1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include "internal.h" 30 31 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info) 32 33 /* 34 * We don't actually have pdflush, but this one is exported though /proc... 35 */ 36 int nr_pdflush_threads; 37 38 /* 39 * Passed into wb_writeback(), essentially a subset of writeback_control 40 */ 41 struct wb_writeback_args { 42 long nr_pages; 43 struct super_block *sb; 44 enum writeback_sync_modes sync_mode; 45 unsigned int for_kupdate:1; 46 unsigned int range_cyclic:1; 47 unsigned int for_background:1; 48 unsigned int sb_pinned:1; 49 }; 50 51 /* 52 * Work items for the bdi_writeback threads 53 */ 54 struct bdi_work { 55 struct list_head list; /* pending work list */ 56 struct rcu_head rcu_head; /* for RCU free/clear of work */ 57 58 unsigned long seen; /* threads that have seen this work */ 59 atomic_t pending; /* number of threads still to do work */ 60 61 struct wb_writeback_args args; /* writeback arguments */ 62 63 unsigned long state; /* flag bits, see WS_* */ 64 }; 65 66 enum { 67 WS_USED_B = 0, 68 WS_ONSTACK_B, 69 }; 70 71 #define WS_USED (1 << WS_USED_B) 72 #define WS_ONSTACK (1 << WS_ONSTACK_B) 73 74 static inline bool bdi_work_on_stack(struct bdi_work *work) 75 { 76 return test_bit(WS_ONSTACK_B, &work->state); 77 } 78 79 static inline void bdi_work_init(struct bdi_work *work, 80 struct wb_writeback_args *args) 81 { 82 INIT_RCU_HEAD(&work->rcu_head); 83 work->args = *args; 84 work->state = WS_USED; 85 } 86 87 /** 88 * writeback_in_progress - determine whether there is writeback in progress 89 * @bdi: the device's backing_dev_info structure. 90 * 91 * Determine whether there is writeback waiting to be handled against a 92 * backing device. 93 */ 94 int writeback_in_progress(struct backing_dev_info *bdi) 95 { 96 return !list_empty(&bdi->work_list); 97 } 98 99 static void bdi_work_clear(struct bdi_work *work) 100 { 101 clear_bit(WS_USED_B, &work->state); 102 smp_mb__after_clear_bit(); 103 /* 104 * work can have disappeared at this point. bit waitq functions 105 * should be able to tolerate this, provided bdi_sched_wait does 106 * not dereference it's pointer argument. 107 */ 108 wake_up_bit(&work->state, WS_USED_B); 109 } 110 111 static void bdi_work_free(struct rcu_head *head) 112 { 113 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head); 114 115 if (!bdi_work_on_stack(work)) 116 kfree(work); 117 else 118 bdi_work_clear(work); 119 } 120 121 static void wb_work_complete(struct bdi_work *work) 122 { 123 const enum writeback_sync_modes sync_mode = work->args.sync_mode; 124 int onstack = bdi_work_on_stack(work); 125 126 /* 127 * For allocated work, we can clear the done/seen bit right here. 128 * For on-stack work, we need to postpone both the clear and free 129 * to after the RCU grace period, since the stack could be invalidated 130 * as soon as bdi_work_clear() has done the wakeup. 131 */ 132 if (!onstack) 133 bdi_work_clear(work); 134 if (sync_mode == WB_SYNC_NONE || onstack) 135 call_rcu(&work->rcu_head, bdi_work_free); 136 } 137 138 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work) 139 { 140 /* 141 * The caller has retrieved the work arguments from this work, 142 * drop our reference. If this is the last ref, delete and free it 143 */ 144 if (atomic_dec_and_test(&work->pending)) { 145 struct backing_dev_info *bdi = wb->bdi; 146 147 spin_lock(&bdi->wb_lock); 148 list_del_rcu(&work->list); 149 spin_unlock(&bdi->wb_lock); 150 151 wb_work_complete(work); 152 } 153 } 154 155 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work) 156 { 157 work->seen = bdi->wb_mask; 158 BUG_ON(!work->seen); 159 atomic_set(&work->pending, bdi->wb_cnt); 160 BUG_ON(!bdi->wb_cnt); 161 162 /* 163 * list_add_tail_rcu() contains the necessary barriers to 164 * make sure the above stores are seen before the item is 165 * noticed on the list 166 */ 167 spin_lock(&bdi->wb_lock); 168 list_add_tail_rcu(&work->list, &bdi->work_list); 169 spin_unlock(&bdi->wb_lock); 170 171 /* 172 * If the default thread isn't there, make sure we add it. When 173 * it gets created and wakes up, we'll run this work. 174 */ 175 if (unlikely(list_empty_careful(&bdi->wb_list))) 176 wake_up_process(default_backing_dev_info.wb.task); 177 else { 178 struct bdi_writeback *wb = &bdi->wb; 179 180 if (wb->task) 181 wake_up_process(wb->task); 182 } 183 } 184 185 /* 186 * Used for on-stack allocated work items. The caller needs to wait until 187 * the wb threads have acked the work before it's safe to continue. 