xref: /linux/fs/fs-writeback.c (revision a115bc070b1fc57ab23f3972401425927b5b465c)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/buffer_head.h>
28 #include "internal.h"
29 
30 #define inode_to_bdi(inode)	((inode)->i_mapping->backing_dev_info)
31 
32 /*
33  * We don't actually have pdflush, but this one is exported though /proc...
34  */
35 int nr_pdflush_threads;
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_args {
41 	long nr_pages;
42 	struct super_block *sb;
43 	enum writeback_sync_modes sync_mode;
44 	int for_kupdate:1;
45 	int range_cyclic:1;
46 	int for_background:1;
47 };
48 
49 /*
50  * Work items for the bdi_writeback threads
51  */
52 struct bdi_work {
53 	struct list_head list;		/* pending work list */
54 	struct rcu_head rcu_head;	/* for RCU free/clear of work */
55 
56 	unsigned long seen;		/* threads that have seen this work */
57 	atomic_t pending;		/* number of threads still to do work */
58 
59 	struct wb_writeback_args args;	/* writeback arguments */
60 
61 	unsigned long state;		/* flag bits, see WS_* */
62 };
63 
64 enum {
65 	WS_USED_B = 0,
66 	WS_ONSTACK_B,
67 };
68 
69 #define WS_USED (1 << WS_USED_B)
70 #define WS_ONSTACK (1 << WS_ONSTACK_B)
71 
72 static inline bool bdi_work_on_stack(struct bdi_work *work)
73 {
74 	return test_bit(WS_ONSTACK_B, &work->state);
75 }
76 
77 static inline void bdi_work_init(struct bdi_work *work,
78 				 struct wb_writeback_args *args)
79 {
80 	INIT_RCU_HEAD(&work->rcu_head);
81 	work->args = *args;
82 	work->state = WS_USED;
83 }
84 
85 /**
86  * writeback_in_progress - determine whether there is writeback in progress
87  * @bdi: the device's backing_dev_info structure.
88  *
89  * Determine whether there is writeback waiting to be handled against a
90  * backing device.
91  */
92 int writeback_in_progress(struct backing_dev_info *bdi)
93 {
94 	return !list_empty(&bdi->work_list);
95 }
96 
97 static void bdi_work_clear(struct bdi_work *work)
98 {
99 	clear_bit(WS_USED_B, &work->state);
100 	smp_mb__after_clear_bit();
101 	/*
102 	 * work can have disappeared at this point. bit waitq functions
103 	 * should be able to tolerate this, provided bdi_sched_wait does
104 	 * not dereference it's pointer argument.
105 	*/
106 	wake_up_bit(&work->state, WS_USED_B);
107 }
108 
109 static void bdi_work_free(struct rcu_head *head)
110 {
111 	struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
112 
113 	if (!bdi_work_on_stack(work))
114 		kfree(work);
115 	else
116 		bdi_work_clear(work);
117 }
118 
119 static void wb_work_complete(struct bdi_work *work)
120 {
121 	const enum writeback_sync_modes sync_mode = work->args.sync_mode;
122 	int onstack = bdi_work_on_stack(work);
123 
124 	/*
125 	 * For allocated work, we can clear the done/seen bit right here.
126 	 * For on-stack work, we need to postpone both the clear and free
127 	 * to after the RCU grace period, since the stack could be invalidated
128 	 * as soon as bdi_work_clear() has done the wakeup.
129 	 */
130 	if (!onstack)
131 		bdi_work_clear(work);
132 	if (sync_mode == WB_SYNC_NONE || onstack)
133 		call_rcu(&work->rcu_head, bdi_work_free);
134 }
135 
136 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
137 {
138 	/*
139 	 * The caller has retrieved the work arguments from this work,
140 	 * drop our reference. If this is the last ref, delete and free it
141 	 */
142 	if (atomic_dec_and_test(&work->pending)) {
143 		struct backing_dev_info *bdi = wb->bdi;
144 
145 		spin_lock(&bdi->wb_lock);
146 		list_del_rcu(&work->list);
147 		spin_unlock(&bdi->wb_lock);
148 
149 		wb_work_complete(work);
150 	}
151 }
152 
153 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
154 {
155 	work->seen = bdi->wb_mask;
156 	BUG_ON(!work->seen);
157 	atomic_set(&work->pending, bdi->wb_cnt);
158 	BUG_ON(!bdi->wb_cnt);
159 
160 	/*
161 	 * list_add_tail_rcu() contains the necessary barriers to
162 	 * make sure the above stores are seen before the item is
163 	 * noticed on the list
164 	 */
165 	spin_lock(&bdi->wb_lock);
166 	list_add_tail_rcu(&work->list, &bdi->work_list);
167 	spin_unlock(&bdi->wb_lock);
168 
169 	/*
170 	 * If the default thread isn't there, make sure we add it. When
171 	 * it gets created and wakes up, we'll run this work.
