1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * Passed into wb_writeback(), essentially a subset of writeback_control 34 */ 35 struct wb_writeback_work { 36 long nr_pages; 37 struct super_block *sb; 38 unsigned long *older_than_this; 39 enum writeback_sync_modes sync_mode; 40 unsigned int tagged_writepages:1; 41 unsigned int for_kupdate:1; 42 unsigned int range_cyclic:1; 43 unsigned int for_background:1; 44 enum wb_reason reason; /* why was writeback initiated? */ 45 46 struct list_head list; /* pending work list */ 47 struct completion *done; /* set if the caller waits */ 48 }; 49 50 const char *wb_reason_name[] = { 51 [WB_REASON_BACKGROUND] = "background", 52 [WB_REASON_TRY_TO_FREE_PAGES] = "try_to_free_pages", 53 [WB_REASON_SYNC] = "sync", 54 [WB_REASON_PERIODIC] = "periodic", 55 [WB_REASON_LAPTOP_TIMER] = "laptop_timer", 56 [WB_REASON_FREE_MORE_MEM] = "free_more_memory", 57 [WB_REASON_FS_FREE_SPACE] = "fs_free_space", 58 [WB_REASON_FORKER_THREAD] = "forker_thread" 59 }; 60 61 /* 62 * Include the creation of the trace points after defining the 63 * wb_writeback_work structure so that the definition remains local to this 64 * file. 65 */ 66 #define CREATE_TRACE_POINTS 67 #include <trace/events/writeback.h> 68 69 /* 70 * We don't actually have pdflush, but this one is exported though /proc... 71 */ 72 int nr_pdflush_threads; 73 74 /** 75 * writeback_in_progress - determine whether there is writeback in progress 76 * @bdi: the device's backing_dev_info structure. 77 * 78 * Determine whether there is writeback waiting to be handled against a 79 * backing device. 80 */ 81 int writeback_in_progress(struct backing_dev_info *bdi) 82 { 83 return test_bit(BDI_writeback_running, &bdi->state); 84 } 85 86 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 87 { 88 struct super_block *sb = inode->i_sb; 89 90 if (strcmp(sb->s_type->name, "bdev") == 0) 91 return inode->i_mapping->backing_dev_info; 92 93 return sb->s_bdi; 94 } 95 96 static inline struct inode *wb_inode(struct list_head *head) 97 { 98 return list_entry(head, struct inode, i_wb_list); 99 } 100 101 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ 102 static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 103 { 104 if (bdi->wb.task) { 105 wake_up_process(bdi->wb.task); 106 } else { 107 /* 108 * The bdi thread isn't there, wake up the forker thread which 109 * will create and run it. 110 */ 111 wake_up_process(default_backing_dev_info.wb.task); 112 } 113 } 114 115 static void bdi_queue_work(struct backing_dev_info *bdi, 116 struct wb_writeback_work *work) 117 { 118 trace_writeback_queue(bdi, work); 119 120 spin_lock_bh(&bdi->wb_lock); 121 list_add_tail(&work->list, &bdi->work_list); 122 if (!bdi->wb.task) 123 trace_writeback_nothread(bdi, work); 124 bdi_wakeup_flusher(bdi); 125 spin_unlock_bh(&bdi->wb_lock); 126 } 127 128 static void 129 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 130 bool range_cyclic, enum wb_reason reason) 131 { 132 struct wb_writeback_work *work; 133 134 /* 135 * This is WB_SYNC_NONE writeback, so if allocation fails just 136 * wakeup the thread for old dirty data writeback 137 */ 138 work = kzalloc(sizeof(*work), GFP_ATOMIC); 139 if (!work) { 140 if (bdi->wb.task) { 141 trace_writeback_nowork(bdi); 142 wake_up_process(bdi->wb.task); 143 } 144 return; 145 } 146 147 work->sync_mode = WB_SYNC_NONE; 148 work->nr_pages = nr_pages; 149 work->range_cyclic = range_cyclic; 150 work->reason = reason; 151 152 bdi_queue_work(bdi, work); 153 } 154 155 /** 156 * bdi_start_writeback - start writeback 157 * @bdi: the backing device to write from 158 * @nr_pages: the number of pages to write 159 * 160 * Description: 161 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 162 * started when this function returns, we make no guarantees on 163 * completion. Caller need not hold sb s_umount semaphore. 164 * 165 */ 166 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 167 enum wb_reason reason) 168 { 169 __bdi_start_writeback(bdi, nr_pages, true, reason); 170 } 171 172 /** 173 * bdi_start_background_writeback - start background writeback 174 * @bdi: the backing device to write from 175 * 176 * Description: 177 * This makes sure WB_SYNC_NONE background writeback happens. When 178 * this function returns, it is only guaranteed that for given BDI 179 * some IO is happening if we are over background dirty threshold. 180 * Caller need not hold sb s_umount semaphore. 