188 */ 189 static void bdi_wait_on_work_clear(struct bdi_work *work) 190 { 191 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait, 192 TASK_UNINTERRUPTIBLE); 193 } 194 195 static void bdi_alloc_queue_work(struct backing_dev_info *bdi, 196 struct wb_writeback_args *args, 197 int wait) 198 { 199 struct bdi_work *work; 200 201 /* 202 * This is WB_SYNC_NONE writeback, so if allocation fails just 203 * wakeup the thread for old dirty data writeback 204 */ 205 work = kmalloc(sizeof(*work), GFP_ATOMIC); 206 if (work) { 207 bdi_work_init(work, args); 208 bdi_queue_work(bdi, work); 209 if (wait) 210 bdi_wait_on_work_clear(work); 211 } else { 212 struct bdi_writeback *wb = &bdi->wb; 213 214 if (wb->task) 215 wake_up_process(wb->task); 216 } 217 } 218 219 /** 220 * bdi_sync_writeback - start and wait for writeback 221 * @bdi: the backing device to write from 222 * @sb: write inodes from this super_block 223 * 224 * Description: 225 * This does WB_SYNC_ALL data integrity writeback and waits for the 226 * IO to complete. Callers must hold the sb s_umount semaphore for 227 * reading, to avoid having the super disappear before we are done. 228 */ 229 static void bdi_sync_writeback(struct backing_dev_info *bdi, 230 struct super_block *sb) 231 { 232 struct wb_writeback_args args = { 233 .sb = sb, 234 .sync_mode = WB_SYNC_ALL, 235 .nr_pages = LONG_MAX, 236 .range_cyclic = 0, 237 /* 238 * Setting sb_pinned is not necessary for WB_SYNC_ALL, but 239 * lets make it explicitly clear. 240 */ 241 .sb_pinned = 1, 242 }; 243 struct bdi_work work; 244 245 bdi_work_init(&work, &args); 246 work.state |= WS_ONSTACK; 247 248 bdi_queue_work(bdi, &work); 249 bdi_wait_on_work_clear(&work); 250 } 251 252 /** 253 * bdi_start_writeback - start writeback 254 * @bdi: the backing device to write from 255 * @sb: write inodes from this super_block 256 * @nr_pages: the number of pages to write 257 * @sb_locked: caller already holds sb umount sem. 258 * 259 * Description: 260 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 261 * started when this function returns, we make no guarentees on 262 * completion. Caller specifies whether sb umount sem is held already or not. 263 * 264 */ 265 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb, 266 long nr_pages, int sb_locked) 267 { 268 struct wb_writeback_args args = { 269 .sb = sb, 270 .sync_mode = WB_SYNC_NONE, 271 .nr_pages = nr_pages, 272 .range_cyclic = 1, 273 .sb_pinned = sb_locked, 274 }; 275 276 /* 277 * We treat @nr_pages=0 as the special case to do background writeback, 278 * ie. to sync pages until the background dirty threshold is reached. 279 */ 280 if (!nr_pages) { 281 args.nr_pages = LONG_MAX; 282 args.for_background = 1; 283 } 284 285 bdi_alloc_queue_work(bdi, &args, sb_locked); 286 } 287 288 /* 289 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 290 * furthest end of its superblock's dirty-inode list. 291 * 292 * Before stamping the inode's ->dirtied_when, we check to see whether it is 293 * already the most-recently-dirtied inode on the b_dirty list. If that is 294 * the case then the inode must have been redirtied while it was being written 295 * out and we don't reset its dirtied_when. 296 */ 297 static void redirty_tail(struct inode *inode) 298 { 299 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 300 301 if (!list_empty(&wb->b_dirty)) { 302 struct inode *tail; 303 304 tail = list_entry(wb->b_dirty.next, struct inode, i_list); 305 if (time_before(inode->dirtied_when, tail->dirtied_when)) 306 inode->dirtied_when = jiffies; 307 } 308 list_move(&inode->i_list, &wb->b_dirty); 309 } 310 311 /* 312 * requeue inode for re-scanning after bdi->b_io list is exhausted. 313 */ 314 static void requeue_io(struct inode *inode) 315 { 316 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 317 318 list_move(&inode->i_list, &wb->b_more_io); 319 } 320 321 static void inode_sync_complete(struct inode *inode) 322 { 323 /* 324 * Prevent speculative execution through spin_unlock(&inode_lock); 325 */ 326 smp_mb(); 327 wake_up_bit(&inode->i_state, __I_SYNC); 328 } 329 330 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 331 { 332 bool ret = time_after(inode->dirtied_when, t); 333 #ifndef CONFIG_64BIT 334 /* 335 * For inodes being constantly redirtied, dirtied_when can get stuck. 336 * It _appears_ to be in the future, but is actually in distant past. 337 * This test is necessary to prevent such wrapped-around relative times 338 * from permanently stopping the whole bdi writeback. 