172 	 */
173 	if (unlikely(list_empty_careful(&bdi->wb_list)))
174 		wake_up_process(default_backing_dev_info.wb.task);
175 	else {
176 		struct bdi_writeback *wb = &bdi->wb;
177 
178 		if (wb->task)
179 			wake_up_process(wb->task);
180 	}
181 }
182 
183 /*
184  * Used for on-stack allocated work items. The caller needs to wait until
185  * the wb threads have acked the work before it's safe to continue.
186  */
187 static void bdi_wait_on_work_clear(struct bdi_work *work)
188 {
189 	wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
190 		    TASK_UNINTERRUPTIBLE);
191 }
192 
193 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
194 				 struct wb_writeback_args *args)
195 {
196 	struct bdi_work *work;
197 
198 	/*
199 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
200 	 * wakeup the thread for old dirty data writeback
201 	 */
202 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
203 	if (work) {
204 		bdi_work_init(work, args);
205 		bdi_queue_work(bdi, work);
206 	} else {
207 		struct bdi_writeback *wb = &bdi->wb;
208 
209 		if (wb->task)
210 			wake_up_process(wb->task);
211 	}
212 }
213 
214 /**
215  * bdi_sync_writeback - start and wait for writeback
216  * @bdi: the backing device to write from
217  * @sb: write inodes from this super_block
218  *
219  * Description:
220  *   This does WB_SYNC_ALL data integrity writeback and waits for the
221  *   IO to complete. Callers must hold the sb s_umount semaphore for
222  *   reading, to avoid having the super disappear before we are done.
223  */
224 static void bdi_sync_writeback(struct backing_dev_info *bdi,
225 			       struct super_block *sb)
226 {
227 	struct wb_writeback_args args = {
228 		.sb		= sb,
229 		.sync_mode	= WB_SYNC_ALL,
230 		.nr_pages	= LONG_MAX,
231 		.range_cyclic	= 0,
232 	};
233 	struct bdi_work work;
234 
235 	bdi_work_init(&work, &args);
236 	work.state |= WS_ONSTACK;
237 
238 	bdi_queue_work(bdi, &work);
239 	bdi_wait_on_work_clear(&work);
240 }
241 
242 /**
243  * bdi_start_writeback - start writeback
244  * @bdi: the backing device to write from
245  * @sb: write inodes from this super_block
246  * @nr_pages: the number of pages to write
247  *
248  * Description:
249  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
250  *   started when this function returns, we make no guarentees on
251  *   completion. Caller need not hold sb s_umount semaphore.
252  *
253  */
254 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
255 			 long nr_pages)
256 {
257 	struct wb_writeback_args args = {
258 		.sb		= sb,
259 		.sync_mode	= WB_SYNC_NONE,
260 		.nr_pages	= nr_pages,
261 		.range_cyclic	= 1,
262 	};
263 
264 	/*
265 	 * We treat @nr_pages=0 as the special case to do background writeback,
266 	 * ie. to sync pages until the background dirty threshold is reached.
267 	 */
268 	if (!nr_pages) {
269 		args.nr_pages = LONG_MAX;
270 		args.for_background = 1;
271 	}
272 
273 	bdi_alloc_queue_work(bdi, &args);
274 }
275 
276 /*
277  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
278  * furthest end of its superblock's dirty-inode list.
279  *
280  * Before stamping the inode's ->dirtied_when, we check to see whether it is
281  * already the most-recently-dirtied inode on the b_dirty list.  If that is
282  * the case then the inode must have been redirtied while it was being written
283  * out and we don't reset its dirtied_when.
284  */
285 static void redirty_tail(struct inode *inode)
286 {
287 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
288 
289 	if (!list_empty(&wb->b_dirty)) {
290 		struct inode *tail;
291 
292 		tail = list_entry(wb->b_dirty.next, struct inode, i_list);
293 		if (time_before(inode->dirtied_when, tail->dirtied_when))
294 			inode->dirtied_when = jiffies;
295 	}
296 	list_move(&inode->i_list, &wb->b_dirty);
297 }
298 
299 /*
300  * requeue inode for re-scanning after bdi->b_io list is exhausted.
301  */
302 static void requeue_io(struct inode *inode)
303 {
304 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
305 
306 	list_move(&inode->i_list, &wb->b_more_io);
307 }
308 
309 static void inode_sync_complete(struct inode *inode)
310 {
311 	/*
312 	 * Prevent speculative execution through spin_unlock(&inode_lock);
313 	 */
314 	smp_mb();
315 	wake_up_bit(&inode->i_state, __I_SYNC);
316 }
317 
318 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
319 {
320 	bool ret = time_after(inode->dirtied_when, t);
321 #ifndef CONFIG_64BIT
322 	/*
323 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
324 	 * It _appears_ to be in the future, but is actually in distant past.
325 	 * This test is necessary to prevent such wrapped-around relative times
326 	 * from permanently stopping the whole bdi writeback.
