then leave a 1602 * one-second gap. 1603 * 1604 * older_than_this takes precedence over nr_to_write. So we'll only write back 1605 * all dirty pages if they are all attached to "old" mappings. 1606 */ 1607 static long wb_writeback(struct bdi_writeback *wb, 1608 struct wb_writeback_work *work) 1609 { 1610 unsigned long wb_start = jiffies; 1611 long nr_pages = work->nr_pages; 1612 unsigned long oldest_jif; 1613 struct inode *inode; 1614 long progress; 1615 struct blk_plug plug; 1616 1617 oldest_jif = jiffies; 1618 work->older_than_this = &oldest_jif; 1619 1620 blk_start_plug(&plug); 1621 spin_lock(&wb->list_lock); 1622 for (;;) { 1623 /* 1624 * Stop writeback when nr_pages has been consumed 1625 */ 1626 if (work->nr_pages <= 0) 1627 break; 1628 1629 /* 1630 * Background writeout and kupdate-style writeback may 1631 * run forever. Stop them if there is other work to do 1632 * so that e.g. sync can proceed. They'll be restarted 1633 * after the other works are all done. 1634 */ 1635 if ((work->for_background || work->for_kupdate) && 1636 !list_empty(&wb->work_list)) 1637 break; 1638 1639 /* 1640 * For background writeout, stop when we are below the 1641 * background dirty threshold 1642 */ 1643 if (work->for_background && !wb_over_bg_thresh(wb)) 1644 break; 1645 1646 /* 1647 * Kupdate and background works are special and we want to 1648 * include all inodes that need writing. Livelock avoidance is 1649 * handled by these works yielding to any other work so we are 1650 * safe. 1651 */ 1652 if (work->for_kupdate) { 1653 oldest_jif = jiffies - 1654 msecs_to_jiffies(dirty_expire_interval * 10); 1655 } else if (work->for_background) 1656 oldest_jif = jiffies; 1657 1658 trace_writeback_start(wb, work); 1659 if (list_empty(&wb->b_io)) 1660 queue_io(wb, work); 1661 if (work->sb) 1662 progress = writeback_sb_inodes(work->sb, wb, work); 1663 else 1664 progress = __writeback_inodes_wb(wb, work); 1665 trace_writeback_written(wb, work); 1666 1667 wb_update_bandwidth(wb, wb_start); 1668 1669 /* 1670 * Did we write something? Try for more 1671 * 1672 * Dirty inodes are moved to b_io for writeback in batches. 1673 * The completion of the current batch does not necessarily 1674 * mean the overall work is done. So we keep looping as long 1675 * as made some progress on cleaning pages or inodes. 1676 */ 1677 if (progress) 1678 continue; 1679 /* 1680 * No more inodes for IO, bail 1681 */ 1682 if (list_empty(&wb->b_more_io)) 1683 break; 1684 /* 1685 * Nothing written. Wait for some inode to 1686 * become available for writeback. Otherwise 1687 * we'll just busyloop. 1688 */ 1689 if (!list_empty(&wb->b_more_io)) { 1690 trace_writeback_wait(wb, work); 1691 inode = wb_inode(wb->b_more_io.prev); 1692 spin_lock(&inode->i_lock); 1693 spin_unlock(&wb->list_lock); 1694 /* This function drops i_lock... */ 1695 inode_sleep_on_writeback(inode); 1696 spin_lock(&wb->list_lock); 1697 } 1698 } 1699 spin_unlock(&wb->list_lock); 1700 blk_finish_plug(&plug); 1701 1702 return nr_pages - work->nr_pages; 1703 } 1704 1705 /* 1706 * Return the next wb_writeback_work struct that hasn't been processed yet. 1707 */ 1708 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1709 { 1710 struct wb_writeback_work *work = NULL; 1711 1712 spin_lock_bh(&wb->work_lock); 1713 if (!list_empty(&wb->work_list)) { 1714 work = list_entry(wb->work_list.next, 1715 struct wb_writeback_work, list); 1716 list_del_init(&work->list); 1717 } 1718 spin_unlock_bh(&wb->work_lock); 1719 return work; 1720 } 1721 1722 /* 1723 * Add in the number of potentially dirty inodes, because each inode 1724 * write can dirty pagecache in the underlying blockdev. 