339 */ 340 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 341 #endif 342 return ret; 343 } 344 345 /* 346 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 347 */ 348 static void move_expired_inodes(struct list_head *delaying_queue, 349 struct list_head *dispatch_queue, 350 unsigned long *older_than_this) 351 { 352 LIST_HEAD(tmp); 353 struct list_head *pos, *node; 354 struct super_block *sb = NULL; 355 struct inode *inode; 356 int do_sb_sort = 0; 357 358 while (!list_empty(delaying_queue)) { 359 inode = list_entry(delaying_queue->prev, struct inode, i_list); 360 if (older_than_this && 361 inode_dirtied_after(inode, *older_than_this)) 362 break; 363 if (sb && sb != inode->i_sb) 364 do_sb_sort = 1; 365 sb = inode->i_sb; 366 list_move(&inode->i_list, &tmp); 367 } 368 369 /* just one sb in list, splice to dispatch_queue and we're done */ 370 if (!do_sb_sort) { 371 list_splice(&tmp, dispatch_queue); 372 return; 373 } 374 375 /* Move inodes from one superblock together */ 376 while (!list_empty(&tmp)) { 377 inode = list_entry(tmp.prev, struct inode, i_list); 378 sb = inode->i_sb; 379 list_for_each_prev_safe(pos, node, &tmp) { 380 inode = list_entry(pos, struct inode, i_list); 381 if (inode->i_sb == sb) 382 list_move(&inode->i_list, dispatch_queue); 383 } 384 } 385 } 386 387 /* 388 * Queue all expired dirty inodes for io, eldest first. 389 */ 390 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 391 { 392 list_splice_init(&wb->b_more_io, wb->b_io.prev); 393 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 394 } 395 396 static int write_inode(struct inode *inode, struct writeback_control *wbc) 397 { 398 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 399 return inode->i_sb->s_op->write_inode(inode, wbc); 400 return 0; 401 } 402 403 /* 404 * Wait for writeback on an inode to complete. 405 */ 406 static void inode_wait_for_writeback(struct inode *inode) 407 { 408 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 409 wait_queue_head_t *wqh; 410 411 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 412 do { 413 spin_unlock(&inode_lock); 414 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 415 spin_lock(&inode_lock); 416 } while (inode->i_state & I_SYNC); 417 } 418 419 /* 420 * Write out an inode's dirty pages. Called under inode_lock. Either the 421 * caller has ref on the inode (either via __iget or via syscall against an fd) 422 * or the inode has I_WILL_FREE set (via generic_forget_inode) 423 * 424 * If `wait' is set, wait on the writeout. 425 * 426 * The whole writeout design is quite complex and fragile. We want to avoid 427 * starvation of particular inodes when others are being redirtied, prevent 428 * livelocks, etc. 429 * 430 * Called under inode_lock. 431 */ 432 static int 433 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 434 { 435 struct address_space *mapping = inode->i_mapping; 436 unsigned dirty; 437 int ret; 438 439 if (!atomic_read(&inode->i_count)) 440 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 441 else 442 WARN_ON(inode->i_state & I_WILL_FREE); 443 444 if (inode->i_state & I_SYNC) { 445 /* 446 * If this inode is locked for writeback and we are not doing 447 * writeback-for-data-integrity, move it to b_more_io so that 448 * writeback can proceed with the other inodes on s_io. 449 * 450 * We'll have another go at writing back this inode when we 451 * completed a full scan of b_io. 452 */ 453 if (wbc->sync_mode != WB_SYNC_ALL) { 454 requeue_io(inode); 455 return 0; 456 } 457 458 /* 459 * It's a data-integrity sync. We must wait. 460 */ 461 inode_wait_for_writeback(inode); 462 } 463 464 BUG_ON(inode->i_state & I_SYNC); 465 466 /* Set I_SYNC, reset I_DIRTY_PAGES */ 467 inode->i_state |= I_SYNC; 468 inode->i_state &= ~I_DIRTY_PAGES; 469 spin_unlock(&inode_lock); 470 471 ret = do_writepages(mapping, wbc); 472 473 /* 474 * Make sure to wait on the data before writing out the metadata. 475 * This is important for filesystems that modify metadata on data 476 * I/O completion. 477 */ 478 if (wbc->sync_mode == WB_SYNC_ALL) { 479 int err = filemap_fdatawait(mapping); 480 if (ret == 0) 481 ret = err; 482 } 483 484 /* 485 * Some filesystems may redirty the inode during the writeback 486 * due to delalloc, clear dirty metadata flags right before 487 * write_inode() 488 */ 489 spin_lock(&inode_lock); 490 dirty = inode->i_state & I_DIRTY; 491 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 492 spin_unlock(&inode_lock); 493 /* Don't write the inode if only I_DIRTY_PAGES was set */ 494 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 495 int err = write_inode(inode, wbc); 496 if (ret == 0) 497 ret = err; 498 } 499 500 spin_lock(&inode_lock); 501 inode->i_state &= ~I_SYNC; 502 if (!(inode->i_state & (I_FREEING | I_CLEAR))) { 503 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) { 504 /* 505 * More pages get dirtied by a fast dirtier. 506 */ 507 goto select_queue; 508 } else if (inode->i_state & I_DIRTY) { 509 /* 510 * At least XFS will redirty the inode during the 511 * writeback (delalloc) and on io completion (isize). 512 */ 513 redirty_tail(inode); 514 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 515 /* 516 * We didn't write back all the pages. nfs_writepages() 517 * sometimes bales out without doing anything. Redirty 518 * the inode; Move it from b_io onto b_more_io/b_dirty. 