327 	 */
328 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
329 #endif
330 	return ret;
331 }
332 
333 /*
334  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
335  */
336 static void move_expired_inodes(struct list_head *delaying_queue,
337 			       struct list_head *dispatch_queue,
338 				unsigned long *older_than_this)
339 {
340 	LIST_HEAD(tmp);
341 	struct list_head *pos, *node;
342 	struct super_block *sb = NULL;
343 	struct inode *inode;
344 	int do_sb_sort = 0;
345 
346 	while (!list_empty(delaying_queue)) {
347 		inode = list_entry(delaying_queue->prev, struct inode, i_list);
348 		if (older_than_this &&
349 		    inode_dirtied_after(inode, *older_than_this))
350 			break;
351 		if (sb && sb != inode->i_sb)
352 			do_sb_sort = 1;
353 		sb = inode->i_sb;
354 		list_move(&inode->i_list, &tmp);
355 	}
356 
357 	/* just one sb in list, splice to dispatch_queue and we're done */
358 	if (!do_sb_sort) {
359 		list_splice(&tmp, dispatch_queue);
360 		return;
361 	}
362 
363 	/* Move inodes from one superblock together */
364 	while (!list_empty(&tmp)) {
365 		inode = list_entry(tmp.prev, struct inode, i_list);
366 		sb = inode->i_sb;
367 		list_for_each_prev_safe(pos, node, &tmp) {
368 			inode = list_entry(pos, struct inode, i_list);
369 			if (inode->i_sb == sb)
370 				list_move(&inode->i_list, dispatch_queue);
371 		}
372 	}
373 }
374 
375 /*
376  * Queue all expired dirty inodes for io, eldest first.
377  */
378 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
379 {
380 	list_splice_init(&wb->b_more_io, wb->b_io.prev);
381 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
382 }
383 
384 static int write_inode(struct inode *inode, struct writeback_control *wbc)
385 {
386 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
387 		return inode->i_sb->s_op->write_inode(inode, wbc);
388 	return 0;
389 }
390 
391 /*
392  * Wait for writeback on an inode to complete.
393  */
394 static void inode_wait_for_writeback(struct inode *inode)
395 {
396 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
397 	wait_queue_head_t *wqh;
398 
399 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
400 	do {
401 		spin_unlock(&inode_lock);
402 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
403 		spin_lock(&inode_lock);
404 	} while (inode->i_state & I_SYNC);
405 }
406 
407 /*
408  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
409  * caller has ref on the inode (either via __iget or via syscall against an fd)
410  * or the inode has I_WILL_FREE set (via generic_forget_inode)
411  *
412  * If `wait' is set, wait on the writeout.
413  *
414  * The whole writeout design is quite complex and fragile.  We want to avoid
415  * starvation of particular inodes when others are being redirtied, prevent
416  * livelocks, etc.
417  *
418  * Called under inode_lock.
419  */
420 static int
421 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
422 {
423 	struct address_space *mapping = inode->i_mapping;
424 	unsigned dirty;
425 	int ret;
426 
427 	if (!atomic_read(&inode->i_count))
428 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
429 	else
430 		WARN_ON(inode->i_state & I_WILL_FREE);
431 
432 	if (inode->i_state & I_SYNC) {
433 		/*
434 		 * If this inode is locked for writeback and we are not doing
435 		 * writeback-for-data-integrity, move it to b_more_io so that
436 		 * writeback can proceed with the other inodes on s_io.
437 		 *
438 		 * We'll have another go at writing back this inode when we
439 		 * completed a full scan of b_io.
440 		 */
441 		if (wbc->sync_mode != WB_SYNC_ALL) {
442 			requeue_io(inode);
443 			return 0;
444 		}
445 
446 		/*
447 		 * It's a data-integrity sync.  We must wait.
448 		 */
449 		inode_wait_for_writeback(inode);
450 	}
451 
452 	BUG_ON(inode->i_state & I_SYNC);
453 
454 	/* Set I_SYNC, reset I_DIRTY */
455 	dirty = inode->i_state & I_DIRTY;
456 	inode->i_state |= I_SYNC;
457 	inode->i_state &= ~I_DIRTY;
458 
459 	spin_unlock(&inode_lock);
460 
461 	ret = do_writepages(mapping, wbc);
462 
463 	/*
464 	 * Make sure to wait on the data before writing out the metadata.
465 	 * This is important for filesystems that modify metadata on data
466 	 * I/O completion.
467 	 */
468 	if (wbc->sync_mode == WB_SYNC_ALL) {
469 		int err = filemap_fdatawait(mapping);
470 		if (ret == 0)
471 			ret = err;
472 	}
473 
474 	/* Don't write the inode if only I_DIRTY_PAGES was set */
475 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
476 		int err = write_inode(inode, wbc);
477 		if (ret == 0)
478 			ret = err;
479 	}
480 
481 	spin_lock(&inode_lock);
482 	inode->i_state &= ~I_SYNC;
483 	if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
484 		if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
485 			/*
486 			 * More pages get dirtied by a fast dirtier.
487 			 */
488 			goto select_queue;
489 		} else if (inode->i_state & I_DIRTY) {
490 			/*
491 			 * At least XFS will redirty the inode during the
492 			 * writeback (delalloc) and on io completion (isize).
