xref: /linux/fs/fs-writeback.c (revision a67ff6a54095e27093ea501fb143fefe51a536c2)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36 	long nr_pages;
37 	struct super_block *sb;
38 	unsigned long *older_than_this;
39 	enum writeback_sync_modes sync_mode;
40 	unsigned int tagged_writepages:1;
41 	unsigned int for_kupdate:1;
42 	unsigned int range_cyclic:1;
43 	unsigned int for_background:1;
44 	enum wb_reason reason;		/* why was writeback initiated? */
45 
46 	struct list_head list;		/* pending work list */
47 	struct completion *done;	/* set if the caller waits */
48 };
49 
50 const char *wb_reason_name[] = {
51 	[WB_REASON_BACKGROUND]		= "background",
52 	[WB_REASON_TRY_TO_FREE_PAGES]	= "try_to_free_pages",
53 	[WB_REASON_SYNC]		= "sync",
54 	[WB_REASON_PERIODIC]		= "periodic",
55 	[WB_REASON_LAPTOP_TIMER]	= "laptop_timer",
56 	[WB_REASON_FREE_MORE_MEM]	= "free_more_memory",
57 	[WB_REASON_FS_FREE_SPACE]	= "fs_free_space",
58 	[WB_REASON_FORKER_THREAD]	= "forker_thread"
59 };
60 
61 /*
62  * Include the creation of the trace points after defining the
63  * wb_writeback_work structure so that the definition remains local to this
64  * file.
65  */
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/writeback.h>
68 
69 /*
70  * We don't actually have pdflush, but this one is exported though /proc...
71  */
72 int nr_pdflush_threads;
73 
74 /**
75  * writeback_in_progress - determine whether there is writeback in progress
76  * @bdi: the device's backing_dev_info structure.
77  *
78  * Determine whether there is writeback waiting to be handled against a
79  * backing device.
80  */
81 int writeback_in_progress(struct backing_dev_info *bdi)
82 {
83 	return test_bit(BDI_writeback_running, &bdi->state);
84 }
85 
86 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
87 {
88 	struct super_block *sb = inode->i_sb;
89 
90 	if (strcmp(sb->s_type->name, "bdev") == 0)
91 		return inode->i_mapping->backing_dev_info;
92 
93 	return sb->s_bdi;
94 }
95 
96 static inline struct inode *wb_inode(struct list_head *head)
97 {
98 	return list_entry(head, struct inode, i_wb_list);
99 }
100 
101 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
102 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
103 {
104 	if (bdi->wb.task) {
105 		wake_up_process(bdi->wb.task);
106 	} else {
107 		/*
108 		 * The bdi thread isn't there, wake up the forker thread which
109 		 * will create and run it.
110 		 */
111 		wake_up_process(default_backing_dev_info.wb.task);
112 	}
113 }
114 
115 static void bdi_queue_work(struct backing_dev_info *bdi,
116 			   struct wb_writeback_work *work)
117 {
118 	trace_writeback_queue(bdi, work);
119 
120 	spin_lock_bh(&bdi->wb_lock);
121 	list_add_tail(&work->list, &bdi->work_list);
122 	if (!bdi->wb.task)
123 		trace_writeback_nothread(bdi, work);
124 	bdi_wakeup_flusher(bdi);
125 	spin_unlock_bh(&bdi->wb_lock);
126 }
127 
128 static void
129 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
130 		      bool range_cyclic, enum wb_reason reason)
131 {
132 	struct wb_writeback_work *work;
133 
134 	/*
135 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
136 	 * wakeup the thread for old dirty data writeback
137 	 */
138 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
139 	if (!work) {
140 		if (bdi->wb.task) {
141 			trace_writeback_nowork(bdi);
142 			wake_up_process(bdi->wb.task);
143 		}
144 		return;
145 	}
146 
147 	work->sync_mode	= WB_SYNC_NONE;
148 	work->nr_pages	= nr_pages;
149 	work->range_cyclic = range_cyclic;
150 	work->reason	= reason;
151 
152 	bdi_queue_work(bdi, work);
153 }
154 
155 /**
156  * bdi_start_writeback - start writeback
157  * @bdi: the backing device to write from
158  * @nr_pages: the number of pages to write
159  *
160  * Description:
161  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
162  *   started when this function returns, we make no guarantees on
163  *   completion. Caller need not hold sb s_umount semaphore.
164  *
165  */
166 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
167 			enum wb_reason reason)
168 {
169 	__bdi_start_writeback(bdi, nr_pages, true, reason);
170 }
171 
172 /**
173  * bdi_start_background_writeback - start background writeback
174  * @bdi: the backing device to write from
175  *
176  * Description:
177  *   This makes sure WB_SYNC_NONE background writeback happens. When
178  *   this function returns, it is only guaranteed that for given BDI
179  *   some IO is happening if we are over background dirty threshold.
180  *   Caller need not hold sb s_umount semaphore.
181  */
182 void bdi_start_background_writeback(struct backing_dev_info *bdi)
183 {
184 	/*
185 	 * We just wake up the flusher thread. It will perform background
186 	 * writeback as soon as there is no other work to do.
187 	 */
188 	trace_writeback_wake_background(bdi);
189 	spin_lock_bh(&bdi->wb_lock);
190 	bdi_wakeup_flusher(bdi);
191 	spin_unlock_bh(&bdi->wb_lock);
192 }
193 
194 /*
195  * Remove the inode from the writeback list it is on.
196  */
197 void inode_wb_list_del(struct inode *inode)
198 {
199 	struct backing_dev_info *bdi = inode_to_bdi(inode);
200 
201 	spin_lock(&bdi->wb.list_lock);
202 	list_del_init(&inode->i_wb_list);
203 	spin_unlock(&bdi->wb.list_lock);
204 }
205 
206 /*
207  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
208  * furthest end of its superblock's dirty-inode list.