519 */ 520 /* 521 * akpm: if the caller was the kupdate function we put 522 * this inode at the head of b_dirty so it gets first 523 * consideration. Otherwise, move it to the tail, for 524 * the reasons described there. I'm not really sure 525 * how much sense this makes. Presumably I had a good 526 * reasons for doing it this way, and I'd rather not 527 * muck with it at present. 528 */ 529 if (wbc->for_kupdate) { 530 /* 531 * For the kupdate function we move the inode 532 * to b_more_io so it will get more writeout as 533 * soon as the queue becomes uncongested. 534 */ 535 inode->i_state |= I_DIRTY_PAGES; 536 select_queue: 537 if (wbc->nr_to_write <= 0) { 538 /* 539 * slice used up: queue for next turn 540 */ 541 requeue_io(inode); 542 } else { 543 /* 544 * somehow blocked: retry later 545 */ 546 redirty_tail(inode); 547 } 548 } else { 549 /* 550 * Otherwise fully redirty the inode so that 551 * other inodes on this superblock will get some 552 * writeout. Otherwise heavy writing to one 553 * file would indefinitely suspend writeout of 554 * all the other files. 555 */ 556 inode->i_state |= I_DIRTY_PAGES; 557 redirty_tail(inode); 558 } 559 } else if (atomic_read(&inode->i_count)) { 560 /* 561 * The inode is clean, inuse 562 */ 563 list_move(&inode->i_list, &inode_in_use); 564 } else { 565 /* 566 * The inode is clean, unused 567 */ 568 list_move(&inode->i_list, &inode_unused); 569 } 570 } 571 inode_sync_complete(inode); 572 return ret; 573 } 574 575 static void unpin_sb_for_writeback(struct super_block *sb) 576 { 577 up_read(&sb->s_umount); 578 put_super(sb); 579 } 580 581 enum sb_pin_state { 582 SB_PINNED, 583 SB_NOT_PINNED, 584 SB_PIN_FAILED 585 }; 586 587 /* 588 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned 589 * before calling writeback. So make sure that we do pin it, so it doesn't 590 * go away while we are writing inodes from it. 591 */ 592 static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc, 593 struct super_block *sb) 594 { 595 /* 596 * Caller must already hold the ref for this 597 */ 598 if (wbc->sync_mode == WB_SYNC_ALL || wbc->sb_pinned) { 599 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 600 return SB_NOT_PINNED; 601 } 602 spin_lock(&sb_lock); 603 sb->s_count++; 604 if (down_read_trylock(&sb->s_umount)) { 605 if (sb->s_root) { 606 spin_unlock(&sb_lock); 607 return SB_PINNED; 608 } 609 /* 610 * umounted, drop rwsem again and fall through to failure 611 */ 612 up_read(&sb->s_umount); 613 } 614 sb->s_count--; 615 spin_unlock(&sb_lock); 616 return SB_PIN_FAILED; 617 } 618 619 /* 620 * Write a portion of b_io inodes which belong to @sb. 621 * If @wbc->sb != NULL, then find and write all such 622 * inodes. Otherwise write only ones which go sequentially 623 * in reverse order. 624 * Return 1, if the caller writeback routine should be 625 * interrupted. Otherwise return 0. 626 */ 627 static int writeback_sb_inodes(struct super_block *sb, 628 struct bdi_writeback *wb, 629 struct writeback_control *wbc) 630 { 631 while (!list_empty(&wb->b_io)) { 632 long pages_skipped; 633 struct inode *inode = list_entry(wb->b_io.prev, 634 struct inode, i_list); 635 if (wbc->sb && sb != inode->i_sb) { 636 /* super block given and doesn't 637 match, skip this inode */ 638 redirty_tail(inode); 639 continue; 640 } 641 if (sb != inode->i_sb) 642 /* finish with this superblock */ 643 return 0; 644 if (inode->i_state & (I_NEW | I_WILL_FREE)) { 645 requeue_io(inode); 646 continue; 647 } 648 /* 649 * Was this inode dirtied after sync_sb_inodes was called? 650 * This keeps sync from extra jobs and livelock. 651 */ 652 if (inode_dirtied_after(inode, wbc->wb_start)) 653 return 1; 654 655 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR)); 656 __iget(inode); 657 pages_skipped = wbc->pages_skipped; 658 writeback_single_inode(inode, wbc); 659 if (wbc->pages_skipped != pages_skipped) { 660 /* 661 * writeback is not making progress due to locked 662 * buffers. Skip this inode for now. 663 */ 664 redirty_tail(inode); 665 } 666 spin_unlock(&inode_lock); 667 iput(inode); 668 cond_resched(); 669 spin_lock(&inode_lock); 670 if (wbc->nr_to_write <= 0) { 671 wbc->more_io = 1; 672 return 1; 673 } 674 if (!list_empty(&wb->b_more_io)) 675 wbc->more_io = 1; 676 } 677 /* b_io is empty */ 678 return 1; 679 } 680 681 static void writeback_inodes_wb(struct bdi_writeback *wb, 682 struct writeback_control *wbc) 683 { 684 int ret = 0; 685 686 wbc->wb_start = jiffies; /* livelock avoidance */ 687 spin_lock(&inode_lock); 688 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 689 queue_io(wb, wbc->older_than_this); 690 691 while (!list_empty(&wb->b_io)) { 692 struct inode *inode = list_entry(wb->b_io.prev, 693 