1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include <linux/memcontrol.h> 31 #include "internal.h" 32 33 /* 34 * 4MB minimal write chunk size 35 */ 36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 37 38 struct wb_completion { 39 atomic_t cnt; 40 }; 41 42 /* 43 * Passed into wb_writeback(), essentially a subset of writeback_control 44 */ 45 struct wb_writeback_work { 46 long nr_pages; 47 struct super_block *sb; 48 unsigned long *older_than_this; 49 enum writeback_sync_modes sync_mode; 50 unsigned int tagged_writepages:1; 51 unsigned int for_kupdate:1; 52 unsigned int range_cyclic:1; 53 unsigned int for_background:1; 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 55 unsigned int auto_free:1; /* free on completion */ 56 enum wb_reason reason; /* why was writeback initiated? */ 57 58 struct list_head list; /* pending work list */ 59 struct wb_completion *done; /* set if the caller waits */ 60 }; 61 62 /* 63 * If one wants to wait for one or more wb_writeback_works, each work's 64 * ->done should be set to a wb_completion defined using the following 65 * macro. Once all work items are issued with wb_queue_work(), the caller 66 * can wait for the completion of all using wb_wait_for_completion(). Work 67 * items which are waited upon aren't freed automatically on completion. 68 */ 69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \ 70 struct wb_completion cmpl = { \ 71 .cnt = ATOMIC_INIT(1), \ 72 } 73 74 75 /* 76 * If an inode is constantly having its pages dirtied, but then the 77 * updates stop dirtytime_expire_interval seconds in the past, it's 78 * possible for the worst case time between when an inode has its 79 * timestamps updated and when they finally get written out to be two 80 * dirtytime_expire_intervals. We set the default to 12 hours (in 81 * seconds), which means most of the time inodes will have their 82 * timestamps written to disk after 12 hours, but in the worst case a 83 * few inodes might not their timestamps updated for 24 hours. 84 */ 85 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 86 87 static inline struct inode *wb_inode(struct list_head *head) 88 { 89 return list_entry(head, struct inode, i_io_list); 90 } 91 92 /* 93 * Include the creation of the trace points after defining the 94 * wb_writeback_work structure and inline functions so that the definition 95 * remains local to this file. 96 */ 97 #define CREATE_TRACE_POINTS 98 #include <trace/events/writeback.h> 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 101 102 static bool wb_io_lists_populated(struct bdi_writeback *wb) 103 { 104 if (wb_has_dirty_io(wb)) { 105 return false; 106 } else { 107 set_bit(WB_has_dirty_io, &wb->state); 108 WARN_ON_ONCE(!wb->avg_write_bandwidth); 109 atomic_long_add(wb->avg_write_bandwidth, 110 &wb->bdi->tot_write_bandwidth); 111 return true; 112 } 113 } 114 115 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 116 { 117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 119 clear_bit(WB_has_dirty_io, &wb->state); 120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 121 &wb->bdi->tot_write_bandwidth) < 0); 122 } 123 } 124 125 /** 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 127 * @inode: inode to be moved 128 * @wb: target bdi_writeback 129 * @head: one of @wb->b_{dirty|io|more_io} 130 * 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 132 * Returns %true if @inode is the first occupant of the !dirty_time IO 133 * lists; otherwise, %false. 134 */ 135 static bool inode_io_list_move_locked(struct inode *inode, 136 struct bdi_writeback *wb, 137 struct list_head *head) 138 { 139 assert_spin_locked(&wb->list_lock); 140 141 list_move(&inode->i_io_list, head); 142 143 /* dirty_time doesn't count as dirty_io until expiration */ 144 if (head != &wb->b_dirty_time) 145 return wb_io_lists_populated(wb); 146 147 wb_io_lists_depopulated(wb); 148 return false; 149 } 150 151 /** 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 153 * @inode: inode to be removed 154 * @wb: bdi_writeback @inode is being removed from 155 * 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 157 * clear %WB_has_dirty_io if all are empty afterwards. 158 */ 159 static void inode_io_list_del_locked(struct inode *inode, 160 struct bdi_writeback *wb) 161 { 162 assert_spin_locked(&wb->list_lock); 163 164 list_del_init(&inode->i_io_list); 165 wb_io_lists_depopulated(wb); 166 } 167 168 static void wb_wakeup(struct bdi_writeback *wb) 169 { 170 spin_lock_bh(&wb->work_lock); 171 if (test_bit(WB_registered, &wb->state)) 172 mod_delayed_work(bdi_wq, &wb->dwork, 0); 173 spin_unlock_bh(&wb->work_lock); 174 } 175 176 static void wb_queue_work(struct bdi_writeback *wb, 177 struct wb_writeback_work *work) 178 { 179 trace_writeback_queue(wb, work); 180 181 spin_lock_bh(&wb->work_lock); 182 if (!test_bit(WB_registered, &wb->state)) 183 goto out_unlock; 184 if (work->done) 185 atomic_inc(&work->done->cnt); 186 list_add_tail(&work->list, &wb->work_list); 187 mod_delayed_work(bdi_wq, &wb->dwork, 0); 188 out_unlock: 189 spin_unlock_bh(&wb->work_lock); 190 } 191 192 /** 193 * wb_wait_for_completion - wait for completion of bdi_writeback_works 194 * @bdi: bdi work items were issued to 195 * @done: target wb_completion 196 * 197 * Wait for one or more work items issued to @bdi with their ->done field 198 * set to @done, which should have been defined with 199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such 200 * work items are completed. Work items which are waited upon aren't freed 201 * automatically on completion. 202 */ 203 static void wb_wait_for_completion(struct backing_dev_info *bdi, 204 struct wb_completion *done) 205 { 206 atomic_dec(&done->cnt); /* put down the initial count */ 207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt)); 208 } 209 210 #ifdef CONFIG_CGROUP_WRITEBACK 211 212 /* parameters for foreign inode detection, see wb_detach_inode() */ 213 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 214 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 215 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */ 216 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 217 218 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 219 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 220 /* each slot's duration is 2s / 16 */ 221 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 222 /* if foreign slots >= 8, switch */ 223 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 224 /* one round can affect upto 5 slots */ 225 226 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 227 static struct workqueue_struct *isw_wq; 228 229 void __inode_attach_wb(struct inode *inode, struct page *page) 230 { 231 struct backing_dev_info *bdi = inode_to_bdi(inode); 232 struct bdi_writeback *wb = NULL; 233 234 if (inode_cgwb_enabled(inode)) { 235 struct cgroup_subsys_state *memcg_css; 236 237 if (page) { 238 memcg_css = mem_cgroup_css_from_page(page); 239 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 240 } else { 241 /* must pin memcg_css, see wb_get_create() */ 242 memcg_css = task_get_css(current, memory_cgrp_id); 243 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 244 css_put(memcg_css); 245 } 246 } 247 248 if (!wb) 249 wb = &bdi->wb; 250 251 /* 252 * There may be multiple instances of this function racing to 253 * update the same inode. Use cmpxchg() to tell the winner. 254 */ 255 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 256 wb_put(wb); 257 } 258 259 /** 260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 261 * @inode: inode of interest with i_lock held 262 * 263 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 264 * held on entry and is released on return. The returned wb is guaranteed 265 * to stay @inode's associated wb until its list_lock is released. 266 */ 267 static struct bdi_writeback * 268 locked_inode_to_wb_and_lock_list(struct inode *inode) 269 __releases(&inode->i_lock) 270 __acquires(&wb->list_lock) 271 { 272 while (true) { 273 struct bdi_writeback *wb = inode_to_wb(inode); 274 275 /* 276 * inode_to_wb() association is protected by both 277 * @inode->i_lock and @wb->list_lock but list_lock nests 278 * outside i_lock. Drop i_lock and verify that the 279 * association hasn't changed after acquiring list_lock. 280 */ 281 wb_get(wb); 282 spin_unlock(&inode->i_lock); 283 spin_lock(&wb->list_lock); 284 285 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 286 if (likely(wb == inode->i_wb)) { 287 wb_put(wb); /* @inode already has ref */ 288 return wb; 289 } 290 291 spin_unlock(&wb->list_lock); 292 wb_put(wb); 293 cpu_relax(); 294 spin_lock(&inode->i_lock); 295 } 296 } 297 298 /** 299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 300 * @inode: inode of interest 301 * 302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 303 * on entry. 304 */ 305 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 306 __acquires(&wb->list_lock) 307 { 308 spin_lock(&inode->i_lock); 309 return locked_inode_to_wb_and_lock_list(inode); 310 } 311 312 struct inode_switch_wbs_context { 313 struct inode *inode; 314 struct bdi_writeback *new_wb; 315 316 struct rcu_head rcu_head; 317 struct work_struct work; 318 }; 319 320 static void inode_switch_wbs_work_fn(struct work_struct *work) 321 { 322 struct inode_switch_wbs_context *isw = 323 container_of(work, struct inode_switch_wbs_context, work); 324 struct inode *inode = isw->inode; 325 struct address_space *mapping = inode->i_mapping; 326 struct bdi_writeback *old_wb = inode->i_wb; 327 struct bdi_writeback *new_wb = isw->new_wb; 328 struct radix_tree_iter iter; 329 bool switched = false; 330 void **slot; 331 332 /* 333 * By the time control reaches here, RCU grace period has passed 334 * since I_WB_SWITCH assertion and all wb stat update transactions 335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 336 * synchronizing against mapping->tree_lock. 337 * 338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock 339 * gives us exclusion against all wb related operations on @inode 340 * including IO list manipulations and stat updates. 