209  *
210  * Before stamping the inode's ->dirtied_when, we check to see whether it is
211  * already the most-recently-dirtied inode on the b_dirty list.  If that is
212  * the case then the inode must have been redirtied while it was being written
213  * out and we don't reset its dirtied_when.
214  */
215 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
216 {
217 	assert_spin_locked(&wb->list_lock);
218 	if (!list_empty(&wb->b_dirty)) {
219 		struct inode *tail;
220 
221 		tail = wb_inode(wb->b_dirty.next);
222 		if (time_before(inode->dirtied_when, tail->dirtied_when))
223 			inode->dirtied_when = jiffies;
224 	}
225 	list_move(&inode->i_wb_list, &wb->b_dirty);
226 }
227 
228 /*
229  * requeue inode for re-scanning after bdi->b_io list is exhausted.
230  */
231 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
232 {
233 	assert_spin_locked(&wb->list_lock);
234 	list_move(&inode->i_wb_list, &wb->b_more_io);
235 }
236 
237 static void inode_sync_complete(struct inode *inode)
238 {
239 	/*
240 	 * Prevent speculative execution through
241 	 * spin_unlock(&wb->list_lock);
242 	 */
243 
244 	smp_mb();
245 	wake_up_bit(&inode->i_state, __I_SYNC);
246 }
247 
248 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
249 {
250 	bool ret = time_after(inode->dirtied_when, t);
251 #ifndef CONFIG_64BIT
252 	/*
253 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
254 	 * It _appears_ to be in the future, but is actually in distant past.
255 	 * This test is necessary to prevent such wrapped-around relative times
256 	 * from permanently stopping the whole bdi writeback.
257 	 */
258 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
259 #endif
260 	return ret;
261 }
262 
263 /*
264  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
265  */
266 static int move_expired_inodes(struct list_head *delaying_queue,
267 			       struct list_head *dispatch_queue,
268 			       struct wb_writeback_work *work)
269 {
270 	LIST_HEAD(tmp);
271 	struct list_head *pos, *node;
272 	struct super_block *sb = NULL;
273 	struct inode *inode;
274 	int do_sb_sort = 0;
275 	int moved = 0;
276 
277 	while (!list_empty(delaying_queue)) {
278 		inode = wb_inode(delaying_queue->prev);
279 		if (work->older_than_this &&
280 		    inode_dirtied_after(inode, *work->older_than_this))
281 			break;
282 		if (sb && sb != inode->i_sb)
283 			do_sb_sort = 1;
284 		sb = inode->i_sb;
285 		list_move(&inode->i_wb_list, &tmp);
286 		moved++;
287 	}
288 
289 	/* just one sb in list, splice to dispatch_queue and we're done */
290 	if (!do_sb_sort) {
291 		list_splice(&tmp, dispatch_queue);
292 		goto out;
293 	}
294 
295 	/* Move inodes from one superblock together */
296 	while (!list_empty(&tmp)) {
297 		sb = wb_inode(tmp.prev)->i_sb;
298 		list_for_each_prev_safe(pos, node, &tmp) {
299 			inode = wb_inode(pos);
300 			if (inode->i_sb == sb)
301 				list_move(&inode->i_wb_list, dispatch_queue);
302 		}
303 	}
304 out:
305 	return moved;
306 }
307 
308 /*
309  * Queue all expired dirty inodes for io, eldest first.
310  * Before
311  *         newly dirtied     b_dirty    b_io    b_more_io
312  *         =============>    gf         edc     BA
313  * After
314  *         newly dirtied     b_dirty    b_io    b_more_io
315  *         =============>    g          fBAedc
316  *                                           |
317  *                                           +--> dequeue for IO
318  */
319 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
320 {
321 	int moved;
322 	assert_spin_locked(&wb->list_lock);
323 	list_splice_init(&wb->b_more_io, &wb->b_io);
324 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
325 	trace_writeback_queue_io(wb, work, moved);
326 }
327 
328 static int write_inode(struct inode *inode, struct writeback_control *wbc)
329 {
330 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
331 		return inode->i_sb->s_op->write_inode(inode, wbc);
332 	return 0;
333 }
334 
335 /*
336  * Wait for writeback on an inode to complete.
337  */
338 static void inode_wait_for_writeback(struct inode *inode,
339 				     struct bdi_writeback *wb)
340 {
341 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
342 	wait_queue_head_t *wqh;
343 
344 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
345 	while (inode->i_state & I_SYNC) {
346 		spin_unlock(&inode->i_lock);
347 		spin_unlock(&wb->list_lock);
348 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
349 		spin_lock(&wb->list_lock);
350 		spin_lock(&inode->i_lock);
351 	}
352 }
353 
354 /*
355  * Write out an inode's dirty pages.  Called under wb->list_lock and
356  * inode->i_lock.  Either the caller has an active reference on the inode or
357  * the inode has I_WILL_FREE set.
358  *
359  * If `wait' is set, wait on the writeout.
360  *
361  * The whole writeout design is quite complex and fragile.  We want to avoid
362  * starvation of particular inodes when others are being redirtied, prevent
363  * livelocks, etc.
364  */
365 static int
366 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
367 		       struct writeback_control *wbc)
368 {
369 	struct address_space *mapping = inode->i_mapping;
370 	long nr_to_write = wbc->nr_to_write;
371 	unsigned dirty;
372 	int ret;
373 
374 	assert_spin_locked(&wb->list_lock);
375 	assert_spin_locked(&inode->i_lock);
376 
377 	if (!atomic_read(&inode->i_count))
378 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
379 	else
380 		WARN_ON(inode->i_state & I_WILL_FREE);
381 
382 	if (inode->i_state & I_SYNC) {
383 		/*
384 		 * If this inode is locked for writeback and we are not doing
385 		 * writeback-for-data-integrity, move it to b_more_io so that
386 		 * writeback can proceed with the other inodes on s_io.