493 			 */
494 			redirty_tail(inode);
495 		} else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
496 			/*
497 			 * We didn't write back all the pages.  nfs_writepages()
498 			 * sometimes bales out without doing anything. Redirty
499 			 * the inode; Move it from b_io onto b_more_io/b_dirty.
500 			 */
501 			/*
502 			 * akpm: if the caller was the kupdate function we put
503 			 * this inode at the head of b_dirty so it gets first
504 			 * consideration.  Otherwise, move it to the tail, for
505 			 * the reasons described there.  I'm not really sure
506 			 * how much sense this makes.  Presumably I had a good
507 			 * reasons for doing it this way, and I'd rather not
508 			 * muck with it at present.
509 			 */
510 			if (wbc->for_kupdate) {
511 				/*
512 				 * For the kupdate function we move the inode
513 				 * to b_more_io so it will get more writeout as
514 				 * soon as the queue becomes uncongested.
515 				 */
516 				inode->i_state |= I_DIRTY_PAGES;
517 select_queue:
518 				if (wbc->nr_to_write <= 0) {
519 					/*
520 					 * slice used up: queue for next turn
521 					 */
522 					requeue_io(inode);
523 				} else {
524 					/*
525 					 * somehow blocked: retry later
526 					 */
527 					redirty_tail(inode);
528 				}
529 			} else {
530 				/*
531 				 * Otherwise fully redirty the inode so that
532 				 * other inodes on this superblock will get some
533 				 * writeout.  Otherwise heavy writing to one
534 				 * file would indefinitely suspend writeout of
535 				 * all the other files.
536 				 */
537 				inode->i_state |= I_DIRTY_PAGES;
538 				redirty_tail(inode);
539 			}
540 		} else if (atomic_read(&inode->i_count)) {
541 			/*
542 			 * The inode is clean, inuse
543 			 */
544 			list_move(&inode->i_list, &inode_in_use);
545 		} else {
546 			/*
547 			 * The inode is clean, unused
548 			 */
549 			list_move(&inode->i_list, &inode_unused);
550 		}
551 	}
552 	inode_sync_complete(inode);
553 	return ret;
554 }
555 
556 static void unpin_sb_for_writeback(struct super_block **psb)
557 {
558 	struct super_block *sb = *psb;
559 
560 	if (sb) {
561 		up_read(&sb->s_umount);
562 		put_super(sb);
563 		*psb = NULL;
564 	}
565 }
566 
567 /*
568  * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
569  * before calling writeback. So make sure that we do pin it, so it doesn't
570  * go away while we are writing inodes from it.
571  *
572  * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
573  * 1 if we failed.
574  */
575 static int pin_sb_for_writeback(struct writeback_control *wbc,
576 				struct inode *inode, struct super_block **psb)
577 {
578 	struct super_block *sb = inode->i_sb;
579 
580 	/*
581 	 * If this sb is already pinned, nothing more to do. If not and
582 	 * *psb is non-NULL, unpin the old one first
583 	 */
584 	if (sb == *psb)
585 		return 0;
586 	else if (*psb)
587 		unpin_sb_for_writeback(psb);
588 
589 	/*
590 	 * Caller must already hold the ref for this
591 	 */
592 	if (wbc->sync_mode == WB_SYNC_ALL) {
593 		WARN_ON(!rwsem_is_locked(&sb->s_umount));
594 		return 0;
595 	}
596 
597 	spin_lock(&sb_lock);
598 	sb->s_count++;
599 	if (down_read_trylock(&sb->s_umount)) {
600 		if (sb->s_root) {
601 			spin_unlock(&sb_lock);
602 			goto pinned;
603 		}
604 		/*
605 		 * umounted, drop rwsem again and fall through to failure
606 		 */
607 		up_read(&sb->s_umount);
608 	}
609 
610 	sb->s_count--;
611 	spin_unlock(&sb_lock);
612 	return 1;
613 pinned:
614 	*psb = sb;
615 	return 0;
616 }
617 
618 static void writeback_inodes_wb(struct bdi_writeback *wb,
619 				struct writeback_control *wbc)
620 {
621 	struct super_block *sb = wbc->sb, *pin_sb = NULL;
622 	const unsigned long start = jiffies;	/* livelock avoidance */
623 
624 	spin_lock(&inode_lock);
625 
626 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
627 		queue_io(wb, wbc->older_than_this);
628 
629 	while (!list_empty(&wb->b_io)) {
630 		struct inode *inode = list_entry(wb->b_io.prev,
631 						struct inode, i_list);
632 		long pages_skipped;
633 
634 		/*
635 		 * super block given and doesn't match, skip this inode
636 		 */
637 		if (sb && sb != inode->i_sb) {
638 			redirty_tail(inode);
639 			continue;
640 		}
641 
642 		if (inode->i_state & (I_NEW | I_WILL_FREE)) {
643 			requeue_io(inode);
644 			continue;
645 		}
646 
647 		/*
648 		 * Was this inode dirtied after sync_sb_inodes was called?
649 		 * This keeps sync from extra jobs and livelock.
