1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include "internal.h" 30 31 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info) 32 33 /* 34 * We don't actually have pdflush, but this one is exported though /proc... 35 */ 36 int nr_pdflush_threads; 37 38 /* 39 * Passed into wb_writeback(), essentially a subset of writeback_control 40 */ 41 struct wb_writeback_args { 42 long nr_pages; 43 struct super_block *sb; 44 enum writeback_sync_modes sync_mode; 45 int for_kupdate:1; 46 int range_cyclic:1; 47 int for_background:1; 48 }; 49 50 /* 51 * Work items for the bdi_writeback threads 52 */ 53 struct bdi_work { 54 struct list_head list; /* pending work list */ 55 struct rcu_head rcu_head; /* for RCU free/clear of work */ 56 57 unsigned long seen; /* threads that have seen this work */ 58 atomic_t pending; /* number of threads still to do work */ 59 60 struct wb_writeback_args args; /* writeback arguments */ 61 62 unsigned long state; /* flag bits, see WS_* */ 63 }; 64 65 enum { 66 WS_USED_B = 0, 67 WS_ONSTACK_B, 68 }; 69 70 #define WS_USED (1 << WS_USED_B) 71 #define WS_ONSTACK (1 << WS_ONSTACK_B) 72 73 static inline bool bdi_work_on_stack(struct bdi_work *work) 74 { 75 return test_bit(WS_ONSTACK_B, &work->state); 76 } 77 78 static inline void bdi_work_init(struct bdi_work *work, 79 struct wb_writeback_args *args) 80 { 81 INIT_RCU_HEAD(&work->rcu_head); 82 work->args = *args; 83 work->state = WS_USED; 84 } 85 86 /** 87 * writeback_in_progress - determine whether there is writeback in progress 88 * @bdi: the device's backing_dev_info structure. 89 * 90 * Determine whether there is writeback waiting to be handled against a 91 * backing device. 92 */ 93 int writeback_in_progress(struct backing_dev_info *bdi) 94 { 95 return !list_empty(&bdi->work_list); 96 } 97 98 static void bdi_work_clear(struct bdi_work *work) 99 { 100 clear_bit(WS_USED_B, &work->state); 101 smp_mb__after_clear_bit(); 102 /* 103 * work can have disappeared at this point. bit waitq functions 104 * should be able to tolerate this, provided bdi_sched_wait does 105 * not dereference it's pointer argument. 106 */ 107 wake_up_bit(&work->state, WS_USED_B); 108 } 109 110 static void bdi_work_free(struct rcu_head *head) 111 { 112 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head); 113 114 if (!bdi_work_on_stack(work)) 115 kfree(work); 116 else 117 bdi_work_clear(work); 118 } 119 120 static void wb_work_complete(struct bdi_work *work) 121 { 122 const enum writeback_sync_modes sync_mode = work->args.sync_mode; 123 int onstack = bdi_work_on_stack(work); 124 125 /* 126 * For allocated work, we can clear the done/seen bit right here. 127 * For on-stack work, we need to postpone both the clear and free 128 * to after the RCU grace period, since the stack could be invalidated 129 * as soon as bdi_work_clear() has done the wakeup. 130 */ 131 if (!onstack) 132 bdi_work_clear(work); 133 if (sync_mode == WB_SYNC_NONE || onstack) 134 call_rcu(&work->rcu_head, bdi_work_free); 135 } 136 137 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work) 138 { 139 /* 140 * The caller has retrieved the work arguments from this work, 141 * drop our reference. If this is the last ref, delete and free it 142 */ 143 if (atomic_dec_and_test(&work->pending)) { 144 struct backing_dev_info *bdi = wb->bdi; 145 146 spin_lock(&bdi->wb_lock); 147 list_del_rcu(&work->list); 148 spin_unlock(&bdi->wb_lock); 149 150 wb_work_complete(work); 151 } 152 } 153 154 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work) 155 { 156 work->seen = bdi->wb_mask; 157 BUG_ON(!work->seen); 158 atomic_set(&work->pending, bdi->wb_cnt); 159 BUG_ON(!bdi->wb_cnt); 160 161 /* 162 * list_add_tail_rcu() contains the necessary barriers to 163 * make sure the above stores are seen before the item is 164 * noticed on the list 165 */ 166 spin_lock(&bdi->wb_lock); 167 list_add_tail_rcu(&work->list, &bdi->work_list); 168 spin_unlock(&bdi->wb_lock); 169 170 /* 171 * If the default thread isn't there, make sure we add it. When 172 * it gets created and wakes up, we'll run this work. 173 */ 174 if (unlikely(list_empty_careful(&bdi->wb_list))) 175 wake_up_process(default_backing_dev_info.wb.task); 176 else { 177 struct bdi_writeback *wb = &bdi->wb; 178 179 if (wb->task) 180 wake_up_process(wb->task); 181 } 182 } 183 184 /* 185 * Used for on-stack allocated work items. The caller needs to wait until 186 * the wb threads have acked the work before it's safe to continue. 