struct inode, i_list); 694 struct super_block *sb = inode->i_sb; 695 enum sb_pin_state state; 696 697 if (wbc->sb && sb != wbc->sb) { 698 /* super block given and doesn't 699 match, skip this inode */ 700 redirty_tail(inode); 701 continue; 702 } 703 state = pin_sb_for_writeback(wbc, sb); 704 705 if (state == SB_PIN_FAILED) { 706 requeue_io(inode); 707 continue; 708 } 709 ret = writeback_sb_inodes(sb, wb, wbc); 710 711 if (state == SB_PINNED) 712 unpin_sb_for_writeback(sb); 713 if (ret) 714 break; 715 } 716 spin_unlock(&inode_lock); 717 /* Leave any unwritten inodes on b_io */ 718 } 719 720 void writeback_inodes_wbc(struct writeback_control *wbc) 721 { 722 struct backing_dev_info *bdi = wbc->bdi; 723 724 writeback_inodes_wb(&bdi->wb, wbc); 725 } 726 727 /* 728 * The maximum number of pages to writeout in a single bdi flush/kupdate 729 * operation. We do this so we don't hold I_SYNC against an inode for 730 * enormous amounts of time, which would block a userspace task which has 731 * been forced to throttle against that inode. Also, the code reevaluates 732 * the dirty each time it has written this many pages. 733 */ 734 #define MAX_WRITEBACK_PAGES 1024 735 736 static inline bool over_bground_thresh(void) 737 { 738 unsigned long background_thresh, dirty_thresh; 739 740 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 741 742 return (global_page_state(NR_FILE_DIRTY) + 743 global_page_state(NR_UNSTABLE_NFS) >= background_thresh); 744 } 745 746 /* 747 * Explicit flushing or periodic writeback of "old" data. 748 * 749 * Define "old": the first time one of an inode's pages is dirtied, we mark the 750 * dirtying-time in the inode's address_space. So this periodic writeback code 751 * just walks the superblock inode list, writing back any inodes which are 752 * older than a specific point in time. 753 * 754 * Try to run once per dirty_writeback_interval. But if a writeback event 755 * takes longer than a dirty_writeback_interval interval, then leave a 756 * one-second gap. 757 * 758 * older_than_this takes precedence over nr_to_write. So we'll only write back 759 * all dirty pages if they are all attached to "old" mappings. 760 */ 761 static long wb_writeback(struct bdi_writeback *wb, 762 struct wb_writeback_args *args) 763 { 764 struct writeback_control wbc = { 765 .bdi = wb->bdi, 766 .sb = args->sb, 767 .sync_mode = args->sync_mode, 768 .older_than_this = NULL, 769 .for_kupdate = args->for_kupdate, 770 .for_background = args->for_background, 771 .range_cyclic = args->range_cyclic, 772 .sb_pinned = args->sb_pinned, 773 }; 774 unsigned long oldest_jif; 775 long wrote = 0; 776 struct inode *inode; 777 778 if (wbc.for_kupdate) { 779 wbc.older_than_this = &oldest_jif; 780 oldest_jif = jiffies - 781 msecs_to_jiffies(dirty_expire_interval * 10); 782 } 783 if (!wbc.range_cyclic) { 784 wbc.range_start = 0; 785 wbc.range_end = LLONG_MAX; 786 } 787 788 for (;;) { 789 /* 790 * Stop writeback when nr_pages has been consumed 791 */ 792 if (args->nr_pages <= 0) 793 break; 794 795 /* 796 * For background writeout, stop when we are below the 797 * background dirty threshold 798 */ 799 if (args->for_background && !over_bground_thresh()) 800 break; 801 802 wbc.more_io = 0; 803 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 804 wbc.pages_skipped = 0; 805 writeback_inodes_wb(wb, &wbc); 806 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 807 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write; 808 809 /* 810 * If we consumed everything, see if we have more 811 */ 812 if (wbc.nr_to_write <= 0) 813 continue; 814 /* 815 * Didn't write everything and we don't have more IO, bail 816 */ 817 if (!wbc.more_io) 818 break; 819 /* 820 * Did we write something? Try for more 821 */ 822 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES) 823 continue; 824 /* 825 * Nothing written. Wait for some inode to 826 * become available for writeback. Otherwise 827 * we'll just busyloop. 828 */ 829 spin_lock(&inode_lock); 830 if (!list_empty(&wb->b_more_io)) { 831 inode = list_entry(wb->b_more_io.prev, 832 struct inode, i_list); 833 inode_wait_for_writeback(inode); 834 } 835 spin_unlock(&inode_lock); 836 } 837 838 return wrote; 839 } 840 841 /* 842 * Return the next bdi_work struct that hasn't been processed by this 843 * wb thread yet. ->seen is initially set for each thread that exists 844 * for this device, when a thread first notices a piece of work it 845 * clears its bit. Depending on writeback type, the thread will notify 846 * completion on either receiving the work (WB_SYNC_NONE) or after 847 * it is done (WB_SYNC_ALL). 