1725 */ 1726 static unsigned long get_nr_dirty_pages(void) 1727 { 1728 return global_page_state(NR_FILE_DIRTY) + 1729 global_page_state(NR_UNSTABLE_NFS) + 1730 get_nr_dirty_inodes(); 1731 } 1732 1733 static long wb_check_background_flush(struct bdi_writeback *wb) 1734 { 1735 if (wb_over_bg_thresh(wb)) { 1736 1737 struct wb_writeback_work work = { 1738 .nr_pages = LONG_MAX, 1739 .sync_mode = WB_SYNC_NONE, 1740 .for_background = 1, 1741 .range_cyclic = 1, 1742 .reason = WB_REASON_BACKGROUND, 1743 }; 1744 1745 return wb_writeback(wb, &work); 1746 } 1747 1748 return 0; 1749 } 1750 1751 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1752 { 1753 unsigned long expired; 1754 long nr_pages; 1755 1756 /* 1757 * When set to zero, disable periodic writeback 1758 */ 1759 if (!dirty_writeback_interval) 1760 return 0; 1761 1762 expired = wb->last_old_flush + 1763 msecs_to_jiffies(dirty_writeback_interval * 10); 1764 if (time_before(jiffies, expired)) 1765 return 0; 1766 1767 wb->last_old_flush = jiffies; 1768 nr_pages = get_nr_dirty_pages(); 1769 1770 if (nr_pages) { 1771 struct wb_writeback_work work = { 1772 .nr_pages = nr_pages, 1773 .sync_mode = WB_SYNC_NONE, 1774 .for_kupdate = 1, 1775 .range_cyclic = 1, 1776 .reason = WB_REASON_PERIODIC, 1777 }; 1778 1779 return wb_writeback(wb, &work); 1780 } 1781 1782 return 0; 1783 } 1784 1785 /* 1786 * Retrieve work items and do the writeback they describe 1787 */ 1788 static long wb_do_writeback(struct bdi_writeback *wb) 1789 { 1790 struct wb_writeback_work *work; 1791 long wrote = 0; 1792 1793 set_bit(WB_writeback_running, &wb->state); 1794 while ((work = get_next_work_item(wb)) != NULL) { 1795 struct wb_completion *done = work->done; 1796 1797 trace_writeback_exec(wb, work); 1798 1799 wrote += wb_writeback(wb, work); 1800 1801 if (work->auto_free) 1802 kfree(work); 1803 if (done && atomic_dec_and_test(&done->cnt)) 1804 wake_up_all(&wb->bdi->wb_waitq); 1805 } 1806 1807 /* 1808 * Check for periodic writeback, kupdated() style 1809 */ 1810 wrote += wb_check_old_data_flush(wb); 1811 wrote += wb_check_background_flush(wb); 1812 clear_bit(WB_writeback_running, &wb->state); 1813 1814 return wrote; 1815 } 1816 1817 /* 1818 * Handle writeback of dirty data for the device backed by this bdi. Also 1819 * reschedules periodically and does kupdated style flushing. 1820 */ 1821 void wb_workfn(struct work_struct *work) 1822 { 1823 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1824 struct bdi_writeback, dwork); 1825 long pages_written; 1826 1827 set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); 1828 current->flags |= PF_SWAPWRITE; 1829 1830 if (likely(!current_is_workqueue_rescuer() || 1831 !test_bit(WB_registered, &wb->state))) { 1832 /* 1833 * The normal path. Keep writing back @wb until its 1834 * work_list is empty. Note that this path is also taken 1835 * if @wb is shutting down even when we're running off the 1836 * rescuer as work_list needs to be drained. 1837 */ 1838 do { 1839 pages_written = wb_do_writeback(wb); 1840 trace_writeback_pages_written(pages_written); 1841 } while (!list_empty(&wb->work_list)); 1842 } else { 1843 /* 1844 * bdi_wq can't get enough workers and we're running off 1845 * the emergency worker. Don't hog it. Hopefully, 1024 is 1846 * enough for efficient IO. 1847 */ 1848 pages_written = writeback_inodes_wb(wb, 1024, 1849 WB_REASON_FORKER_THREAD); 1850 trace_writeback_pages_written(pages_written); 1851 } 1852 1853 if (!list_empty(&wb->work_list)) 1854 mod_delayed_work(bdi_wq, &wb->dwork, 0); 1855 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1856 wb_wakeup_delayed(wb); 1857 1858 current->flags &= ~PF_SWAPWRITE; 1859 } 1860 1861 /* 1862 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1863 * the whole world. 