187 */ 188 static void bdi_wait_on_work_clear(struct bdi_work *work) 189 { 190 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait, 191 TASK_UNINTERRUPTIBLE); 192 } 193 194 static void bdi_alloc_queue_work(struct backing_dev_info *bdi, 195 struct wb_writeback_args *args) 196 { 197 struct bdi_work *work; 198 199 /* 200 * This is WB_SYNC_NONE writeback, so if allocation fails just 201 * wakeup the thread for old dirty data writeback 202 */ 203 work = kmalloc(sizeof(*work), GFP_ATOMIC); 204 if (work) { 205 bdi_work_init(work, args); 206 bdi_queue_work(bdi, work); 207 } else { 208 struct bdi_writeback *wb = &bdi->wb; 209 210 if (wb->task) 211 wake_up_process(wb->task); 212 } 213 } 214 215 /** 216 * bdi_sync_writeback - start and wait for writeback 217 * @bdi: the backing device to write from 218 * @sb: write inodes from this super_block 219 * 220 * Description: 221 * This does WB_SYNC_ALL data integrity writeback and waits for the 222 * IO to complete. Callers must hold the sb s_umount semaphore for 223 * reading, to avoid having the super disappear before we are done. 224 */ 225 static void bdi_sync_writeback(struct backing_dev_info *bdi, 226 struct super_block *sb) 227 { 228 struct wb_writeback_args args = { 229 .sb = sb, 230 .sync_mode = WB_SYNC_ALL, 231 .nr_pages = LONG_MAX, 232 .range_cyclic = 0, 233 }; 234 struct bdi_work work; 235 236 bdi_work_init(&work, &args); 237 work.state |= WS_ONSTACK; 238 239 bdi_queue_work(bdi, &work); 240 bdi_wait_on_work_clear(&work); 241 } 242 243 /** 244 * bdi_start_writeback - start writeback 245 * @bdi: the backing device to write from 246 * @sb: write inodes from this super_block 247 * @nr_pages: the number of pages to write 248 * 249 * Description: 250 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 251 * started when this function returns, we make no guarentees on 252 * completion. Caller need not hold sb s_umount semaphore. 253 * 254 */ 255 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb, 256 long nr_pages) 257 { 258 struct wb_writeback_args args = { 259 .sb = sb, 260 .sync_mode = WB_SYNC_NONE, 261 .nr_pages = nr_pages, 262 .range_cyclic = 1, 263 }; 264 265 /* 266 * We treat @nr_pages=0 as the special case to do background writeback, 267 * ie. to sync pages until the background dirty threshold is reached. 268 */ 269 if (!nr_pages) { 270 args.nr_pages = LONG_MAX; 271 args.for_background = 1; 272 } 273 274 bdi_alloc_queue_work(bdi, &args); 275 } 276 277 /* 278 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 279 * furthest end of its superblock's dirty-inode list. 280 * 281 * Before stamping the inode's ->dirtied_when, we check to see whether it is 282 * already the most-recently-dirtied inode on the b_dirty list. If that is 283 * the case then the inode must have been redirtied while it was being written 284 * out and we don't reset its dirtied_when. 285 */ 286 static void redirty_tail(struct inode *inode) 287 { 288 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 289 290 if (!list_empty(&wb->b_dirty)) { 291 struct inode *tail; 292 293 tail = list_entry(wb->b_dirty.next, struct inode, i_list); 294 if (time_before(inode->dirtied_when, tail->dirtied_when)) 295 inode->dirtied_when = jiffies; 296 } 297 list_move(&inode->i_list, &wb->b_dirty); 298 } 299 300 /* 301 * requeue inode for re-scanning after bdi->b_io list is exhausted. 302 */ 303 static void requeue_io(struct inode *inode) 304 { 305 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 306 307 list_move(&inode->i_list, &wb->b_more_io); 308 } 309 310 static void inode_sync_complete(struct inode *inode) 311 { 312 /* 313 * Prevent speculative execution through spin_unlock(&inode_lock); 314 */ 315 smp_mb(); 316 wake_up_bit(&inode->i_state, __I_SYNC); 317 } 318 319 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 320 { 321 bool ret = time_after(inode->dirtied_when, t); 322 #ifndef CONFIG_64BIT 323 /* 324 * For inodes being constantly redirtied, dirtied_when can get stuck. 325 * It _appears_ to be in the future, but is actually in distant past. 326 * This test is necessary to prevent such wrapped-around relative times 327 * from permanently stopping the whole bdi writeback. 