387 		 *
388 		 * We'll have another go at writing back this inode when we
389 		 * completed a full scan of b_io.
390 		 */
391 		if (wbc->sync_mode != WB_SYNC_ALL) {
392 			requeue_io(inode, wb);
393 			trace_writeback_single_inode_requeue(inode, wbc,
394 							     nr_to_write);
395 			return 0;
396 		}
397 
398 		/*
399 		 * It's a data-integrity sync.  We must wait.
400 		 */
401 		inode_wait_for_writeback(inode, wb);
402 	}
403 
404 	BUG_ON(inode->i_state & I_SYNC);
405 
406 	/* Set I_SYNC, reset I_DIRTY_PAGES */
407 	inode->i_state |= I_SYNC;
408 	inode->i_state &= ~I_DIRTY_PAGES;
409 	spin_unlock(&inode->i_lock);
410 	spin_unlock(&wb->list_lock);
411 
412 	ret = do_writepages(mapping, wbc);
413 
414 	/*
415 	 * Make sure to wait on the data before writing out the metadata.
416 	 * This is important for filesystems that modify metadata on data
417 	 * I/O completion.
418 	 */
419 	if (wbc->sync_mode == WB_SYNC_ALL) {
420 		int err = filemap_fdatawait(mapping);
421 		if (ret == 0)
422 			ret = err;
423 	}
424 
425 	/*
426 	 * Some filesystems may redirty the inode during the writeback
427 	 * due to delalloc, clear dirty metadata flags right before
428 	 * write_inode()
429 	 */
430 	spin_lock(&inode->i_lock);
431 	dirty = inode->i_state & I_DIRTY;
432 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
433 	spin_unlock(&inode->i_lock);
434 	/* Don't write the inode if only I_DIRTY_PAGES was set */
435 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
436 		int err = write_inode(inode, wbc);
437 		if (ret == 0)
438 			ret = err;
439 	}
440 
441 	spin_lock(&wb->list_lock);
442 	spin_lock(&inode->i_lock);
443 	inode->i_state &= ~I_SYNC;
444 	if (!(inode->i_state & I_FREEING)) {
445 		/*
446 		 * Sync livelock prevention. Each inode is tagged and synced in
447 		 * one shot. If still dirty, it will be redirty_tail()'ed below.
448 		 * Update the dirty time to prevent enqueue and sync it again.
449 		 */
450 		if ((inode->i_state & I_DIRTY) &&
451 		    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
452 			inode->dirtied_when = jiffies;
453 
454 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
455 			/*
456 			 * We didn't write back all the pages.  nfs_writepages()
457 			 * sometimes bales out without doing anything.
458 			 */
459 			inode->i_state |= I_DIRTY_PAGES;
460 			if (wbc->nr_to_write <= 0) {
461 				/*
462 				 * slice used up: queue for next turn
463 				 */
464 				requeue_io(inode, wb);
465 			} else {
466 				/*
467 				 * Writeback blocked by something other than
468 				 * congestion. Delay the inode for some time to
469 				 * avoid spinning on the CPU (100% iowait)
470 				 * retrying writeback of the dirty page/inode
471 				 * that cannot be performed immediately.
472 				 */
473 				redirty_tail(inode, wb);
474 			}
475 		} else if (inode->i_state & I_DIRTY) {
476 			/*
477 			 * Filesystems can dirty the inode during writeback
478 			 * operations, such as delayed allocation during
479 			 * submission or metadata updates after data IO
480 			 * completion.
481 			 */
482 			redirty_tail(inode, wb);
483 		} else {
484 			/*
485 			 * The inode is clean.  At this point we either have
486 			 * a reference to the inode or it's on it's way out.
487 			 * No need to add it back to the LRU.
488 			 */
489 			list_del_init(&inode->i_wb_list);
490 		}
491 	}
492 	inode_sync_complete(inode);
493 	trace_writeback_single_inode(inode, wbc, nr_to_write);
494 	return ret;
495 }
496 
497 static long writeback_chunk_size(struct backing_dev_info *bdi,
498 				 struct wb_writeback_work *work)
499 {
500 	long pages;
501 
502 	/*
503 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
504 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
505 	 * here avoids calling into writeback_inodes_wb() more than once.
506 	 *
507 	 * The intended call sequence for WB_SYNC_ALL writeback is:
508 	 *
509 	 *      wb_writeback()
510 	 *          writeback_sb_inodes()       <== called only once
511 	 *              write_cache_pages()     <== called once for each inode
512 	 *                   (quickly) tag currently dirty pages
513 	 *                   (maybe slowly) sync all tagged pages
514 	 */
515 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
516 		pages = LONG_MAX;
517 	else {
518 		pages = min(bdi->avg_write_bandwidth / 2,
519 			    global_dirty_limit / DIRTY_SCOPE);
520 		pages = min(pages, work->nr_pages);
521 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
522 				   MIN_WRITEBACK_PAGES);
523 	}
524 
525 	return pages;
526 }
527 
528 /*
529  * Write a portion of b_io inodes which belong to @sb.
530  *
531  * If @only_this_sb is true, then find and write all such
532  * inodes. Otherwise write only ones which go sequentially
533  * in reverse order.
534  *
535  * Return the number of pages and/or inodes written.
