1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include "internal.h" 30 31 /* 32 * Passed into wb_writeback(), essentially a subset of writeback_control 33 */ 34 struct wb_writeback_work { 35 long nr_pages; 36 struct super_block *sb; 37 unsigned long *older_than_this; 38 enum writeback_sync_modes sync_mode; 39 unsigned int tagged_writepages:1; 40 unsigned int for_kupdate:1; 41 unsigned int range_cyclic:1; 42 unsigned int for_background:1; 43 enum wb_reason reason; /* why was writeback initiated? */ 44 45 struct list_head list; /* pending work list */ 46 struct completion *done; /* set if the caller waits */ 47 }; 48 49 /* 50 * Include the creation of the trace points after defining the 51 * wb_writeback_work structure so that the definition remains local to this 52 * file. 53 */ 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/writeback.h> 56 57 /* 58 * We don't actually have pdflush, but this one is exported though /proc... 59 */ 60 int nr_pdflush_threads; 61 62 /** 63 * writeback_in_progress - determine whether there is writeback in progress 64 * @bdi: the device's backing_dev_info structure. 65 * 66 * Determine whether there is writeback waiting to be handled against a 67 * backing device. 68 */ 69 int writeback_in_progress(struct backing_dev_info *bdi) 70 { 71 return test_bit(BDI_writeback_running, &bdi->state); 72 } 73 74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 75 { 76 struct super_block *sb = inode->i_sb; 77 78 if (strcmp(sb->s_type->name, "bdev") == 0) 79 return inode->i_mapping->backing_dev_info; 80 81 return sb->s_bdi; 82 } 83 84 static inline struct inode *wb_inode(struct list_head *head) 85 { 86 return list_entry(head, struct inode, i_wb_list); 87 } 88 89 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ 90 static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 91 { 92 if (bdi->wb.task) { 93 wake_up_process(bdi->wb.task); 94 } else { 95 /* 96 * The bdi thread isn't there, wake up the forker thread which 97 * will create and run it. 98 */ 99 wake_up_process(default_backing_dev_info.wb.task); 100 } 101 } 102 103 static void bdi_queue_work(struct backing_dev_info *bdi, 104 struct wb_writeback_work *work) 105 { 106 trace_writeback_queue(bdi, work); 107 108 spin_lock_bh(&bdi->wb_lock); 109 list_add_tail(&work->list, &bdi->work_list); 110 if (!bdi->wb.task) 111 trace_writeback_nothread(bdi, work); 112 bdi_wakeup_flusher(bdi); 113 spin_unlock_bh(&bdi->wb_lock); 114 } 115 116 static void 117 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 118 bool range_cyclic, enum wb_reason reason) 119 { 120 struct wb_writeback_work *work; 121 122 /* 123 * This is WB_SYNC_NONE writeback, so if allocation fails just 124 * wakeup the thread for old dirty data writeback 125 */ 126 work = kzalloc(sizeof(*work), GFP_ATOMIC); 127 if (!work) { 128 if (bdi->wb.task) { 129 trace_writeback_nowork(bdi); 130 wake_up_process(bdi->wb.task); 131 } 132 return; 133 } 134 135 work->sync_mode = WB_SYNC_NONE; 136 work->nr_pages = nr_pages; 137 work->range_cyclic = range_cyclic; 138 work->reason = reason; 139 140 bdi_queue_work(bdi, work); 141 } 142 143 /** 144 * bdi_start_writeback - start writeback 145 * @bdi: the backing device to write from 146 * @nr_pages: the number of pages to write 147 * @reason: reason why some writeback work was initiated 148 * 149 * Description: 150 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 151 * started when this function returns, we make no guarantees on 152 * completion. Caller need not hold sb s_umount semaphore. 153 * 154 */ 155 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 156 enum wb_reason reason) 157 { 158 __bdi_start_writeback(bdi, nr_pages, true, reason); 159 } 160 161 /** 162 * bdi_start_background_writeback - start background writeback 163 * @bdi: the backing device to write from 164 * 165 * Description: 166 * This makes sure WB_SYNC_NONE background writeback happens. When 167 * this function returns, it is only guaranteed that for given BDI 168 * some IO is happening if we are over background dirty threshold. 