328 */ 329 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 330 #endif 331 return ret; 332 } 333 334 /* 335 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 336 */ 337 static void move_expired_inodes(struct list_head *delaying_queue, 338 struct list_head *dispatch_queue, 339 unsigned long *older_than_this) 340 { 341 LIST_HEAD(tmp); 342 struct list_head *pos, *node; 343 struct super_block *sb = NULL; 344 struct inode *inode; 345 int do_sb_sort = 0; 346 347 while (!list_empty(delaying_queue)) { 348 inode = list_entry(delaying_queue->prev, struct inode, i_list); 349 if (older_than_this && 350 inode_dirtied_after(inode, *older_than_this)) 351 break; 352 if (sb && sb != inode->i_sb) 353 do_sb_sort = 1; 354 sb = inode->i_sb; 355 list_move(&inode->i_list, &tmp); 356 } 357 358 /* just one sb in list, splice to dispatch_queue and we're done */ 359 if (!do_sb_sort) { 360 list_splice(&tmp, dispatch_queue); 361 return; 362 } 363 364 /* Move inodes from one superblock together */ 365 while (!list_empty(&tmp)) { 366 inode = list_entry(tmp.prev, struct inode, i_list); 367 sb = inode->i_sb; 368 list_for_each_prev_safe(pos, node, &tmp) { 369 inode = list_entry(pos, struct inode, i_list); 370 if (inode->i_sb == sb) 371 list_move(&inode->i_list, dispatch_queue); 372 } 373 } 374 } 375 376 /* 377 * Queue all expired dirty inodes for io, eldest first. 378 */ 379 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 380 { 381 list_splice_init(&wb->b_more_io, wb->b_io.prev); 382 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 383 } 384 385 static int write_inode(struct inode *inode, struct writeback_control *wbc) 386 { 387 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 388 return inode->i_sb->s_op->write_inode(inode, wbc); 389 return 0; 390 } 391 392 /* 393 * Wait for writeback on an inode to complete. 394 */ 395 static void inode_wait_for_writeback(struct inode *inode) 396 { 397 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 398 wait_queue_head_t *wqh; 399 400 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 401 do { 402 spin_unlock(&inode_lock); 403 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 404 spin_lock(&inode_lock); 405 } while (inode->i_state & I_SYNC); 406 } 407 408 /* 409 * Write out an inode's dirty pages. Called under inode_lock. Either the 410 * caller has ref on the inode (either via __iget or via syscall against an fd) 411 * or the inode has I_WILL_FREE set (via generic_forget_inode) 412 * 413 * If `wait' is set, wait on the writeout. 414 * 415 * The whole writeout design is quite complex and fragile. We want to avoid 416 * starvation of particular inodes when others are being redirtied, prevent 417 * livelocks, etc. 418 * 419 * Called under inode_lock. 420 */ 421 static int 422 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 423 { 424 struct address_space *mapping = inode->i_mapping; 425 unsigned dirty; 426 int ret; 427 428 if (!atomic_read(&inode->i_count)) 429 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 430 else 431 WARN_ON(inode->i_state & I_WILL_FREE); 432 433 if (inode->i_state & I_SYNC) { 434 /* 435 * If this inode is locked for writeback and we are not doing 436 * writeback-for-data-integrity, move it to b_more_io so that 437 * writeback can proceed with the other inodes on s_io. 438 * 439 * We'll have another go at writing back this inode when we 440 * completed a full scan of b_io. 441 */ 442 if (wbc->sync_mode != WB_SYNC_ALL) { 443 requeue_io(inode); 444 return 0; 445 } 446 447 /* 448 * It's a data-integrity sync. We must wait. 449 */ 450 inode_wait_for_writeback(inode); 451 } 452 453 BUG_ON(inode->i_state & I_SYNC); 454 455 /* Set I_SYNC, reset I_DIRTY */ 456 dirty = inode->i_state & I_DIRTY; 457 inode->i_state |= I_SYNC; 458 inode->i_state &= ~I_DIRTY; 459 460 spin_unlock(&inode_lock); 461 462 ret = do_writepages(mapping, wbc); 463 464 /* 465 * Make sure to wait on the data before writing out the metadata. 466 * This is important for filesystems that modify metadata on data 467 * I/O completion. 468 */ 469 if (wbc->sync_mode == WB_SYNC_ALL) { 470 int err = filemap_fdatawait(mapping); 471 if (ret == 0) 472 ret = err; 473 } 474 475 /* Don't write the inode if only I_DIRTY_PAGES was set */ 476 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 477 int err = write_inode(inode, wbc); 478 if (ret == 0) 479 ret = err; 480 } 481 482 spin_lock(&inode_lock); 483 inode->i_state &= ~I_SYNC; 484 if (!(inode->i_state & (I_FREEING | I_CLEAR))) { 485 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) { 486 /* 487 * More pages get dirtied by a fast dirtier. 488 */ 489 goto select_queue; 490 } else if (inode->i_state & I_DIRTY) { 491 /* 492 * At least XFS will redirty the inode during the 493 * writeback (delalloc) and on io completion (isize). 494 */ 495 redirty_tail(inode); 496 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 497 /* 498 * We didn't write back all the pages. nfs_writepages() 499 * sometimes bales out without doing anything. Redirty 500 * the inode; Move it from b_io onto b_more_io/b_dirty. 