536  */
537 static long writeback_sb_inodes(struct super_block *sb,
538 				struct bdi_writeback *wb,
539 				struct wb_writeback_work *work)
540 {
541 	struct writeback_control wbc = {
542 		.sync_mode		= work->sync_mode,
543 		.tagged_writepages	= work->tagged_writepages,
544 		.for_kupdate		= work->for_kupdate,
545 		.for_background		= work->for_background,
546 		.range_cyclic		= work->range_cyclic,
547 		.range_start		= 0,
548 		.range_end		= LLONG_MAX,
549 	};
550 	unsigned long start_time = jiffies;
551 	long write_chunk;
552 	long wrote = 0;  /* count both pages and inodes */
553 
554 	while (!list_empty(&wb->b_io)) {
555 		struct inode *inode = wb_inode(wb->b_io.prev);
556 
557 		if (inode->i_sb != sb) {
558 			if (work->sb) {
559 				/*
560 				 * We only want to write back data for this
561 				 * superblock, move all inodes not belonging
562 				 * to it back onto the dirty list.
563 				 */
564 				redirty_tail(inode, wb);
565 				continue;
566 			}
567 
568 			/*
569 			 * The inode belongs to a different superblock.
570 			 * Bounce back to the caller to unpin this and
571 			 * pin the next superblock.
572 			 */
573 			break;
574 		}
575 
576 		/*
577 		 * Don't bother with new inodes or inodes beeing freed, first
578 		 * kind does not need peridic writeout yet, and for the latter
579 		 * kind writeout is handled by the freer.
580 		 */
581 		spin_lock(&inode->i_lock);
582 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
583 			spin_unlock(&inode->i_lock);
584 			redirty_tail(inode, wb);
585 			continue;
586 		}
587 		__iget(inode);
588 		write_chunk = writeback_chunk_size(wb->bdi, work);
589 		wbc.nr_to_write = write_chunk;
590 		wbc.pages_skipped = 0;
591 
592 		writeback_single_inode(inode, wb, &wbc);
593 
594 		work->nr_pages -= write_chunk - wbc.nr_to_write;
595 		wrote += write_chunk - wbc.nr_to_write;
596 		if (!(inode->i_state & I_DIRTY))
597 			wrote++;
598 		if (wbc.pages_skipped) {
599 			/*
600 			 * writeback is not making progress due to locked
601 			 * buffers.  Skip this inode for now.
602 			 */
603 			redirty_tail(inode, wb);
604 		}
605 		spin_unlock(&inode->i_lock);
606 		spin_unlock(&wb->list_lock);
607 		iput(inode);
608 		cond_resched();
609 		spin_lock(&wb->list_lock);
610 		/*
611 		 * bail out to wb_writeback() often enough to check
612 		 * background threshold and other termination conditions.
613 		 */
614 		if (wrote) {
615 			if (time_is_before_jiffies(start_time + HZ / 10UL))
616 				break;
617 			if (work->nr_pages <= 0)
618 				break;
619 		}
620 	}
621 	return wrote;
622 }
623 
624 static long __writeback_inodes_wb(struct bdi_writeback *wb,
625 				  struct wb_writeback_work *work)
626 {
627 	unsigned long start_time = jiffies;
628 	long wrote = 0;
629 
630 	while (!list_empty(&wb->b_io)) {
631 		struct inode *inode = wb_inode(wb->b_io.prev);
632 		struct super_block *sb = inode->i_sb;
633 
634 		if (!grab_super_passive(sb)) {
635 			/*
636 			 * grab_super_passive() may fail consistently due to
637 			 * s_umount being grabbed by someone else. Don't use
638 			 * requeue_io() to avoid busy retrying the inode/sb.
639 			 */
640 			redirty_tail(inode, wb);
641 			continue;
642 		}
643 		wrote += writeback_sb_inodes(sb, wb, work);
644 		drop_super(sb);
645 
646 		/* refer to the same tests at the end of writeback_sb_inodes */
647 		if (wrote) {
648 			if (time_is_before_jiffies(start_time + HZ / 10UL))
649 				break;
650 			if (work->nr_pages <= 0)
651 				break;
652 		}
653 	}
654 	/* Leave any unwritten inodes on b_io */
655 	return wrote;
656 }
657 
658 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
659 				enum wb_reason reason)
660 {
661 	struct wb_writeback_work work = {
662 		.nr_pages	= nr_pages,
663 		.sync_mode	= WB_SYNC_NONE,
664 		.range_cyclic	= 1,
665 		.reason		= reason,
666 	};
667 
668 	spin_lock(&wb->list_lock);
669 	if (list_empty(&wb->b_io))
670 		queue_io(wb, &work);
671 	__writeback_inodes_wb(wb, &work);
672 	spin_unlock(&wb->list_lock);
673 
674 	return nr_pages - work.nr_pages;
675 }
676 
677 static bool over_bground_thresh(struct backing_dev_info *bdi)
678 {
679 	unsigned long background_thresh, dirty_thresh;
680 
681 	global_dirty_limits(&background_thresh, &dirty_thresh);
682 
683 	if (global_page_state(NR_FILE_DIRTY) +
684 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
685 		return true;
686 
687 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
688 				bdi_dirty_limit(bdi, background_thresh))
689 		return true;
690 
691 	return false;
692 }
693 
694 /*
695  * Called under wb->list_lock. If there are multiple wb per bdi,
696  * only the flusher working on the first wb should do it.
697  */
698 static void wb_update_bandwidth(struct bdi_writeback *wb,
699 				unsigned long start_time)
700 {
701 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
702 }
703 
704 /*
705  * Explicit flushing or periodic writeback of "old" data.
706  *
707  * Define "old": the first time one of an inode's pages is dirtied, we mark the
708  * dirtying-time in the inode's address_space.  So this periodic writeback code
709  * just walks the superblock inode list, writing back any inodes which are
710  * older than a specific point in time.
