xref: /linux/fs/fs-writeback.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
30 
31 #define inode_to_bdi(inode)	((inode)->i_mapping->backing_dev_info)
32 
33 /*
34  * We don't actually have pdflush, but this one is exported though /proc...
35  */
36 int nr_pdflush_threads;
37 
38 /*
39  * Passed into wb_writeback(), essentially a subset of writeback_control
40  */
41 struct wb_writeback_args {
42 	long nr_pages;
43 	struct super_block *sb;
44 	enum writeback_sync_modes sync_mode;
45 	int for_kupdate:1;
46 	int range_cyclic:1;
47 	int for_background:1;
48 };
49 
50 /*
51  * Work items for the bdi_writeback threads
52  */
53 struct bdi_work {
54 	struct list_head list;		/* pending work list */
55 	struct rcu_head rcu_head;	/* for RCU free/clear of work */
56 
57 	unsigned long seen;		/* threads that have seen this work */
58 	atomic_t pending;		/* number of threads still to do work */
59 
60 	struct wb_writeback_args args;	/* writeback arguments */
61 
62 	unsigned long state;		/* flag bits, see WS_* */
63 };
64 
65 enum {
66 	WS_USED_B = 0,
67 	WS_ONSTACK_B,
68 };
69 
70 #define WS_USED (1 << WS_USED_B)
71 #define WS_ONSTACK (1 << WS_ONSTACK_B)
72 
73 static inline bool bdi_work_on_stack(struct bdi_work *work)
74 {
75 	return test_bit(WS_ONSTACK_B, &work->state);
76 }
77 
78 static inline void bdi_work_init(struct bdi_work *work,
79 				 struct wb_writeback_args *args)
80 {
81 	INIT_RCU_HEAD(&work->rcu_head);
82 	work->args = *args;
83 	work->state = WS_USED;
84 }
85 
86 /**
87  * writeback_in_progress - determine whether there is writeback in progress
88  * @bdi: the device's backing_dev_info structure.
89  *
90  * Determine whether there is writeback waiting to be handled against a
91  * backing device.
92  */
93 int writeback_in_progress(struct backing_dev_info *bdi)
94 {
95 	return !list_empty(&bdi->work_list);
96 }
97 
98 static void bdi_work_clear(struct bdi_work *work)
99 {
100 	clear_bit(WS_USED_B, &work->state);
101 	smp_mb__after_clear_bit();
102 	/*
103 	 * work can have disappeared at this point. bit waitq functions
104 	 * should be able to tolerate this, provided bdi_sched_wait does
105 	 * not dereference it's pointer argument.
106 	*/
107 	wake_up_bit(&work->state, WS_USED_B);
108 }
109 
110 static void bdi_work_free(struct rcu_head *head)
111 {
112 	struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
113 
114 	if (!bdi_work_on_stack(work))
115 		kfree(work);
116 	else
117 		bdi_work_clear(work);
118 }
119 
120 static void wb_work_complete(struct bdi_work *work)
121 {
122 	const enum writeback_sync_modes sync_mode = work->args.sync_mode;
123 	int onstack = bdi_work_on_stack(work);
124 
125 	/*
126 	 * For allocated work, we can clear the done/seen bit right here.
127 	 * For on-stack work, we need to postpone both the clear and free
128 	 * to after the RCU grace period, since the stack could be invalidated
129 	 * as soon as bdi_work_clear() has done the wakeup.
130 	 */
131 	if (!onstack)
132 		bdi_work_clear(work);
133 	if (sync_mode == WB_SYNC_NONE || onstack)
134 		call_rcu(&work->rcu_head, bdi_work_free);
135 }
136 
137 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
138 {
139 	/*
140 	 * The caller has retrieved the work arguments from this work,
141 	 * drop our reference. If this is the last ref, delete and free it
142 	 */
143 	if (atomic_dec_and_test(&work->pending)) {
144 		struct backing_dev_info *bdi = wb->bdi;
145 
146 		spin_lock(&bdi->wb_lock);
147 		list_del_rcu(&work->list);
148 		spin_unlock(&bdi->wb_lock);
149 
150 		wb_work_complete(work);
151 	}
152 }
153 
154 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
155 {
156 	work->seen = bdi->wb_mask;
157 	BUG_ON(!work->seen);
158 	atomic_set(&work->pending, bdi->wb_cnt);
159 	BUG_ON(!bdi->wb_cnt);
160 
161 	/*
162 	 * list_add_tail_rcu() contains the necessary barriers to
163 	 * make sure the above stores are seen before the item is
164 	 * noticed on the list
165 	 */
166 	spin_lock(&bdi->wb_lock);
167 	list_add_tail_rcu(&work->list, &bdi->work_list);
168 	spin_unlock(&bdi->wb_lock);
169 
170 	/*
171 	 * If the default thread isn't there, make sure we add it. When
172 	 * it gets created and wakes up, we'll run this work.
173 	 */
174 	if (unlikely(list_empty_careful(&bdi->wb_list)))
175 		wake_up_process(default_backing_dev_info.wb.task);
176 	else {
177 		struct bdi_writeback *wb = &bdi->wb;
178 
179 		if (wb->task)
180 			wake_up_process(wb->task);
181 	}
182 }
183 
184 /*
185  * Used for on-stack allocated work items. The caller needs to wait until
186  * the wb threads have acked the work before it's safe to continue.