501 */ 502 /* 503 * akpm: if the caller was the kupdate function we put 504 * this inode at the head of b_dirty so it gets first 505 * consideration. Otherwise, move it to the tail, for 506 * the reasons described there. I'm not really sure 507 * how much sense this makes. Presumably I had a good 508 * reasons for doing it this way, and I'd rather not 509 * muck with it at present. 510 */ 511 if (wbc->for_kupdate) { 512 /* 513 * For the kupdate function we move the inode 514 * to b_more_io so it will get more writeout as 515 * soon as the queue becomes uncongested. 516 */ 517 inode->i_state |= I_DIRTY_PAGES; 518 select_queue: 519 if (wbc->nr_to_write <= 0) { 520 /* 521 * slice used up: queue for next turn 522 */ 523 requeue_io(inode); 524 } else { 525 /* 526 * somehow blocked: retry later 527 */ 528 redirty_tail(inode); 529 } 530 } else { 531 /* 532 * Otherwise fully redirty the inode so that 533 * other inodes on this superblock will get some 534 * writeout. Otherwise heavy writing to one 535 * file would indefinitely suspend writeout of 536 * all the other files. 537 */ 538 inode->i_state |= I_DIRTY_PAGES; 539 redirty_tail(inode); 540 } 541 } else if (atomic_read(&inode->i_count)) { 542 /* 543 * The inode is clean, inuse 544 */ 545 list_move(&inode->i_list, &inode_in_use); 546 } else { 547 /* 548 * The inode is clean, unused 549 */ 550 list_move(&inode->i_list, &inode_unused); 551 } 552 } 553 inode_sync_complete(inode); 554 return ret; 555 } 556 557 static void unpin_sb_for_writeback(struct super_block *sb) 558 { 559 up_read(&sb->s_umount); 560 put_super(sb); 561 } 562 563 enum sb_pin_state { 564 SB_PINNED, 565 SB_NOT_PINNED, 566 SB_PIN_FAILED 567 }; 568 569 /* 570 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned 571 * before calling writeback. So make sure that we do pin it, so it doesn't 572 * go away while we are writing inodes from it. 573 */ 574 static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc, 575 struct super_block *sb) 576 { 577 /* 578 * Caller must already hold the ref for this 579 */ 580 if (wbc->sync_mode == WB_SYNC_ALL) { 581 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 582 return SB_NOT_PINNED; 583 } 584 spin_lock(&sb_lock); 585 sb->s_count++; 586 if (down_read_trylock(&sb->s_umount)) { 587 if (sb->s_root) { 588 spin_unlock(&sb_lock); 589 return SB_PINNED; 590 } 591 /* 592 * umounted, drop rwsem again and fall through to failure 593 */ 594 up_read(&sb->s_umount); 595 } 596 sb->s_count--; 597 spin_unlock(&sb_lock); 598 return SB_PIN_FAILED; 599 } 600 601 /* 602 * Write a portion of b_io inodes which belong to @sb. 603 * If @wbc->sb != NULL, then find and write all such 604 * inodes. Otherwise write only ones which go sequentially 605 * in reverse order. 606 * Return 1, if the caller writeback routine should be 607 * interrupted. Otherwise return 0. 608 */ 609 static int writeback_sb_inodes(struct super_block *sb, 610 struct bdi_writeback *wb, 611 struct writeback_control *wbc) 612 { 613 while (!list_empty(&wb->b_io)) { 614 long pages_skipped; 615 struct inode *inode = list_entry(wb->b_io.prev, 616 struct inode, i_list); 617 if (wbc->sb && sb != inode->i_sb) { 618 /* super block given and doesn't 619 match, skip this inode */ 620 redirty_tail(inode); 621 continue; 622 } 623 if (sb != inode->i_sb) 624 /* finish with this superblock */ 625 return 0; 626 if (inode->i_state & (I_NEW | I_WILL_FREE)) { 627 requeue_io(inode); 628 continue; 629 } 630 /* 631 * Was this inode dirtied after sync_sb_inodes was called? 632 * This keeps sync from extra jobs and livelock. 633 */ 634 if (inode_dirtied_after(inode, wbc->wb_start)) 635 return 1; 636 637 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR)); 638 __iget(inode); 639 pages_skipped = wbc->pages_skipped; 640 writeback_single_inode(inode, wbc); 641 if (wbc->pages_skipped != pages_skipped) { 642 /* 643 * writeback is not making progress due to locked 644 * buffers. Skip this inode for now. 645 */ 646 redirty_tail(inode); 647 } 648 spin_unlock(&inode_lock); 649 iput(inode); 650 cond_resched(); 651 spin_lock(&inode_lock); 652 if (wbc->nr_to_write <= 0) { 653 wbc->more_io = 1; 654 return 1; 655 } 656 if (!list_empty(&wb->b_more_io)) 657 wbc->more_io = 1; 658 } 659 /* b_io is empty */ 660 return 1; 661 } 662 663 static void writeback_inodes_wb(struct bdi_writeback *wb, 664 struct writeback_control *wbc) 665 { 666 int ret = 0; 667 668 wbc->wb_start = jiffies; /* livelock avoidance */ 669 spin_lock(&inode_lock); 670 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 671 