181 */ 182 void bdi_start_background_writeback(struct backing_dev_info *bdi) 183 { 184 /* 185 * We just wake up the flusher thread. It will perform background 186 * writeback as soon as there is no other work to do. 187 */ 188 trace_writeback_wake_background(bdi); 189 spin_lock_bh(&bdi->wb_lock); 190 bdi_wakeup_flusher(bdi); 191 spin_unlock_bh(&bdi->wb_lock); 192 } 193 194 /* 195 * Remove the inode from the writeback list it is on. 196 */ 197 void inode_wb_list_del(struct inode *inode) 198 { 199 struct backing_dev_info *bdi = inode_to_bdi(inode); 200 201 spin_lock(&bdi->wb.list_lock); 202 list_del_init(&inode->i_wb_list); 203 spin_unlock(&bdi->wb.list_lock); 204 } 205 206 /* 207 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 208 * furthest end of its superblock's dirty-inode list. 209 * 210 * Before stamping the inode's ->dirtied_when, we check to see whether it is 211 * already the most-recently-dirtied inode on the b_dirty list. If that is 212 * the case then the inode must have been redirtied while it was being written 213 * out and we don't reset its dirtied_when. 214 */ 215 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 216 { 217 assert_spin_locked(&wb->list_lock); 218 if (!list_empty(&wb->b_dirty)) { 219 struct inode *tail; 220 221 tail = wb_inode(wb->b_dirty.next); 222 if (time_before(inode->dirtied_when, tail->dirtied_when)) 223 inode->dirtied_when = jiffies; 224 } 225 list_move(&inode->i_wb_list, &wb->b_dirty); 226 } 227 228 /* 229 * requeue inode for re-scanning after bdi->b_io list is exhausted. 230 */ 231 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 232 { 233 assert_spin_locked(&wb->list_lock); 234 list_move(&inode->i_wb_list, &wb->b_more_io); 235 } 236 237 static void inode_sync_complete(struct inode *inode) 238 { 239 /* 240 * Prevent speculative execution through 241 * spin_unlock(&wb->list_lock); 242 */ 243 244 smp_mb(); 245 wake_up_bit(&inode->i_state, __I_SYNC); 246 } 247 248 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 249 { 250 bool ret = time_after(inode->dirtied_when, t); 251 #ifndef CONFIG_64BIT 252 /* 253 * For inodes being constantly redirtied, dirtied_when can get stuck. 254 * It _appears_ to be in the future, but is actually in distant past. 255 * This test is necessary to prevent such wrapped-around relative times 256 * from permanently stopping the whole bdi writeback. 257 */ 258 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 259 #endif 260 return ret; 261 } 262 263 /* 264 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 265 */ 266 static int move_expired_inodes(struct list_head *delaying_queue, 267 struct list_head *dispatch_queue, 268 struct wb_writeback_work *work) 269 { 270 LIST_HEAD(tmp); 271 struct list_head *pos, *node; 272 struct super_block *sb = NULL; 273 struct inode *inode; 274 int do_sb_sort = 0; 275 int moved = 0; 276 277 while (!list_empty(delaying_queue)) { 278 inode = wb_inode(delaying_queue->prev); 279 if (work->older_than_this && 280 inode_dirtied_after(inode, *work->older_than_this)) 281 break; 282 if (sb && sb != inode->i_sb) 283 do_sb_sort = 1; 284 sb = inode->i_sb; 285 list_move(&inode->i_wb_list, &tmp); 286 moved++; 287 } 288 289 /* just one sb in list, splice to dispatch_queue and we're done */ 290 if (!do_sb_sort) { 291 list_splice(&tmp, dispatch_queue); 292 goto out; 293 } 294 295 /* Move inodes from one superblock together */ 296 while (!list_empty(&tmp)) { 297 sb = wb_inode(tmp.prev)->i_sb; 298 list_for_each_prev_safe(pos, node, &tmp) { 299 inode = wb_inode(pos); 300 if (inode->i_sb == sb) 301 list_move(&inode->i_wb_list, dispatch_queue); 302 } 303 } 304 out: 305 return moved; 306 } 307 308 /* 309 * Queue all expired dirty inodes for io, eldest first. 310 * Before 311 * newly dirtied b_dirty b_io b_more_io 312 * =============> gf edc BA 313 * After 314 * newly dirtied b_dirty b_io b_more_io 315 * =============> g fBAedc 316 * | 317 * +--> dequeue for IO 318 */ 319 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 320 { 321 int moved; 322 assert_spin_locked(&wb->list_lock); 323 list_splice_init(&wb->b_more_io, &wb->b_io); 324 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 325 trace_writeback_queue_io(wb, work, moved); 326 } 327 328 static int write_inode(struct inode *inode, struct writeback_control *wbc) 329 { 330 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 331 return inode->i_sb->s_op->write_inode(inode, wbc); 332 return 0; 333 } 334 335 /* 336 * Wait for writeback on an inode to complete. 337 */ 338 static void inode_wait_for_writeback(struct inode *inode, 339 struct bdi_writeback *wb) 340 { 341 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 342 wait_queue_head_t *wqh; 343 344 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 345 while (inode->i_state & I_SYNC) { 346 spin_unlock(&inode->i_lock); 347 spin_unlock(&wb->list_lock); 348 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 349 spin_lock(&wb->list_lock); 350 spin_lock(&inode->i_lock); 351 } 352 } 353 354 /* 355 * Write out an inode's dirty pages. Called under wb->list_lock and 356 * inode->i_lock. Either the caller has an active reference on the inode or 357 * the inode has I_WILL_FREE set. 358 * 359 * If `wait' is set, wait on the writeout. 