169 * Caller need not hold sb s_umount semaphore. 170 */ 171 void bdi_start_background_writeback(struct backing_dev_info *bdi) 172 { 173 /* 174 * We just wake up the flusher thread. It will perform background 175 * writeback as soon as there is no other work to do. 176 */ 177 trace_writeback_wake_background(bdi); 178 spin_lock_bh(&bdi->wb_lock); 179 bdi_wakeup_flusher(bdi); 180 spin_unlock_bh(&bdi->wb_lock); 181 } 182 183 /* 184 * Remove the inode from the writeback list it is on. 185 */ 186 void inode_wb_list_del(struct inode *inode) 187 { 188 struct backing_dev_info *bdi = inode_to_bdi(inode); 189 190 spin_lock(&bdi->wb.list_lock); 191 list_del_init(&inode->i_wb_list); 192 spin_unlock(&bdi->wb.list_lock); 193 } 194 195 /* 196 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 197 * furthest end of its superblock's dirty-inode list. 198 * 199 * Before stamping the inode's ->dirtied_when, we check to see whether it is 200 * already the most-recently-dirtied inode on the b_dirty list. If that is 201 * the case then the inode must have been redirtied while it was being written 202 * out and we don't reset its dirtied_when. 203 */ 204 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 205 { 206 assert_spin_locked(&wb->list_lock); 207 if (!list_empty(&wb->b_dirty)) { 208 struct inode *tail; 209 210 tail = wb_inode(wb->b_dirty.next); 211 if (time_before(inode->dirtied_when, tail->dirtied_when)) 212 inode->dirtied_when = jiffies; 213 } 214 list_move(&inode->i_wb_list, &wb->b_dirty); 215 } 216 217 /* 218 * requeue inode for re-scanning after bdi->b_io list is exhausted. 219 */ 220 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 221 { 222 assert_spin_locked(&wb->list_lock); 223 list_move(&inode->i_wb_list, &wb->b_more_io); 224 } 225 226 static void inode_sync_complete(struct inode *inode) 227 { 228 /* 229 * Prevent speculative execution through 230 * spin_unlock(&wb->list_lock); 231 */ 232 233 smp_mb(); 234 wake_up_bit(&inode->i_state, __I_SYNC); 235 } 236 237 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 238 { 239 bool ret = time_after(inode->dirtied_when, t); 240 #ifndef CONFIG_64BIT 241 /* 242 * For inodes being constantly redirtied, dirtied_when can get stuck. 243 * It _appears_ to be in the future, but is actually in distant past. 244 * This test is necessary to prevent such wrapped-around relative times 245 * from permanently stopping the whole bdi writeback. 246 */ 247 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 248 #endif 249 return ret; 250 } 251 252 /* 253 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 254 */ 255 static int move_expired_inodes(struct list_head *delaying_queue, 256 struct list_head *dispatch_queue, 257 struct wb_writeback_work *work) 258 { 259 LIST_HEAD(tmp); 260 struct list_head *pos, *node; 261 struct super_block *sb = NULL; 262 struct inode *inode; 263 int do_sb_sort = 0; 264 int moved = 0; 265 266 while (!list_empty(delaying_queue)) { 267 inode = wb_inode(delaying_queue->prev); 268 if (work->older_than_this && 269 inode_dirtied_after(inode, *work->older_than_this)) 270 break; 271 if (sb && sb != inode->i_sb) 272 do_sb_sort = 1; 273 sb = inode->i_sb; 274 list_move(&inode->i_wb_list, &tmp); 275 moved++; 276 } 277 278 /* just one sb in list, splice to dispatch_queue and we're done */ 279 if (!do_sb_sort) { 280 list_splice(&tmp, dispatch_queue); 281 goto out; 282 } 283 284 /* Move inodes from one superblock together */ 285 while (!list_empty(&tmp)) { 286 sb = wb_inode(tmp.prev)->i_sb; 287 list_for_each_prev_safe(pos, node, &tmp) { 288 inode = wb_inode(pos); 289 if (inode->i_sb == sb) 290 list_move(&inode->i_wb_list, dispatch_queue); 291 } 292 } 293 out: 294 return moved; 295 } 296 297 /* 298 * Queue all expired dirty inodes for io, eldest first. 