queue_io(wb, wbc->older_than_this); 672 673 while (!list_empty(&wb->b_io)) { 674 struct inode *inode = list_entry(wb->b_io.prev, 675 struct inode, i_list); 676 struct super_block *sb = inode->i_sb; 677 enum sb_pin_state state; 678 679 if (wbc->sb && sb != wbc->sb) { 680 /* super block given and doesn't 681 match, skip this inode */ 682 redirty_tail(inode); 683 continue; 684 } 685 state = pin_sb_for_writeback(wbc, sb); 686 687 if (state == SB_PIN_FAILED) { 688 requeue_io(inode); 689 continue; 690 } 691 ret = writeback_sb_inodes(sb, wb, wbc); 692 693 if (state == SB_PINNED) 694 unpin_sb_for_writeback(sb); 695 if (ret) 696 break; 697 } 698 spin_unlock(&inode_lock); 699 /* Leave any unwritten inodes on b_io */ 700 } 701 702 void writeback_inodes_wbc(struct writeback_control *wbc) 703 { 704 struct backing_dev_info *bdi = wbc->bdi; 705 706 writeback_inodes_wb(&bdi->wb, wbc); 707 } 708 709 /* 710 * The maximum number of pages to writeout in a single bdi flush/kupdate 711 * operation. We do this so we don't hold I_SYNC against an inode for 712 * enormous amounts of time, which would block a userspace task which has 713 * been forced to throttle against that inode. Also, the code reevaluates 714 * the dirty each time it has written this many pages. 715 */ 716 #define MAX_WRITEBACK_PAGES 1024 717 718 static inline bool over_bground_thresh(void) 719 { 720 unsigned long background_thresh, dirty_thresh; 721 722 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 723 724 return (global_page_state(NR_FILE_DIRTY) + 725 global_page_state(NR_UNSTABLE_NFS) >= background_thresh); 726 } 727 728 /* 729 * Explicit flushing or periodic writeback of "old" data. 730 * 731 * Define "old": the first time one of an inode's pages is dirtied, we mark the 732 * dirtying-time in the inode's address_space. So this periodic writeback code 733 * just walks the superblock inode list, writing back any inodes which are 734 * older than a specific point in time. 735 * 736 * Try to run once per dirty_writeback_interval. But if a writeback event 737 * takes longer than a dirty_writeback_interval interval, then leave a 738 * one-second gap. 739 * 740 * older_than_this takes precedence over nr_to_write. So we'll only write back 741 * all dirty pages if they are all attached to "old" mappings. 742 */ 743 static long wb_writeback(struct bdi_writeback *wb, 744 struct wb_writeback_args *args) 745 { 746 struct writeback_control wbc = { 747 .bdi = wb->bdi, 748 .sb = args->sb, 749 .sync_mode = args->sync_mode, 750 .older_than_this = NULL, 751 .for_kupdate = args->for_kupdate, 752 .for_background = args->for_background, 753 .range_cyclic = args->range_cyclic, 754 }; 755 unsigned long oldest_jif; 756 long wrote = 0; 757 struct inode *inode; 758 759 if (wbc.for_kupdate) { 760 wbc.older_than_this = &oldest_jif; 761 oldest_jif = jiffies - 762 msecs_to_jiffies(dirty_expire_interval * 10); 763 } 764 if (!wbc.range_cyclic) { 765 wbc.range_start = 0; 766 wbc.range_end = LLONG_MAX; 767 } 768 769 for (;;) { 770 /* 771 * Stop writeback when nr_pages has been consumed 772 */ 773 if (args->nr_pages <= 0) 774 break; 775 776 /* 777 * For background writeout, stop when we are below the 778 * background dirty threshold 779 */ 780 if (args->for_background && !over_bground_thresh()) 781 break; 782 783 wbc.more_io = 0; 784 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 785 wbc.pages_skipped = 0; 786 writeback_inodes_wb(wb, &wbc); 787 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 788 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write; 789 790 /* 791 * If we consumed everything, see if we have more 792 */ 793 if (wbc.nr_to_write <= 0) 794 continue; 795 /* 796 * Didn't write everything and we don't have more IO, bail 797 */ 798 if (!wbc.more_io) 799 break; 800 /* 801 * Did we write something? Try for more 802 */ 803 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES) 804 continue; 805 /* 806 * Nothing written. Wait for some inode to 807 * become available for writeback. Otherwise 808 * we'll just busyloop. 809 */ 810 spin_lock(&inode_lock); 811 if (!list_empty(&wb->b_more_io)) { 812 inode = list_entry(wb->b_more_io.prev, 813 struct inode, i_list); 814 inode_wait_for_writeback(inode); 815 } 816 spin_unlock(&inode_lock); 817 } 818 819 return wrote; 820 } 821 822 /* 823 * Return the next bdi_work struct that hasn't been processed by this 824 * wb thread yet. ->seen is initially set for each thread that exists 825 * for this device, when a thread first notices a piece of work it 826 * clears its bit. Depending on writeback type, the thread will notify 827 * completion on either receiving the work (WB_SYNC_NONE) or after 828 * it is done (WB_SYNC_ALL). 