187  */
188 static void bdi_wait_on_work_clear(struct bdi_work *work)
189 {
190 	wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
191 		    TASK_UNINTERRUPTIBLE);
192 }
193 
194 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
195 				 struct wb_writeback_args *args)
196 {
197 	struct bdi_work *work;
198 
199 	/*
200 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
201 	 * wakeup the thread for old dirty data writeback
202 	 */
203 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
204 	if (work) {
205 		bdi_work_init(work, args);
206 		bdi_queue_work(bdi, work);
207 	} else {
208 		struct bdi_writeback *wb = &bdi->wb;
209 
210 		if (wb->task)
211 			wake_up_process(wb->task);
212 	}
213 }
214 
215 /**
216  * bdi_sync_writeback - start and wait for writeback
217  * @bdi: the backing device to write from
218  * @sb: write inodes from this super_block
219  *
220  * Description:
221  *   This does WB_SYNC_ALL data integrity writeback and waits for the
222  *   IO to complete. Callers must hold the sb s_umount semaphore for
223  *   reading, to avoid having the super disappear before we are done.
224  */
225 static void bdi_sync_writeback(struct backing_dev_info *bdi,
226 			       struct super_block *sb)
227 {
228 	struct wb_writeback_args args = {
229 		.sb		= sb,
230 		.sync_mode	= WB_SYNC_ALL,
231 		.nr_pages	= LONG_MAX,
232 		.range_cyclic	= 0,
233 	};
234 	struct bdi_work work;
235 
236 	bdi_work_init(&work, &args);
237 	work.state |= WS_ONSTACK;
238 
239 	bdi_queue_work(bdi, &work);
240 	bdi_wait_on_work_clear(&work);
241 }
242 
243 /**
244  * bdi_start_writeback - start writeback
245  * @bdi: the backing device to write from
246  * @sb: write inodes from this super_block
247  * @nr_pages: the number of pages to write
248  *
249  * Description:
250  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
251  *   started when this function returns, we make no guarentees on
252  *   completion. Caller need not hold sb s_umount semaphore.
253  *
254  */
255 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
256 			 long nr_pages)
257 {
258 	struct wb_writeback_args args = {
259 		.sb		= sb,
260 		.sync_mode	= WB_SYNC_NONE,
261 		.nr_pages	= nr_pages,
262 		.range_cyclic	= 1,
263 	};
264 
265 	/*
266 	 * We treat @nr_pages=0 as the special case to do background writeback,
267 	 * ie. to sync pages until the background dirty threshold is reached.
268 	 */
269 	if (!nr_pages) {
270 		args.nr_pages = LONG_MAX;
271 		args.for_background = 1;
272 	}
273 
274 	bdi_alloc_queue_work(bdi, &args);
275 }
276 
277 /*
278  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
279  * furthest end of its superblock's dirty-inode list.
280  *
281  * Before stamping the inode's ->dirtied_when, we check to see whether it is
282  * already the most-recently-dirtied inode on the b_dirty list.  If that is
283  * the case then the inode must have been redirtied while it was being written
284  * out and we don't reset its dirtied_when.
285  */
286 static void redirty_tail(struct inode *inode)
287 {
288 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
289 
290 	if (!list_empty(&wb->b_dirty)) {
291 		struct inode *tail;
292 
293 		tail = list_entry(wb->b_dirty.next, struct inode, i_list);
294 		if (time_before(inode->dirtied_when, tail->dirtied_when))
295 			inode->dirtied_when = jiffies;
296 	}
297 	list_move(&inode->i_list, &wb->b_dirty);
298 }
299 
300 /*
301  * requeue inode for re-scanning after bdi->b_io list is exhausted.
302  */
303 static void requeue_io(struct inode *inode)
304 {
305 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
306 
307 	list_move(&inode->i_list, &wb->b_more_io);
308 }
309 
310 static void inode_sync_complete(struct inode *inode)
311 {
312 	/*
313 	 * Prevent speculative execution through spin_unlock(&inode_lock);
314 	 */
315 	smp_mb();
316 	wake_up_bit(&inode->i_state, __I_SYNC);
317 }
318 
319 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
320 {
321 	bool ret = time_after(inode->dirtied_when, t);
322 #ifndef CONFIG_64BIT
323 	/*
324 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
325 	 * It _appears_ to be in the future, but is actually in distant past.
326 	 * This test is necessary to prevent such wrapped-around relative times
327 	 * from permanently stopping the whole bdi writeback.