650 		 */
651 		if (inode_dirtied_after(inode, start))
652 			break;
653 
654 		if (pin_sb_for_writeback(wbc, inode, &pin_sb)) {
655 			requeue_io(inode);
656 			continue;
657 		}
658 
659 		BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
660 		__iget(inode);
661 		pages_skipped = wbc->pages_skipped;
662 		writeback_single_inode(inode, wbc);
663 		if (wbc->pages_skipped != pages_skipped) {
664 			/*
665 			 * writeback is not making progress due to locked
666 			 * buffers.  Skip this inode for now.
667 			 */
668 			redirty_tail(inode);
669 		}
670 		spin_unlock(&inode_lock);
671 		iput(inode);
672 		cond_resched();
673 		spin_lock(&inode_lock);
674 		if (wbc->nr_to_write <= 0) {
675 			wbc->more_io = 1;
676 			break;
677 		}
678 		if (!list_empty(&wb->b_more_io))
679 			wbc->more_io = 1;
680 	}
681 
682 	unpin_sb_for_writeback(&pin_sb);
683 
684 	spin_unlock(&inode_lock);
685 	/* Leave any unwritten inodes on b_io */
686 }
687 
688 void writeback_inodes_wbc(struct writeback_control *wbc)
689 {
690 	struct backing_dev_info *bdi = wbc->bdi;
691 
692 	writeback_inodes_wb(&bdi->wb, wbc);
693 }
694 
695 /*
696  * The maximum number of pages to writeout in a single bdi flush/kupdate
697  * operation.  We do this so we don't hold I_SYNC against an inode for
698  * enormous amounts of time, which would block a userspace task which has
699  * been forced to throttle against that inode.  Also, the code reevaluates
700  * the dirty each time it has written this many pages.
701  */
702 #define MAX_WRITEBACK_PAGES     1024
703 
704 static inline bool over_bground_thresh(void)
705 {
706 	unsigned long background_thresh, dirty_thresh;
707 
708 	get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
709 
710 	return (global_page_state(NR_FILE_DIRTY) +
711 		global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
712 }
713 
714 /*
715  * Explicit flushing or periodic writeback of "old" data.
716  *
717  * Define "old": the first time one of an inode's pages is dirtied, we mark the
718  * dirtying-time in the inode's address_space.  So this periodic writeback code
719  * just walks the superblock inode list, writing back any inodes which are
720  * older than a specific point in time.
721  *
722  * Try to run once per dirty_writeback_interval.  But if a writeback event
723  * takes longer than a dirty_writeback_interval interval, then leave a
724  * one-second gap.
725  *
726  * older_than_this takes precedence over nr_to_write.  So we'll only write back
727  * all dirty pages if they are all attached to "old" mappings.
728  */
729 static long wb_writeback(struct bdi_writeback *wb,
730 			 struct wb_writeback_args *args)
731 {
732 	struct writeback_control wbc = {
733 		.bdi			= wb->bdi,
734 		.sb			= args->sb,
735 		.sync_mode		= args->sync_mode,
736 		.older_than_this	= NULL,
737 		.for_kupdate		= args->for_kupdate,
738 		.for_background		= args->for_background,
739 		.range_cyclic		= args->range_cyclic,
740 	};
741 	unsigned long oldest_jif;
742 	long wrote = 0;
743 	struct inode *inode;
744 
745 	if (wbc.for_kupdate) {
746 		wbc.older_than_this = &oldest_jif;
747 		oldest_jif = jiffies -
748 				msecs_to_jiffies(dirty_expire_interval * 10);
749 	}
750 	if (!wbc.range_cyclic) {
751 		wbc.range_start = 0;
752 		wbc.range_end = LLONG_MAX;
753 	}
754 
755 	for (;;) {
756 		/*
757 		 * Stop writeback when nr_pages has been consumed
758 		 */
759 		if (args->nr_pages <= 0)
760 			break;
761 
762 		/*
763 		 * For background writeout, stop when we are below the
764 		 * background dirty threshold
765 		 */
766 		if (args->for_background && !over_bground_thresh())
767 			break;
768 
769 		wbc.more_io = 0;
770 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
771 		wbc.pages_skipped = 0;
772 		writeback_inodes_wb(wb, &wbc);
773 		args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
774 		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
775 
776 		/*
777 		 * If we consumed everything, see if we have more
778 		 */
779 		if (wbc.nr_to_write <= 0)
780 			continue;
781 		/*
782 		 * Didn't write everything and we don't have more IO, bail
783 		 */
784 		if (!wbc.more_io)
785 			break;
786 		/*
787 		 * Did we write something? Try for more
788 		 */
789 		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
790 			continue;
791 		/*
792 		 * Nothing written. Wait for some inode to
793 		 * become available for writeback. Otherwise
794 		 * we'll just busyloop.