360 * 361 * The whole writeout design is quite complex and fragile. We want to avoid 362 * starvation of particular inodes when others are being redirtied, prevent 363 * livelocks, etc. 364 */ 365 static int 366 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 367 struct writeback_control *wbc) 368 { 369 struct address_space *mapping = inode->i_mapping; 370 long nr_to_write = wbc->nr_to_write; 371 unsigned dirty; 372 int ret; 373 374 assert_spin_locked(&wb->list_lock); 375 assert_spin_locked(&inode->i_lock); 376 377 if (!atomic_read(&inode->i_count)) 378 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 379 else 380 WARN_ON(inode->i_state & I_WILL_FREE); 381 382 if (inode->i_state & I_SYNC) { 383 /* 384 * If this inode is locked for writeback and we are not doing 385 * writeback-for-data-integrity, move it to b_more_io so that 386 * writeback can proceed with the other inodes on s_io. 387 * 388 * We'll have another go at writing back this inode when we 389 * completed a full scan of b_io. 390 */ 391 if (wbc->sync_mode != WB_SYNC_ALL) { 392 requeue_io(inode, wb); 393 trace_writeback_single_inode_requeue(inode, wbc, 394 nr_to_write); 395 return 0; 396 } 397 398 /* 399 * It's a data-integrity sync. We must wait. 400 */ 401 inode_wait_for_writeback(inode, wb); 402 } 403 404 BUG_ON(inode->i_state & I_SYNC); 405 406 /* Set I_SYNC, reset I_DIRTY_PAGES */ 407 inode->i_state |= I_SYNC; 408 inode->i_state &= ~I_DIRTY_PAGES; 409 spin_unlock(&inode->i_lock); 410 spin_unlock(&wb->list_lock); 411 412 ret = do_writepages(mapping, wbc); 413 414 /* 415 * Make sure to wait on the data before writing out the metadata. 416 * This is important for filesystems that modify metadata on data 417 * I/O completion. 418 */ 419 if (wbc->sync_mode == WB_SYNC_ALL) { 420 int err = filemap_fdatawait(mapping); 421 if (ret == 0) 422 ret = err; 423 } 424 425 /* 426 * Some filesystems may redirty the inode during the writeback 427 * due to delalloc, clear dirty metadata flags right before 428 * write_inode() 429 */ 430 spin_lock(&inode->i_lock); 431 dirty = inode->i_state & I_DIRTY; 432 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 433 spin_unlock(&inode->i_lock); 434 /* Don't write the inode if only I_DIRTY_PAGES was set */ 435 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 436 int err = write_inode(inode, wbc); 437 if (ret == 0) 438 ret = err; 439 } 440 441 spin_lock(&wb->list_lock); 442 spin_lock(&inode->i_lock); 443 inode->i_state &= ~I_SYNC; 444 if (!(inode->i_state & I_FREEING)) { 445 /* 446 * Sync livelock prevention. Each inode is tagged and synced in 447 * one shot. If still dirty, it will be redirty_tail()'ed below. 448 * Update the dirty time to prevent enqueue and sync it again. 449 */ 450 if ((inode->i_state & I_DIRTY) && 451 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 452 inode->dirtied_when = jiffies; 453 454 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 455 /* 456 * We didn't write back all the pages. nfs_writepages() 457 * sometimes bales out without doing anything. 458 */ 459 inode->i_state |= I_DIRTY_PAGES; 460 if (wbc->nr_to_write <= 0) { 461 /* 462 * slice used up: queue for next turn 463 */ 464 requeue_io(inode, wb); 465 } else { 466 /* 467 * Writeback blocked by something other than 468 * congestion. Delay the inode for some time to 469 * avoid spinning on the CPU (100% iowait) 470 * retrying writeback of the dirty page/inode 471 * that cannot be performed immediately. 472 */ 473 redirty_tail(inode, wb); 474 } 475 } else if (inode->i_state & I_DIRTY) { 476 /* 477 * Filesystems can dirty the inode during writeback 478 * operations, such as delayed allocation during 479 * submission or metadata updates after data IO 480 * completion. 481 */ 482 redirty_tail(inode, wb); 483 } else { 484 /* 485 * The inode is clean. At this point we either have 486 * a reference to the inode or it's on it's way out. 487 * No need to add it back to the LRU. 488 */ 489 list_del_init(&inode->i_wb_list); 490 } 491 } 492 inode_sync_complete(inode); 493 trace_writeback_single_inode(inode, wbc, nr_to_write); 494 return ret; 495 } 496 497 static long writeback_chunk_size(struct backing_dev_info *bdi, 498 struct wb_writeback_work *work) 499 { 500 long pages; 501 502 /* 503 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 504 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 505 * here avoids calling into writeback_inodes_wb() more than once. 506 * 507 * The intended call sequence for WB_SYNC_ALL writeback is: 508 * 509 * wb_writeback() 510 * writeback_sb_inodes() <== called only once 511 * write_cache_pages() <== called once for each inode 512 * (quickly) tag currently dirty pages 513 * (maybe slowly) sync all tagged pages 514 */ 515 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 516 pages = LONG_MAX; 517 else { 518 pages = min(bdi->avg_write_bandwidth / 2, 519 global_dirty_limit / DIRTY_SCOPE); 520 pages = min(pages, work->nr_pages); 521 pages = round_down(pages + MIN_WRITEBACK_PAGES, 522 MIN_WRITEBACK_PAGES); 523 } 524 525 return pages; 526 } 527 528 /* 529 * Write a portion of b_io inodes which belong to @sb. 530 * 531 * If @only_this_sb is true, then find and write all such 532 * inodes. Otherwise write only ones which go sequentially 533 * in reverse order. 534 * 535 * Return the number of pages and/or inodes written. 