341 */ 342 if (old_wb < new_wb) { 343 spin_lock(&old_wb->list_lock); 344 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 345 } else { 346 spin_lock(&new_wb->list_lock); 347 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 348 } 349 spin_lock(&inode->i_lock); 350 spin_lock_irq(&mapping->tree_lock); 351 352 /* 353 * Once I_FREEING is visible under i_lock, the eviction path owns 354 * the inode and we shouldn't modify ->i_io_list. 355 */ 356 if (unlikely(inode->i_state & I_FREEING)) 357 goto skip_switch; 358 359 /* 360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 362 * pages actually under underwriteback. 363 */ 364 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0, 365 PAGECACHE_TAG_DIRTY) { 366 struct page *page = radix_tree_deref_slot_protected(slot, 367 &mapping->tree_lock); 368 if (likely(page) && PageDirty(page)) { 369 __dec_wb_stat(old_wb, WB_RECLAIMABLE); 370 __inc_wb_stat(new_wb, WB_RECLAIMABLE); 371 } 372 } 373 374 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0, 375 PAGECACHE_TAG_WRITEBACK) { 376 struct page *page = radix_tree_deref_slot_protected(slot, 377 &mapping->tree_lock); 378 if (likely(page)) { 379 WARN_ON_ONCE(!PageWriteback(page)); 380 __dec_wb_stat(old_wb, WB_WRITEBACK); 381 __inc_wb_stat(new_wb, WB_WRITEBACK); 382 } 383 } 384 385 wb_get(new_wb); 386 387 /* 388 * Transfer to @new_wb's IO list if necessary. The specific list 389 * @inode was on is ignored and the inode is put on ->b_dirty which 390 * is always correct including from ->b_dirty_time. The transfer 391 * preserves @inode->dirtied_when ordering. 392 */ 393 if (!list_empty(&inode->i_io_list)) { 394 struct inode *pos; 395 396 inode_io_list_del_locked(inode, old_wb); 397 inode->i_wb = new_wb; 398 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 399 if (time_after_eq(inode->dirtied_when, 400 pos->dirtied_when)) 401 break; 402 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 403 } else { 404 inode->i_wb = new_wb; 405 } 406 407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 408 inode->i_wb_frn_winner = 0; 409 inode->i_wb_frn_avg_time = 0; 410 inode->i_wb_frn_history = 0; 411 switched = true; 412 skip_switch: 413 /* 414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 415 * ensures that the new wb is visible if they see !I_WB_SWITCH. 416 */ 417 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 418 419 spin_unlock_irq(&mapping->tree_lock); 420 spin_unlock(&inode->i_lock); 421 spin_unlock(&new_wb->list_lock); 422 spin_unlock(&old_wb->list_lock); 423 424 if (switched) { 425 wb_wakeup(new_wb); 426 wb_put(old_wb); 427 } 428 wb_put(new_wb); 429 430 iput(inode); 431 kfree(isw); 432 433 atomic_dec(&isw_nr_in_flight); 434 } 435 436 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 437 { 438 struct inode_switch_wbs_context *isw = container_of(rcu_head, 439 struct inode_switch_wbs_context, rcu_head); 440 441 /* needs to grab bh-unsafe locks, bounce to work item */ 442 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 443 queue_work(isw_wq, &isw->work); 444 } 445 446 /** 447 * inode_switch_wbs - change the wb association of an inode 448 * @inode: target inode 449 * @new_wb_id: ID of the new wb 450 * 451 * Switch @inode's wb association to the wb identified by @new_wb_id. The 452 * switching is performed asynchronously and may fail silently. 453 */ 454 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 455 { 456 struct backing_dev_info *bdi = inode_to_bdi(inode); 457 struct cgroup_subsys_state *memcg_css; 458 struct inode_switch_wbs_context *isw; 459 460 /* noop if seems to be already in progress */ 461 if (inode->i_state & I_WB_SWITCH) 462 return; 463 464 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 465 if (!isw) 466 return; 467 468 /* find and pin the new wb */ 469 rcu_read_lock(); 470 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 471 if (memcg_css) 472 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 473 rcu_read_unlock(); 474 if (!isw->new_wb) 475 goto out_free; 476 477 /* while holding I_WB_SWITCH, no one else can update the association */ 478 spin_lock(&inode->i_lock); 479 if (!(inode->i_sb->s_flags & MS_ACTIVE) || 480 inode->i_state & (I_WB_SWITCH | I_FREEING) || 481 inode_to_wb(inode) == isw->new_wb) { 482 spin_unlock(&inode->i_lock); 483 goto out_free; 484 } 485 inode->i_state |= I_WB_SWITCH; 486 __iget(inode); 487 spin_unlock(&inode->i_lock); 488 489 isw->inode = inode; 490 491 atomic_inc(&isw_nr_in_flight); 492 493 /* 494 * In addition to synchronizing among switchers, I_WB_SWITCH tells 495 * the RCU protected stat update paths to grab the mapping's 496 * tree_lock so that stat transfer can synchronize against them. 497 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 498 */ 499 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 500 return; 501 502 out_free: 503 if (isw->new_wb) 504 wb_put(isw->new_wb); 505 kfree(isw); 506 } 507 508 /** 509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 510 * @wbc: writeback_control of interest 511 * @inode: target inode 512 * 513 * @inode is locked and about to be written back under the control of @wbc. 514 * Record @inode's writeback context into @wbc and unlock the i_lock. On 515 * writeback completion, wbc_detach_inode() should be called. This is used 516 * to track the cgroup writeback context. 517 */ 518 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 519 struct inode *inode) 520 { 521 if (!inode_cgwb_enabled(inode)) { 522 spin_unlock(&inode->i_lock); 523 return; 524 } 525 526 wbc->wb = inode_to_wb(inode); 527 wbc->inode = inode; 528 529 wbc->wb_id = wbc->wb->memcg_css->id; 530 wbc->wb_lcand_id = inode->i_wb_frn_winner; 531 wbc->wb_tcand_id = 0; 532 wbc->wb_bytes = 0; 533 wbc->wb_lcand_bytes = 0; 534 wbc->wb_tcand_bytes = 0; 535 536 wb_get(wbc->wb); 537 spin_unlock(&inode->i_lock); 538 539 /* 540 * A dying wb indicates that the memcg-blkcg mapping has changed 541 * and a new wb is already serving the memcg. Switch immediately. 542 */ 543 if (unlikely(wb_dying(wbc->wb))) 544 inode_switch_wbs(inode, wbc->wb_id); 545 } 546 547 /** 548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 549 * @wbc: writeback_control of the just finished writeback 550 * 551 * To be called after a writeback attempt of an inode finishes and undoes 552 * wbc_attach_and_unlock_inode(). Can be called under any context. 553 * 554 * As concurrent write sharing of an inode is expected to be very rare and 555 * memcg only tracks page ownership on first-use basis severely confining 556 * the usefulness of such sharing, cgroup writeback tracks ownership 557 * per-inode. While the support for concurrent write sharing of an inode 558 * is deemed unnecessary, an inode being written to by different cgroups at 559 * different points in time is a lot more common, and, more importantly, 560 * charging only by first-use can too readily lead to grossly incorrect 561 * behaviors (single foreign page can lead to gigabytes of writeback to be 562 * incorrectly attributed). 563 * 564 * To resolve this issue, cgroup writeback detects the majority dirtier of 565 * an inode and transfers the ownership to it. To avoid unnnecessary 566 * oscillation, the detection mechanism keeps track of history and gives 567 * out the switch verdict only if the foreign usage pattern is stable over 568 * a certain amount of time and/or writeback attempts. 569 * 570 * On each writeback attempt, @wbc tries to detect the majority writer 571 * using Boyer-Moore majority vote algorithm. In addition to the byte 572 * count from the majority voting, it also counts the bytes written for the 573 * current wb and the last round's winner wb (max of last round's current 574 * wb, the winner from two rounds ago, and the last round's majority 575 * candidate). Keeping track of the historical winner helps the algorithm 576 * to semi-reliably detect the most active writer even when it's not the 577 * absolute majority. 578 * 579 * Once the winner of the round is determined, whether the winner is 580 * foreign or not and how much IO time the round consumed is recorded in 581 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 582 * over a certain threshold, the switch verdict is given. 583 */ 584 void wbc_detach_inode(struct writeback_control *wbc) 585 { 586 struct bdi_writeback *wb = wbc->wb; 587 struct inode *inode = wbc->inode; 588 unsigned long avg_time, max_bytes, max_time; 589 u16 history; 590 int max_id; 591 592 if (!wb) 593 return; 594 595 history = inode->i_wb_frn_history; 596 avg_time = inode->i_wb_frn_avg_time; 597 598 /* pick the winner of this round */ 599 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 600 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 601 max_id = wbc->wb_id; 602 max_bytes = wbc->wb_bytes; 603 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 604 max_id = wbc->wb_lcand_id; 605 max_bytes = wbc->wb_lcand_bytes; 606 } else { 607 max_id = wbc->wb_tcand_id; 608 max_bytes = wbc->wb_tcand_bytes; 609 } 610 611 /* 612 * Calculate the amount of IO time the winner consumed and fold it 613 * into the running average kept per inode. If the consumed IO 614 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 615 * deciding whether to switch or not. This is to prevent one-off 616 * small dirtiers from skewing the verdict. 