299 * Before 300 * newly dirtied b_dirty b_io b_more_io 301 * =============> gf edc BA 302 * After 303 * newly dirtied b_dirty b_io b_more_io 304 * =============> g fBAedc 305 * | 306 * +--> dequeue for IO 307 */ 308 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 309 { 310 int moved; 311 assert_spin_locked(&wb->list_lock); 312 list_splice_init(&wb->b_more_io, &wb->b_io); 313 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 314 trace_writeback_queue_io(wb, work, moved); 315 } 316 317 static int write_inode(struct inode *inode, struct writeback_control *wbc) 318 { 319 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 320 return inode->i_sb->s_op->write_inode(inode, wbc); 321 return 0; 322 } 323 324 /* 325 * Wait for writeback on an inode to complete. 326 */ 327 static void inode_wait_for_writeback(struct inode *inode, 328 struct bdi_writeback *wb) 329 { 330 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 331 wait_queue_head_t *wqh; 332 333 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 334 while (inode->i_state & I_SYNC) { 335 spin_unlock(&inode->i_lock); 336 spin_unlock(&wb->list_lock); 337 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 338 spin_lock(&wb->list_lock); 339 spin_lock(&inode->i_lock); 340 } 341 } 342 343 /* 344 * Write out an inode's dirty pages. Called under wb->list_lock and 345 * inode->i_lock. Either the caller has an active reference on the inode or 346 * the inode has I_WILL_FREE set. 347 * 348 * If `wait' is set, wait on the writeout. 349 * 350 * The whole writeout design is quite complex and fragile. We want to avoid 351 * starvation of particular inodes when others are being redirtied, prevent 352 * livelocks, etc. 353 */ 354 static int 355 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 356 struct writeback_control *wbc) 357 { 358 struct address_space *mapping = inode->i_mapping; 359 long nr_to_write = wbc->nr_to_write; 360 unsigned dirty; 361 int ret; 362 363 assert_spin_locked(&wb->list_lock); 364 assert_spin_locked(&inode->i_lock); 365 366 if (!atomic_read(&inode->i_count)) 367 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 368 else 369 WARN_ON(inode->i_state & I_WILL_FREE); 370 371 if (inode->i_state & I_SYNC) { 372 /* 373 * If this inode is locked for writeback and we are not doing 374 * writeback-for-data-integrity, move it to b_more_io so that 375 * writeback can proceed with the other inodes on s_io. 376 * 377 * We'll have another go at writing back this inode when we 378 * completed a full scan of b_io. 379 */ 380 if (wbc->sync_mode != WB_SYNC_ALL) { 381 requeue_io(inode, wb); 382 trace_writeback_single_inode_requeue(inode, wbc, 383 nr_to_write); 384 return 0; 385 } 386 387 /* 388 * It's a data-integrity sync. We must wait. 389 */ 390 inode_wait_for_writeback(inode, wb); 391 } 392 393 BUG_ON(inode->i_state & I_SYNC); 394 395 /* Set I_SYNC, reset I_DIRTY_PAGES */ 396 inode->i_state |= I_SYNC; 397 inode->i_state &= ~I_DIRTY_PAGES; 398 spin_unlock(&inode->i_lock); 399 spin_unlock(&wb->list_lock); 400 401 ret = do_writepages(mapping, wbc); 402 403 /* 404 * Make sure to wait on the data before writing out the metadata. 405 * This is important for filesystems that modify metadata on data 406 * I/O completion. 