1864 */ 1865 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1866 { 1867 struct backing_dev_info *bdi; 1868 1869 if (!nr_pages) 1870 nr_pages = get_nr_dirty_pages(); 1871 1872 rcu_read_lock(); 1873 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1874 struct bdi_writeback *wb; 1875 1876 if (!bdi_has_dirty_io(bdi)) 1877 continue; 1878 1879 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 1880 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages), 1881 false, reason); 1882 } 1883 rcu_read_unlock(); 1884 } 1885 1886 /* 1887 * Wake up bdi's periodically to make sure dirtytime inodes gets 1888 * written back periodically. We deliberately do *not* check the 1889 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 1890 * kernel to be constantly waking up once there are any dirtytime 1891 * inodes on the system. So instead we define a separate delayed work 1892 * function which gets called much more rarely. (By default, only 1893 * once every 12 hours.) 1894 * 1895 * If there is any other write activity going on in the file system, 1896 * this function won't be necessary. But if the only thing that has 1897 * happened on the file system is a dirtytime inode caused by an atime 1898 * update, we need this infrastructure below to make sure that inode 1899 * eventually gets pushed out to disk. 1900 */ 1901 static void wakeup_dirtytime_writeback(struct work_struct *w); 1902 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 1903 1904 static void wakeup_dirtytime_writeback(struct work_struct *w) 1905 { 1906 struct backing_dev_info *bdi; 1907 1908 rcu_read_lock(); 1909 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1910 struct bdi_writeback *wb; 1911 1912 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 1913 if (!list_empty(&wb->b_dirty_time)) 1914 wb_wakeup(wb); 1915 } 1916 rcu_read_unlock(); 1917 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 1918 } 1919 1920 static int __init start_dirtytime_writeback(void) 1921 { 1922 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 1923 return 0; 1924 } 1925 __initcall(start_dirtytime_writeback); 1926 1927 int dirtytime_interval_handler(struct ctl_table *table, int write, 1928 void __user *buffer, size_t *lenp, loff_t *ppos) 1929 { 1930 int ret; 1931 1932 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 1933 if (ret == 0 && write) 1934 mod_delayed_work(system_wq, &dirtytime_work, 0); 1935 return ret; 1936 } 1937 1938 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1939 { 1940 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1941 struct dentry *dentry; 1942 const char *name = "?"; 1943 1944 dentry = d_find_alias(inode); 1945 if (dentry) { 1946 spin_lock(&dentry->d_lock); 1947 name = (const char *) dentry->d_name.name; 1948 } 1949 printk(KERN_DEBUG 1950 "%s(%d): dirtied inode %lu (%s) on %s\n", 1951 current->comm, task_pid_nr(current), inode->i_ino, 1952 name, inode->i_sb->s_id); 1953 if (dentry) { 1954 spin_unlock(&dentry->d_lock); 1955 dput(dentry); 1956 } 1957 } 1958 } 1959 1960 /** 1961 * __mark_inode_dirty - internal function 1962 * @inode: inode to mark 1963 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1964 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1965 * mark_inode_dirty_sync. 1966 * 1967 * Put the inode on the super block's dirty list. 1968 * 1969 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1970 * dirty list only if it is hashed or if it refers to a blockdev. 1971 * If it was not hashed, it will never be added to the dirty list 1972 * even if it is later hashed, as it will have been marked dirty already. 1973 * 1974 * In short, make sure you hash any inodes _before_ you start marking 1975 * them dirty. 1976 * 1977 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1978 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1979 * the kernel-internal blockdev inode represents the dirtying time of the 1980 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1981 * page->mapping->host, so the page-dirtying time is recorded in the internal 1982 * blockdev inode. 