617 */ 618 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 619 wb->avg_write_bandwidth); 620 if (avg_time) 621 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 622 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 623 else 624 avg_time = max_time; /* immediate catch up on first run */ 625 626 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 627 int slots; 628 629 /* 630 * The switch verdict is reached if foreign wb's consume 631 * more than a certain proportion of IO time in a 632 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 633 * history mask where each bit represents one sixteenth of 634 * the period. Determine the number of slots to shift into 635 * history from @max_time. 636 */ 637 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 638 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 639 history <<= slots; 640 if (wbc->wb_id != max_id) 641 history |= (1U << slots) - 1; 642 643 /* 644 * Switch if the current wb isn't the consistent winner. 645 * If there are multiple closely competing dirtiers, the 646 * inode may switch across them repeatedly over time, which 647 * is okay. The main goal is avoiding keeping an inode on 648 * the wrong wb for an extended period of time. 649 */ 650 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 651 inode_switch_wbs(inode, max_id); 652 } 653 654 /* 655 * Multiple instances of this function may race to update the 656 * following fields but we don't mind occassional inaccuracies. 657 */ 658 inode->i_wb_frn_winner = max_id; 659 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 660 inode->i_wb_frn_history = history; 661 662 wb_put(wbc->wb); 663 wbc->wb = NULL; 664 } 665 666 /** 667 * wbc_account_io - account IO issued during writeback 668 * @wbc: writeback_control of the writeback in progress 669 * @page: page being written out 670 * @bytes: number of bytes being written out 671 * 672 * @bytes from @page are about to written out during the writeback 673 * controlled by @wbc. Keep the book for foreign inode detection. See 674 * wbc_detach_inode(). 675 */ 676 void wbc_account_io(struct writeback_control *wbc, struct page *page, 677 size_t bytes) 678 { 679 int id; 680 681 /* 682 * pageout() path doesn't attach @wbc to the inode being written 683 * out. This is intentional as we don't want the function to block 684 * behind a slow cgroup. Ultimately, we want pageout() to kick off 685 * regular writeback instead of writing things out itself. 686 */ 687 if (!wbc->wb) 688 return; 689 690 id = mem_cgroup_css_from_page(page)->id; 691 692 if (id == wbc->wb_id) { 693 wbc->wb_bytes += bytes; 694 return; 695 } 696 697 if (id == wbc->wb_lcand_id) 698 wbc->wb_lcand_bytes += bytes; 699 700 /* Boyer-Moore majority vote algorithm */ 701 if (!wbc->wb_tcand_bytes) 702 wbc->wb_tcand_id = id; 703 if (id == wbc->wb_tcand_id) 704 wbc->wb_tcand_bytes += bytes; 705 else 706 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 707 } 708 EXPORT_SYMBOL_GPL(wbc_account_io); 709 710 /** 711 * inode_congested - test whether an inode is congested 712 * @inode: inode to test for congestion (may be NULL) 713 * @cong_bits: mask of WB_[a]sync_congested bits to test 714 * 715 * Tests whether @inode is congested. @cong_bits is the mask of congestion 716 * bits to test and the return value is the mask of set bits. 717 * 718 * If cgroup writeback is enabled for @inode, the congestion state is 719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 720 * associated with @inode is congested; otherwise, the root wb's congestion 721 * state is used. 722 * 723 * @inode is allowed to be NULL as this function is often called on 724 * mapping->host which is NULL for the swapper space. 725 */ 726 int inode_congested(struct inode *inode, int cong_bits) 727 { 728 /* 729 * Once set, ->i_wb never becomes NULL while the inode is alive. 730 * Start transaction iff ->i_wb is visible. 731 */ 732 if (inode && inode_to_wb_is_valid(inode)) { 733 struct bdi_writeback *wb; 734 bool locked, congested; 735 736 wb = unlocked_inode_to_wb_begin(inode, &locked); 737 congested = wb_congested(wb, cong_bits); 738 unlocked_inode_to_wb_end(inode, locked); 739 return congested; 740 } 741 742 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 743 } 744 EXPORT_SYMBOL_GPL(inode_congested); 745 746 /** 747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 748 * @wb: target bdi_writeback to split @nr_pages to 749 * @nr_pages: number of pages to write for the whole bdi 750 * 751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 752 * relation to the total write bandwidth of all wb's w/ dirty inodes on 753 * @wb->bdi. 754 */ 755 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 756 { 757 unsigned long this_bw = wb->avg_write_bandwidth; 758 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 759 760 if (nr_pages == LONG_MAX) 761 return LONG_MAX; 762 763 /* 764 * This may be called on clean wb's and proportional distribution 765 * may not make sense, just use the original @nr_pages in those 766 * cases. In general, we wanna err on the side of writing more. 767 */ 768 if (!tot_bw || this_bw >= tot_bw) 769 return nr_pages; 770 else 771 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 772 } 773 774 /** 775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 776 * @bdi: target backing_dev_info 777 * @base_work: wb_writeback_work to issue 778 * @skip_if_busy: skip wb's which already have writeback in progress 779 * 780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 781 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 782 * distributed to the busy wbs according to each wb's proportion in the 783 * total active write bandwidth of @bdi. 784 */ 785 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 786 struct wb_writeback_work *base_work, 787 bool skip_if_busy) 788 { 789 struct bdi_writeback *last_wb = NULL; 790 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 791 struct bdi_writeback, bdi_node); 792 793 might_sleep(); 794 restart: 795 rcu_read_lock(); 796 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 797 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done); 798 struct wb_writeback_work fallback_work; 799 struct wb_writeback_work *work; 800 long nr_pages; 801 802 if (last_wb) { 803 wb_put(last_wb); 804 last_wb = NULL; 805 } 806 807 /* SYNC_ALL writes out I_DIRTY_TIME too */ 808 if (!wb_has_dirty_io(wb) && 809 (base_work->sync_mode == WB_SYNC_NONE || 810 list_empty(&wb->b_dirty_time))) 811 continue; 812 if (skip_if_busy && writeback_in_progress(wb)) 813 continue; 814 815 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 816 817 work = kmalloc(sizeof(*work), GFP_ATOMIC); 818 if (work) { 819 *work = *base_work; 820 work->nr_pages = nr_pages; 821 work->auto_free = 1; 822 wb_queue_work(wb, work); 823 continue; 824 } 825 826 /* alloc failed, execute synchronously using on-stack fallback */ 827 work = &fallback_work; 828 *work = *base_work; 829 work->nr_pages = nr_pages; 830 work->auto_free = 0; 831 work->done = &fallback_work_done; 832 833 wb_queue_work(wb, work); 834 835 /* 836 * Pin @wb so that it stays on @bdi->wb_list. This allows 837 * continuing iteration from @wb after dropping and 838 * regrabbing rcu read lock. 839 */ 840 wb_get(wb); 841 last_wb = wb; 842 843 rcu_read_unlock(); 844 wb_wait_for_completion(bdi, &fallback_work_done); 845 goto restart; 846 } 847 rcu_read_unlock(); 848 849 if (last_wb) 850 wb_put(last_wb); 851 } 852 853 /** 854 * cgroup_writeback_umount - flush inode wb switches for umount 855 * 856 * This function is called when a super_block is about to be destroyed and 857 * flushes in-flight inode wb switches. An inode wb switch goes through 858 * RCU and then workqueue, so the two need to be flushed in order to ensure 859 * that all previously scheduled switches are finished. As wb switches are 860 * rare occurrences and synchronize_rcu() can take a while, perform 861 * flushing iff wb switches are in flight. 862 */ 863 void cgroup_writeback_umount(void) 864 { 865 if (atomic_read(&isw_nr_in_flight)) { 866 synchronize_rcu(); 867 flush_workqueue(isw_wq); 868 } 869 } 870 871 static int __init cgroup_writeback_init(void) 872 { 873 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 874 if (!isw_wq) 875 return -ENOMEM; 876 return 0; 877 } 878 fs_initcall(cgroup_writeback_init); 879 880 #else /* CONFIG_CGROUP_WRITEBACK */ 881 882 static struct bdi_writeback * 883 locked_inode_to_wb_and_lock_list(struct inode *inode) 884 __releases(&inode->i_lock) 885 __acquires(&wb->list_lock) 886 { 887 struct bdi_writeback *wb = inode_to_wb(inode); 888 889 spin_unlock(&inode->i_lock); 890 spin_lock(&wb->list_lock); 891 return wb; 892 } 893 894 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 895 __acquires(&wb->list_lock) 896 { 897 struct bdi_writeback *wb = inode_to_wb(inode); 898 899 spin_lock(&wb->list_lock); 900 return wb; 901 } 902 903 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 904 { 905 return nr_pages; 906 } 907 908 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 909 struct wb_writeback_work *base_work, 910 bool skip_if_busy) 911 { 912 might_sleep(); 913 914 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 915 base_work->auto_free = 0; 916 wb_queue_work(&bdi->wb, base_work); 917 } 918 } 919 920 #endif /* CONFIG_CGROUP_WRITEBACK */ 921 922 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages, 923 bool range_cyclic, enum wb_reason reason) 924 { 925 struct wb_writeback_work *work; 926 927 if (!wb_has_dirty_io(wb)) 928 return; 929 930 /* 931 * This is WB_SYNC_NONE writeback, so if allocation fails just 932 * wakeup the thread for old dirty data writeback 933 */ 934 work = kzalloc(sizeof(*work), 935 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 936 if (!work) { 937 trace_writeback_nowork(wb); 938 wb_wakeup(wb); 939 return; 940 } 941 942 work->sync_mode = WB_SYNC_NONE; 943 work->nr_pages = nr_pages; 944 work->range_cyclic = range_cyclic; 945 work->reason = reason; 946 work->auto_free = 1; 947 948 wb_queue_work(wb, work); 949 } 950 951 /** 952 * wb_start_background_writeback - start background writeback 953 * @wb: bdi_writback to write from 954 * 955 * Description: 956 * This makes sure WB_SYNC_NONE background writeback happens. When 957 * this function returns, it is only guaranteed that for given wb 958 * some IO is happening if we are over background dirty threshold. 