407 */ 408 if (wbc->sync_mode == WB_SYNC_ALL) { 409 int err = filemap_fdatawait(mapping); 410 if (ret == 0) 411 ret = err; 412 } 413 414 /* 415 * Some filesystems may redirty the inode during the writeback 416 * due to delalloc, clear dirty metadata flags right before 417 * write_inode() 418 */ 419 spin_lock(&inode->i_lock); 420 dirty = inode->i_state & I_DIRTY; 421 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 422 spin_unlock(&inode->i_lock); 423 /* Don't write the inode if only I_DIRTY_PAGES was set */ 424 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 425 int err = write_inode(inode, wbc); 426 if (ret == 0) 427 ret = err; 428 } 429 430 spin_lock(&wb->list_lock); 431 spin_lock(&inode->i_lock); 432 inode->i_state &= ~I_SYNC; 433 if (!(inode->i_state & I_FREEING)) { 434 /* 435 * Sync livelock prevention. Each inode is tagged and synced in 436 * one shot. If still dirty, it will be redirty_tail()'ed below. 437 * Update the dirty time to prevent enqueue and sync it again. 438 */ 439 if ((inode->i_state & I_DIRTY) && 440 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 441 inode->dirtied_when = jiffies; 442 443 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 444 /* 445 * We didn't write back all the pages. nfs_writepages() 446 * sometimes bales out without doing anything. 447 */ 448 inode->i_state |= I_DIRTY_PAGES; 449 if (wbc->nr_to_write <= 0) { 450 /* 451 * slice used up: queue for next turn 452 */ 453 requeue_io(inode, wb); 454 } else { 455 /* 456 * Writeback blocked by something other than 457 * congestion. Delay the inode for some time to 458 * avoid spinning on the CPU (100% iowait) 459 * retrying writeback of the dirty page/inode 460 * that cannot be performed immediately. 461 */ 462 redirty_tail(inode, wb); 463 } 464 } else if (inode->i_state & I_DIRTY) { 465 /* 466 * Filesystems can dirty the inode during writeback 467 * operations, such as delayed allocation during 468 * submission or metadata updates after data IO 469 * completion. 470 */ 471 redirty_tail(inode, wb); 472 } else { 473 /* 474 * The inode is clean. At this point we either have 475 * a reference to the inode or it's on it's way out. 476 * No need to add it back to the LRU. 477 */ 478 list_del_init(&inode->i_wb_list); 479 } 480 } 481 inode_sync_complete(inode); 482 trace_writeback_single_inode(inode, wbc, nr_to_write); 483 return ret; 484 } 485 486 static long writeback_chunk_size(struct backing_dev_info *bdi, 487 struct wb_writeback_work *work) 488 { 489 long pages; 490 491 /* 492 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 493 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 494 * here avoids calling into writeback_inodes_wb() more than once. 495 * 496 * The intended call sequence for WB_SYNC_ALL writeback is: 497 * 498 * wb_writeback() 499 * writeback_sb_inodes() <== called only once 500 * write_cache_pages() <== called once for each inode 501 * (quickly) tag currently dirty pages 502 * (maybe slowly) sync all tagged pages 503 */ 504 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 505 pages = LONG_MAX; 506 else { 507 pages = min(bdi->avg_write_bandwidth / 2, 508 global_dirty_limit / DIRTY_SCOPE); 509 pages = min(pages, work->nr_pages); 510 pages = round_down(pages + MIN_WRITEBACK_PAGES, 511 MIN_WRITEBACK_PAGES); 512 } 513 514 return pages; 515 } 516 517 /* 518 * Write a portion of b_io inodes which belong to @sb. 519 * 520 * If @only_this_sb is true, then find and write all such 521 * inodes. Otherwise write only ones which go sequentially 522 * in reverse order. 523 * 524 * Return the number of pages and/or inodes written. 525 */ 526 static long writeback_sb_inodes(struct super_block *sb, 527 struct bdi_writeback *wb, 528 struct wb_writeback_work *work) 529 { 530 struct writeback_control wbc = { 531 .sync_mode = work->sync_mode, 532 .tagged_writepages = work->tagged_writepages, 533 .for_kupdate = work->for_kupdate, 534 .for_background = work->for_background, 535 .range_cyclic = work->range_cyclic, 536 .range_start = 0, 537 .range_end = LLONG_MAX, 538 }; 539 unsigned long start_time = jiffies; 540 long write_chunk; 541 long wrote = 0; /* count both pages and inodes */ 542 543 while (!list_empty(&wb->b_io)) { 544 struct inode *inode = wb_inode(wb->b_io.prev); 545 546 if (inode->i_sb != sb) { 547 if (work->sb) { 548 /* 549 * We only want to write back data for this 550 * superblock, move all inodes not belonging 551 * to it back onto the dirty list. 552 */ 553 redirty_tail(inode, wb); 554 continue; 555 } 556 557 /* 558 * The inode belongs to a different superblock. 