536 */ 537 static long writeback_sb_inodes(struct super_block *sb, 538 struct bdi_writeback *wb, 539 struct wb_writeback_work *work) 540 { 541 struct writeback_control wbc = { 542 .sync_mode = work->sync_mode, 543 .tagged_writepages = work->tagged_writepages, 544 .for_kupdate = work->for_kupdate, 545 .for_background = work->for_background, 546 .range_cyclic = work->range_cyclic, 547 .range_start = 0, 548 .range_end = LLONG_MAX, 549 }; 550 unsigned long start_time = jiffies; 551 long write_chunk; 552 long wrote = 0; /* count both pages and inodes */ 553 554 while (!list_empty(&wb->b_io)) { 555 struct inode *inode = wb_inode(wb->b_io.prev); 556 557 if (inode->i_sb != sb) { 558 if (work->sb) { 559 /* 560 * We only want to write back data for this 561 * superblock, move all inodes not belonging 562 * to it back onto the dirty list. 563 */ 564 redirty_tail(inode, wb); 565 continue; 566 } 567 568 /* 569 * The inode belongs to a different superblock. 570 * Bounce back to the caller to unpin this and 571 * pin the next superblock. 572 */ 573 break; 574 } 575 576 /* 577 * Don't bother with new inodes or inodes beeing freed, first 578 * kind does not need peridic writeout yet, and for the latter 579 * kind writeout is handled by the freer. 580 */ 581 spin_lock(&inode->i_lock); 582 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 583 spin_unlock(&inode->i_lock); 584 redirty_tail(inode, wb); 585 continue; 586 } 587 __iget(inode); 588 write_chunk = writeback_chunk_size(wb->bdi, work); 589 wbc.nr_to_write = write_chunk; 590 wbc.pages_skipped = 0; 591 592 writeback_single_inode(inode, wb, &wbc); 593 594 work->nr_pages -= write_chunk - wbc.nr_to_write; 595 wrote += write_chunk - wbc.nr_to_write; 596 if (!(inode->i_state & I_DIRTY)) 597 wrote++; 598 if (wbc.pages_skipped) { 599 /* 600 * writeback is not making progress due to locked 601 * buffers. Skip this inode for now. 602 */ 603 redirty_tail(inode, wb); 604 } 605 spin_unlock(&inode->i_lock); 606 spin_unlock(&wb->list_lock); 607 iput(inode); 608 cond_resched(); 609 spin_lock(&wb->list_lock); 610 /* 611 * bail out to wb_writeback() often enough to check 612 * background threshold and other termination conditions. 613 */ 614 if (wrote) { 615 if (time_is_before_jiffies(start_time + HZ / 10UL)) 616 break; 617 if (work->nr_pages <= 0) 618 break; 619 } 620 } 621 return wrote; 622 } 623 624 static long __writeback_inodes_wb(struct bdi_writeback *wb, 625 struct wb_writeback_work *work) 626 { 627 unsigned long start_time = jiffies; 628 long wrote = 0; 629 630 while (!list_empty(&wb->b_io)) { 631 struct inode *inode = wb_inode(wb->b_io.prev); 632 struct super_block *sb = inode->i_sb; 633 634 if (!grab_super_passive(sb)) { 635 /* 636 * grab_super_passive() may fail consistently due to 637 * s_umount being grabbed by someone else. Don't use 638 * requeue_io() to avoid busy retrying the inode/sb. 639 */ 640 redirty_tail(inode, wb); 641 continue; 642 } 643 wrote += writeback_sb_inodes(sb, wb, work); 644 drop_super(sb); 645 646 /* refer to the same tests at the end of writeback_sb_inodes */ 647 if (wrote) { 648 if (time_is_before_jiffies(start_time + HZ / 10UL)) 649 break; 650 if (work->nr_pages <= 0) 651 break; 652 } 653 } 654 /* Leave any unwritten inodes on b_io */ 655 return wrote; 656 } 657 658 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 659 enum wb_reason reason) 660 { 661 struct wb_writeback_work work = { 662 .nr_pages = nr_pages, 663 .sync_mode = WB_SYNC_NONE, 664 .range_cyclic = 1, 665 .reason = reason, 666 }; 667 668 spin_lock(&wb->list_lock); 669 if (list_empty(&wb->b_io)) 670 queue_io(wb, &work); 671 __writeback_inodes_wb(wb, &work); 672 spin_unlock(&wb->list_lock); 673 674 return nr_pages - work.nr_pages; 675 } 676 677 static bool over_bground_thresh(struct backing_dev_info *bdi) 678 { 679 unsigned long background_thresh, dirty_thresh; 680 681 global_dirty_limits(&background_thresh, &dirty_thresh); 682 683 if (global_page_state(NR_FILE_DIRTY) + 684 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 685 return true; 686 687 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 688 bdi_dirty_limit(bdi, background_thresh)) 689 return true; 690 691 return false; 692 } 693 694 /* 695 * Called under wb->list_lock. If there are multiple wb per bdi, 696 * only the flusher working on the first wb should do it. 697 */ 698 static void wb_update_bandwidth(struct bdi_writeback *wb, 699 unsigned long start_time) 700 { 701 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 702 } 703 704 /* 705 * Explicit flushing or periodic writeback of "old" data. 706 * 707 * Define "old": the first time one of an inode's pages is dirtied, we mark the 708 * dirtying-time in the inode's address_space. So this periodic writeback code 709 * just walks the superblock inode list, writing back any inodes which are 710 * older than a specific point in time. 711 * 712 * Try to run once per dirty_writeback_interval. But if a writeback event 713 * takes longer than a dirty_writeback_interval interval, then leave a 714 * one-second gap. 715 * 716 * older_than_this takes precedence over nr_to_write. So we'll only write back 717 * all dirty pages if they are all attached to "old" mappings. 