328 	 */
329 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
330 #endif
331 	return ret;
332 }
333 
334 /*
335  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
336  */
337 static void move_expired_inodes(struct list_head *delaying_queue,
338 			       struct list_head *dispatch_queue,
339 				unsigned long *older_than_this)
340 {
341 	LIST_HEAD(tmp);
342 	struct list_head *pos, *node;
343 	struct super_block *sb = NULL;
344 	struct inode *inode;
345 	int do_sb_sort = 0;
346 
347 	while (!list_empty(delaying_queue)) {
348 		inode = list_entry(delaying_queue->prev, struct inode, i_list);
349 		if (older_than_this &&
350 		    inode_dirtied_after(inode, *older_than_this))
351 			break;
352 		if (sb && sb != inode->i_sb)
353 			do_sb_sort = 1;
354 		sb = inode->i_sb;
355 		list_move(&inode->i_list, &tmp);
356 	}
357 
358 	/* just one sb in list, splice to dispatch_queue and we're done */
359 	if (!do_sb_sort) {
360 		list_splice(&tmp, dispatch_queue);
361 		return;
362 	}
363 
364 	/* Move inodes from one superblock together */
365 	while (!list_empty(&tmp)) {
366 		inode = list_entry(tmp.prev, struct inode, i_list);
367 		sb = inode->i_sb;
368 		list_for_each_prev_safe(pos, node, &tmp) {
369 			inode = list_entry(pos, struct inode, i_list);
370 			if (inode->i_sb == sb)
371 				list_move(&inode->i_list, dispatch_queue);
372 		}
373 	}
374 }
375 
376 /*
377  * Queue all expired dirty inodes for io, eldest first.
378  */
379 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
380 {
381 	list_splice_init(&wb->b_more_io, wb->b_io.prev);
382 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
383 }
384 
385 static int write_inode(struct inode *inode, struct writeback_control *wbc)
386 {
387 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
388 		return inode->i_sb->s_op->write_inode(inode, wbc);
389 	return 0;
390 }
391 
392 /*
393  * Wait for writeback on an inode to complete.
394  */
395 static void inode_wait_for_writeback(struct inode *inode)
396 {
397 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
398 	wait_queue_head_t *wqh;
399 
400 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
401 	do {
402 		spin_unlock(&inode_lock);
403 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
404 		spin_lock(&inode_lock);
405 	} while (inode->i_state & I_SYNC);
406 }
407 
408 /*
409  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
410  * caller has ref on the inode (either via __iget or via syscall against an fd)
411  * or the inode has I_WILL_FREE set (via generic_forget_inode)
412  *
413  * If `wait' is set, wait on the writeout.
414  *
415  * The whole writeout design is quite complex and fragile.  We want to avoid
416  * starvation of particular inodes when others are being redirtied, prevent
417  * livelocks, etc.
418  *
419  * Called under inode_lock.
420  */
421 static int
422 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
423 {
424 	struct address_space *mapping = inode->i_mapping;
425 	unsigned dirty;
426 	int ret;
427 
428 	if (!atomic_read(&inode->i_count))
429 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
430 	else
431 		WARN_ON(inode->i_state & I_WILL_FREE);
432 
433 	if (inode->i_state & I_SYNC) {
434 		/*
435 		 * If this inode is locked for writeback and we are not doing
436 		 * writeback-for-data-integrity, move it to b_more_io so that
437 		 * writeback can proceed with the other inodes on s_io.
438 		 *
439 		 * We'll have another go at writing back this inode when we
440 		 * completed a full scan of b_io.
441 		 */
442 		if (wbc->sync_mode != WB_SYNC_ALL) {
443 			requeue_io(inode);
444 			return 0;
445 		}
446 
447 		/*
448 		 * It's a data-integrity sync.  We must wait.
449 		 */
450 		inode_wait_for_writeback(inode);
451 	}
452 
453 	BUG_ON(inode->i_state & I_SYNC);
454 
455 	/* Set I_SYNC, reset I_DIRTY */
456 	dirty = inode->i_state & I_DIRTY;
457 	inode->i_state |= I_SYNC;
458 	inode->i_state &= ~I_DIRTY;
459 
460 	spin_unlock(&inode_lock);
461 
462 	ret = do_writepages(mapping, wbc);
463 
464 	/*
465 	 * Make sure to wait on the data before writing out the metadata.
466 	 * This is important for filesystems that modify metadata on data
467 	 * I/O completion.
468 	 */
469 	if (wbc->sync_mode == WB_SYNC_ALL) {
470 		int err = filemap_fdatawait(mapping);
471 		if (ret == 0)
472 			ret = err;
473 	}
474 
475 	/* Don't write the inode if only I_DIRTY_PAGES was set */
476 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
477 		int err = write_inode(inode, wbc);
478 		if (ret == 0)
479 			ret = err;
480 	}
481 
482 	spin_lock(&inode_lock);
483 	inode->i_state &= ~I_SYNC;
484 	if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
485 		if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
486 			/*
487 			 * More pages get dirtied by a fast dirtier.
488 			 */
489 			goto select_queue;
490 		} else if (inode->i_state & I_DIRTY) {
491 			/*
492 			 * At least XFS will redirty the inode during the
493 			 * writeback (delalloc) and on io completion (isize).
494 			 */
495 			redirty_tail(inode);
496 		} else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
497 			/*
498 			 * We didn't write back all the pages.  nfs_writepages()
499 			 * sometimes bales out without doing anything. Redirty
500 			 * the inode; Move it from b_io onto b_more_io/b_dirty.