795 		 */
796 		spin_lock(&inode_lock);
797 		if (!list_empty(&wb->b_more_io))  {
798 			inode = list_entry(wb->b_more_io.prev,
799 						struct inode, i_list);
800 			inode_wait_for_writeback(inode);
801 		}
802 		spin_unlock(&inode_lock);
803 	}
804 
805 	return wrote;
806 }
807 
808 /*
809  * Return the next bdi_work struct that hasn't been processed by this
810  * wb thread yet. ->seen is initially set for each thread that exists
811  * for this device, when a thread first notices a piece of work it
812  * clears its bit. Depending on writeback type, the thread will notify
813  * completion on either receiving the work (WB_SYNC_NONE) or after
814  * it is done (WB_SYNC_ALL).
815  */
816 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
817 					   struct bdi_writeback *wb)
818 {
819 	struct bdi_work *work, *ret = NULL;
820 
821 	rcu_read_lock();
822 
823 	list_for_each_entry_rcu(work, &bdi->work_list, list) {
824 		if (!test_bit(wb->nr, &work->seen))
825 			continue;
826 		clear_bit(wb->nr, &work->seen);
827 
828 		ret = work;
829 		break;
830 	}
831 
832 	rcu_read_unlock();
833 	return ret;
834 }
835 
836 static long wb_check_old_data_flush(struct bdi_writeback *wb)
837 {
838 	unsigned long expired;
839 	long nr_pages;
840 
841 	expired = wb->last_old_flush +
842 			msecs_to_jiffies(dirty_writeback_interval * 10);
843 	if (time_before(jiffies, expired))
844 		return 0;
845 
846 	wb->last_old_flush = jiffies;
847 	nr_pages = global_page_state(NR_FILE_DIRTY) +
848 			global_page_state(NR_UNSTABLE_NFS) +
849 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
850 
851 	if (nr_pages) {
852 		struct wb_writeback_args args = {
853 			.nr_pages	= nr_pages,
854 			.sync_mode	= WB_SYNC_NONE,
855 			.for_kupdate	= 1,
856 			.range_cyclic	= 1,
857 		};
858 
859 		return wb_writeback(wb, &args);
860 	}
861 
862 	return 0;
863 }
864 
865 /*
866  * Retrieve work items and do the writeback they describe
867  */
868 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
869 {
870 	struct backing_dev_info *bdi = wb->bdi;
871 	struct bdi_work *work;
872 	long wrote = 0;
873 
874 	while ((work = get_next_work_item(bdi, wb)) != NULL) {
875 		struct wb_writeback_args args = work->args;
876 
877 		/*
878 		 * Override sync mode, in case we must wait for completion
879 		 */
880 		if (force_wait)
881 			work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
882 
883 		/*
884 		 * If this isn't a data integrity operation, just notify
885 		 * that we have seen this work and we are now starting it.
886 		 */
887 		if (args.sync_mode == WB_SYNC_NONE)
888 			wb_clear_pending(wb, work);
889 
890 		wrote += wb_writeback(wb, &args);
891 
892 		/*
893 		 * This is a data integrity writeback, so only do the
894 		 * notification when we have completed the work.
895 		 */
896 		if (args.sync_mode == WB_SYNC_ALL)
897 			wb_clear_pending(wb, work);
898 	}
899 
900 	/*
901 	 * Check for periodic writeback, kupdated() style
902 	 */
903 	wrote += wb_check_old_data_flush(wb);
904 
905 	return wrote;
906 }
907 
908 /*
909  * Handle writeback of dirty data for the device backed by this bdi. Also
910  * wakes up periodically and does kupdated style flushing.
911  */
912 int bdi_writeback_task(struct bdi_writeback *wb)
913 {
914 	unsigned long last_active = jiffies;
915 	unsigned long wait_jiffies = -1UL;
916 	long pages_written;
917 
918 	while (!kthread_should_stop()) {
919 		pages_written = wb_do_writeback(wb, 0);
920 
921 		if (pages_written)
922 			last_active = jiffies;
923 		else if (wait_jiffies != -1UL) {
924 			unsigned long max_idle;
925 
926 			/*
927 			 * Longest period of inactivity that we tolerate. If we
928 			 * see dirty data again later, the task will get
929 			 * recreated automatically.
930 			 */
931 			max_idle = max(5UL * 60 * HZ, wait_jiffies);
932 			if (time_after(jiffies, max_idle + last_active))
933 				break;
934 		}
935 
936 		wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
937 		schedule_timeout_interruptible(wait_jiffies);
938 		try_to_freeze();
939 	}
940 
941 	return 0;
942 }
943 
944 /*
945  * Schedule writeback for all backing devices. This does WB_SYNC_NONE
946  * writeback, for integrity writeback see bdi_sync_writeback().
947  */
948 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
949 {
950 	struct wb_writeback_args args = {
951 		.sb		= sb,
952 		.nr_pages	= nr_pages,
953 		.sync_mode	= WB_SYNC_NONE,
954 	};
955 	struct backing_dev_info *bdi;
956 
957 	rcu_read_lock();
958 
959 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
960 		if (!bdi_has_dirty_io(bdi))
961 			continue;
962 
963 		bdi_alloc_queue_work(bdi, &args);
964 	}
965 
966 	rcu_read_unlock();
967 }
968 
969 /*
970  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
971  * the whole world.