848 */ 849 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi, 850 struct bdi_writeback *wb) 851 { 852 struct bdi_work *work, *ret = NULL; 853 854 rcu_read_lock(); 855 856 list_for_each_entry_rcu(work, &bdi->work_list, list) { 857 if (!test_bit(wb->nr, &work->seen)) 858 continue; 859 clear_bit(wb->nr, &work->seen); 860 861 ret = work; 862 break; 863 } 864 865 rcu_read_unlock(); 866 return ret; 867 } 868 869 static long wb_check_old_data_flush(struct bdi_writeback *wb) 870 { 871 unsigned long expired; 872 long nr_pages; 873 874 /* 875 * When set to zero, disable periodic writeback 876 */ 877 if (!dirty_writeback_interval) 878 return 0; 879 880 expired = wb->last_old_flush + 881 msecs_to_jiffies(dirty_writeback_interval * 10); 882 if (time_before(jiffies, expired)) 883 return 0; 884 885 wb->last_old_flush = jiffies; 886 nr_pages = global_page_state(NR_FILE_DIRTY) + 887 global_page_state(NR_UNSTABLE_NFS) + 888 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 889 890 if (nr_pages) { 891 struct wb_writeback_args args = { 892 .nr_pages = nr_pages, 893 .sync_mode = WB_SYNC_NONE, 894 .for_kupdate = 1, 895 .range_cyclic = 1, 896 }; 897 898 return wb_writeback(wb, &args); 899 } 900 901 return 0; 902 } 903 904 /* 905 * Retrieve work items and do the writeback they describe 906 */ 907 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 908 { 909 struct backing_dev_info *bdi = wb->bdi; 910 struct bdi_work *work; 911 long wrote = 0; 912 913 while ((work = get_next_work_item(bdi, wb)) != NULL) { 914 struct wb_writeback_args args = work->args; 915 int post_clear; 916 917 /* 918 * Override sync mode, in case we must wait for completion 919 */ 920 if (force_wait) 921 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL; 922 923 post_clear = WB_SYNC_ALL || args.sb_pinned; 924 925 /* 926 * If this isn't a data integrity operation, just notify 927 * that we have seen this work and we are now starting it. 928 */ 929 if (!post_clear) 930 wb_clear_pending(wb, work); 931 932 wrote += wb_writeback(wb, &args); 933 934 /* 935 * This is a data integrity writeback, so only do the 936 * notification when we have completed the work. 937 */ 938 if (post_clear) 939 wb_clear_pending(wb, work); 940 } 941 942 /* 943 * Check for periodic writeback, kupdated() style 944 */ 945 wrote += wb_check_old_data_flush(wb); 946 947 return wrote; 948 } 949 950 /* 951 * Handle writeback of dirty data for the device backed by this bdi. Also 952 * wakes up periodically and does kupdated style flushing. 953 */ 954 int bdi_writeback_task(struct bdi_writeback *wb) 955 { 956 unsigned long last_active = jiffies; 957 unsigned long wait_jiffies = -1UL; 958 long pages_written; 959 960 while (!kthread_should_stop()) { 961 pages_written = wb_do_writeback(wb, 0); 962 963 if (pages_written) 964 last_active = jiffies; 965 else if (wait_jiffies != -1UL) { 966 unsigned long max_idle; 967 968 /* 969 * Longest period of inactivity that we tolerate. If we 970 * see dirty data again later, the task will get 971 * recreated automatically. 972 */ 973 max_idle = max(5UL * 60 * HZ, wait_jiffies); 974 if (time_after(jiffies, max_idle + last_active)) 975 break; 976 } 977 978 if (dirty_writeback_interval) { 979 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10); 980 schedule_timeout_interruptible(wait_jiffies); 981 } else { 982 set_current_state(TASK_INTERRUPTIBLE); 983 if (list_empty_careful(&wb->bdi->work_list) && 984 !kthread_should_stop()) 985 schedule(); 986 __set_current_state(TASK_RUNNING); 987 } 988 989 try_to_freeze(); 990 } 991 992 return 0; 993 } 994 995 /* 996 * Schedule writeback for all backing devices. This does WB_SYNC_NONE 997 * writeback, for integrity writeback see bdi_sync_writeback(). 998 */ 999 static void bdi_writeback_all(struct super_block *sb, long nr_pages) 1000 { 1001 struct wb_writeback_args args = { 1002 .sb = sb, 1003 .nr_pages = nr_pages, 1004 .sync_mode = WB_SYNC_NONE, 1005 }; 1006 struct backing_dev_info *bdi; 1007 1008 rcu_read_lock(); 1009 1010 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1011 if (!bdi_has_dirty_io(bdi)) 1012 continue; 1013 1014 bdi_alloc_queue_work(bdi, &args, 0); 1015 } 1016 1017 rcu_read_unlock(); 1018 } 1019 1020 /* 1021 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1022 * the whole world. 1023 */ 1024 void wakeup_flusher_threads(long nr_pages) 1025 { 1026 if (nr_pages == 0) 1027 nr_pages = global_page_state(NR_FILE_DIRTY) + 1028 global_page_state(NR_UNSTABLE_NFS); 1029 bdi_writeback_all(NULL, nr_pages); 1030 } 1031 1032 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1033 { 1034 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1035 struct dentry *dentry; 1036 const char *name = "?"; 1037 1038 dentry = d_find_alias(inode); 1039 if (dentry) { 1040 spin_lock(&dentry->d_lock); 1041 name = (const char *) dentry->d_name.name; 1042 } 1043 printk(KERN_DEBUG 1044 "%s(%d): dirtied inode %lu (%s) on %s\n", 1045 current->comm, task_pid_nr(current), inode->i_ino, 1046 name, inode->i_sb->s_id); 1047 if (dentry) { 1048 spin_unlock(&dentry->d_lock); 1049 dput(dentry); 1050 } 1051 } 1052 } 1053 1054 /** 1055 * __mark_inode_dirty - internal function 1056 * @inode: inode to mark 1057 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1058 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1059 * mark_inode_dirty_sync. 1060 * 1061 * Put the inode on the super block's dirty list. 1062 * 1063 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1064 * dirty list only if it is hashed or if it refers to a blockdev. 