501 			 */
502 			/*
503 			 * akpm: if the caller was the kupdate function we put
504 			 * this inode at the head of b_dirty so it gets first
505 			 * consideration.  Otherwise, move it to the tail, for
506 			 * the reasons described there.  I'm not really sure
507 			 * how much sense this makes.  Presumably I had a good
508 			 * reasons for doing it this way, and I'd rather not
509 			 * muck with it at present.
510 			 */
511 			if (wbc->for_kupdate) {
512 				/*
513 				 * For the kupdate function we move the inode
514 				 * to b_more_io so it will get more writeout as
515 				 * soon as the queue becomes uncongested.
516 				 */
517 				inode->i_state |= I_DIRTY_PAGES;
518 select_queue:
519 				if (wbc->nr_to_write <= 0) {
520 					/*
521 					 * slice used up: queue for next turn
522 					 */
523 					requeue_io(inode);
524 				} else {
525 					/*
526 					 * somehow blocked: retry later
527 					 */
528 					redirty_tail(inode);
529 				}
530 			} else {
531 				/*
532 				 * Otherwise fully redirty the inode so that
533 				 * other inodes on this superblock will get some
534 				 * writeout.  Otherwise heavy writing to one
535 				 * file would indefinitely suspend writeout of
536 				 * all the other files.
537 				 */
538 				inode->i_state |= I_DIRTY_PAGES;
539 				redirty_tail(inode);
540 			}
541 		} else if (atomic_read(&inode->i_count)) {
542 			/*
543 			 * The inode is clean, inuse
544 			 */
545 			list_move(&inode->i_list, &inode_in_use);
546 		} else {
547 			/*
548 			 * The inode is clean, unused
549 			 */
550 			list_move(&inode->i_list, &inode_unused);
551 		}
552 	}
553 	inode_sync_complete(inode);
554 	return ret;
555 }
556 
557 static void unpin_sb_for_writeback(struct super_block *sb)
558 {
559 	up_read(&sb->s_umount);
560 	put_super(sb);
561 }
562 
563 enum sb_pin_state {
564 	SB_PINNED,
565 	SB_NOT_PINNED,
566 	SB_PIN_FAILED
567 };
568 
569 /*
570  * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
571  * before calling writeback. So make sure that we do pin it, so it doesn't
572  * go away while we are writing inodes from it.
573  */
574 static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc,
575 					      struct super_block *sb)
576 {
577 	/*
578 	 * Caller must already hold the ref for this
579 	 */
580 	if (wbc->sync_mode == WB_SYNC_ALL) {
581 		WARN_ON(!rwsem_is_locked(&sb->s_umount));
582 		return SB_NOT_PINNED;
583 	}
584 	spin_lock(&sb_lock);
585 	sb->s_count++;
586 	if (down_read_trylock(&sb->s_umount)) {
587 		if (sb->s_root) {
588 			spin_unlock(&sb_lock);
589 			return SB_PINNED;
590 		}
591 		/*
592 		 * umounted, drop rwsem again and fall through to failure
593 		 */
594 		up_read(&sb->s_umount);
595 	}
596 	sb->s_count--;
597 	spin_unlock(&sb_lock);
598 	return SB_PIN_FAILED;
599 }
600 
601 /*
602  * Write a portion of b_io inodes which belong to @sb.
603  * If @wbc->sb != NULL, then find and write all such
604  * inodes. Otherwise write only ones which go sequentially
605  * in reverse order.
606  * Return 1, if the caller writeback routine should be
607  * interrupted. Otherwise return 0.
608  */
609 static int writeback_sb_inodes(struct super_block *sb,
610 			       struct bdi_writeback *wb,
611 			       struct writeback_control *wbc)
612 {
613 	while (!list_empty(&wb->b_io)) {
614 		long pages_skipped;
615 		struct inode *inode = list_entry(wb->b_io.prev,
616 						 struct inode, i_list);
617 		if (wbc->sb && sb != inode->i_sb) {
618 			/* super block given and doesn't
619 			   match, skip this inode */
620 			redirty_tail(inode);
621 			continue;
622 		}
623 		if (sb != inode->i_sb)
624 			/* finish with this superblock */
625 			return 0;
626 		if (inode->i_state & (I_NEW | I_WILL_FREE)) {
627 			requeue_io(inode);
628 			continue;
629 		}
630 		/*
631 		 * Was this inode dirtied after sync_sb_inodes was called?
632 		 * This keeps sync from extra jobs and livelock.
633 		 */
634 		if (inode_dirtied_after(inode, wbc->wb_start))
635 			return 1;
636 
637 		BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
638 		__iget(inode);
639 		pages_skipped = wbc->pages_skipped;
640 		writeback_single_inode(inode, wbc);
641 		if (wbc->pages_skipped != pages_skipped) {
642 			/*
643 			 * writeback is not making progress due to locked
644 			 * buffers.  Skip this inode for now.