1983 */ 1984 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 1985 void __mark_inode_dirty(struct inode *inode, int flags) 1986 { 1987 struct super_block *sb = inode->i_sb; 1988 int dirtytime; 1989 1990 trace_writeback_mark_inode_dirty(inode, flags); 1991 1992 /* 1993 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1994 * dirty the inode itself 1995 */ 1996 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) { 1997 trace_writeback_dirty_inode_start(inode, flags); 1998 1999 if (sb->s_op->dirty_inode) 2000 sb->s_op->dirty_inode(inode, flags); 2001 2002 trace_writeback_dirty_inode(inode, flags); 2003 } 2004 if (flags & I_DIRTY_INODE) 2005 flags &= ~I_DIRTY_TIME; 2006 dirtytime = flags & I_DIRTY_TIME; 2007 2008 /* 2009 * Paired with smp_mb() in __writeback_single_inode() for the 2010 * following lockless i_state test. See there for details. 2011 */ 2012 smp_mb(); 2013 2014 if (((inode->i_state & flags) == flags) || 2015 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2016 return; 2017 2018 if (unlikely(block_dump)) 2019 block_dump___mark_inode_dirty(inode); 2020 2021 spin_lock(&inode->i_lock); 2022 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2023 goto out_unlock_inode; 2024 if ((inode->i_state & flags) != flags) { 2025 const int was_dirty = inode->i_state & I_DIRTY; 2026 2027 inode_attach_wb(inode, NULL); 2028 2029 if (flags & I_DIRTY_INODE) 2030 inode->i_state &= ~I_DIRTY_TIME; 2031 inode->i_state |= flags; 2032 2033 /* 2034 * If the inode is being synced, just update its dirty state. 2035 * The unlocker will place the inode on the appropriate 2036 * superblock list, based upon its state. 2037 */ 2038 if (inode->i_state & I_SYNC) 2039 goto out_unlock_inode; 2040 2041 /* 2042 * Only add valid (hashed) inodes to the superblock's 2043 * dirty list. Add blockdev inodes as well. 2044 */ 2045 if (!S_ISBLK(inode->i_mode)) { 2046 if (inode_unhashed(inode)) 2047 goto out_unlock_inode; 2048 } 2049 if (inode->i_state & I_FREEING) 2050 goto out_unlock_inode; 2051 2052 /* 2053 * If the inode was already on b_dirty/b_io/b_more_io, don't 2054 * reposition it (that would break b_dirty time-ordering). 2055 */ 2056 if (!was_dirty) { 2057 struct bdi_writeback *wb; 2058 struct list_head *dirty_list; 2059 bool wakeup_bdi = false; 2060 2061 wb = locked_inode_to_wb_and_lock_list(inode); 2062 2063 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2064 !test_bit(WB_registered, &wb->state), 2065 "bdi-%s not registered\n", wb->bdi->name); 2066 2067 inode->dirtied_when = jiffies; 2068 if (dirtytime) 2069 inode->dirtied_time_when = jiffies; 2070 2071 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES)) 2072 dirty_list = &wb->b_dirty; 2073 else 2074 dirty_list = &wb->b_dirty_time; 2075 2076 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2077 dirty_list); 2078 2079 spin_unlock(&wb->list_lock); 2080 trace_writeback_dirty_inode_enqueue(inode); 2081 2082 /* 2083 * If this is the first dirty inode for this bdi, 2084 * we have to wake-up the corresponding bdi thread 2085 * to make sure background write-back happens 2086 * later. 2087 */ 2088 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2089 wb_wakeup_delayed(wb); 2090 return; 2091 } 2092 } 2093 out_unlock_inode: 2094 spin_unlock(&inode->i_lock); 2095 2096 } 2097 EXPORT_SYMBOL(__mark_inode_dirty); 2098 2099 /* 2100 * The @s_sync_lock is used to serialise concurrent sync operations 2101 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2102 * Concurrent callers will block on the s_sync_lock rather than doing contending 2103 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2104 * has been issued up to the time this function is enter is guaranteed to be 2105 * completed by the time we have gained the lock and waited for all IO that is 2106 * in progress regardless of the order callers are granted the lock. 2107 */ 2108 static void wait_sb_inodes(struct super_block *sb) 2109 { 2110 struct inode *inode, *old_inode = NULL; 2111 2112 /* 2113 * We need to be protected against the filesystem going from 2114 * r/o to r/w or vice versa. 