559 * Bounce back to the caller to unpin this and 560 * pin the next superblock. 561 */ 562 break; 563 } 564 565 /* 566 * Don't bother with new inodes or inodes beeing freed, first 567 * kind does not need peridic writeout yet, and for the latter 568 * kind writeout is handled by the freer. 569 */ 570 spin_lock(&inode->i_lock); 571 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 572 spin_unlock(&inode->i_lock); 573 redirty_tail(inode, wb); 574 continue; 575 } 576 __iget(inode); 577 write_chunk = writeback_chunk_size(wb->bdi, work); 578 wbc.nr_to_write = write_chunk; 579 wbc.pages_skipped = 0; 580 581 writeback_single_inode(inode, wb, &wbc); 582 583 work->nr_pages -= write_chunk - wbc.nr_to_write; 584 wrote += write_chunk - wbc.nr_to_write; 585 if (!(inode->i_state & I_DIRTY)) 586 wrote++; 587 if (wbc.pages_skipped) { 588 /* 589 * writeback is not making progress due to locked 590 * buffers. Skip this inode for now. 591 */ 592 redirty_tail(inode, wb); 593 } 594 spin_unlock(&inode->i_lock); 595 spin_unlock(&wb->list_lock); 596 iput(inode); 597 cond_resched(); 598 spin_lock(&wb->list_lock); 599 /* 600 * bail out to wb_writeback() often enough to check 601 * background threshold and other termination conditions. 602 */ 603 if (wrote) { 604 if (time_is_before_jiffies(start_time + HZ / 10UL)) 605 break; 606 if (work->nr_pages <= 0) 607 break; 608 } 609 } 610 return wrote; 611 } 612 613 static long __writeback_inodes_wb(struct bdi_writeback *wb, 614 struct wb_writeback_work *work) 615 { 616 unsigned long start_time = jiffies; 617 long wrote = 0; 618 619 while (!list_empty(&wb->b_io)) { 620 struct inode *inode = wb_inode(wb->b_io.prev); 621 struct super_block *sb = inode->i_sb; 622 623 if (!grab_super_passive(sb)) { 624 /* 625 * grab_super_passive() may fail consistently due to 626 * s_umount being grabbed by someone else. Don't use 627 * requeue_io() to avoid busy retrying the inode/sb. 628 */ 629 redirty_tail(inode, wb); 630 continue; 631 } 632 wrote += writeback_sb_inodes(sb, wb, work); 633 drop_super(sb); 634 635 /* refer to the same tests at the end of writeback_sb_inodes */ 636 if (wrote) { 637 if (time_is_before_jiffies(start_time + HZ / 10UL)) 638 break; 639 if (work->nr_pages <= 0) 640 break; 641 } 642 } 643 /* Leave any unwritten inodes on b_io */ 644 return wrote; 645 } 646 647 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 648 enum wb_reason reason) 649 { 650 struct wb_writeback_work work = { 651 .nr_pages = nr_pages, 652 .sync_mode = WB_SYNC_NONE, 653 .range_cyclic = 1, 654 .reason = reason, 655 }; 656 657 spin_lock(&wb->list_lock); 658 if (list_empty(&wb->b_io)) 659 queue_io(wb, &work); 660 __writeback_inodes_wb(wb, &work); 661 spin_unlock(&wb->list_lock); 662 663 return nr_pages - work.nr_pages; 664 } 665 666 static bool over_bground_thresh(struct backing_dev_info *bdi) 667 { 668 unsigned long background_thresh, dirty_thresh; 669 670 global_dirty_limits(&background_thresh, &dirty_thresh); 671 672 if (global_page_state(NR_FILE_DIRTY) + 673 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 674 return true; 675 676 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 677 bdi_dirty_limit(bdi, background_thresh)) 678 return true; 679 680 return false; 681 } 682 683 /* 684 * Called under wb->list_lock. If there are multiple wb per bdi, 685 * only the flusher working on the first wb should do it. 686 */ 687 static void wb_update_bandwidth(struct bdi_writeback *wb, 688 unsigned long start_time) 689 { 690 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 691 } 692 693 /* 694 * Explicit flushing or periodic writeback of "old" data. 695 * 696 * Define "old": the first time one of an inode's pages is dirtied, we mark the 697 * dirtying-time in the inode's address_space. So this periodic writeback code 698 * just walks the superblock inode list, writing back any inodes which are 699 * older than a specific point in time. 700 * 701 * Try to run once per dirty_writeback_interval. But if a writeback event 702 * takes longer than a dirty_writeback_interval interval, then leave a 703 * one-second gap. 704 * 705 * older_than_this takes precedence over nr_to_write. So we'll only write back 706 * all dirty pages if they are all attached to "old" mappings. 707 */ 708 static long wb_writeback(struct bdi_writeback *wb, 709 struct wb_writeback_work *work) 710 { 711 unsigned long wb_start = jiffies; 712 long nr_pages = work->nr_pages; 713 unsigned long oldest_jif; 714 struct inode *inode; 715 long progress; 716 717 oldest_jif = jiffies; 718 work->older_than_this = &oldest_jif; 719 720 spin_lock(&wb->list_lock); 721 for (;;) { 722 /* 723 * Stop writeback when nr_pages has been consumed 724 */ 725 if (work->nr_pages <= 0) 726 break; 727 728 /* 729 * Background writeout and kupdate-style writeback may 730 * run forever. Stop them if there is other work to do 731 * so that e.g. sync can proceed. They'll be restarted 732 * after the other works are all done. 733 */ 734 if ((work->for_background || work->for_kupdate) && 735 !list_empty(&wb->bdi->work_list)) 736 break; 737 738 /* 739 * For background writeout, stop when we are below the 740 * background dirty threshold 741 */ 742 if (work->for_background && !over_bground_thresh(wb->bdi)) 743 break; 744 745 if (work->for_kupdate) { 746 oldest_jif = jiffies - 747 msecs_to_jiffies(dirty_expire_interval * 10); 748 work->older_than_this = &oldest_jif; 749 } 750 751 trace_writeback_start(wb->bdi, work); 752 if (list_empty(&wb->b_io)) 753 queue_io(wb, work); 754 if (work->sb) 755 progress = writeback_sb_inodes(work->sb, wb, work); 756 else 757 progress = __writeback_inodes_wb(wb, work); 758 trace_writeback_written(wb->bdi, work); 759 760 wb_update_bandwidth(wb, wb_start); 761 762 /* 763 * Did we write something? Try for more 764 * 765 * Dirty inodes are moved to b_io for writeback in batches. 766 * The completion of the current batch does not necessarily 767 * mean the overall work is done. So we keep looping as long 768 * as made some progress on cleaning pages or inodes. 769 */ 770 if (progress) 771 continue; 772 /* 773 * No more inodes for IO, bail 774 */ 775 if (list_empty(&wb->b_more_io)) 776 break; 777 /* 778 * Nothing written. Wait for some inode to 779 * become available for writeback. Otherwise 780 * we'll just busyloop. 781 */ 782 if (!list_empty(&wb->b_more_io)) { 783 trace_writeback_wait(wb->bdi, work); 784 inode = wb_inode(wb->b_more_io.prev); 785 spin_lock(&inode->i_lock); 786 inode_wait_for_writeback(inode, wb); 787 spin_unlock(&inode->i_lock); 788 } 789 } 790 spin_unlock(&wb->list_lock); 791 792 return nr_pages - work->nr_pages; 793 } 794 795 /* 796 * Return the next wb_writeback_work struct that hasn't been processed yet. 797 */ 798 static struct wb_writeback_work * 799 get_next_work_item(struct backing_dev_info *bdi) 800 { 801 struct wb_writeback_work *work = NULL; 802 803 spin_lock_bh(&bdi->wb_lock); 804 if (!list_empty(&bdi->work_list)) { 805 work = list_entry(bdi->work_list.next, 806 struct wb_writeback_work, list); 807 list_del_init(&work->list); 808 } 809 spin_unlock_bh(&bdi->wb_lock); 810 return work; 811 } 812 813 /* 814 * Add in the number of potentially dirty inodes, because each inode 815 * write can dirty pagecache in the underlying blockdev. 