829 */ 830 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi, 831 struct bdi_writeback *wb) 832 { 833 struct bdi_work *work, *ret = NULL; 834 835 rcu_read_lock(); 836 837 list_for_each_entry_rcu(work, &bdi->work_list, list) { 838 if (!test_bit(wb->nr, &work->seen)) 839 continue; 840 clear_bit(wb->nr, &work->seen); 841 842 ret = work; 843 break; 844 } 845 846 rcu_read_unlock(); 847 return ret; 848 } 849 850 static long wb_check_old_data_flush(struct bdi_writeback *wb) 851 { 852 unsigned long expired; 853 long nr_pages; 854 855 expired = wb->last_old_flush + 856 msecs_to_jiffies(dirty_writeback_interval * 10); 857 if (time_before(jiffies, expired)) 858 return 0; 859 860 wb->last_old_flush = jiffies; 861 nr_pages = global_page_state(NR_FILE_DIRTY) + 862 global_page_state(NR_UNSTABLE_NFS) + 863 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 864 865 if (nr_pages) { 866 struct wb_writeback_args args = { 867 .nr_pages = nr_pages, 868 .sync_mode = WB_SYNC_NONE, 869 .for_kupdate = 1, 870 .range_cyclic = 1, 871 }; 872 873 return wb_writeback(wb, &args); 874 } 875 876 return 0; 877 } 878 879 /* 880 * Retrieve work items and do the writeback they describe 881 */ 882 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 883 { 884 struct backing_dev_info *bdi = wb->bdi; 885 struct bdi_work *work; 886 long wrote = 0; 887 888 while ((work = get_next_work_item(bdi, wb)) != NULL) { 889 struct wb_writeback_args args = work->args; 890 891 /* 892 * Override sync mode, in case we must wait for completion 893 */ 894 if (force_wait) 895 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL; 896 897 /* 898 * If this isn't a data integrity operation, just notify 899 * that we have seen this work and we are now starting it. 900 */ 901 if (args.sync_mode == WB_SYNC_NONE) 902 wb_clear_pending(wb, work); 903 904 wrote += wb_writeback(wb, &args); 905 906 /* 907 * This is a data integrity writeback, so only do the 908 * notification when we have completed the work. 909 */ 910 if (args.sync_mode == WB_SYNC_ALL) 911 wb_clear_pending(wb, work); 912 } 913 914 /* 915 * Check for periodic writeback, kupdated() style 916 */ 917 wrote += wb_check_old_data_flush(wb); 918 919 return wrote; 920 } 921 922 /* 923 * Handle writeback of dirty data for the device backed by this bdi. Also 924 * wakes up periodically and does kupdated style flushing. 925 */ 926 int bdi_writeback_task(struct bdi_writeback *wb) 927 { 928 unsigned long last_active = jiffies; 929 unsigned long wait_jiffies = -1UL; 930 long pages_written; 931 932 while (!kthread_should_stop()) { 933 pages_written = wb_do_writeback(wb, 0); 934 935 if (pages_written) 936 last_active = jiffies; 937 else if (wait_jiffies != -1UL) { 938 unsigned long max_idle; 939 940 /* 941 * Longest period of inactivity that we tolerate. If we 942 * see dirty data again later, the task will get 943 * recreated automatically. 944 */ 945 max_idle = max(5UL * 60 * HZ, wait_jiffies); 946 if (time_after(jiffies, max_idle + last_active)) 947 break; 948 } 949 950 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10); 951 schedule_timeout_interruptible(wait_jiffies); 952 try_to_freeze(); 953 } 954 955 return 0; 956 } 957 958 /* 959 * Schedule writeback for all backing devices. This does WB_SYNC_NONE 960 * writeback, for integrity writeback see bdi_sync_writeback(). 961 */ 962 static void bdi_writeback_all(struct super_block *sb, long nr_pages) 963 { 964 struct wb_writeback_args args = { 965 .sb = sb, 966 .nr_pages = nr_pages, 967 .sync_mode = WB_SYNC_NONE, 968 }; 969 struct backing_dev_info *bdi; 970 971 rcu_read_lock(); 972 973 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 974 if (!bdi_has_dirty_io(bdi)) 975 continue; 976 977 bdi_alloc_queue_work(bdi, &args); 978 } 979 980 rcu_read_unlock(); 981 } 982 983 /* 984 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 985 * the whole world. 