2115 */ 2116 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2117 2118 mutex_lock(&sb->s_sync_lock); 2119 spin_lock(&sb->s_inode_list_lock); 2120 2121 /* 2122 * Data integrity sync. Must wait for all pages under writeback, 2123 * because there may have been pages dirtied before our sync 2124 * call, but which had writeout started before we write it out. 2125 * In which case, the inode may not be on the dirty list, but 2126 * we still have to wait for that writeout. 2127 */ 2128 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 2129 struct address_space *mapping = inode->i_mapping; 2130 2131 spin_lock(&inode->i_lock); 2132 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 2133 (mapping->nrpages == 0)) { 2134 spin_unlock(&inode->i_lock); 2135 continue; 2136 } 2137 __iget(inode); 2138 spin_unlock(&inode->i_lock); 2139 spin_unlock(&sb->s_inode_list_lock); 2140 2141 /* 2142 * We hold a reference to 'inode' so it couldn't have been 2143 * removed from s_inodes list while we dropped the 2144 * s_inode_list_lock. We cannot iput the inode now as we can 2145 * be holding the last reference and we cannot iput it under 2146 * s_inode_list_lock. So we keep the reference and iput it 2147 * later. 2148 */ 2149 iput(old_inode); 2150 old_inode = inode; 2151 2152 filemap_fdatawait(mapping); 2153 2154 cond_resched(); 2155 2156 spin_lock(&sb->s_inode_list_lock); 2157 } 2158 spin_unlock(&sb->s_inode_list_lock); 2159 iput(old_inode); 2160 mutex_unlock(&sb->s_sync_lock); 2161 } 2162 2163 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2164 enum wb_reason reason, bool skip_if_busy) 2165 { 2166 DEFINE_WB_COMPLETION_ONSTACK(done); 2167 struct wb_writeback_work work = { 2168 .sb = sb, 2169 .sync_mode = WB_SYNC_NONE, 2170 .tagged_writepages = 1, 2171 .done = &done, 2172 .nr_pages = nr, 2173 .reason = reason, 2174 }; 2175 struct backing_dev_info *bdi = sb->s_bdi; 2176 2177 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2178 return; 2179 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2180 2181 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2182 wb_wait_for_completion(bdi, &done); 2183 } 2184 2185 /** 2186 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2187 * @sb: the superblock 2188 * @nr: the number of pages to write 2189 * @reason: reason why some writeback work initiated 2190 * 2191 * Start writeback on some inodes on this super_block. No guarantees are made 2192 * on how many (if any) will be written, and this function does not wait 2193 * for IO completion of submitted IO. 2194 */ 2195 void writeback_inodes_sb_nr(struct super_block *sb, 2196 unsigned long nr, 2197 enum wb_reason reason) 2198 { 2199 __writeback_inodes_sb_nr(sb, nr, reason, false); 2200 } 2201 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2202 2203 /** 2204 * writeback_inodes_sb - writeback dirty inodes from given super_block 2205 * @sb: the superblock 2206 * @reason: reason why some writeback work was initiated 2207 * 2208 * Start writeback on some inodes on this super_block. No guarantees are made 2209 * on how many (if any) will be written, and this function does not wait 2210 * for IO completion of submitted IO. 2211 */ 2212 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2213 { 2214 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2215 } 2216 EXPORT_SYMBOL(writeback_inodes_sb); 2217 2218 /** 2219 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway 2220 * @sb: the superblock 2221 * @nr: the number of pages to write 2222 * @reason: the reason of writeback 2223 * 2224 * Invoke writeback_inodes_sb_nr if no writeback is currently underway. 