645 			 */
646 			redirty_tail(inode);
647 		}
648 		spin_unlock(&inode_lock);
649 		iput(inode);
650 		cond_resched();
651 		spin_lock(&inode_lock);
652 		if (wbc->nr_to_write <= 0) {
653 			wbc->more_io = 1;
654 			return 1;
655 		}
656 		if (!list_empty(&wb->b_more_io))
657 			wbc->more_io = 1;
658 	}
659 	/* b_io is empty */
660 	return 1;
661 }
662 
663 static void writeback_inodes_wb(struct bdi_writeback *wb,
664 				struct writeback_control *wbc)
665 {
666 	int ret = 0;
667 
668 	wbc->wb_start = jiffies; /* livelock avoidance */
669 	spin_lock(&inode_lock);
670 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
671 		queue_io(wb, wbc->older_than_this);
672 
673 	while (!list_empty(&wb->b_io)) {
674 		struct inode *inode = list_entry(wb->b_io.prev,
675 						 struct inode, i_list);
676 		struct super_block *sb = inode->i_sb;
677 		enum sb_pin_state state;
678 
679 		if (wbc->sb && sb != wbc->sb) {
680 			/* super block given and doesn't
681 			   match, skip this inode */
682 			redirty_tail(inode);
683 			continue;
684 		}
685 		state = pin_sb_for_writeback(wbc, sb);
686 
687 		if (state == SB_PIN_FAILED) {
688 			requeue_io(inode);
689 			continue;
690 		}
691 		ret = writeback_sb_inodes(sb, wb, wbc);
692 
693 		if (state == SB_PINNED)
694 			unpin_sb_for_writeback(sb);
695 		if (ret)
696 			break;
697 	}
698 	spin_unlock(&inode_lock);
699 	/* Leave any unwritten inodes on b_io */
700 }
701 
702 void writeback_inodes_wbc(struct writeback_control *wbc)
703 {
704 	struct backing_dev_info *bdi = wbc->bdi;
705 
706 	writeback_inodes_wb(&bdi->wb, wbc);
707 }
708 
709 /*
710  * The maximum number of pages to writeout in a single bdi flush/kupdate
711  * operation.  We do this so we don't hold I_SYNC against an inode for
712  * enormous amounts of time, which would block a userspace task which has
713  * been forced to throttle against that inode.  Also, the code reevaluates
714  * the dirty each time it has written this many pages.
715  */
716 #define MAX_WRITEBACK_PAGES     1024
717 
718 static inline bool over_bground_thresh(void)
719 {
720 	unsigned long background_thresh, dirty_thresh;
721 
722 	get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
723 
724 	return (global_page_state(NR_FILE_DIRTY) +
725 		global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
726 }
727 
728 /*
729  * Explicit flushing or periodic writeback of "old" data.
730  *
731  * Define "old": the first time one of an inode's pages is dirtied, we mark the
732  * dirtying-time in the inode's address_space.  So this periodic writeback code
733  * just walks the superblock inode list, writing back any inodes which are
734  * older than a specific point in time.
735  *
736  * Try to run once per dirty_writeback_interval.  But if a writeback event
737  * takes longer than a dirty_writeback_interval interval, then leave a
738  * one-second gap.
739  *
740  * older_than_this takes precedence over nr_to_write.  So we'll only write back
741  * all dirty pages if they are all attached to "old" mappings.
742  */
743 static long wb_writeback(struct bdi_writeback *wb,
744 			 struct wb_writeback_args *args)
745 {
746 	struct writeback_control wbc = {
747 		.bdi			= wb->bdi,
748 		.sb			= args->sb,
749 		.sync_mode		= args->sync_mode,
750 		.older_than_this	= NULL,
751 		.for_kupdate		= args->for_kupdate,
752 		.for_background		= args->for_background,
753 		.range_cyclic		= args->range_cyclic,
754 	};
755 	unsigned long oldest_jif;
756 	long wrote = 0;
757 	struct inode *inode;
758 
759 	if (wbc.for_kupdate) {
760 		wbc.older_than_this = &oldest_jif;
761 		oldest_jif = jiffies -
762 				msecs_to_jiffies(dirty_expire_interval * 10);
763 	}
764 	if (!wbc.range_cyclic) {
765 		wbc.range_start = 0;
766 		wbc.range_end = LLONG_MAX;
767 	}
768 
769 	for (;;) {
770 		/*
771 		 * Stop writeback when nr_pages has been consumed
772 		 */
773 		if (args->nr_pages <= 0)
774 			break;
775 
776 		/*
777 		 * For background writeout, stop when we are below the
778 		 * background dirty threshold
779 		 */
780 		if (args->for_background && !over_bground_thresh())
781 			break;
782 
783 		wbc.more_io = 0;
784 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
785 		wbc.pages_skipped = 0;
786 		writeback_inodes_wb(wb, &wbc);
787 		args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
788 		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
789 
790 		/*
791 		 * If we consumed everything, see if we have more
792 		 */
793 		if (wbc.nr_to_write <= 0)
794 			continue;
795 		/*
796 		 * Didn't write everything and we don't have more IO, bail
797 		 */
798 		if (!wbc.more_io)
799 			break;
800 		/*
801 		 * Did we write something? Try for more
802 		 */
803 		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
804 			continue;
805 		/*
806 		 * Nothing written. Wait for some inode to
807 		 * become available for writeback. Otherwise
808 		 * we'll just busyloop.