972  */
973 void wakeup_flusher_threads(long nr_pages)
974 {
975 	if (nr_pages == 0)
976 		nr_pages = global_page_state(NR_FILE_DIRTY) +
977 				global_page_state(NR_UNSTABLE_NFS);
978 	bdi_writeback_all(NULL, nr_pages);
979 }
980 
981 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
982 {
983 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
984 		struct dentry *dentry;
985 		const char *name = "?";
986 
987 		dentry = d_find_alias(inode);
988 		if (dentry) {
989 			spin_lock(&dentry->d_lock);
990 			name = (const char *) dentry->d_name.name;
991 		}
992 		printk(KERN_DEBUG
993 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
994 		       current->comm, task_pid_nr(current), inode->i_ino,
995 		       name, inode->i_sb->s_id);
996 		if (dentry) {
997 			spin_unlock(&dentry->d_lock);
998 			dput(dentry);
999 		}
1000 	}
1001 }
1002 
1003 /**
1004  *	__mark_inode_dirty -	internal function
1005  *	@inode: inode to mark
1006  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1007  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1008  *  	mark_inode_dirty_sync.
1009  *
1010  * Put the inode on the super block's dirty list.
1011  *
1012  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1013  * dirty list only if it is hashed or if it refers to a blockdev.
1014  * If it was not hashed, it will never be added to the dirty list
1015  * even if it is later hashed, as it will have been marked dirty already.
1016  *
1017  * In short, make sure you hash any inodes _before_ you start marking
1018  * them dirty.
1019  *
1020  * This function *must* be atomic for the I_DIRTY_PAGES case -
1021  * set_page_dirty() is called under spinlock in several places.
1022  *
1023  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1024  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1025  * the kernel-internal blockdev inode represents the dirtying time of the
1026  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1027  * page->mapping->host, so the page-dirtying time is recorded in the internal
1028  * blockdev inode.
1029  */
1030 void __mark_inode_dirty(struct inode *inode, int flags)
1031 {
1032 	struct super_block *sb = inode->i_sb;
1033 
1034 	/*
1035 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1036 	 * dirty the inode itself
1037 	 */
1038 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1039 		if (sb->s_op->dirty_inode)
1040 			sb->s_op->dirty_inode(inode);
1041 	}
1042 
1043 	/*
1044 	 * make sure that changes are seen by all cpus before we test i_state
1045 	 * -- mikulas
1046 	 */
1047 	smp_mb();
1048 
1049 	/* avoid the locking if we can */
1050 	if ((inode->i_state & flags) == flags)
1051 		return;
1052 
1053 	if (unlikely(block_dump))
1054 		block_dump___mark_inode_dirty(inode);
1055 
1056 	spin_lock(&inode_lock);
1057 	if ((inode->i_state & flags) != flags) {
1058 		const int was_dirty = inode->i_state & I_DIRTY;
1059 
1060 		inode->i_state |= flags;
1061 
1062 		/*
1063 		 * If the inode is being synced, just update its dirty state.
1064 		 * The unlocker will place the inode on the appropriate
1065 		 * superblock list, based upon its state.
1066 		 */
1067 		if (inode->i_state & I_SYNC)
1068 			goto out;
1069 
1070 		/*
1071 		 * Only add valid (hashed) inodes to the superblock's
1072 		 * dirty list.  Add blockdev inodes as well.
1073 		 */
1074 		if (!S_ISBLK(inode->i_mode)) {
1075 			if (hlist_unhashed(&inode->i_hash))
1076 				goto out;
1077 		}
1078 		if (inode->i_state & (I_FREEING|I_CLEAR))
1079 			goto out;
1080 
1081 		/*
1082 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1083 		 * reposition it (that would break b_dirty time-ordering).
1084 		 */
1085 		if (!was_dirty) {
1086 			struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1087 			struct backing_dev_info *bdi = wb->bdi;
1088 
1089 			if (bdi_cap_writeback_dirty(bdi) &&
1090 			    !test_bit(BDI_registered, &bdi->state)) {
1091 				WARN_ON(1);
1092 				printk(KERN_ERR "bdi-%s not registered\n",
1093 								bdi->name);
1094 			}
1095 
1096 			inode->dirtied_when = jiffies;
1097 			list_move(&inode->i_list, &wb->b_dirty);
1098 		}
1099 	}
1100 out:
1101 	spin_unlock(&inode_lock);
1102 }
1103 EXPORT_SYMBOL(__mark_inode_dirty);
1104 
1105 /*
1106  * Write out a superblock's list of dirty inodes.  A wait will be performed
1107  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1108  *
1109  * If older_than_this is non-NULL, then only write out inodes which
1110  * had their first dirtying at a time earlier than *older_than_this.
1111  *
1112  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1113  * This function assumes that the blockdev superblock's inodes are backed by
1114  * a variety of queues, so all inodes are searched.  For other superblocks,
1115  * assume that all inodes are backed by the same queue.
1116  *
1117  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1118  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1119  * on the writer throttling path, and we get decent balancing between many
1120  * throttled threads: we don't want them all piling up on inode_sync_wait.