718 */ 719 static long wb_writeback(struct bdi_writeback *wb, 720 struct wb_writeback_work *work) 721 { 722 unsigned long wb_start = jiffies; 723 long nr_pages = work->nr_pages; 724 unsigned long oldest_jif; 725 struct inode *inode; 726 long progress; 727 728 oldest_jif = jiffies; 729 work->older_than_this = &oldest_jif; 730 731 spin_lock(&wb->list_lock); 732 for (;;) { 733 /* 734 * Stop writeback when nr_pages has been consumed 735 */ 736 if (work->nr_pages <= 0) 737 break; 738 739 /* 740 * Background writeout and kupdate-style writeback may 741 * run forever. Stop them if there is other work to do 742 * so that e.g. sync can proceed. They'll be restarted 743 * after the other works are all done. 744 */ 745 if ((work->for_background || work->for_kupdate) && 746 !list_empty(&wb->bdi->work_list)) 747 break; 748 749 /* 750 * For background writeout, stop when we are below the 751 * background dirty threshold 752 */ 753 if (work->for_background && !over_bground_thresh(wb->bdi)) 754 break; 755 756 if (work->for_kupdate) { 757 oldest_jif = jiffies - 758 msecs_to_jiffies(dirty_expire_interval * 10); 759 work->older_than_this = &oldest_jif; 760 } 761 762 trace_writeback_start(wb->bdi, work); 763 if (list_empty(&wb->b_io)) 764 queue_io(wb, work); 765 if (work->sb) 766 progress = writeback_sb_inodes(work->sb, wb, work); 767 else 768 progress = __writeback_inodes_wb(wb, work); 769 trace_writeback_written(wb->bdi, work); 770 771 wb_update_bandwidth(wb, wb_start); 772 773 /* 774 * Did we write something? Try for more 775 * 776 * Dirty inodes are moved to b_io for writeback in batches. 777 * The completion of the current batch does not necessarily 778 * mean the overall work is done. So we keep looping as long 779 * as made some progress on cleaning pages or inodes. 780 */ 781 if (progress) 782 continue; 783 /* 784 * No more inodes for IO, bail 785 */ 786 if (list_empty(&wb->b_more_io)) 787 break; 788 /* 789 * Nothing written. Wait for some inode to 790 * become available for writeback. Otherwise 791 * we'll just busyloop. 792 */ 793 if (!list_empty(&wb->b_more_io)) { 794 trace_writeback_wait(wb->bdi, work); 795 inode = wb_inode(wb->b_more_io.prev); 796 spin_lock(&inode->i_lock); 797 inode_wait_for_writeback(inode, wb); 798 spin_unlock(&inode->i_lock); 799 } 800 } 801 spin_unlock(&wb->list_lock); 802 803 return nr_pages - work->nr_pages; 804 } 805 806 /* 807 * Return the next wb_writeback_work struct that hasn't been processed yet. 808 */ 809 static struct wb_writeback_work * 810 get_next_work_item(struct backing_dev_info *bdi) 811 { 812 struct wb_writeback_work *work = NULL; 813 814 spin_lock_bh(&bdi->wb_lock); 815 if (!list_empty(&bdi->work_list)) { 816 work = list_entry(bdi->work_list.next, 817 struct wb_writeback_work, list); 818 list_del_init(&work->list); 819 } 820 spin_unlock_bh(&bdi->wb_lock); 821 return work; 822 } 823 824 /* 825 * Add in the number of potentially dirty inodes, because each inode 826 * write can dirty pagecache in the underlying blockdev. 827 */ 828 static unsigned long get_nr_dirty_pages(void) 829 { 830 return global_page_state(NR_FILE_DIRTY) + 831 global_page_state(NR_UNSTABLE_NFS) + 832 get_nr_dirty_inodes(); 833 } 834 835 static long wb_check_background_flush(struct bdi_writeback *wb) 836 { 837 if (over_bground_thresh(wb->bdi)) { 838 839 struct wb_writeback_work work = { 840 .nr_pages = LONG_MAX, 841 .sync_mode = WB_SYNC_NONE, 842 .for_background = 1, 843 .range_cyclic = 1, 844 .reason = WB_REASON_BACKGROUND, 845 }; 846 847 return wb_writeback(wb, &work); 848 } 849 850 return 0; 851 } 852 853 static long wb_check_old_data_flush(struct bdi_writeback *wb) 854 { 855 unsigned long expired; 856 long nr_pages; 857 858 /* 859 * When set to zero, disable periodic writeback 860 */ 861 if (!dirty_writeback_interval) 862 return 0; 863 864 expired = wb->last_old_flush + 865 msecs_to_jiffies(dirty_writeback_interval * 10); 866 if (time_before(jiffies, expired)) 867 return 0; 868 869 wb->last_old_flush = jiffies; 870 nr_pages = get_nr_dirty_pages(); 871 872 if (nr_pages) { 873 struct wb_writeback_work work = { 874 .nr_pages = nr_pages, 875 .sync_mode = WB_SYNC_NONE, 876 .for_kupdate = 1, 877 .range_cyclic = 1, 878 .reason = WB_REASON_PERIODIC, 879 }; 880 881 return wb_writeback(wb, &work); 882 } 883 884 return 0; 885 } 886 887 /* 888 * Retrieve work items and do the writeback they describe 889 */ 890 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 891 { 892 struct backing_dev_info *bdi = wb->bdi; 893 struct wb_writeback_work *work; 894 long wrote = 0; 895 896 set_bit(BDI_writeback_running, &wb->bdi->state); 897 while ((work = get_next_work_item(bdi)) != NULL) { 898 /* 899 * Override sync mode, in case we must wait for completion 900 * because this thread is exiting now. 901 */ 902 if (force_wait) 903 work->sync_mode = WB_SYNC_ALL; 904 905 trace_writeback_exec(bdi, work); 906 907 wrote += wb_writeback(wb, work); 908 909 /* 910 * Notify the caller of completion if this is a synchronous 911 * work item, otherwise just free it. 912 */ 913 if (work->done) 914 complete(work->done); 915 else 916 kfree(work); 917 } 918 919 /* 920 * Check for periodic writeback, kupdated() style 921 */ 922 wrote += wb_check_old_data_flush(wb); 923 wrote += wb_check_background_flush(wb); 924 clear_bit(BDI_writeback_running, &wb->bdi->state); 925 926 return wrote; 927 } 928 929 /* 930 * Handle writeback of dirty data for the device backed by this bdi. Also 931 * wakes up periodically and does kupdated style flushing. 