711  *
712  * Try to run once per dirty_writeback_interval.  But if a writeback event
713  * takes longer than a dirty_writeback_interval interval, then leave a
714  * one-second gap.
715  *
716  * older_than_this takes precedence over nr_to_write.  So we'll only write back
717  * all dirty pages if they are all attached to "old" mappings.
718  */
719 static long wb_writeback(struct bdi_writeback *wb,
720 			 struct wb_writeback_work *work)
721 {
722 	unsigned long wb_start = jiffies;
723 	long nr_pages = work->nr_pages;
724 	unsigned long oldest_jif;
725 	struct inode *inode;
726 	long progress;
727 
728 	oldest_jif = jiffies;
729 	work->older_than_this = &oldest_jif;
730 
731 	spin_lock(&wb->list_lock);
732 	for (;;) {
733 		/*
734 		 * Stop writeback when nr_pages has been consumed
735 		 */
736 		if (work->nr_pages <= 0)
737 			break;
738 
739 		/*
740 		 * Background writeout and kupdate-style writeback may
741 		 * run forever. Stop them if there is other work to do
742 		 * so that e.g. sync can proceed. They'll be restarted
743 		 * after the other works are all done.
744 		 */
745 		if ((work->for_background || work->for_kupdate) &&
746 		    !list_empty(&wb->bdi->work_list))
747 			break;
748 
749 		/*
750 		 * For background writeout, stop when we are below the
751 		 * background dirty threshold
752 		 */
753 		if (work->for_background && !over_bground_thresh(wb->bdi))
754 			break;
755 
756 		if (work->for_kupdate) {
757 			oldest_jif = jiffies -
758 				msecs_to_jiffies(dirty_expire_interval * 10);
759 			work->older_than_this = &oldest_jif;
760 		}
761 
762 		trace_writeback_start(wb->bdi, work);
763 		if (list_empty(&wb->b_io))
764 			queue_io(wb, work);
765 		if (work->sb)
766 			progress = writeback_sb_inodes(work->sb, wb, work);
767 		else
768 			progress = __writeback_inodes_wb(wb, work);
769 		trace_writeback_written(wb->bdi, work);
770 
771 		wb_update_bandwidth(wb, wb_start);
772 
773 		/*
774 		 * Did we write something? Try for more
775 		 *
776 		 * Dirty inodes are moved to b_io for writeback in batches.
777 		 * The completion of the current batch does not necessarily
778 		 * mean the overall work is done. So we keep looping as long
779 		 * as made some progress on cleaning pages or inodes.
780 		 */
781 		if (progress)
782 			continue;
783 		/*
784 		 * No more inodes for IO, bail
785 		 */
786 		if (list_empty(&wb->b_more_io))
787 			break;
788 		/*
789 		 * Nothing written. Wait for some inode to
790 		 * become available for writeback. Otherwise
791 		 * we'll just busyloop.
792 		 */
793 		if (!list_empty(&wb->b_more_io))  {
794 			trace_writeback_wait(wb->bdi, work);
795 			inode = wb_inode(wb->b_more_io.prev);
796 			spin_lock(&inode->i_lock);
797 			inode_wait_for_writeback(inode, wb);
798 			spin_unlock(&inode->i_lock);
799 		}
800 	}
801 	spin_unlock(&wb->list_lock);
802 
803 	return nr_pages - work->nr_pages;
804 }
805 
806 /*
807  * Return the next wb_writeback_work struct that hasn't been processed yet.
808  */
809 static struct wb_writeback_work *
810 get_next_work_item(struct backing_dev_info *bdi)
811 {
812 	struct wb_writeback_work *work = NULL;
813 
814 	spin_lock_bh(&bdi->wb_lock);
815 	if (!list_empty(&bdi->work_list)) {
816 		work = list_entry(bdi->work_list.next,
817 				  struct wb_writeback_work, list);
818 		list_del_init(&work->list);
819 	}
820 	spin_unlock_bh(&bdi->wb_lock);
821 	return work;
822 }
823 
824 /*
825  * Add in the number of potentially dirty inodes, because each inode
826  * write can dirty pagecache in the underlying blockdev.
827  */
828 static unsigned long get_nr_dirty_pages(void)
829 {
830 	return global_page_state(NR_FILE_DIRTY) +
831 		global_page_state(NR_UNSTABLE_NFS) +
832 		get_nr_dirty_inodes();
833 }
834 
835 static long wb_check_background_flush(struct bdi_writeback *wb)
836 {
837 	if (over_bground_thresh(wb->bdi)) {
838 
839 		struct wb_writeback_work work = {
840 			.nr_pages	= LONG_MAX,
841 			.sync_mode	= WB_SYNC_NONE,
842 			.for_background	= 1,
843 			.range_cyclic	= 1,
844 			.reason		= WB_REASON_BACKGROUND,
845 		};
846 
847 		return wb_writeback(wb, &work);
848 	}
849 
850 	return 0;
851 }
852 
853 static long wb_check_old_data_flush(struct bdi_writeback *wb)
854 {
855 	unsigned long expired;
856 	long nr_pages;
857 
858 	/*
859 	 * When set to zero, disable periodic writeback
860 	 */
861 	if (!dirty_writeback_interval)
862 		return 0;
863 
864 	expired = wb->last_old_flush +
865 			msecs_to_jiffies(dirty_writeback_interval * 10);
866 	if (time_before(jiffies, expired))
867 		return 0;
868 
869 	wb->last_old_flush = jiffies;
870 	nr_pages = get_nr_dirty_pages();
871 
872 	if (nr_pages) {
873 		struct wb_writeback_work work = {
874 			.nr_pages	= nr_pages,
875 			.sync_mode	= WB_SYNC_NONE,
876 			.for_kupdate	= 1,
877 			.range_cyclic	= 1,
878 			.reason		= WB_REASON_PERIODIC,
879 		};
880 
881 		return wb_writeback(wb, &work);
882 	}
883 
884 	return 0;
885 }
886 
887 /*
888  * Retrieve work items and do the writeback they describe
889  */
890 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
891 {
892 	struct backing_dev_info *bdi = wb->bdi;
893 	struct wb_writeback_work *work;
894 	long wrote = 0;
895 
896 	set_bit(BDI_writeback_running, &wb->bdi->state);
897 	while ((work = get_next_work_item(bdi)) != NULL) {
898 		/*
899 		 * Override sync mode, in case we must wait for completion
900 		 * because this thread is exiting now.