1065 * If it was not hashed, it will never be added to the dirty list 1066 * even if it is later hashed, as it will have been marked dirty already. 1067 * 1068 * In short, make sure you hash any inodes _before_ you start marking 1069 * them dirty. 1070 * 1071 * This function *must* be atomic for the I_DIRTY_PAGES case - 1072 * set_page_dirty() is called under spinlock in several places. 1073 * 1074 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1075 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1076 * the kernel-internal blockdev inode represents the dirtying time of the 1077 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1078 * page->mapping->host, so the page-dirtying time is recorded in the internal 1079 * blockdev inode. 1080 */ 1081 void __mark_inode_dirty(struct inode *inode, int flags) 1082 { 1083 struct super_block *sb = inode->i_sb; 1084 1085 /* 1086 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1087 * dirty the inode itself 1088 */ 1089 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1090 if (sb->s_op->dirty_inode) 1091 sb->s_op->dirty_inode(inode); 1092 } 1093 1094 /* 1095 * make sure that changes are seen by all cpus before we test i_state 1096 * -- mikulas 1097 */ 1098 smp_mb(); 1099 1100 /* avoid the locking if we can */ 1101 if ((inode->i_state & flags) == flags) 1102 return; 1103 1104 if (unlikely(block_dump)) 1105 block_dump___mark_inode_dirty(inode); 1106 1107 spin_lock(&inode_lock); 1108 if ((inode->i_state & flags) != flags) { 1109 const int was_dirty = inode->i_state & I_DIRTY; 1110 1111 inode->i_state |= flags; 1112 1113 /* 1114 * If the inode is being synced, just update its dirty state. 1115 * The unlocker will place the inode on the appropriate 1116 * superblock list, based upon its state. 1117 */ 1118 if (inode->i_state & I_SYNC) 1119 goto out; 1120 1121 /* 1122 * Only add valid (hashed) inodes to the superblock's 1123 * dirty list. Add blockdev inodes as well. 1124 */ 1125 if (!S_ISBLK(inode->i_mode)) { 1126 if (hlist_unhashed(&inode->i_hash)) 1127 goto out; 1128 } 1129 if (inode->i_state & (I_FREEING|I_CLEAR)) 1130 goto out; 1131 1132 /* 1133 * If the inode was already on b_dirty/b_io/b_more_io, don't 1134 * reposition it (that would break b_dirty time-ordering). 1135 */ 1136 if (!was_dirty) { 1137 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1138 struct backing_dev_info *bdi = wb->bdi; 1139 1140 if (bdi_cap_writeback_dirty(bdi) && 1141 !test_bit(BDI_registered, &bdi->state)) { 1142 WARN_ON(1); 1143 printk(KERN_ERR "bdi-%s not registered\n", 1144 bdi->name); 1145 } 1146 1147 inode->dirtied_when = jiffies; 1148 list_move(&inode->i_list, &wb->b_dirty); 1149 } 1150 } 1151 out: 1152 spin_unlock(&inode_lock); 1153 } 1154 EXPORT_SYMBOL(__mark_inode_dirty); 1155 1156 /* 1157 * Write out a superblock's list of dirty inodes. A wait will be performed 1158 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1159 * 1160 * If older_than_this is non-NULL, then only write out inodes which 1161 * had their first dirtying at a time earlier than *older_than_this. 1162 * 1163 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1164 * This function assumes that the blockdev superblock's inodes are backed by 1165 * a variety of queues, so all inodes are searched. For other superblocks, 1166 * assume that all inodes are backed by the same queue. 1167 * 1168 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1169 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1170 * on the writer throttling path, and we get decent balancing between many 1171 * throttled threads: we don't want them all piling up on inode_sync_wait. 1172 */ 1173 static void wait_sb_inodes(struct super_block *sb) 1174 { 1175 struct inode *inode, *old_inode = NULL; 1176 1177 /* 1178 * We need to be protected against the filesystem going from 1179 * r/o to r/w or vice versa. 1180 */ 1181 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1182 1183 spin_lock(&inode_lock); 1184 1185 /* 1186 * Data integrity sync. Must wait for all pages under writeback, 1187 * because there may have been pages dirtied before our sync 1188 * call, but which had writeout started before we write it out. 1189 * In which case, the inode may not be on the dirty list, but 1190 * we still have to wait for that writeout. 