1121  */
1122 static void wait_sb_inodes(struct super_block *sb)
1123 {
1124 	struct inode *inode, *old_inode = NULL;
1125 
1126 	/*
1127 	 * We need to be protected against the filesystem going from
1128 	 * r/o to r/w or vice versa.
1129 	 */
1130 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1131 
1132 	spin_lock(&inode_lock);
1133 
1134 	/*
1135 	 * Data integrity sync. Must wait for all pages under writeback,
1136 	 * because there may have been pages dirtied before our sync
1137 	 * call, but which had writeout started before we write it out.
1138 	 * In which case, the inode may not be on the dirty list, but
1139 	 * we still have to wait for that writeout.
1140 	 */
1141 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1142 		struct address_space *mapping;
1143 
1144 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1145 			continue;
1146 		mapping = inode->i_mapping;
1147 		if (mapping->nrpages == 0)
1148 			continue;
1149 		__iget(inode);
1150 		spin_unlock(&inode_lock);
1151 		/*
1152 		 * We hold a reference to 'inode' so it couldn't have
1153 		 * been removed from s_inodes list while we dropped the
1154 		 * inode_lock.  We cannot iput the inode now as we can
1155 		 * be holding the last reference and we cannot iput it
1156 		 * under inode_lock. So we keep the reference and iput
1157 		 * it later.
1158 		 */
1159 		iput(old_inode);
1160 		old_inode = inode;
1161 
1162 		filemap_fdatawait(mapping);
1163 
1164 		cond_resched();
1165 
1166 		spin_lock(&inode_lock);
1167 	}
1168 	spin_unlock(&inode_lock);
1169 	iput(old_inode);
1170 }
1171 
1172 /**
1173  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1174  * @sb: the superblock
1175  *
1176  * Start writeback on some inodes on this super_block. No guarantees are made
1177  * on how many (if any) will be written, and this function does not wait
1178  * for IO completion of submitted IO. The number of pages submitted is
1179  * returned.
1180  */
1181 void writeback_inodes_sb(struct super_block *sb)
1182 {
1183 	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1184 	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1185 	long nr_to_write;
1186 
1187 	nr_to_write = nr_dirty + nr_unstable +
1188 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
1189 
1190 	bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
1191 }
1192 EXPORT_SYMBOL(writeback_inodes_sb);
1193 
1194 /**
1195  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1196  * @sb: the superblock
1197  *
1198  * Invoke writeback_inodes_sb if no writeback is currently underway.
1199  * Returns 1 if writeback was started, 0 if not.
1200  */
1201 int writeback_inodes_sb_if_idle(struct super_block *sb)
1202 {
1203 	if (!writeback_in_progress(sb->s_bdi)) {
1204 		writeback_inodes_sb(sb);
1205 		return 1;
1206 	} else
1207 		return 0;
1208 }
1209 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1210 
1211 /**
1212  * sync_inodes_sb	-	sync sb inode pages
1213  * @sb: the superblock
1214  *
1215  * This function writes and waits on any dirty inode belonging to this
1216  * super_block. The number of pages synced is returned.
1217  */
1218 void sync_inodes_sb(struct super_block *sb)
1219 {
1220 	bdi_sync_writeback(sb->s_bdi, sb);
1221 	wait_sb_inodes(sb);
1222 }
1223 EXPORT_SYMBOL(sync_inodes_sb);
1224 
1225 /**
1226  * write_inode_now	-	write an inode to disk
1227  * @inode: inode to write to disk
1228  * @sync: whether the write should be synchronous or not
1229  *
1230  * This function commits an inode to disk immediately if it is dirty. This is
1231  * primarily needed by knfsd.
1232  *
1233  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1234  */
1235 int write_inode_now(struct inode *inode, int sync)
1236 {
1237 	int ret;
1238 	struct writeback_control wbc = {
1239 		.nr_to_write = LONG_MAX,
1240 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1241 		.range_start = 0,
1242 		.range_end = LLONG_MAX,
1243 	};
1244 
1245 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1246 		wbc.nr_to_write = 0;
1247 
1248 	might_sleep();
1249 	spin_lock(&inode_lock);
1250 	ret = writeback_single_inode(inode, &wbc);
1251 	spin_unlock(&inode_lock);
1252 	if (sync)
1253 		inode_sync_wait(inode);
1254 	return ret;
1255 }
1256 EXPORT_SYMBOL(write_inode_now);
1257 
1258 /**
1259  * sync_inode - write an inode and its pages to disk.
1260  * @inode: the inode to sync
1261  * @wbc: controls the writeback mode
1262  *
1263  * sync_inode() will write an inode and its pages to disk.  It will also
1264  * correctly update the inode on its superblock's dirty inode lists and will
1265  * update inode->i_state.
1266  *
1267  * The caller must have a ref on the inode.
1268  */
1269 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1270 {
1271 	int ret;
1272 
1273 	spin_lock(&inode_lock);
1274 	ret = writeback_single_inode(inode, wbc);
1275 	spin_unlock(&inode_lock);
1276 	return ret;
1277 }
1278 EXPORT_SYMBOL(sync_inode);
1279