901 		 */
902 		if (force_wait)
903 			work->sync_mode = WB_SYNC_ALL;
904 
905 		trace_writeback_exec(bdi, work);
906 
907 		wrote += wb_writeback(wb, work);
908 
909 		/*
910 		 * Notify the caller of completion if this is a synchronous
911 		 * work item, otherwise just free it.
912 		 */
913 		if (work->done)
914 			complete(work->done);
915 		else
916 			kfree(work);
917 	}
918 
919 	/*
920 	 * Check for periodic writeback, kupdated() style
921 	 */
922 	wrote += wb_check_old_data_flush(wb);
923 	wrote += wb_check_background_flush(wb);
924 	clear_bit(BDI_writeback_running, &wb->bdi->state);
925 
926 	return wrote;
927 }
928 
929 /*
930  * Handle writeback of dirty data for the device backed by this bdi. Also
931  * wakes up periodically and does kupdated style flushing.
932  */
933 int bdi_writeback_thread(void *data)
934 {
935 	struct bdi_writeback *wb = data;
936 	struct backing_dev_info *bdi = wb->bdi;
937 	long pages_written;
938 
939 	current->flags |= PF_SWAPWRITE;
940 	set_freezable();
941 	wb->last_active = jiffies;
942 
943 	/*
944 	 * Our parent may run at a different priority, just set us to normal
945 	 */
946 	set_user_nice(current, 0);
947 
948 	trace_writeback_thread_start(bdi);
949 
950 	while (!kthread_should_stop()) {
951 		/*
952 		 * Remove own delayed wake-up timer, since we are already awake
953 		 * and we'll take care of the preriodic write-back.
954 		 */
955 		del_timer(&wb->wakeup_timer);
956 
957 		pages_written = wb_do_writeback(wb, 0);
958 
959 		trace_writeback_pages_written(pages_written);
960 
961 		if (pages_written)
962 			wb->last_active = jiffies;
963 
964 		set_current_state(TASK_INTERRUPTIBLE);
965 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
966 			__set_current_state(TASK_RUNNING);
967 			continue;
968 		}
969 
970 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
971 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
972 		else {
973 			/*
974 			 * We have nothing to do, so can go sleep without any
975 			 * timeout and save power. When a work is queued or
976 			 * something is made dirty - we will be woken up.
977 			 */
978 			schedule();
979 		}
980 
981 		try_to_freeze();
982 	}
983 
984 	/* Flush any work that raced with us exiting */
985 	if (!list_empty(&bdi->work_list))
986 		wb_do_writeback(wb, 1);
987 
988 	trace_writeback_thread_stop(bdi);
989 	return 0;
990 }
991 
992 
993 /*
994  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
995  * the whole world.
996  */
997 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
998 {
999 	struct backing_dev_info *bdi;
1000 
1001 	if (!nr_pages) {
1002 		nr_pages = global_page_state(NR_FILE_DIRTY) +
1003 				global_page_state(NR_UNSTABLE_NFS);
1004 	}
1005 
1006 	rcu_read_lock();
1007 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1008 		if (!bdi_has_dirty_io(bdi))
1009 			continue;
1010 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1011 	}
1012 	rcu_read_unlock();
1013 }
1014 
1015 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1016 {
1017 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1018 		struct dentry *dentry;
1019 		const char *name = "?";
1020 
1021 		dentry = d_find_alias(inode);
1022 		if (dentry) {
1023 			spin_lock(&dentry->d_lock);
1024 			name = (const char *) dentry->d_name.name;
1025 		}
1026 		printk(KERN_DEBUG
1027 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1028 		       current->comm, task_pid_nr(current), inode->i_ino,
1029 		       name, inode->i_sb->s_id);
1030 		if (dentry) {
1031 			spin_unlock(&dentry->d_lock);
1032 			dput(dentry);
1033 		}
1034 	}
1035 }
1036 
1037 /**
1038  *	__mark_inode_dirty -	internal function
1039  *	@inode: inode to mark
1040  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1041  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1042  *  	mark_inode_dirty_sync.
1043  *
1044  * Put the inode on the super block's dirty list.
1045  *
1046  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1047  * dirty list only if it is hashed or if it refers to a blockdev.
1048  * If it was not hashed, it will never be added to the dirty list
1049  * even if it is later hashed, as it will have been marked dirty already.
1050  *
1051  * In short, make sure you hash any inodes _before_ you start marking
1052  * them dirty.
1053  *
1054  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1055  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1056  * the kernel-internal blockdev inode represents the dirtying time of the
1057  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1058  * page->mapping->host, so the page-dirtying time is recorded in the internal
1059  * blockdev inode.