932 */ 933 int bdi_writeback_thread(void *data) 934 { 935 struct bdi_writeback *wb = data; 936 struct backing_dev_info *bdi = wb->bdi; 937 long pages_written; 938 939 current->flags |= PF_SWAPWRITE; 940 set_freezable(); 941 wb->last_active = jiffies; 942 943 /* 944 * Our parent may run at a different priority, just set us to normal 945 */ 946 set_user_nice(current, 0); 947 948 trace_writeback_thread_start(bdi); 949 950 while (!kthread_should_stop()) { 951 /* 952 * Remove own delayed wake-up timer, since we are already awake 953 * and we'll take care of the preriodic write-back. 954 */ 955 del_timer(&wb->wakeup_timer); 956 957 pages_written = wb_do_writeback(wb, 0); 958 959 trace_writeback_pages_written(pages_written); 960 961 if (pages_written) 962 wb->last_active = jiffies; 963 964 set_current_state(TASK_INTERRUPTIBLE); 965 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 966 __set_current_state(TASK_RUNNING); 967 continue; 968 } 969 970 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 971 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 972 else { 973 /* 974 * We have nothing to do, so can go sleep without any 975 * timeout and save power. When a work is queued or 976 * something is made dirty - we will be woken up. 977 */ 978 schedule(); 979 } 980 981 try_to_freeze(); 982 } 983 984 /* Flush any work that raced with us exiting */ 985 if (!list_empty(&bdi->work_list)) 986 wb_do_writeback(wb, 1); 987 988 trace_writeback_thread_stop(bdi); 989 return 0; 990 } 991 992 993 /* 994 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 995 * the whole world. 996 */ 997 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 998 { 999 struct backing_dev_info *bdi; 1000 1001 if (!nr_pages) { 1002 nr_pages = global_page_state(NR_FILE_DIRTY) + 1003 global_page_state(NR_UNSTABLE_NFS); 1004 } 1005 1006 rcu_read_lock(); 1007 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1008 if (!bdi_has_dirty_io(bdi)) 1009 continue; 1010 __bdi_start_writeback(bdi, nr_pages, false, reason); 1011 } 1012 rcu_read_unlock(); 1013 } 1014 1015 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1016 { 1017 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1018 struct dentry *dentry; 1019 const char *name = "?"; 1020 1021 dentry = d_find_alias(inode); 1022 if (dentry) { 1023 spin_lock(&dentry->d_lock); 1024 name = (const char *) dentry->d_name.name; 1025 } 1026 printk(KERN_DEBUG 1027 "%s(%d): dirtied inode %lu (%s) on %s\n", 1028 current->comm, task_pid_nr(current), inode->i_ino, 1029 name, inode->i_sb->s_id); 1030 if (dentry) { 1031 spin_unlock(&dentry->d_lock); 1032 dput(dentry); 1033 } 1034 } 1035 } 1036 1037 /** 1038 * __mark_inode_dirty - internal function 1039 * @inode: inode to mark 1040 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1041 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1042 * mark_inode_dirty_sync. 1043 * 1044 * Put the inode on the super block's dirty list. 1045 * 1046 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1047 * dirty list only if it is hashed or if it refers to a blockdev. 1048 * If it was not hashed, it will never be added to the dirty list 1049 * even if it is later hashed, as it will have been marked dirty already. 1050 * 1051 * In short, make sure you hash any inodes _before_ you start marking 1052 * them dirty. 1053 * 1054 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1055 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1056 * the kernel-internal blockdev inode represents the dirtying time of the 1057 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1058 * page->mapping->host, so the page-dirtying time is recorded in the internal 1059 * blockdev inode. 1060 */ 1061 void __mark_inode_dirty(struct inode *inode, int flags) 1062 { 1063 struct super_block *sb = inode->i_sb; 1064 struct backing_dev_info *bdi = NULL; 1065 1066 /* 1067 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1068 * dirty the inode itself 1069 */ 1070 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1071 if (sb->s_op->dirty_inode) 1072 sb->s_op->dirty_inode(inode, flags); 1073 } 1074 1075 /* 1076 * make sure that changes are seen by all cpus before we test i_state 1077 * -- mikulas 1078 */ 1079 smp_mb(); 1080 1081 /* avoid the locking if we can */ 1082 if ((inode->i_state & flags) == flags) 1083 return; 1084 1085 if (unlikely(block_dump)) 1086 block_dump___mark_inode_dirty(inode); 1087 1088 spin_lock(&inode->i_lock); 1089 if ((inode->i_state & flags) != flags) { 1090 const int was_dirty = inode->i_state & I_DIRTY; 1091 1092 inode->i_state |= flags; 1093 1094 /* 1095 * If the inode is being synced, just update its dirty state. 