809 		 */
810 		spin_lock(&inode_lock);
811 		if (!list_empty(&wb->b_more_io))  {
812 			inode = list_entry(wb->b_more_io.prev,
813 						struct inode, i_list);
814 			inode_wait_for_writeback(inode);
815 		}
816 		spin_unlock(&inode_lock);
817 	}
818 
819 	return wrote;
820 }
821 
822 /*
823  * Return the next bdi_work struct that hasn't been processed by this
824  * wb thread yet. ->seen is initially set for each thread that exists
825  * for this device, when a thread first notices a piece of work it
826  * clears its bit. Depending on writeback type, the thread will notify
827  * completion on either receiving the work (WB_SYNC_NONE) or after
828  * it is done (WB_SYNC_ALL).
829  */
830 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
831 					   struct bdi_writeback *wb)
832 {
833 	struct bdi_work *work, *ret = NULL;
834 
835 	rcu_read_lock();
836 
837 	list_for_each_entry_rcu(work, &bdi->work_list, list) {
838 		if (!test_bit(wb->nr, &work->seen))
839 			continue;
840 		clear_bit(wb->nr, &work->seen);
841 
842 		ret = work;
843 		break;
844 	}
845 
846 	rcu_read_unlock();
847 	return ret;
848 }
849 
850 static long wb_check_old_data_flush(struct bdi_writeback *wb)
851 {
852 	unsigned long expired;
853 	long nr_pages;
854 
855 	expired = wb->last_old_flush +
856 			msecs_to_jiffies(dirty_writeback_interval * 10);
857 	if (time_before(jiffies, expired))
858 		return 0;
859 
860 	wb->last_old_flush = jiffies;
861 	nr_pages = global_page_state(NR_FILE_DIRTY) +
862 			global_page_state(NR_UNSTABLE_NFS) +
863 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
864 
865 	if (nr_pages) {
866 		struct wb_writeback_args args = {
867 			.nr_pages	= nr_pages,
868 			.sync_mode	= WB_SYNC_NONE,
869 			.for_kupdate	= 1,
870 			.range_cyclic	= 1,
871 		};
872 
873 		return wb_writeback(wb, &args);
874 	}
875 
876 	return 0;
877 }
878 
879 /*
880  * Retrieve work items and do the writeback they describe
881  */
882 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
883 {
884 	struct backing_dev_info *bdi = wb->bdi;
885 	struct bdi_work *work;
886 	long wrote = 0;
887 
888 	while ((work = get_next_work_item(bdi, wb)) != NULL) {
889 		struct wb_writeback_args args = work->args;
890 
891 		/*
892 		 * Override sync mode, in case we must wait for completion
893 		 */
894 		if (force_wait)
895 			work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
896 
897 		/*
898 		 * If this isn't a data integrity operation, just notify
899 		 * that we have seen this work and we are now starting it.
900 		 */
901 		if (args.sync_mode == WB_SYNC_NONE)
902 			wb_clear_pending(wb, work);
903 
904 		wrote += wb_writeback(wb, &args);
905 
906 		/*
907 		 * This is a data integrity writeback, so only do the
908 		 * notification when we have completed the work.
909 		 */
910 		if (args.sync_mode == WB_SYNC_ALL)
911 			wb_clear_pending(wb, work);
912 	}
913 
914 	/*
915 	 * Check for periodic writeback, kupdated() style
916 	 */
917 	wrote += wb_check_old_data_flush(wb);
918 
919 	return wrote;
920 }
921 
922 /*
923  * Handle writeback of dirty data for the device backed by this bdi. Also
924  * wakes up periodically and does kupdated style flushing.
925  */
926 int bdi_writeback_task(struct bdi_writeback *wb)
927 {
928 	unsigned long last_active = jiffies;
929 	unsigned long wait_jiffies = -1UL;
930 	long pages_written;
931 
932 	while (!kthread_should_stop()) {
933 		pages_written = wb_do_writeback(wb, 0);
934 
935 		if (pages_written)
936 			last_active = jiffies;
937 		else if (wait_jiffies != -1UL) {
938 			unsigned long max_idle;
939 
940 			/*
941 			 * Longest period of inactivity that we tolerate. If we
942 			 * see dirty data again later, the task will get
943 			 * recreated automatically.
944 			 */
945 			max_idle = max(5UL * 60 * HZ, wait_jiffies);
946 			if (time_after(jiffies, max_idle + last_active))
947 				break;
948 		}
949 
950 		wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
951 		schedule_timeout_interruptible(wait_jiffies);
952 		try_to_freeze();
953 	}
954 
955 	return 0;
956 }
957 
958 /*
959  * Schedule writeback for all backing devices. This does WB_SYNC_NONE
960  * writeback, for integrity writeback see bdi_sync_writeback().
961  */
962 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
963 {
964 	struct wb_writeback_args args = {
965 		.sb		= sb,
966 		.nr_pages	= nr_pages,
967 		.sync_mode	= WB_SYNC_NONE,
968 	};
969 	struct backing_dev_info *bdi;
970 
971 	rcu_read_lock();
972 
973 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
974 		if (!bdi_has_dirty_io(bdi))
975 			continue;
976 
977 		bdi_alloc_queue_work(bdi, &args);
978 	}
979 
980 	rcu_read_unlock();
981 }
982 
983 /*
984  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
985  * the whole world.