959 * Caller need not hold sb s_umount semaphore. 960 */ 961 void wb_start_background_writeback(struct bdi_writeback *wb) 962 { 963 /* 964 * We just wake up the flusher thread. It will perform background 965 * writeback as soon as there is no other work to do. 966 */ 967 trace_writeback_wake_background(wb); 968 wb_wakeup(wb); 969 } 970 971 /* 972 * Remove the inode from the writeback list it is on. 973 */ 974 void inode_io_list_del(struct inode *inode) 975 { 976 struct bdi_writeback *wb; 977 978 wb = inode_to_wb_and_lock_list(inode); 979 inode_io_list_del_locked(inode, wb); 980 spin_unlock(&wb->list_lock); 981 } 982 983 /* 984 * mark an inode as under writeback on the sb 985 */ 986 void sb_mark_inode_writeback(struct inode *inode) 987 { 988 struct super_block *sb = inode->i_sb; 989 unsigned long flags; 990 991 if (list_empty(&inode->i_wb_list)) { 992 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 993 if (list_empty(&inode->i_wb_list)) { 994 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 995 trace_sb_mark_inode_writeback(inode); 996 } 997 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 998 } 999 } 1000 1001 /* 1002 * clear an inode as under writeback on the sb 1003 */ 1004 void sb_clear_inode_writeback(struct inode *inode) 1005 { 1006 struct super_block *sb = inode->i_sb; 1007 unsigned long flags; 1008 1009 if (!list_empty(&inode->i_wb_list)) { 1010 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1011 if (!list_empty(&inode->i_wb_list)) { 1012 list_del_init(&inode->i_wb_list); 1013 trace_sb_clear_inode_writeback(inode); 1014 } 1015 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1016 } 1017 } 1018 1019 /* 1020 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1021 * furthest end of its superblock's dirty-inode list. 1022 * 1023 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1024 * already the most-recently-dirtied inode on the b_dirty list. If that is 1025 * the case then the inode must have been redirtied while it was being written 1026 * out and we don't reset its dirtied_when. 1027 */ 1028 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1029 { 1030 if (!list_empty(&wb->b_dirty)) { 1031 struct inode *tail; 1032 1033 tail = wb_inode(wb->b_dirty.next); 1034 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1035 inode->dirtied_when = jiffies; 1036 } 1037 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1038 } 1039 1040 /* 1041 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1042 */ 1043 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1044 { 1045 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1046 } 1047 1048 static void inode_sync_complete(struct inode *inode) 1049 { 1050 inode->i_state &= ~I_SYNC; 1051 /* If inode is clean an unused, put it into LRU now... */ 1052 inode_add_lru(inode); 1053 /* Waiters must see I_SYNC cleared before being woken up */ 1054 smp_mb(); 1055 wake_up_bit(&inode->i_state, __I_SYNC); 1056 } 1057 1058 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1059 { 1060 bool ret = time_after(inode->dirtied_when, t); 1061 #ifndef CONFIG_64BIT 1062 /* 1063 * For inodes being constantly redirtied, dirtied_when can get stuck. 1064 * It _appears_ to be in the future, but is actually in distant past. 1065 * This test is necessary to prevent such wrapped-around relative times 1066 * from permanently stopping the whole bdi writeback. 1067 */ 1068 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1069 #endif 1070 return ret; 1071 } 1072 1073 #define EXPIRE_DIRTY_ATIME 0x0001 1074 1075 /* 1076 * Move expired (dirtied before work->older_than_this) dirty inodes from 1077 * @delaying_queue to @dispatch_queue. 1078 */ 1079 static int move_expired_inodes(struct list_head *delaying_queue, 1080 struct list_head *dispatch_queue, 1081 int flags, 1082 struct wb_writeback_work *work) 1083 { 1084 unsigned long *older_than_this = NULL; 1085 unsigned long expire_time; 1086 LIST_HEAD(tmp); 1087 struct list_head *pos, *node; 1088 struct super_block *sb = NULL; 1089 struct inode *inode; 1090 int do_sb_sort = 0; 1091 int moved = 0; 1092 1093 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1094 older_than_this = work->older_than_this; 1095 else if (!work->for_sync) { 1096 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1097 older_than_this = &expire_time; 1098 } 1099 while (!list_empty(delaying_queue)) { 1100 inode = wb_inode(delaying_queue->prev); 1101 if (older_than_this && 1102 inode_dirtied_after(inode, *older_than_this)) 1103 break; 1104 list_move(&inode->i_io_list, &tmp); 1105 moved++; 1106 if (flags & EXPIRE_DIRTY_ATIME) 1107 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1108 if (sb_is_blkdev_sb(inode->i_sb)) 1109 continue; 1110 if (sb && sb != inode->i_sb) 1111 do_sb_sort = 1; 1112 sb = inode->i_sb; 1113 } 1114 1115 /* just one sb in list, splice to dispatch_queue and we're done */ 1116 if (!do_sb_sort) { 1117 list_splice(&tmp, dispatch_queue); 1118 goto out; 1119 } 1120 1121 /* Move inodes from one superblock together */ 1122 while (!list_empty(&tmp)) { 1123 sb = wb_inode(tmp.prev)->i_sb; 1124 list_for_each_prev_safe(pos, node, &tmp) { 1125 inode = wb_inode(pos); 1126 if (inode->i_sb == sb) 1127 list_move(&inode->i_io_list, dispatch_queue); 1128 } 1129 } 1130 out: 1131 return moved; 1132 } 1133 1134 /* 1135 * Queue all expired dirty inodes for io, eldest first. 1136 * Before 1137 * newly dirtied b_dirty b_io b_more_io 1138 * =============> gf edc BA 1139 * After 1140 * newly dirtied b_dirty b_io b_more_io 1141 * =============> g fBAedc 1142 * | 1143 * +--> dequeue for IO 1144 */ 1145 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1146 { 1147 int moved; 1148 1149 assert_spin_locked(&wb->list_lock); 1150 list_splice_init(&wb->b_more_io, &wb->b_io); 1151 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1152 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1153 EXPIRE_DIRTY_ATIME, work); 1154 if (moved) 1155 wb_io_lists_populated(wb); 1156 trace_writeback_queue_io(wb, work, moved); 1157 } 1158 1159 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1160 { 1161 int ret; 1162 1163 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1164 trace_writeback_write_inode_start(inode, wbc); 1165 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1166 trace_writeback_write_inode(inode, wbc); 1167 return ret; 1168 } 1169 return 0; 1170 } 1171 1172 /* 1173 * Wait for writeback on an inode to complete. Called with i_lock held. 1174 * Caller must make sure inode cannot go away when we drop i_lock. 1175 */ 1176 static void __inode_wait_for_writeback(struct inode *inode) 1177 __releases(inode->i_lock) 1178 __acquires(inode->i_lock) 1179 { 1180 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1181 wait_queue_head_t *wqh; 1182 1183 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1184 while (inode->i_state & I_SYNC) { 1185 spin_unlock(&inode->i_lock); 1186 __wait_on_bit(wqh, &wq, bit_wait, 1187 TASK_UNINTERRUPTIBLE); 1188 spin_lock(&inode->i_lock); 1189 } 1190 } 1191 1192 /* 1193 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1194 */ 1195 void inode_wait_for_writeback(struct inode *inode) 1196 { 1197 spin_lock(&inode->i_lock); 1198 __inode_wait_for_writeback(inode); 1199 spin_unlock(&inode->i_lock); 1200 } 1201 1202 /* 1203 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1204 * held and drops it. It is aimed for callers not holding any inode reference 1205 * so once i_lock is dropped, inode can go away. 1206 */ 1207 static void inode_sleep_on_writeback(struct inode *inode) 1208 __releases(inode->i_lock) 1209 { 1210 DEFINE_WAIT(wait); 1211 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1212 int sleep; 1213 1214 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1215 sleep = inode->i_state & I_SYNC; 1216 spin_unlock(&inode->i_lock); 1217 if (sleep) 1218 schedule(); 1219 finish_wait(wqh, &wait); 1220 } 1221 1222 /* 1223 * Find proper writeback list for the inode depending on its current state and 1224 * possibly also change of its state while we were doing writeback. Here we 1225 * handle things such as livelock prevention or fairness of writeback among 1226 * inodes. This function can be called only by flusher thread - noone else 1227 * processes all inodes in writeback lists and requeueing inodes behind flusher 1228 * thread's back can have unexpected consequences. 1229 */ 1230 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1231 struct writeback_control *wbc) 1232 { 1233 if (inode->i_state & I_FREEING) 1234 return; 1235 1236 /* 1237 * Sync livelock prevention. Each inode is tagged and synced in one 1238 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1239 * the dirty time to prevent enqueue and sync it again. 