2225 * Returns 1 if writeback was started, 0 if not. 2226 */ 2227 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2228 enum wb_reason reason) 2229 { 2230 if (!down_read_trylock(&sb->s_umount)) 2231 return false; 2232 2233 __writeback_inodes_sb_nr(sb, nr, reason, true); 2234 up_read(&sb->s_umount); 2235 return true; 2236 } 2237 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr); 2238 2239 /** 2240 * try_to_writeback_inodes_sb - try to start writeback if none underway 2241 * @sb: the superblock 2242 * @reason: reason why some writeback work was initiated 2243 * 2244 * Implement by try_to_writeback_inodes_sb_nr() 2245 * Returns 1 if writeback was started, 0 if not. 2246 */ 2247 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2248 { 2249 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2250 } 2251 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2252 2253 /** 2254 * sync_inodes_sb - sync sb inode pages 2255 * @sb: the superblock 2256 * 2257 * This function writes and waits on any dirty inode belonging to this 2258 * super_block. 2259 */ 2260 void sync_inodes_sb(struct super_block *sb) 2261 { 2262 DEFINE_WB_COMPLETION_ONSTACK(done); 2263 struct wb_writeback_work work = { 2264 .sb = sb, 2265 .sync_mode = WB_SYNC_ALL, 2266 .nr_pages = LONG_MAX, 2267 .range_cyclic = 0, 2268 .done = &done, 2269 .reason = WB_REASON_SYNC, 2270 .for_sync = 1, 2271 }; 2272 struct backing_dev_info *bdi = sb->s_bdi; 2273 2274 /* 2275 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2276 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2277 * bdi_has_dirty() need to be written out too. 2278 */ 2279 if (bdi == &noop_backing_dev_info) 2280 return; 2281 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2282 2283 bdi_split_work_to_wbs(bdi, &work, false); 2284 wb_wait_for_completion(bdi, &done); 2285 2286 wait_sb_inodes(sb); 2287 } 2288 EXPORT_SYMBOL(sync_inodes_sb); 2289 2290 /** 2291 * write_inode_now - write an inode to disk 2292 * @inode: inode to write to disk 2293 * @sync: whether the write should be synchronous or not 2294 * 2295 * This function commits an inode to disk immediately if it is dirty. This is 2296 * primarily needed by knfsd. 2297 * 2298 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2299 */ 2300 int write_inode_now(struct inode *inode, int sync) 2301 { 2302 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 2303 struct writeback_control wbc = { 2304 .nr_to_write = LONG_MAX, 2305 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2306 .range_start = 0, 2307 .range_end = LLONG_MAX, 2308 }; 2309 2310 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2311 wbc.nr_to_write = 0; 2312 2313 might_sleep(); 2314 return writeback_single_inode(inode, wb, &wbc); 2315 } 2316 EXPORT_SYMBOL(write_inode_now); 2317 2318 /** 2319 * sync_inode - write an inode and its pages to disk. 2320 * @inode: the inode to sync 2321 * @wbc: controls the writeback mode 2322 * 2323 * sync_inode() will write an inode and its pages to disk. It will also 2324 * correctly update the inode on its superblock's dirty inode lists and will 2325 * update inode->i_state. 2326 * 2327 * The caller must have a ref on the inode. 2328 */ 2329 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2330 { 2331 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 2332 } 2333 EXPORT_SYMBOL(sync_inode); 2334 2335 /** 2336 * sync_inode_metadata - write an inode to disk 2337 * @inode: the inode to sync 2338 * @wait: wait for I/O to complete. 2339 * 2340 * Write an inode to disk and adjust its dirty state after completion. 2341 * 2342 * Note: only writes the actual inode, no associated data or other metadata. 2343 */ 2344 int sync_inode_metadata(struct inode *inode, int wait) 2345 { 2346 struct writeback_control wbc = { 2347 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2348 .nr_to_write = 0, /* metadata-only */ 2349 }; 2350 2351 return sync_inode(inode, &wbc); 2352 } 2353 EXPORT_SYMBOL(sync_inode_metadata); 2354