986 */ 987 void wakeup_flusher_threads(long nr_pages) 988 { 989 if (nr_pages == 0) 990 nr_pages = global_page_state(NR_FILE_DIRTY) + 991 global_page_state(NR_UNSTABLE_NFS); 992 bdi_writeback_all(NULL, nr_pages); 993 } 994 995 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 996 { 997 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 998 struct dentry *dentry; 999 const char *name = "?"; 1000 1001 dentry = d_find_alias(inode); 1002 if (dentry) { 1003 spin_lock(&dentry->d_lock); 1004 name = (const char *) dentry->d_name.name; 1005 } 1006 printk(KERN_DEBUG 1007 "%s(%d): dirtied inode %lu (%s) on %s\n", 1008 current->comm, task_pid_nr(current), inode->i_ino, 1009 name, inode->i_sb->s_id); 1010 if (dentry) { 1011 spin_unlock(&dentry->d_lock); 1012 dput(dentry); 1013 } 1014 } 1015 } 1016 1017 /** 1018 * __mark_inode_dirty - internal function 1019 * @inode: inode to mark 1020 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1021 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1022 * mark_inode_dirty_sync. 1023 * 1024 * Put the inode on the super block's dirty list. 1025 * 1026 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1027 * dirty list only if it is hashed or if it refers to a blockdev. 1028 * If it was not hashed, it will never be added to the dirty list 1029 * even if it is later hashed, as it will have been marked dirty already. 1030 * 1031 * In short, make sure you hash any inodes _before_ you start marking 1032 * them dirty. 1033 * 1034 * This function *must* be atomic for the I_DIRTY_PAGES case - 1035 * set_page_dirty() is called under spinlock in several places. 1036 * 1037 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1038 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1039 * the kernel-internal blockdev inode represents the dirtying time of the 1040 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1041 * page->mapping->host, so the page-dirtying time is recorded in the internal 1042 * blockdev inode. 1043 */ 1044 void __mark_inode_dirty(struct inode *inode, int flags) 1045 { 1046 struct super_block *sb = inode->i_sb; 1047 1048 /* 1049 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1050 * dirty the inode itself 1051 */ 1052 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1053 if (sb->s_op->dirty_inode) 1054 sb->s_op->dirty_inode(inode); 1055 } 1056 1057 /* 1058 * make sure that changes are seen by all cpus before we test i_state 1059 * -- mikulas 1060 */ 1061 smp_mb(); 1062 1063 /* avoid the locking if we can */ 1064 if ((inode->i_state & flags) == flags) 1065 return; 1066 1067 if (unlikely(block_dump)) 1068 block_dump___mark_inode_dirty(inode); 1069 1070 spin_lock(&inode_lock); 1071 if ((inode->i_state & flags) != flags) { 1072 const int was_dirty = inode->i_state & I_DIRTY; 1073 1074 inode->i_state |= flags; 1075 1076 /* 1077 * If the inode is being synced, just update its dirty state. 1078 * The unlocker will place the inode on the appropriate 1079 * superblock list, based upon its state. 1080 */ 1081 if (inode->i_state & I_SYNC) 1082 goto out; 1083 1084 /* 1085 * Only add valid (hashed) inodes to the superblock's 1086 * dirty list. Add blockdev inodes as well. 1087 */ 1088 if (!S_ISBLK(inode->i_mode)) { 1089 if (hlist_unhashed(&inode->i_hash)) 1090 goto out; 1091 } 1092 if (inode->i_state & (I_FREEING|I_CLEAR)) 1093 goto out; 1094 1095 /* 1096 * If the inode was already on b_dirty/b_io/b_more_io, don't 1097 * reposition it (that would break b_dirty time-ordering). 1098 */ 1099 if (!was_dirty) { 1100 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1101 struct backing_dev_info *bdi = wb->bdi; 1102 1103 if (bdi_cap_writeback_dirty(bdi) && 1104 !test_bit(BDI_registered, &bdi->state)) { 1105 WARN_ON(1); 1106 printk(KERN_ERR "bdi-%s not registered\n", 1107 bdi->name); 1108 } 1109 1110 inode->dirtied_when = jiffies; 1111 list_move(&inode->i_list, &wb->b_dirty); 1112 } 1113 } 1114 out: 1115 spin_unlock(&inode_lock); 1116 } 1117 EXPORT_SYMBOL(__mark_inode_dirty); 1118 1119 /* 1120 * Write out a superblock's list of dirty inodes. A wait will be performed 1121 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1122 * 1123 * If older_than_this is non-NULL, then only write out inodes which 1124 * had their first dirtying at a time earlier than *older_than_this. 1125 * 1126 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1127 * This function assumes that the blockdev superblock's inodes are backed by 1128 * a variety of queues, so all inodes are searched. For other superblocks, 1129 * assume that all inodes are backed by the same queue. 1130 * 1131 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1132 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1133 * on the writer throttling path, and we get decent balancing between many 1134 * throttled threads: we don't want them all piling up on inode_sync_wait. 1135 */ 1136 static void wait_sb_inodes(struct super_block *sb) 1137 { 1138 struct inode *inode, *old_inode = NULL; 1139 1140 /* 1141 * We need to be protected against the filesystem going from 1142 * r/o to r/w or vice versa. 