1240 */ 1241 if ((inode->i_state & I_DIRTY) && 1242 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1243 inode->dirtied_when = jiffies; 1244 1245 if (wbc->pages_skipped) { 1246 /* 1247 * writeback is not making progress due to locked 1248 * buffers. Skip this inode for now. 1249 */ 1250 redirty_tail(inode, wb); 1251 return; 1252 } 1253 1254 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1255 /* 1256 * We didn't write back all the pages. nfs_writepages() 1257 * sometimes bales out without doing anything. 1258 */ 1259 if (wbc->nr_to_write <= 0) { 1260 /* Slice used up. Queue for next turn. */ 1261 requeue_io(inode, wb); 1262 } else { 1263 /* 1264 * Writeback blocked by something other than 1265 * congestion. Delay the inode for some time to 1266 * avoid spinning on the CPU (100% iowait) 1267 * retrying writeback of the dirty page/inode 1268 * that cannot be performed immediately. 1269 */ 1270 redirty_tail(inode, wb); 1271 } 1272 } else if (inode->i_state & I_DIRTY) { 1273 /* 1274 * Filesystems can dirty the inode during writeback operations, 1275 * such as delayed allocation during submission or metadata 1276 * updates after data IO completion. 1277 */ 1278 redirty_tail(inode, wb); 1279 } else if (inode->i_state & I_DIRTY_TIME) { 1280 inode->dirtied_when = jiffies; 1281 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1282 } else { 1283 /* The inode is clean. Remove from writeback lists. */ 1284 inode_io_list_del_locked(inode, wb); 1285 } 1286 } 1287 1288 /* 1289 * Write out an inode and its dirty pages. Do not update the writeback list 1290 * linkage. That is left to the caller. The caller is also responsible for 1291 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1292 */ 1293 static int 1294 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1295 { 1296 struct address_space *mapping = inode->i_mapping; 1297 long nr_to_write = wbc->nr_to_write; 1298 unsigned dirty; 1299 int ret; 1300 1301 WARN_ON(!(inode->i_state & I_SYNC)); 1302 1303 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1304 1305 ret = do_writepages(mapping, wbc); 1306 1307 /* 1308 * Make sure to wait on the data before writing out the metadata. 1309 * This is important for filesystems that modify metadata on data 1310 * I/O completion. We don't do it for sync(2) writeback because it has a 1311 * separate, external IO completion path and ->sync_fs for guaranteeing 1312 * inode metadata is written back correctly. 1313 */ 1314 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1315 int err = filemap_fdatawait(mapping); 1316 if (ret == 0) 1317 ret = err; 1318 } 1319 1320 /* 1321 * Some filesystems may redirty the inode during the writeback 1322 * due to delalloc, clear dirty metadata flags right before 1323 * write_inode() 1324 */ 1325 spin_lock(&inode->i_lock); 1326 1327 dirty = inode->i_state & I_DIRTY; 1328 if (inode->i_state & I_DIRTY_TIME) { 1329 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 1330 wbc->sync_mode == WB_SYNC_ALL || 1331 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1332 unlikely(time_after(jiffies, 1333 (inode->dirtied_time_when + 1334 dirtytime_expire_interval * HZ)))) { 1335 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1336 trace_writeback_lazytime(inode); 1337 } 1338 } else 1339 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1340 inode->i_state &= ~dirty; 1341 1342 /* 1343 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1344 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1345 * either they see the I_DIRTY bits cleared or we see the dirtied 1346 * inode. 1347 * 1348 * I_DIRTY_PAGES is always cleared together above even if @mapping 1349 * still has dirty pages. The flag is reinstated after smp_mb() if 1350 * necessary. This guarantees that either __mark_inode_dirty() 1351 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1352 */ 1353 smp_mb(); 1354 1355 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1356 inode->i_state |= I_DIRTY_PAGES; 1357 1358 spin_unlock(&inode->i_lock); 1359 1360 if (dirty & I_DIRTY_TIME) 1361 mark_inode_dirty_sync(inode); 1362 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1363 if (dirty & ~I_DIRTY_PAGES) { 1364 int err = write_inode(inode, wbc); 1365 if (ret == 0) 1366 ret = err; 1367 } 1368 trace_writeback_single_inode(inode, wbc, nr_to_write); 1369 return ret; 1370 } 1371 1372 /* 1373 * Write out an inode's dirty pages. Either the caller has an active reference 1374 * on the inode or the inode has I_WILL_FREE set. 1375 * 1376 * This function is designed to be called for writing back one inode which 1377 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1378 * and does more profound writeback list handling in writeback_sb_inodes(). 1379 */ 1380 static int writeback_single_inode(struct inode *inode, 1381 struct writeback_control *wbc) 1382 { 1383 struct bdi_writeback *wb; 1384 int ret = 0; 1385 1386 spin_lock(&inode->i_lock); 1387 if (!atomic_read(&inode->i_count)) 1388 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1389 else 1390 WARN_ON(inode->i_state & I_WILL_FREE); 1391 1392 if (inode->i_state & I_SYNC) { 1393 if (wbc->sync_mode != WB_SYNC_ALL) 1394 goto out; 1395 /* 1396 * It's a data-integrity sync. We must wait. Since callers hold 1397 * inode reference or inode has I_WILL_FREE set, it cannot go 1398 * away under us. 1399 */ 1400 __inode_wait_for_writeback(inode); 1401 } 1402 WARN_ON(inode->i_state & I_SYNC); 1403 /* 1404 * Skip inode if it is clean and we have no outstanding writeback in 1405 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1406 * function since flusher thread may be doing for example sync in 1407 * parallel and if we move the inode, it could get skipped. So here we 1408 * make sure inode is on some writeback list and leave it there unless 1409 * we have completely cleaned the inode. 1410 */ 1411 if (!(inode->i_state & I_DIRTY_ALL) && 1412 (wbc->sync_mode != WB_SYNC_ALL || 1413 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1414 goto out; 1415 inode->i_state |= I_SYNC; 1416 wbc_attach_and_unlock_inode(wbc, inode); 1417 1418 ret = __writeback_single_inode(inode, wbc); 1419 1420 wbc_detach_inode(wbc); 1421 1422 wb = inode_to_wb_and_lock_list(inode); 1423 spin_lock(&inode->i_lock); 1424 /* 1425 * If inode is clean, remove it from writeback lists. Otherwise don't 1426 * touch it. See comment above for explanation. 1427 */ 1428 if (!(inode->i_state & I_DIRTY_ALL)) 1429 inode_io_list_del_locked(inode, wb); 1430 spin_unlock(&wb->list_lock); 1431 inode_sync_complete(inode); 1432 out: 1433 spin_unlock(&inode->i_lock); 1434 return ret; 1435 } 1436 1437 static long writeback_chunk_size(struct bdi_writeback *wb, 1438 struct wb_writeback_work *work) 1439 { 1440 long pages; 1441 1442 /* 1443 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1444 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1445 * here avoids calling into writeback_inodes_wb() more than once. 1446 * 1447 * The intended call sequence for WB_SYNC_ALL writeback is: 1448 * 1449 * wb_writeback() 1450 * writeback_sb_inodes() <== called only once 1451 * write_cache_pages() <== called once for each inode 1452 * (quickly) tag currently dirty pages 1453 * (maybe slowly) sync all tagged pages 1454 */ 1455 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1456 pages = LONG_MAX; 1457 else { 1458 pages = min(wb->avg_write_bandwidth / 2, 1459 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1460 pages = min(pages, work->nr_pages); 1461 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1462 MIN_WRITEBACK_PAGES); 1463 } 1464 1465 return pages; 1466 } 1467 1468 /* 1469 * Write a portion of b_io inodes which belong to @sb. 1470 * 1471 * Return the number of pages and/or inodes written. 1472 * 1473 * NOTE! This is called with wb->list_lock held, and will 1474 * unlock and relock that for each inode it ends up doing 1475 * IO for. 1476 */ 1477 static long writeback_sb_inodes(struct super_block *sb, 1478 struct bdi_writeback *wb, 1479 struct wb_writeback_work *work) 1480 { 1481 struct writeback_control wbc = { 1482 .sync_mode = work->sync_mode, 1483 .tagged_writepages = work->tagged_writepages, 1484 .for_kupdate = work->for_kupdate, 1485 .for_background = work->for_background, 1486 .for_sync = work->for_sync, 1487 .range_cyclic = work->range_cyclic, 1488 .range_start = 0, 1489 .range_end = LLONG_MAX, 1490 }; 1491 unsigned long start_time = jiffies; 1492 long write_chunk; 1493 long wrote = 0; /* count both pages and inodes */ 1494 1495 while (!list_empty(&wb->b_io)) { 1496 struct inode *inode = wb_inode(wb->b_io.prev); 1497 struct bdi_writeback *tmp_wb; 1498 1499 if (inode->i_sb != sb) { 1500 if (work->sb) { 1501 /* 1502 * We only want to write back data for this 1503 * superblock, move all inodes not belonging 1504 * to it back onto the dirty list. 1505 */ 1506 redirty_tail(inode, wb); 1507 continue; 1508 } 1509 1510 /* 1511 * The inode belongs to a different superblock. 1512 * Bounce back to the caller to unpin this and 1513 * pin the next superblock. 1514 */ 1515 break; 1516 } 1517 1518 /* 1519 * Don't bother with new inodes or inodes being freed, first 1520 * kind does not need periodic writeout yet, and for the latter 1521 * kind writeout is handled by the freer. 