1191 */ 1192 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1193 struct address_space *mapping; 1194 1195 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW)) 1196 continue; 1197 mapping = inode->i_mapping; 1198 if (mapping->nrpages == 0) 1199 continue; 1200 __iget(inode); 1201 spin_unlock(&inode_lock); 1202 /* 1203 * We hold a reference to 'inode' so it couldn't have 1204 * been removed from s_inodes list while we dropped the 1205 * inode_lock. We cannot iput the inode now as we can 1206 * be holding the last reference and we cannot iput it 1207 * under inode_lock. So we keep the reference and iput 1208 * it later. 1209 */ 1210 iput(old_inode); 1211 old_inode = inode; 1212 1213 filemap_fdatawait(mapping); 1214 1215 cond_resched(); 1216 1217 spin_lock(&inode_lock); 1218 } 1219 spin_unlock(&inode_lock); 1220 iput(old_inode); 1221 } 1222 1223 static void __writeback_inodes_sb(struct super_block *sb, int sb_locked) 1224 { 1225 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 1226 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 1227 long nr_to_write; 1228 1229 nr_to_write = nr_dirty + nr_unstable + 1230 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 1231 1232 bdi_start_writeback(sb->s_bdi, sb, nr_to_write, sb_locked); 1233 } 1234 1235 /** 1236 * writeback_inodes_sb - writeback dirty inodes from given super_block 1237 * @sb: the superblock 1238 * 1239 * Start writeback on some inodes on this super_block. No guarantees are made 1240 * on how many (if any) will be written, and this function does not wait 1241 * for IO completion of submitted IO. The number of pages submitted is 1242 * returned. 1243 */ 1244 void writeback_inodes_sb(struct super_block *sb) 1245 { 1246 __writeback_inodes_sb(sb, 0); 1247 } 1248 EXPORT_SYMBOL(writeback_inodes_sb); 1249 1250 /** 1251 * writeback_inodes_sb_locked - writeback dirty inodes from given super_block 1252 * @sb: the superblock 1253 * 1254 * Like writeback_inodes_sb(), except the caller already holds the 1255 * sb umount sem. 1256 */ 1257 void writeback_inodes_sb_locked(struct super_block *sb) 1258 { 1259 __writeback_inodes_sb(sb, 1); 1260 } 1261 1262 /** 1263 * writeback_inodes_sb_if_idle - start writeback if none underway 1264 * @sb: the superblock 1265 * 1266 * Invoke writeback_inodes_sb if no writeback is currently underway. 1267 * Returns 1 if writeback was started, 0 if not. 1268 */ 1269 int writeback_inodes_sb_if_idle(struct super_block *sb) 1270 { 1271 if (!writeback_in_progress(sb->s_bdi)) { 1272 writeback_inodes_sb(sb); 1273 return 1; 1274 } else 1275 return 0; 1276 } 1277 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1278 1279 /** 1280 * sync_inodes_sb - sync sb inode pages 1281 * @sb: the superblock 1282 * 1283 * This function writes and waits on any dirty inode belonging to this 1284 * super_block. The number of pages synced is returned. 1285 */ 1286 void sync_inodes_sb(struct super_block *sb) 1287 { 1288 bdi_sync_writeback(sb->s_bdi, sb); 1289 wait_sb_inodes(sb); 1290 } 1291 EXPORT_SYMBOL(sync_inodes_sb); 1292 1293 /** 1294 * write_inode_now - write an inode to disk 1295 * @inode: inode to write to disk 1296 * @sync: whether the write should be synchronous or not 1297 * 1298 * This function commits an inode to disk immediately if it is dirty. This is 1299 * primarily needed by knfsd. 1300 * 1301 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1302 */ 1303 int write_inode_now(struct inode *inode, int sync) 1304 { 1305 int ret; 1306 struct writeback_control wbc = { 1307 .nr_to_write = LONG_MAX, 1308 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1309 .range_start = 0, 1310 .range_end = LLONG_MAX, 1311 }; 1312 1313 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1314 wbc.nr_to_write = 0; 1315 1316 might_sleep(); 1317 spin_lock(&inode_lock); 1318 ret = writeback_single_inode(inode, &wbc); 1319 spin_unlock(&inode_lock); 1320 if (sync) 1321 inode_sync_wait(inode); 1322 return ret; 1323 } 1324 EXPORT_SYMBOL(write_inode_now); 1325 1326 /** 1327 * sync_inode - write an inode and its pages to disk. 1328 * @inode: the inode to sync 1329 * @wbc: controls the writeback mode 1330 * 1331 * sync_inode() will write an inode and its pages to disk. It will also 1332 * correctly update the inode on its superblock's dirty inode lists and will 1333 * update inode->i_state. 1334 * 1335 * The caller must have a ref on the inode. 1336 */ 1337 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1338 { 1339 int ret; 1340 1341 spin_lock(&inode_lock); 1342 ret = writeback_single_inode(inode, wbc); 1343 spin_unlock(&inode_lock); 1344 return ret; 1345 } 1346 EXPORT_SYMBOL(sync_inode); 1347