1060  */
1061 void __mark_inode_dirty(struct inode *inode, int flags)
1062 {
1063 	struct super_block *sb = inode->i_sb;
1064 	struct backing_dev_info *bdi = NULL;
1065 
1066 	/*
1067 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1068 	 * dirty the inode itself
1069 	 */
1070 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1071 		if (sb->s_op->dirty_inode)
1072 			sb->s_op->dirty_inode(inode, flags);
1073 	}
1074 
1075 	/*
1076 	 * make sure that changes are seen by all cpus before we test i_state
1077 	 * -- mikulas
1078 	 */
1079 	smp_mb();
1080 
1081 	/* avoid the locking if we can */
1082 	if ((inode->i_state & flags) == flags)
1083 		return;
1084 
1085 	if (unlikely(block_dump))
1086 		block_dump___mark_inode_dirty(inode);
1087 
1088 	spin_lock(&inode->i_lock);
1089 	if ((inode->i_state & flags) != flags) {
1090 		const int was_dirty = inode->i_state & I_DIRTY;
1091 
1092 		inode->i_state |= flags;
1093 
1094 		/*
1095 		 * If the inode is being synced, just update its dirty state.
1096 		 * The unlocker will place the inode on the appropriate
1097 		 * superblock list, based upon its state.
1098 		 */
1099 		if (inode->i_state & I_SYNC)
1100 			goto out_unlock_inode;
1101 
1102 		/*
1103 		 * Only add valid (hashed) inodes to the superblock's
1104 		 * dirty list.  Add blockdev inodes as well.
1105 		 */
1106 		if (!S_ISBLK(inode->i_mode)) {
1107 			if (inode_unhashed(inode))
1108 				goto out_unlock_inode;
1109 		}
1110 		if (inode->i_state & I_FREEING)
1111 			goto out_unlock_inode;
1112 
1113 		/*
1114 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1115 		 * reposition it (that would break b_dirty time-ordering).
1116 		 */
1117 		if (!was_dirty) {
1118 			bool wakeup_bdi = false;
1119 			bdi = inode_to_bdi(inode);
1120 
1121 			if (bdi_cap_writeback_dirty(bdi)) {
1122 				WARN(!test_bit(BDI_registered, &bdi->state),
1123 				     "bdi-%s not registered\n", bdi->name);
1124 
1125 				/*
1126 				 * If this is the first dirty inode for this
1127 				 * bdi, we have to wake-up the corresponding
1128 				 * bdi thread to make sure background
1129 				 * write-back happens later.
1130 				 */
1131 				if (!wb_has_dirty_io(&bdi->wb))
1132 					wakeup_bdi = true;
1133 			}
1134 
1135 			spin_unlock(&inode->i_lock);
1136 			spin_lock(&bdi->wb.list_lock);
1137 			inode->dirtied_when = jiffies;
1138 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1139 			spin_unlock(&bdi->wb.list_lock);
1140 
1141 			if (wakeup_bdi)
1142 				bdi_wakeup_thread_delayed(bdi);
1143 			return;
1144 		}
1145 	}
1146 out_unlock_inode:
1147 	spin_unlock(&inode->i_lock);
1148 
1149 }
1150 EXPORT_SYMBOL(__mark_inode_dirty);
1151 
1152 /*
1153  * Write out a superblock's list of dirty inodes.  A wait will be performed
1154  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1155  *
1156  * If older_than_this is non-NULL, then only write out inodes which
1157  * had their first dirtying at a time earlier than *older_than_this.
1158  *
1159  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1160  * This function assumes that the blockdev superblock's inodes are backed by
1161  * a variety of queues, so all inodes are searched.  For other superblocks,
1162  * assume that all inodes are backed by the same queue.
1163  *
1164  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1165  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1166  * on the writer throttling path, and we get decent balancing between many
1167  * throttled threads: we don't want them all piling up on inode_sync_wait.
1168  */
1169 static void wait_sb_inodes(struct super_block *sb)
1170 {
1171 	struct inode *inode, *old_inode = NULL;
1172 
1173 	/*
1174 	 * We need to be protected against the filesystem going from
1175 	 * r/o to r/w or vice versa.
1176 	 */
1177 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1178 
1179 	spin_lock(&inode_sb_list_lock);
1180 
1181 	/*
1182 	 * Data integrity sync. Must wait for all pages under writeback,
1183 	 * because there may have been pages dirtied before our sync
1184 	 * call, but which had writeout started before we write it out.
1185 	 * In which case, the inode may not be on the dirty list, but
1186 	 * we still have to wait for that writeout.
1187 	 */
1188 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1189 		struct address_space *mapping = inode->i_mapping;
1190 
1191 		spin_lock(&inode->i_lock);
1192 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1193 		    (mapping->nrpages == 0)) {
1194 			spin_unlock(&inode->i_lock);
1195 			continue;
1196 		}
1197 		__iget(inode);
1198 		spin_unlock(&inode->i_lock);
1199 		spin_unlock(&inode_sb_list_lock);
1200 
1201 		/*
1202 		 * We hold a reference to 'inode' so it couldn't have been
1203 		 * removed from s_inodes list while we dropped the
1204 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1205 		 * be holding the last reference and we cannot iput it under
1206 		 * inode_sb_list_lock. So we keep the reference and iput it
1207 		 * later.
1208 		 */
1209 		iput(old_inode);
1210 		old_inode = inode;
1211 
1212 		filemap_fdatawait(mapping);
1213 
1214 		cond_resched();
1215 
1216 		spin_lock(&inode_sb_list_lock);
1217 	}
1218 	spin_unlock(&inode_sb_list_lock);
1219 	iput(old_inode);
1220 }
1221 
1222 /**
1223  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1224  * @sb: the superblock
1225  * @nr: the number of pages to write
1226  *
1227  * Start writeback on some inodes on this super_block. No guarantees are made
1228  * on how many (if any) will be written, and this function does not wait
1229  * for IO completion of submitted IO.