1522 */ 1523 spin_lock(&inode->i_lock); 1524 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1525 spin_unlock(&inode->i_lock); 1526 redirty_tail(inode, wb); 1527 continue; 1528 } 1529 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1530 /* 1531 * If this inode is locked for writeback and we are not 1532 * doing writeback-for-data-integrity, move it to 1533 * b_more_io so that writeback can proceed with the 1534 * other inodes on s_io. 1535 * 1536 * We'll have another go at writing back this inode 1537 * when we completed a full scan of b_io. 1538 */ 1539 spin_unlock(&inode->i_lock); 1540 requeue_io(inode, wb); 1541 trace_writeback_sb_inodes_requeue(inode); 1542 continue; 1543 } 1544 spin_unlock(&wb->list_lock); 1545 1546 /* 1547 * We already requeued the inode if it had I_SYNC set and we 1548 * are doing WB_SYNC_NONE writeback. So this catches only the 1549 * WB_SYNC_ALL case. 1550 */ 1551 if (inode->i_state & I_SYNC) { 1552 /* Wait for I_SYNC. This function drops i_lock... */ 1553 inode_sleep_on_writeback(inode); 1554 /* Inode may be gone, start again */ 1555 spin_lock(&wb->list_lock); 1556 continue; 1557 } 1558 inode->i_state |= I_SYNC; 1559 wbc_attach_and_unlock_inode(&wbc, inode); 1560 1561 write_chunk = writeback_chunk_size(wb, work); 1562 wbc.nr_to_write = write_chunk; 1563 wbc.pages_skipped = 0; 1564 1565 /* 1566 * We use I_SYNC to pin the inode in memory. While it is set 1567 * evict_inode() will wait so the inode cannot be freed. 1568 */ 1569 __writeback_single_inode(inode, &wbc); 1570 1571 wbc_detach_inode(&wbc); 1572 work->nr_pages -= write_chunk - wbc.nr_to_write; 1573 wrote += write_chunk - wbc.nr_to_write; 1574 1575 if (need_resched()) { 1576 /* 1577 * We're trying to balance between building up a nice 1578 * long list of IOs to improve our merge rate, and 1579 * getting those IOs out quickly for anyone throttling 1580 * in balance_dirty_pages(). cond_resched() doesn't 1581 * unplug, so get our IOs out the door before we 1582 * give up the CPU. 1583 */ 1584 blk_flush_plug(current); 1585 cond_resched(); 1586 } 1587 1588 /* 1589 * Requeue @inode if still dirty. Be careful as @inode may 1590 * have been switched to another wb in the meantime. 1591 */ 1592 tmp_wb = inode_to_wb_and_lock_list(inode); 1593 spin_lock(&inode->i_lock); 1594 if (!(inode->i_state & I_DIRTY_ALL)) 1595 wrote++; 1596 requeue_inode(inode, tmp_wb, &wbc); 1597 inode_sync_complete(inode); 1598 spin_unlock(&inode->i_lock); 1599 1600 if (unlikely(tmp_wb != wb)) { 1601 spin_unlock(&tmp_wb->list_lock); 1602 spin_lock(&wb->list_lock); 1603 } 1604 1605 /* 1606 * bail out to wb_writeback() often enough to check 1607 * background threshold and other termination conditions. 1608 */ 1609 if (wrote) { 1610 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1611 break; 1612 if (work->nr_pages <= 0) 1613 break; 1614 } 1615 } 1616 return wrote; 1617 } 1618 1619 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1620 struct wb_writeback_work *work) 1621 { 1622 unsigned long start_time = jiffies; 1623 long wrote = 0; 1624 1625 while (!list_empty(&wb->b_io)) { 1626 struct inode *inode = wb_inode(wb->b_io.prev); 1627 struct super_block *sb = inode->i_sb; 1628 1629 if (!trylock_super(sb)) { 1630 /* 1631 * trylock_super() may fail consistently due to 1632 * s_umount being grabbed by someone else. Don't use 1633 * requeue_io() to avoid busy retrying the inode/sb. 1634 */ 1635 redirty_tail(inode, wb); 1636 continue; 1637 } 1638 wrote += writeback_sb_inodes(sb, wb, work); 1639 up_read(&sb->s_umount); 1640 1641 /* refer to the same tests at the end of writeback_sb_inodes */ 1642 if (wrote) { 1643 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1644 break; 1645 if (work->nr_pages <= 0) 1646 break; 1647 } 1648 } 1649 /* Leave any unwritten inodes on b_io */ 1650 return wrote; 1651 } 1652 1653 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1654 enum wb_reason reason) 1655 { 1656 struct wb_writeback_work work = { 1657 .nr_pages = nr_pages, 1658 .sync_mode = WB_SYNC_NONE, 1659 .range_cyclic = 1, 1660 .reason = reason, 1661 }; 1662 struct blk_plug plug; 1663 1664 blk_start_plug(&plug); 1665 spin_lock(&wb->list_lock); 1666 if (list_empty(&wb->b_io)) 1667 queue_io(wb, &work); 1668 __writeback_inodes_wb(wb, &work); 1669 spin_unlock(&wb->list_lock); 1670 blk_finish_plug(&plug); 1671 1672 return nr_pages - work.nr_pages; 1673 } 1674 1675 /* 1676 * Explicit flushing or periodic writeback of "old" data. 1677 * 1678 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1679 * dirtying-time in the inode's address_space. So this periodic writeback code 1680 * just walks the superblock inode list, writing back any inodes which are 1681 * older than a specific point in time. 1682 * 1683 * Try to run once per dirty_writeback_interval. But if a writeback event 1684 * takes longer than a dirty_writeback_interval interval, then leave a 1685 * one-second gap. 1686 * 1687 * older_than_this takes precedence over nr_to_write. So we'll only write back 1688 * all dirty pages if they are all attached to "old" mappings. 1689 */ 1690 static long wb_writeback(struct bdi_writeback *wb, 1691 struct wb_writeback_work *work) 1692 { 1693 unsigned long wb_start = jiffies; 1694 long nr_pages = work->nr_pages; 1695 unsigned long oldest_jif; 1696 struct inode *inode; 1697 long progress; 1698 struct blk_plug plug; 1699 1700 oldest_jif = jiffies; 1701 work->older_than_this = &oldest_jif; 1702 1703 blk_start_plug(&plug); 1704 spin_lock(&wb->list_lock); 1705 for (;;) { 1706 /* 1707 * Stop writeback when nr_pages has been consumed 1708 */ 1709 if (work->nr_pages <= 0) 1710 break; 1711 1712 /* 1713 * Background writeout and kupdate-style writeback may 1714 * run forever. Stop them if there is other work to do 1715 * so that e.g. sync can proceed. They'll be restarted 1716 * after the other works are all done. 1717 */ 1718 if ((work->for_background || work->for_kupdate) && 1719 !list_empty(&wb->work_list)) 1720 break; 1721 1722 /* 1723 * For background writeout, stop when we are below the 1724 * background dirty threshold 1725 */ 1726 if (work->for_background && !wb_over_bg_thresh(wb)) 1727 break; 1728 1729 /* 1730 * Kupdate and background works are special and we want to 1731 * include all inodes that need writing. Livelock avoidance is 1732 * handled by these works yielding to any other work so we are 1733 * safe. 1734 */ 1735 if (work->for_kupdate) { 1736 oldest_jif = jiffies - 1737 msecs_to_jiffies(dirty_expire_interval * 10); 1738 } else if (work->for_background) 1739 oldest_jif = jiffies; 1740 1741 trace_writeback_start(wb, work); 1742 if (list_empty(&wb->b_io)) 1743 queue_io(wb, work); 1744 if (work->sb) 1745 progress = writeback_sb_inodes(work->sb, wb, work); 1746 else 1747 progress = __writeback_inodes_wb(wb, work); 1748 trace_writeback_written(wb, work); 1749 1750 wb_update_bandwidth(wb, wb_start); 1751 1752 /* 1753 * Did we write something? Try for more 1754 * 1755 * Dirty inodes are moved to b_io for writeback in batches. 1756 * The completion of the current batch does not necessarily 1757 * mean the overall work is done. So we keep looping as long 1758 * as made some progress on cleaning pages or inodes. 1759 */ 1760 if (progress) 1761 continue; 1762 /* 1763 * No more inodes for IO, bail 1764 */ 1765 if (list_empty(&wb->b_more_io)) 1766 break; 1767 /* 1768 * Nothing written. Wait for some inode to 1769 * become available for writeback. Otherwise 1770 * we'll just busyloop. 1771 */ 1772 trace_writeback_wait(wb, work); 1773 inode = wb_inode(wb->b_more_io.prev); 1774 spin_lock(&inode->i_lock); 1775 spin_unlock(&wb->list_lock); 1776 /* This function drops i_lock... */ 1777 inode_sleep_on_writeback(inode); 1778 spin_lock(&wb->list_lock); 1779 } 1780 spin_unlock(&wb->list_lock); 1781 blk_finish_plug(&plug); 1782 1783 return nr_pages - work->nr_pages; 1784 } 1785 1786 /* 1787 * Return the next wb_writeback_work struct that hasn't been processed yet. 1788 */ 1789 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1790 { 1791 struct wb_writeback_work *work = NULL; 1792 1793 spin_lock_bh(&wb->work_lock); 1794 if (!list_empty(&wb->work_list)) { 1795 work = list_entry(wb->work_list.next, 1796 struct wb_writeback_work, list); 1797 list_del_init(&work->list); 1798 } 1799 spin_unlock_bh(&wb->work_lock); 1800 return work; 1801 } 1802 1803 /* 1804 * Add in the number of potentially dirty inodes, because each inode 1805 * write can dirty pagecache in the underlying blockdev. 1806 */ 1807 static unsigned long get_nr_dirty_pages(void) 1808 { 1809 return global_node_page_state(NR_FILE_DIRTY) + 1810 global_node_page_state(NR_UNSTABLE_NFS) + 1811 get_nr_dirty_inodes(); 1812 } 1813 1814 static long wb_check_background_flush(struct bdi_writeback *wb) 1815 { 1816 if (wb_over_bg_thresh(wb)) { 1817 1818 struct wb_writeback_work work = { 1819 .nr_pages = LONG_MAX, 1820 .sync_mode = WB_SYNC_NONE, 1821 .for_background = 1, 1822 .range_cyclic = 1, 1823 .reason = WB_REASON_BACKGROUND, 1824 }; 1825 1826 return wb_writeback(wb, &work); 1827 } 1828 1829 return 0; 1830 } 1831 1832 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1833 { 1834 unsigned long expired; 1835 long nr_pages; 1836 1837 /* 1838 * When set to zero, disable periodic writeback 1839 */ 1840 if (!dirty_writeback_interval) 1841 return 0; 1842 1843 expired = wb->last_old_flush + 1844 msecs_to_jiffies(dirty_writeback_interval * 10); 1845 if (time_before(jiffies, expired)) 1846 return 0; 1847 1848 wb->last_old_flush = jiffies; 1849 nr_pages = get_nr_dirty_pages(); 1850 1851 if (nr_pages) { 1852 struct wb_writeback_work work = { 1853 .nr_pages = nr_pages, 1854 .sync_mode = WB_SYNC_NONE, 1855 .for_kupdate = 1, 1856 .range_cyclic = 1, 1857 .reason = WB_REASON_PERIODIC, 1858 }; 1859 1860 return wb_writeback(wb, &work); 1861 } 1862 1863 return 0; 1864 } 1865 1866 /* 1867 * Retrieve work items and do the writeback they describe 1868 */ 1869 static long wb_do_writeback(struct bdi_writeback *wb) 1870 { 1871 struct wb_writeback_work *work; 1872 long wrote = 0; 1873 1874 set_bit(WB_writeback_running, &wb->state); 1875 while ((work = get_next_work_item(wb)) != NULL) { 1876 struct wb_completion *done = work->done; 1877 1878 trace_writeback_exec(wb, work); 1879 1880 wrote += wb_writeback(wb, work); 1881 1882 if (work->auto_free) 1883 kfree(work); 1884 if (done && atomic_dec_and_test(&done->cnt)) 1885 wake_up_all(&wb->bdi->wb_waitq); 1886 } 1887 1888 /* 1889 * Check for periodic writeback, kupdated() style 1890 */ 1891 wrote += wb_check_old_data_flush(wb); 1892 wrote += wb_check_background_flush(wb); 1893 clear_bit(WB_writeback_running, &wb->state); 1894 1895 return wrote; 1896 } 1897 1898 /* 1899 * Handle writeback of dirty data for the device backed by this bdi. Also 1900 * reschedules periodically and does kupdated style flushing. 