1096 * The unlocker will place the inode on the appropriate 1097 * superblock list, based upon its state. 1098 */ 1099 if (inode->i_state & I_SYNC) 1100 goto out_unlock_inode; 1101 1102 /* 1103 * Only add valid (hashed) inodes to the superblock's 1104 * dirty list. Add blockdev inodes as well. 1105 */ 1106 if (!S_ISBLK(inode->i_mode)) { 1107 if (inode_unhashed(inode)) 1108 goto out_unlock_inode; 1109 } 1110 if (inode->i_state & I_FREEING) 1111 goto out_unlock_inode; 1112 1113 /* 1114 * If the inode was already on b_dirty/b_io/b_more_io, don't 1115 * reposition it (that would break b_dirty time-ordering). 1116 */ 1117 if (!was_dirty) { 1118 bool wakeup_bdi = false; 1119 bdi = inode_to_bdi(inode); 1120 1121 if (bdi_cap_writeback_dirty(bdi)) { 1122 WARN(!test_bit(BDI_registered, &bdi->state), 1123 "bdi-%s not registered\n", bdi->name); 1124 1125 /* 1126 * If this is the first dirty inode for this 1127 * bdi, we have to wake-up the corresponding 1128 * bdi thread to make sure background 1129 * write-back happens later. 1130 */ 1131 if (!wb_has_dirty_io(&bdi->wb)) 1132 wakeup_bdi = true; 1133 } 1134 1135 spin_unlock(&inode->i_lock); 1136 spin_lock(&bdi->wb.list_lock); 1137 inode->dirtied_when = jiffies; 1138 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1139 spin_unlock(&bdi->wb.list_lock); 1140 1141 if (wakeup_bdi) 1142 bdi_wakeup_thread_delayed(bdi); 1143 return; 1144 } 1145 } 1146 out_unlock_inode: 1147 spin_unlock(&inode->i_lock); 1148 1149 } 1150 EXPORT_SYMBOL(__mark_inode_dirty); 1151 1152 /* 1153 * Write out a superblock's list of dirty inodes. A wait will be performed 1154 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1155 * 1156 * If older_than_this is non-NULL, then only write out inodes which 1157 * had their first dirtying at a time earlier than *older_than_this. 1158 * 1159 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1160 * This function assumes that the blockdev superblock's inodes are backed by 1161 * a variety of queues, so all inodes are searched. For other superblocks, 1162 * assume that all inodes are backed by the same queue. 1163 * 1164 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1165 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1166 * on the writer throttling path, and we get decent balancing between many 1167 * throttled threads: we don't want them all piling up on inode_sync_wait. 1168 */ 1169 static void wait_sb_inodes(struct super_block *sb) 1170 { 1171 struct inode *inode, *old_inode = NULL; 1172 1173 /* 1174 * We need to be protected against the filesystem going from 1175 * r/o to r/w or vice versa. 1176 */ 1177 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1178 1179 spin_lock(&inode_sb_list_lock); 1180 1181 /* 1182 * Data integrity sync. Must wait for all pages under writeback, 1183 * because there may have been pages dirtied before our sync 1184 * call, but which had writeout started before we write it out. 1185 * In which case, the inode may not be on the dirty list, but 1186 * we still have to wait for that writeout. 1187 */ 1188 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1189 struct address_space *mapping = inode->i_mapping; 1190 1191 spin_lock(&inode->i_lock); 1192 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1193 (mapping->nrpages == 0)) { 1194 spin_unlock(&inode->i_lock); 1195 continue; 1196 } 1197 __iget(inode); 1198 spin_unlock(&inode->i_lock); 1199 spin_unlock(&inode_sb_list_lock); 1200 1201 /* 1202 * We hold a reference to 'inode' so it couldn't have been 1203 * removed from s_inodes list while we dropped the 1204 * inode_sb_list_lock. We cannot iput the inode now as we can 1205 * be holding the last reference and we cannot iput it under 1206 * inode_sb_list_lock. So we keep the reference and iput it 1207 * later. 1208 */ 1209 iput(old_inode); 1210 old_inode = inode; 1211 1212 filemap_fdatawait(mapping); 1213 1214 cond_resched(); 1215 1216 spin_lock(&inode_sb_list_lock); 1217 } 1218 spin_unlock(&inode_sb_list_lock); 1219 iput(old_inode); 1220 } 1221 1222 /** 1223 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1224 * @sb: the superblock 1225 * @nr: the number of pages to write 1226 * 1227 * Start writeback on some inodes on this super_block. No guarantees are made 1228 * on how many (if any) will be written, and this function does not wait 1229 * for IO completion of submitted IO. 1230 */ 1231 void writeback_inodes_sb_nr(struct super_block *sb, 1232 unsigned long nr, 1233 enum wb_reason reason) 1234 { 1235 DECLARE_COMPLETION_ONSTACK(done); 1236 struct wb_writeback_work work = { 1237 .sb = sb, 1238 .sync_mode = WB_SYNC_NONE, 1239 .tagged_writepages = 1, 1240 .done = &done, 1241 .nr_pages = nr, 1242 .reason = reason, 1243 }; 1244 1245 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1246 bdi_queue_work(sb->s_bdi, &work); 1247 