986  */
987 void wakeup_flusher_threads(long nr_pages)
988 {
989 	if (nr_pages == 0)
990 		nr_pages = global_page_state(NR_FILE_DIRTY) +
991 				global_page_state(NR_UNSTABLE_NFS);
992 	bdi_writeback_all(NULL, nr_pages);
993 }
994 
995 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
996 {
997 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
998 		struct dentry *dentry;
999 		const char *name = "?";
1000 
1001 		dentry = d_find_alias(inode);
1002 		if (dentry) {
1003 			spin_lock(&dentry->d_lock);
1004 			name = (const char *) dentry->d_name.name;
1005 		}
1006 		printk(KERN_DEBUG
1007 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1008 		       current->comm, task_pid_nr(current), inode->i_ino,
1009 		       name, inode->i_sb->s_id);
1010 		if (dentry) {
1011 			spin_unlock(&dentry->d_lock);
1012 			dput(dentry);
1013 		}
1014 	}
1015 }
1016 
1017 /**
1018  *	__mark_inode_dirty -	internal function
1019  *	@inode: inode to mark
1020  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1021  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1022  *  	mark_inode_dirty_sync.
1023  *
1024  * Put the inode on the super block's dirty list.
1025  *
1026  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1027  * dirty list only if it is hashed or if it refers to a blockdev.
1028  * If it was not hashed, it will never be added to the dirty list
1029  * even if it is later hashed, as it will have been marked dirty already.
1030  *
1031  * In short, make sure you hash any inodes _before_ you start marking
1032  * them dirty.
1033  *
1034  * This function *must* be atomic for the I_DIRTY_PAGES case -
1035  * set_page_dirty() is called under spinlock in several places.
1036  *
1037  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1038  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1039  * the kernel-internal blockdev inode represents the dirtying time of the
1040  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1041  * page->mapping->host, so the page-dirtying time is recorded in the internal
1042  * blockdev inode.
1043  */
1044 void __mark_inode_dirty(struct inode *inode, int flags)
1045 {
1046 	struct super_block *sb = inode->i_sb;
1047 
1048 	/*
1049 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1050 	 * dirty the inode itself
1051 	 */
1052 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1053 		if (sb->s_op->dirty_inode)
1054 			sb->s_op->dirty_inode(inode);
1055 	}
1056 
1057 	/*
1058 	 * make sure that changes are seen by all cpus before we test i_state
1059 	 * -- mikulas
1060 	 */
1061 	smp_mb();
1062 
1063 	/* avoid the locking if we can */
1064 	if ((inode->i_state & flags) == flags)
1065 		return;
1066 
1067 	if (unlikely(block_dump))
1068 		block_dump___mark_inode_dirty(inode);
1069 
1070 	spin_lock(&inode_lock);
1071 	if ((inode->i_state & flags) != flags) {
1072 		const int was_dirty = inode->i_state & I_DIRTY;
1073 
1074 		inode->i_state |= flags;
1075 
1076 		/*
1077 		 * If the inode is being synced, just update its dirty state.
1078 		 * The unlocker will place the inode on the appropriate
1079 		 * superblock list, based upon its state.
1080 		 */
1081 		if (inode->i_state & I_SYNC)
1082 			goto out;
1083 
1084 		/*
1085 		 * Only add valid (hashed) inodes to the superblock's
1086 		 * dirty list.  Add blockdev inodes as well.
1087 		 */
1088 		if (!S_ISBLK(inode->i_mode)) {
1089 			if (hlist_unhashed(&inode->i_hash))
1090 				goto out;
1091 		}
1092 		if (inode->i_state & (I_FREEING|I_CLEAR))
1093 			goto out;
1094 
1095 		/*
1096 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1097 		 * reposition it (that would break b_dirty time-ordering).
1098 		 */
1099 		if (!was_dirty) {
1100 			struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1101 			struct backing_dev_info *bdi = wb->bdi;
1102 
1103 			if (bdi_cap_writeback_dirty(bdi) &&
1104 			    !test_bit(BDI_registered, &bdi->state)) {
1105 				WARN_ON(1);
1106 				printk(KERN_ERR "bdi-%s not registered\n",
1107 								bdi->name);
1108 			}
1109 
1110 			inode->dirtied_when = jiffies;
1111 			list_move(&inode->i_list, &wb->b_dirty);
1112 		}
1113 	}
1114 out:
1115 	spin_unlock(&inode_lock);
1116 }
1117 EXPORT_SYMBOL(__mark_inode_dirty);
1118 
1119 /*
1120  * Write out a superblock's list of dirty inodes.  A wait will be performed
1121  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1122  *
1123  * If older_than_this is non-NULL, then only write out inodes which
1124  * had their first dirtying at a time earlier than *older_than_this.
1125  *
1126  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1127  * This function assumes that the blockdev superblock's inodes are backed by
1128  * a variety of queues, so all inodes are searched.  For other superblocks,
1129  * assume that all inodes are backed by the same queue.
1130  *
1131  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1132  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1133  * on the writer throttling path, and we get decent balancing between many
1134  * throttled threads: we don't want them all piling up on inode_sync_wait.