1901 */ 1902 void wb_workfn(struct work_struct *work) 1903 { 1904 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1905 struct bdi_writeback, dwork); 1906 long pages_written; 1907 1908 set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); 1909 current->flags |= PF_SWAPWRITE; 1910 1911 if (likely(!current_is_workqueue_rescuer() || 1912 !test_bit(WB_registered, &wb->state))) { 1913 /* 1914 * The normal path. Keep writing back @wb until its 1915 * work_list is empty. Note that this path is also taken 1916 * if @wb is shutting down even when we're running off the 1917 * rescuer as work_list needs to be drained. 1918 */ 1919 do { 1920 pages_written = wb_do_writeback(wb); 1921 trace_writeback_pages_written(pages_written); 1922 } while (!list_empty(&wb->work_list)); 1923 } else { 1924 /* 1925 * bdi_wq can't get enough workers and we're running off 1926 * the emergency worker. Don't hog it. Hopefully, 1024 is 1927 * enough for efficient IO. 1928 */ 1929 pages_written = writeback_inodes_wb(wb, 1024, 1930 WB_REASON_FORKER_THREAD); 1931 trace_writeback_pages_written(pages_written); 1932 } 1933 1934 if (!list_empty(&wb->work_list)) 1935 mod_delayed_work(bdi_wq, &wb->dwork, 0); 1936 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1937 wb_wakeup_delayed(wb); 1938 1939 current->flags &= ~PF_SWAPWRITE; 1940 } 1941 1942 /* 1943 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1944 * the whole world. 1945 */ 1946 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1947 { 1948 struct backing_dev_info *bdi; 1949 1950 /* 1951 * If we are expecting writeback progress we must submit plugged IO. 1952 */ 1953 if (blk_needs_flush_plug(current)) 1954 blk_schedule_flush_plug(current); 1955 1956 if (!nr_pages) 1957 nr_pages = get_nr_dirty_pages(); 1958 1959 rcu_read_lock(); 1960 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1961 struct bdi_writeback *wb; 1962 1963 if (!bdi_has_dirty_io(bdi)) 1964 continue; 1965 1966 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 1967 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages), 1968 false, reason); 1969 } 1970 rcu_read_unlock(); 1971 } 1972 1973 /* 1974 * Wake up bdi's periodically to make sure dirtytime inodes gets 1975 * written back periodically. We deliberately do *not* check the 1976 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 1977 * kernel to be constantly waking up once there are any dirtytime 1978 * inodes on the system. So instead we define a separate delayed work 1979 * function which gets called much more rarely. (By default, only 1980 * once every 12 hours.) 1981 * 1982 * If there is any other write activity going on in the file system, 1983 * this function won't be necessary. But if the only thing that has 1984 * happened on the file system is a dirtytime inode caused by an atime 1985 * update, we need this infrastructure below to make sure that inode 1986 * eventually gets pushed out to disk. 1987 */ 1988 static void wakeup_dirtytime_writeback(struct work_struct *w); 1989 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 1990 1991 static void wakeup_dirtytime_writeback(struct work_struct *w) 1992 { 1993 struct backing_dev_info *bdi; 1994 1995 rcu_read_lock(); 1996 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1997 struct bdi_writeback *wb; 1998 1999 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2000 if (!list_empty(&wb->b_dirty_time)) 2001 wb_wakeup(wb); 2002 } 2003 rcu_read_unlock(); 2004 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2005 } 2006 2007 static int __init start_dirtytime_writeback(void) 2008 { 2009 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2010 return 0; 2011 } 2012 __initcall(start_dirtytime_writeback); 2013 2014 int dirtytime_interval_handler(struct ctl_table *table, int write, 2015 void __user *buffer, size_t *lenp, loff_t *ppos) 2016 { 2017 int ret; 2018 2019 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2020 if (ret == 0 && write) 2021 mod_delayed_work(system_wq, &dirtytime_work, 0); 2022 return ret; 2023 } 2024 2025 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2026 { 2027 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2028 struct dentry *dentry; 2029 const char *name = "?"; 2030 2031 dentry = d_find_alias(inode); 2032 if (dentry) { 2033 spin_lock(&dentry->d_lock); 2034 name = (const char *) dentry->d_name.name; 2035 } 2036 printk(KERN_DEBUG 2037 "%s(%d): dirtied inode %lu (%s) on %s\n", 2038 current->comm, task_pid_nr(current), inode->i_ino, 2039 name, inode->i_sb->s_id); 2040 if (dentry) { 2041 spin_unlock(&dentry->d_lock); 2042 dput(dentry); 2043 } 2044 } 2045 } 2046 2047 /** 2048 * __mark_inode_dirty - internal function 2049 * @inode: inode to mark 2050 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2051 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2052 * mark_inode_dirty_sync. 2053 * 2054 * Put the inode on the super block's dirty list. 2055 * 2056 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2057 * dirty list only if it is hashed or if it refers to a blockdev. 2058 * If it was not hashed, it will never be added to the dirty list 2059 * even if it is later hashed, as it will have been marked dirty already. 2060 * 2061 * In short, make sure you hash any inodes _before_ you start marking 2062 * them dirty. 2063 * 2064 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2065 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2066 * the kernel-internal blockdev inode represents the dirtying time of the 2067 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2068 * page->mapping->host, so the page-dirtying time is recorded in the internal 2069 * blockdev inode. 2070 */ 2071 void __mark_inode_dirty(struct inode *inode, int flags) 2072 { 2073 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2074 struct super_block *sb = inode->i_sb; 2075 int dirtytime; 2076 2077 trace_writeback_mark_inode_dirty(inode, flags); 2078 2079 /* 2080 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2081 * dirty the inode itself 2082 */ 2083 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) { 2084 trace_writeback_dirty_inode_start(inode, flags); 2085 2086 if (sb->s_op->dirty_inode) 2087 sb->s_op->dirty_inode(inode, flags); 2088 2089 trace_writeback_dirty_inode(inode, flags); 2090 } 2091 if (flags & I_DIRTY_INODE) 2092 flags &= ~I_DIRTY_TIME; 2093 dirtytime = flags & I_DIRTY_TIME; 2094 2095 /* 2096 * Paired with smp_mb() in __writeback_single_inode() for the 2097 * following lockless i_state test. See there for details. 2098 */ 2099 smp_mb(); 2100 2101 if (((inode->i_state & flags) == flags) || 2102 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2103 return; 2104 2105 if (unlikely(block_dump)) 2106 block_dump___mark_inode_dirty(inode); 2107 2108 spin_lock(&inode->i_lock); 2109 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2110 goto out_unlock_inode; 2111 if ((inode->i_state & flags) != flags) { 2112 const int was_dirty = inode->i_state & I_DIRTY; 2113 2114 inode_attach_wb(inode, NULL); 2115 2116 if (flags & I_DIRTY_INODE) 2117 inode->i_state &= ~I_DIRTY_TIME; 2118 inode->i_state |= flags; 2119 2120 /* 2121 * If the inode is being synced, just update its dirty state. 2122 * The unlocker will place the inode on the appropriate 2123 * superblock list, based upon its state. 2124 */ 2125 if (inode->i_state & I_SYNC) 2126 goto out_unlock_inode; 2127 2128 /* 2129 * Only add valid (hashed) inodes to the superblock's 2130 * dirty list. Add blockdev inodes as well. 2131 */ 2132 if (!S_ISBLK(inode->i_mode)) { 2133 if (inode_unhashed(inode)) 2134 goto out_unlock_inode; 2135 } 2136 if (inode->i_state & I_FREEING) 2137 goto out_unlock_inode; 2138 2139 /* 2140 * If the inode was already on b_dirty/b_io/b_more_io, don't 2141 * reposition it (that would break b_dirty time-ordering). 2142 */ 2143 if (!was_dirty) { 2144 struct bdi_writeback *wb; 2145 struct list_head *dirty_list; 2146 bool wakeup_bdi = false; 2147 2148 wb = locked_inode_to_wb_and_lock_list(inode); 2149 2150 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2151 !test_bit(WB_registered, &wb->state), 2152 "bdi-%s not registered\n", wb->bdi->name); 2153 2154 inode->dirtied_when = jiffies; 2155 if (dirtytime) 2156 inode->dirtied_time_when = jiffies; 2157 2158 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES)) 2159 dirty_list = &wb->b_dirty; 2160 else 2161 dirty_list = &wb->b_dirty_time; 2162 2163 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2164 dirty_list); 2165 2166 spin_unlock(&wb->list_lock); 2167 trace_writeback_dirty_inode_enqueue(inode); 2168 2169 /* 2170 * If this is the first dirty inode for this bdi, 2171 * we have to wake-up the corresponding bdi thread 2172 * to make sure background write-back happens 2173 * later. 