1143 */ 1144 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1145 1146 spin_lock(&inode_lock); 1147 1148 /* 1149 * Data integrity sync. Must wait for all pages under writeback, 1150 * because there may have been pages dirtied before our sync 1151 * call, but which had writeout started before we write it out. 1152 * In which case, the inode may not be on the dirty list, but 1153 * we still have to wait for that writeout. 1154 */ 1155 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1156 struct address_space *mapping; 1157 1158 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW)) 1159 continue; 1160 mapping = inode->i_mapping; 1161 if (mapping->nrpages == 0) 1162 continue; 1163 __iget(inode); 1164 spin_unlock(&inode_lock); 1165 /* 1166 * We hold a reference to 'inode' so it couldn't have 1167 * been removed from s_inodes list while we dropped the 1168 * inode_lock. We cannot iput the inode now as we can 1169 * be holding the last reference and we cannot iput it 1170 * under inode_lock. So we keep the reference and iput 1171 * it later. 1172 */ 1173 iput(old_inode); 1174 old_inode = inode; 1175 1176 filemap_fdatawait(mapping); 1177 1178 cond_resched(); 1179 1180 spin_lock(&inode_lock); 1181 } 1182 spin_unlock(&inode_lock); 1183 iput(old_inode); 1184 } 1185 1186 /** 1187 * writeback_inodes_sb - writeback dirty inodes from given super_block 1188 * @sb: the superblock 1189 * 1190 * Start writeback on some inodes on this super_block. No guarantees are made 1191 * on how many (if any) will be written, and this function does not wait 1192 * for IO completion of submitted IO. The number of pages submitted is 1193 * returned. 1194 */ 1195 void writeback_inodes_sb(struct super_block *sb) 1196 { 1197 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 1198 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 1199 long nr_to_write; 1200 1201 nr_to_write = nr_dirty + nr_unstable + 1202 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 1203 1204 bdi_start_writeback(sb->s_bdi, sb, nr_to_write); 1205 } 1206 EXPORT_SYMBOL(writeback_inodes_sb); 1207 1208 /** 1209 * writeback_inodes_sb_if_idle - start writeback if none underway 1210 * @sb: the superblock 1211 * 1212 * Invoke writeback_inodes_sb if no writeback is currently underway. 1213 * Returns 1 if writeback was started, 0 if not. 1214 */ 1215 int writeback_inodes_sb_if_idle(struct super_block *sb) 1216 { 1217 if (!writeback_in_progress(sb->s_bdi)) { 1218 writeback_inodes_sb(sb); 1219 return 1; 1220 } else 1221 return 0; 1222 } 1223 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1224 1225 /** 1226 * sync_inodes_sb - sync sb inode pages 1227 * @sb: the superblock 1228 * 1229 * This function writes and waits on any dirty inode belonging to this 1230 * super_block. The number of pages synced is returned. 1231 */ 1232 void sync_inodes_sb(struct super_block *sb) 1233 { 1234 bdi_sync_writeback(sb->s_bdi, sb); 1235 wait_sb_inodes(sb); 1236 } 1237 EXPORT_SYMBOL(sync_inodes_sb); 1238 1239 /** 1240 * write_inode_now - write an inode to disk 1241 * @inode: inode to write to disk 1242 * @sync: whether the write should be synchronous or not 1243 * 1244 * This function commits an inode to disk immediately if it is dirty. This is 1245 * primarily needed by knfsd. 1246 * 1247 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1248 */ 1249 int write_inode_now(struct inode *inode, int sync) 1250 { 1251 int ret; 1252 struct writeback_control wbc = { 1253 .nr_to_write = LONG_MAX, 1254 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1255 .range_start = 0, 1256 .range_end = LLONG_MAX, 1257 }; 1258 1259 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1260 wbc.nr_to_write = 0; 1261 1262 might_sleep(); 1263 spin_lock(&inode_lock); 1264 ret = writeback_single_inode(inode, &wbc); 1265 spin_unlock(&inode_lock); 1266 if (sync) 1267 inode_sync_wait(inode); 1268 return ret; 1269 } 1270 EXPORT_SYMBOL(write_inode_now); 1271 1272 /** 1273 * sync_inode - write an inode and its pages to disk. 1274 * @inode: the inode to sync 1275 * @wbc: controls the writeback mode 1276 * 1277 * sync_inode() will write an inode and its pages to disk. It will also 1278 * correctly update the inode on its superblock's dirty inode lists and will 1279 * update inode->i_state. 1280 * 1281 * The caller must have a ref on the inode. 1282 */ 1283 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1284 { 1285 int ret; 1286 1287 spin_lock(&inode_lock); 1288 ret = writeback_single_inode(inode, wbc); 1289 spin_unlock(&inode_lock); 1290 return ret; 1291 } 1292 EXPORT_SYMBOL(sync_inode); 1293