1135  */
1136 static void wait_sb_inodes(struct super_block *sb)
1137 {
1138 	struct inode *inode, *old_inode = NULL;
1139 
1140 	/*
1141 	 * We need to be protected against the filesystem going from
1142 	 * r/o to r/w or vice versa.
1143 	 */
1144 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1145 
1146 	spin_lock(&inode_lock);
1147 
1148 	/*
1149 	 * Data integrity sync. Must wait for all pages under writeback,
1150 	 * because there may have been pages dirtied before our sync
1151 	 * call, but which had writeout started before we write it out.
1152 	 * In which case, the inode may not be on the dirty list, but
1153 	 * we still have to wait for that writeout.
1154 	 */
1155 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1156 		struct address_space *mapping;
1157 
1158 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1159 			continue;
1160 		mapping = inode->i_mapping;
1161 		if (mapping->nrpages == 0)
1162 			continue;
1163 		__iget(inode);
1164 		spin_unlock(&inode_lock);
1165 		/*
1166 		 * We hold a reference to 'inode' so it couldn't have
1167 		 * been removed from s_inodes list while we dropped the
1168 		 * inode_lock.  We cannot iput the inode now as we can
1169 		 * be holding the last reference and we cannot iput it
1170 		 * under inode_lock. So we keep the reference and iput
1171 		 * it later.
1172 		 */
1173 		iput(old_inode);
1174 		old_inode = inode;
1175 
1176 		filemap_fdatawait(mapping);
1177 
1178 		cond_resched();
1179 
1180 		spin_lock(&inode_lock);
1181 	}
1182 	spin_unlock(&inode_lock);
1183 	iput(old_inode);
1184 }
1185 
1186 /**
1187  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1188  * @sb: the superblock
1189  *
1190  * Start writeback on some inodes on this super_block. No guarantees are made
1191  * on how many (if any) will be written, and this function does not wait
1192  * for IO completion of submitted IO. The number of pages submitted is
1193  * returned.
1194  */
1195 void writeback_inodes_sb(struct super_block *sb)
1196 {
1197 	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1198 	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1199 	long nr_to_write;
1200 
1201 	nr_to_write = nr_dirty + nr_unstable +
1202 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
1203 
1204 	bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
1205 }
1206 EXPORT_SYMBOL(writeback_inodes_sb);
1207 
1208 /**
1209  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1210  * @sb: the superblock
1211  *
1212  * Invoke writeback_inodes_sb if no writeback is currently underway.
1213  * Returns 1 if writeback was started, 0 if not.
1214  */
1215 int writeback_inodes_sb_if_idle(struct super_block *sb)
1216 {
1217 	if (!writeback_in_progress(sb->s_bdi)) {
1218 		writeback_inodes_sb(sb);
1219 		return 1;
1220 	} else
1221 		return 0;
1222 }
1223 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1224 
1225 /**
1226  * sync_inodes_sb	-	sync sb inode pages
1227  * @sb: the superblock
1228  *
1229  * This function writes and waits on any dirty inode belonging to this
1230  * super_block. The number of pages synced is returned.
1231  */
1232 void sync_inodes_sb(struct super_block *sb)
1233 {
1234 	bdi_sync_writeback(sb->s_bdi, sb);
1235 	wait_sb_inodes(sb);
1236 }
1237 EXPORT_SYMBOL(sync_inodes_sb);
1238 
1239 /**
1240  * write_inode_now	-	write an inode to disk
1241  * @inode: inode to write to disk
1242  * @sync: whether the write should be synchronous or not
1243  *
1244  * This function commits an inode to disk immediately if it is dirty. This is
1245  * primarily needed by knfsd.
1246  *
1247  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1248  */
1249 int write_inode_now(struct inode *inode, int sync)
1250 {
1251 	int ret;
1252 	struct writeback_control wbc = {
1253 		.nr_to_write = LONG_MAX,
1254 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1255 		.range_start = 0,
1256 		.range_end = LLONG_MAX,
1257 	};
1258 
1259 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1260 		wbc.nr_to_write = 0;
1261 
1262 	might_sleep();
1263 	spin_lock(&inode_lock);
1264 	ret = writeback_single_inode(inode, &wbc);
1265 	spin_unlock(&inode_lock);
1266 	if (sync)
1267 		inode_sync_wait(inode);
1268 	return ret;
1269 }
1270 EXPORT_SYMBOL(write_inode_now);
1271 
1272 /**
1273  * sync_inode - write an inode and its pages to disk.
1274  * @inode: the inode to sync
1275  * @wbc: controls the writeback mode
1276  *
1277  * sync_inode() will write an inode and its pages to disk.  It will also
1278  * correctly update the inode on its superblock's dirty inode lists and will
1279  * update inode->i_state.
1280  *
1281  * The caller must have a ref on the inode.
1282  */
1283 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1284 {
1285 	int ret;
1286 
1287 	spin_lock(&inode_lock);
1288 	ret = writeback_single_inode(inode, wbc);
1289 	spin_unlock(&inode_lock);
1290 	return ret;
1291 }
1292 EXPORT_SYMBOL(sync_inode);
1293