1230  */
1231 void writeback_inodes_sb_nr(struct super_block *sb,
1232 			    unsigned long nr,
1233 			    enum wb_reason reason)
1234 {
1235 	DECLARE_COMPLETION_ONSTACK(done);
1236 	struct wb_writeback_work work = {
1237 		.sb			= sb,
1238 		.sync_mode		= WB_SYNC_NONE,
1239 		.tagged_writepages	= 1,
1240 		.done			= &done,
1241 		.nr_pages		= nr,
1242 		.reason			= reason,
1243 	};
1244 
1245 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1246 	bdi_queue_work(sb->s_bdi, &work);
1247 	wait_for_completion(&done);
1248 }
1249 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1250 
1251 /**
1252  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1253  * @sb: the superblock
1254  *
1255  * Start writeback on some inodes on this super_block. No guarantees are made
1256  * on how many (if any) will be written, and this function does not wait
1257  * for IO completion of submitted IO.
1258  */
1259 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1260 {
1261 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1262 }
1263 EXPORT_SYMBOL(writeback_inodes_sb);
1264 
1265 /**
1266  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1267  * @sb: the superblock
1268  *
1269  * Invoke writeback_inodes_sb if no writeback is currently underway.
1270  * Returns 1 if writeback was started, 0 if not.
1271  */
1272 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1273 {
1274 	if (!writeback_in_progress(sb->s_bdi)) {
1275 		down_read(&sb->s_umount);
1276 		writeback_inodes_sb(sb, reason);
1277 		up_read(&sb->s_umount);
1278 		return 1;
1279 	} else
1280 		return 0;
1281 }
1282 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1283 
1284 /**
1285  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1286  * @sb: the superblock
1287  * @nr: the number of pages to write
1288  *
1289  * Invoke writeback_inodes_sb if no writeback is currently underway.
1290  * Returns 1 if writeback was started, 0 if not.
1291  */
1292 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1293 				   unsigned long nr,
1294 				   enum wb_reason reason)
1295 {
1296 	if (!writeback_in_progress(sb->s_bdi)) {
1297 		down_read(&sb->s_umount);
1298 		writeback_inodes_sb_nr(sb, nr, reason);
1299 		up_read(&sb->s_umount);
1300 		return 1;
1301 	} else
1302 		return 0;
1303 }
1304 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1305 
1306 /**
1307  * sync_inodes_sb	-	sync sb inode pages
1308  * @sb: the superblock
1309  *
1310  * This function writes and waits on any dirty inode belonging to this
1311  * super_block.
1312  */
1313 void sync_inodes_sb(struct super_block *sb)
1314 {
1315 	DECLARE_COMPLETION_ONSTACK(done);
1316 	struct wb_writeback_work work = {
1317 		.sb		= sb,
1318 		.sync_mode	= WB_SYNC_ALL,
1319 		.nr_pages	= LONG_MAX,
1320 		.range_cyclic	= 0,
1321 		.done		= &done,
1322 		.reason		= WB_REASON_SYNC,
1323 	};
1324 
1325 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1326 
1327 	bdi_queue_work(sb->s_bdi, &work);
1328 	wait_for_completion(&done);
1329 
1330 	wait_sb_inodes(sb);
1331 }
1332 EXPORT_SYMBOL(sync_inodes_sb);
1333 
1334 /**
1335  * write_inode_now	-	write an inode to disk
1336  * @inode: inode to write to disk
1337  * @sync: whether the write should be synchronous or not
1338  *
1339  * This function commits an inode to disk immediately if it is dirty. This is
1340  * primarily needed by knfsd.
1341  *
1342  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1343  */
1344 int write_inode_now(struct inode *inode, int sync)
1345 {
1346 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1347 	int ret;
1348 	struct writeback_control wbc = {
1349 		.nr_to_write = LONG_MAX,
1350 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1351 		.range_start = 0,
1352 		.range_end = LLONG_MAX,
1353 	};
1354 
1355 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1356 		wbc.nr_to_write = 0;
1357 
1358 	might_sleep();
1359 	spin_lock(&wb->list_lock);
1360 	spin_lock(&inode->i_lock);
1361 	ret = writeback_single_inode(inode, wb, &wbc);
1362 	spin_unlock(&inode->i_lock);
1363 	spin_unlock(&wb->list_lock);
1364 	if (sync)
1365 		inode_sync_wait(inode);
1366 	return ret;
1367 }
1368 EXPORT_SYMBOL(write_inode_now);
1369 
1370 /**
1371  * sync_inode - write an inode and its pages to disk.
1372  * @inode: the inode to sync
1373  * @wbc: controls the writeback mode
1374  *
1375  * sync_inode() will write an inode and its pages to disk.  It will also
1376  * correctly update the inode on its superblock's dirty inode lists and will
1377  * update inode->i_state.
1378  *
1379  * The caller must have a ref on the inode.
1380  */
1381 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1382 {
1383 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1384 	int ret;
1385 
1386 	spin_lock(&wb->list_lock);
1387 	spin_lock(&inode->i_lock);
1388 	ret = writeback_single_inode(inode, wb, wbc);
1389 	spin_unlock(&inode->i_lock);
1390 	spin_unlock(&wb->list_lock);
1391 	return ret;
1392 }
1393 EXPORT_SYMBOL(sync_inode);
1394 
1395 /**
1396  * sync_inode_metadata - write an inode to disk
1397  * @inode: the inode to sync
1398  * @wait: wait for I/O to complete.
1399  *
1400  * Write an inode to disk and adjust its dirty state after completion.
1401  *
1402  * Note: only writes the actual inode, no associated data or other metadata.
1403  */
1404 int sync_inode_metadata(struct inode *inode, int wait)
1405 {
1406 	struct writeback_control wbc = {
1407 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1408 		.nr_to_write = 0, /* metadata-only */
1409 	};
1410 
1411 	return sync_inode(inode, &wbc);
1412 }
1413 EXPORT_SYMBOL(sync_inode_metadata);
1414