wait_for_completion(&done); 1248 } 1249 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1250 1251 /** 1252 * writeback_inodes_sb - writeback dirty inodes from given super_block 1253 * @sb: the superblock 1254 * 1255 * Start writeback on some inodes on this super_block. No guarantees are made 1256 * on how many (if any) will be written, and this function does not wait 1257 * for IO completion of submitted IO. 1258 */ 1259 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1260 { 1261 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1262 } 1263 EXPORT_SYMBOL(writeback_inodes_sb); 1264 1265 /** 1266 * writeback_inodes_sb_if_idle - start writeback if none underway 1267 * @sb: the superblock 1268 * 1269 * Invoke writeback_inodes_sb if no writeback is currently underway. 1270 * Returns 1 if writeback was started, 0 if not. 1271 */ 1272 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason) 1273 { 1274 if (!writeback_in_progress(sb->s_bdi)) { 1275 down_read(&sb->s_umount); 1276 writeback_inodes_sb(sb, reason); 1277 up_read(&sb->s_umount); 1278 return 1; 1279 } else 1280 return 0; 1281 } 1282 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1283 1284 /** 1285 * writeback_inodes_sb_if_idle - start writeback if none underway 1286 * @sb: the superblock 1287 * @nr: the number of pages to write 1288 * 1289 * Invoke writeback_inodes_sb if no writeback is currently underway. 1290 * Returns 1 if writeback was started, 0 if not. 1291 */ 1292 int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1293 unsigned long nr, 1294 enum wb_reason reason) 1295 { 1296 if (!writeback_in_progress(sb->s_bdi)) { 1297 down_read(&sb->s_umount); 1298 writeback_inodes_sb_nr(sb, nr, reason); 1299 up_read(&sb->s_umount); 1300 return 1; 1301 } else 1302 return 0; 1303 } 1304 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1305 1306 /** 1307 * sync_inodes_sb - sync sb inode pages 1308 * @sb: the superblock 1309 * 1310 * This function writes and waits on any dirty inode belonging to this 1311 * super_block. 1312 */ 1313 void sync_inodes_sb(struct super_block *sb) 1314 { 1315 DECLARE_COMPLETION_ONSTACK(done); 1316 struct wb_writeback_work work = { 1317 .sb = sb, 1318 .sync_mode = WB_SYNC_ALL, 1319 .nr_pages = LONG_MAX, 1320 .range_cyclic = 0, 1321 .done = &done, 1322 .reason = WB_REASON_SYNC, 1323 }; 1324 1325 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1326 1327 bdi_queue_work(sb->s_bdi, &work); 1328 wait_for_completion(&done); 1329 1330 wait_sb_inodes(sb); 1331 } 1332 EXPORT_SYMBOL(sync_inodes_sb); 1333 1334 /** 1335 * write_inode_now - write an inode to disk 1336 * @inode: inode to write to disk 1337 * @sync: whether the write should be synchronous or not 1338 * 1339 * This function commits an inode to disk immediately if it is dirty. This is 1340 * primarily needed by knfsd. 1341 * 1342 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1343 */ 1344 int write_inode_now(struct inode *inode, int sync) 1345 { 1346 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1347 int ret; 1348 struct writeback_control wbc = { 1349 .nr_to_write = LONG_MAX, 1350 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1351 .range_start = 0, 1352 .range_end = LLONG_MAX, 1353 }; 1354 1355 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1356 wbc.nr_to_write = 0; 1357 1358 might_sleep(); 1359 spin_lock(&wb->list_lock); 1360 spin_lock(&inode->i_lock); 1361 ret = writeback_single_inode(inode, wb, &wbc); 1362 spin_unlock(&inode->i_lock); 1363 spin_unlock(&wb->list_lock); 1364 if (sync) 1365 inode_sync_wait(inode); 1366 return ret; 1367 } 1368 EXPORT_SYMBOL(write_inode_now); 1369 1370 /** 1371 * sync_inode - write an inode and its pages to disk. 1372 * @inode: the inode to sync 1373 * @wbc: controls the writeback mode 1374 * 1375 * sync_inode() will write an inode and its pages to disk. It will also 1376 * correctly update the inode on its superblock's dirty inode lists and will 1377 * update inode->i_state. 1378 * 1379 * The caller must have a ref on the inode. 1380 */ 1381 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1382 { 1383 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1384 int ret; 1385 1386 spin_lock(&wb->list_lock); 1387 spin_lock(&inode->i_lock); 1388 ret = writeback_single_inode(inode, wb, wbc); 1389 spin_unlock(&inode->i_lock); 1390 spin_unlock(&wb->list_lock); 1391 return ret; 1392 } 1393 EXPORT_SYMBOL(sync_inode); 1394 1395 /** 1396 * sync_inode_metadata - write an inode to disk 1397 * @inode: the inode to sync 1398 * @wait: wait for I/O to complete. 1399 * 1400 * Write an inode to disk and adjust its dirty state after completion. 1401 * 1402 * Note: only writes the actual inode, no associated data or other metadata. 1403 */ 1404 int sync_inode_metadata(struct inode *inode, int wait) 1405 { 1406 struct writeback_control wbc = { 1407 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1408 .nr_to_write = 0, /* metadata-only */ 1409 }; 1410 1411 return sync_inode(inode, &wbc); 1412 } 1413 EXPORT_SYMBOL(sync_inode_metadata); 1414