2174 */ 2175 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2176 wb_wakeup_delayed(wb); 2177 return; 2178 } 2179 } 2180 out_unlock_inode: 2181 spin_unlock(&inode->i_lock); 2182 2183 #undef I_DIRTY_INODE 2184 } 2185 EXPORT_SYMBOL(__mark_inode_dirty); 2186 2187 /* 2188 * The @s_sync_lock is used to serialise concurrent sync operations 2189 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2190 * Concurrent callers will block on the s_sync_lock rather than doing contending 2191 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2192 * has been issued up to the time this function is enter is guaranteed to be 2193 * completed by the time we have gained the lock and waited for all IO that is 2194 * in progress regardless of the order callers are granted the lock. 2195 */ 2196 static void wait_sb_inodes(struct super_block *sb) 2197 { 2198 LIST_HEAD(sync_list); 2199 2200 /* 2201 * We need to be protected against the filesystem going from 2202 * r/o to r/w or vice versa. 2203 */ 2204 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2205 2206 mutex_lock(&sb->s_sync_lock); 2207 2208 /* 2209 * Splice the writeback list onto a temporary list to avoid waiting on 2210 * inodes that have started writeback after this point. 2211 * 2212 * Use rcu_read_lock() to keep the inodes around until we have a 2213 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2214 * the local list because inodes can be dropped from either by writeback 2215 * completion. 2216 */ 2217 rcu_read_lock(); 2218 spin_lock_irq(&sb->s_inode_wblist_lock); 2219 list_splice_init(&sb->s_inodes_wb, &sync_list); 2220 2221 /* 2222 * Data integrity sync. Must wait for all pages under writeback, because 2223 * there may have been pages dirtied before our sync call, but which had 2224 * writeout started before we write it out. In which case, the inode 2225 * may not be on the dirty list, but we still have to wait for that 2226 * writeout. 2227 */ 2228 while (!list_empty(&sync_list)) { 2229 struct inode *inode = list_first_entry(&sync_list, struct inode, 2230 i_wb_list); 2231 struct address_space *mapping = inode->i_mapping; 2232 2233 /* 2234 * Move each inode back to the wb list before we drop the lock 2235 * to preserve consistency between i_wb_list and the mapping 2236 * writeback tag. Writeback completion is responsible to remove 2237 * the inode from either list once the writeback tag is cleared. 2238 */ 2239 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2240 2241 /* 2242 * The mapping can appear untagged while still on-list since we 2243 * do not have the mapping lock. Skip it here, wb completion 2244 * will remove it. 2245 */ 2246 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2247 continue; 2248 2249 spin_unlock_irq(&sb->s_inode_wblist_lock); 2250 2251 spin_lock(&inode->i_lock); 2252 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2253 spin_unlock(&inode->i_lock); 2254 2255 spin_lock_irq(&sb->s_inode_wblist_lock); 2256 continue; 2257 } 2258 __iget(inode); 2259 spin_unlock(&inode->i_lock); 2260 rcu_read_unlock(); 2261 2262 /* 2263 * We keep the error status of individual mapping so that 2264 * applications can catch the writeback error using fsync(2). 2265 * See filemap_fdatawait_keep_errors() for details. 2266 */ 2267 filemap_fdatawait_keep_errors(mapping); 2268 2269 cond_resched(); 2270 2271 iput(inode); 2272 2273 rcu_read_lock(); 2274 spin_lock_irq(&sb->s_inode_wblist_lock); 2275 } 2276 spin_unlock_irq(&sb->s_inode_wblist_lock); 2277 rcu_read_unlock(); 2278 mutex_unlock(&sb->s_sync_lock); 2279 } 2280 2281 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2282 enum wb_reason reason, bool skip_if_busy) 2283 { 2284 DEFINE_WB_COMPLETION_ONSTACK(done); 2285 struct wb_writeback_work work = { 2286 .sb = sb, 2287 .sync_mode = WB_SYNC_NONE, 2288 .tagged_writepages = 1, 2289 .done = &done, 2290 .nr_pages = nr, 2291 .reason = reason, 2292 }; 2293 struct backing_dev_info *bdi = sb->s_bdi; 2294 2295 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2296 return; 2297 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2298 2299 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2300 wb_wait_for_completion(bdi, &done); 2301 } 2302 2303 /** 2304 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2305 * @sb: the superblock 2306 * @nr: the number of pages to write 2307 * @reason: reason why some writeback work initiated 2308 * 2309 * Start writeback on some inodes on this super_block. No guarantees are made 2310 * on how many (if any) will be written, and this function does not wait 2311 * for IO completion of submitted IO. 2312 */ 2313 void writeback_inodes_sb_nr(struct super_block *sb, 2314 unsigned long nr, 2315 enum wb_reason reason) 2316 { 2317 __writeback_inodes_sb_nr(sb, nr, reason, false); 2318 } 2319 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2320 2321 /** 2322 * writeback_inodes_sb - writeback dirty inodes from given super_block 2323 * @sb: the superblock 2324 * @reason: reason why some writeback work was initiated 2325 * 2326 * Start writeback on some inodes on this super_block. No guarantees are made 2327 * on how many (if any) will be written, and this function does not wait 2328 * for IO completion of submitted IO. 2329 */ 2330 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2331 { 2332 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2333 } 2334 EXPORT_SYMBOL(writeback_inodes_sb); 2335 2336 /** 2337 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway 2338 * @sb: the superblock 2339 * @nr: the number of pages to write 2340 * @reason: the reason of writeback 2341 * 2342 * Invoke writeback_inodes_sb_nr if no writeback is currently underway. 2343 * Returns 1 if writeback was started, 0 if not. 2344 */ 2345 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2346 enum wb_reason reason) 2347 { 2348 if (!down_read_trylock(&sb->s_umount)) 2349 return false; 2350 2351 __writeback_inodes_sb_nr(sb, nr, reason, true); 2352 up_read(&sb->s_umount); 2353 return true; 2354 } 2355 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr); 2356 2357 /** 2358 * try_to_writeback_inodes_sb - try to start writeback if none underway 2359 * @sb: the superblock 2360 * @reason: reason why some writeback work was initiated 2361 * 2362 * Implement by try_to_writeback_inodes_sb_nr() 2363 * Returns 1 if writeback was started, 0 if not. 2364 */ 2365 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2366 { 2367 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2368 } 2369 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2370 2371 /** 2372 * sync_inodes_sb - sync sb inode pages 2373 * @sb: the superblock 2374 * 2375 * This function writes and waits on any dirty inode belonging to this 2376 * super_block. 2377 */ 2378 void sync_inodes_sb(struct super_block *sb) 2379 { 2380 DEFINE_WB_COMPLETION_ONSTACK(done); 2381 struct wb_writeback_work work = { 2382 .sb = sb, 2383 .sync_mode = WB_SYNC_ALL, 2384 .nr_pages = LONG_MAX, 2385 .range_cyclic = 0, 2386 .done = &done, 2387 .reason = WB_REASON_SYNC, 2388 .for_sync = 1, 2389 }; 2390 struct backing_dev_info *bdi = sb->s_bdi; 2391 2392 /* 2393 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2394 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2395 * bdi_has_dirty() need to be written out too. 2396 */ 2397 if (bdi == &noop_backing_dev_info) 2398 return; 2399 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2400 2401 bdi_split_work_to_wbs(bdi, &work, false); 2402 wb_wait_for_completion(bdi, &done); 2403 2404 wait_sb_inodes(sb); 2405 } 2406 EXPORT_SYMBOL(sync_inodes_sb); 2407 2408 /** 2409 * write_inode_now - write an inode to disk 2410 * @inode: inode to write to disk 2411 * @sync: whether the write should be synchronous or not 2412 * 2413 * This function commits an inode to disk immediately if it is dirty. This is 2414 * primarily needed by knfsd. 2415 * 2416 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2417 */ 2418 int write_inode_now(struct inode *inode, int sync) 2419 { 2420 struct writeback_control wbc = { 2421 .nr_to_write = LONG_MAX, 2422 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2423 .range_start = 0, 2424 .range_end = LLONG_MAX, 2425 }; 2426 2427 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2428 wbc.nr_to_write = 0; 2429 2430 might_sleep(); 2431 return writeback_single_inode(inode, &wbc); 2432 } 2433 EXPORT_SYMBOL(write_inode_now); 2434 2435 /** 2436 * sync_inode - write an inode and its pages to disk. 2437 * @inode: the inode to sync 2438 * @wbc: controls the writeback mode 2439 * 2440 * sync_inode() will write an inode and its pages to disk. It will also 2441 * correctly update the inode on its superblock's dirty inode lists and will 2442 * update inode->i_state. 2443 * 2444 * The caller must have a ref on the inode. 2445 */ 2446 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2447 { 2448 return writeback_single_inode(inode, wbc); 2449 } 2450 EXPORT_SYMBOL(sync_inode); 2451 2452 /** 2453 * sync_inode_metadata - write an inode to disk 2454 * @inode: the inode to sync 2455 * @wait: wait for I/O to complete. 2456 * 2457 * Write an inode to disk and adjust its dirty state after completion. 2458 * 2459 * Note: only writes the actual inode, no associated data or other metadata. 2460 */ 2461 int sync_inode_metadata(struct inode *inode, int wait) 2462 { 2463 struct writeback_control wbc = { 2464 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2465 .nr_to_write = 0, /* metadata-only */ 2466 }; 2467 2468 return sync_inode(inode, &wbc); 2469 } 2470 EXPORT_SYMBOL(sync_inode_metadata); 2471