816 */ 817 static unsigned long get_nr_dirty_pages(void) 818 { 819 return global_page_state(NR_FILE_DIRTY) + 820 global_page_state(NR_UNSTABLE_NFS) + 821 get_nr_dirty_inodes(); 822 } 823 824 static long wb_check_background_flush(struct bdi_writeback *wb) 825 { 826 if (over_bground_thresh(wb->bdi)) { 827 828 struct wb_writeback_work work = { 829 .nr_pages = LONG_MAX, 830 .sync_mode = WB_SYNC_NONE, 831 .for_background = 1, 832 .range_cyclic = 1, 833 .reason = WB_REASON_BACKGROUND, 834 }; 835 836 return wb_writeback(wb, &work); 837 } 838 839 return 0; 840 } 841 842 static long wb_check_old_data_flush(struct bdi_writeback *wb) 843 { 844 unsigned long expired; 845 long nr_pages; 846 847 /* 848 * When set to zero, disable periodic writeback 849 */ 850 if (!dirty_writeback_interval) 851 return 0; 852 853 expired = wb->last_old_flush + 854 msecs_to_jiffies(dirty_writeback_interval * 10); 855 if (time_before(jiffies, expired)) 856 return 0; 857 858 wb->last_old_flush = jiffies; 859 nr_pages = get_nr_dirty_pages(); 860 861 if (nr_pages) { 862 struct wb_writeback_work work = { 863 .nr_pages = nr_pages, 864 .sync_mode = WB_SYNC_NONE, 865 .for_kupdate = 1, 866 .range_cyclic = 1, 867 .reason = WB_REASON_PERIODIC, 868 }; 869 870 return wb_writeback(wb, &work); 871 } 872 873 return 0; 874 } 875 876 /* 877 * Retrieve work items and do the writeback they describe 878 */ 879 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 880 { 881 struct backing_dev_info *bdi = wb->bdi; 882 struct wb_writeback_work *work; 883 long wrote = 0; 884 885 set_bit(BDI_writeback_running, &wb->bdi->state); 886 while ((work = get_next_work_item(bdi)) != NULL) { 887 /* 888 * Override sync mode, in case we must wait for completion 889 * because this thread is exiting now. 890 */ 891 if (force_wait) 892 work->sync_mode = WB_SYNC_ALL; 893 894 trace_writeback_exec(bdi, work); 895 896 wrote += wb_writeback(wb, work); 897 898 /* 899 * Notify the caller of completion if this is a synchronous 900 * work item, otherwise just free it. 901 */ 902 if (work->done) 903 complete(work->done); 904 else 905 kfree(work); 906 } 907 908 /* 909 * Check for periodic writeback, kupdated() style 910 */ 911 wrote += wb_check_old_data_flush(wb); 912 wrote += wb_check_background_flush(wb); 913 clear_bit(BDI_writeback_running, &wb->bdi->state); 914 915 return wrote; 916 } 917 918 /* 919 * Handle writeback of dirty data for the device backed by this bdi. Also 920 * wakes up periodically and does kupdated style flushing. 921 */ 922 int bdi_writeback_thread(void *data) 923 { 924 struct bdi_writeback *wb = data; 925 struct backing_dev_info *bdi = wb->bdi; 926 long pages_written; 927 928 current->flags |= PF_SWAPWRITE; 929 set_freezable(); 930 wb->last_active = jiffies; 931 932 /* 933 * Our parent may run at a different priority, just set us to normal 934 */ 935 set_user_nice(current, 0); 936 937 trace_writeback_thread_start(bdi); 938 939 while (!kthread_freezable_should_stop(NULL)) { 940 /* 941 * Remove own delayed wake-up timer, since we are already awake 942 * and we'll take care of the preriodic write-back. 943 */ 944 del_timer(&wb->wakeup_timer); 945 946 pages_written = wb_do_writeback(wb, 0); 947 948 trace_writeback_pages_written(pages_written); 949 950 if (pages_written) 951 wb->last_active = jiffies; 952 953 set_current_state(TASK_INTERRUPTIBLE); 954 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 955 __set_current_state(TASK_RUNNING); 956 continue; 957 } 958 959 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 960 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 961 else { 962 /* 963 * We have nothing to do, so can go sleep without any 964 * timeout and save power. When a work is queued or 965 * something is made dirty - we will be woken up. 966 */ 967 schedule(); 968 } 969 } 970 971 /* Flush any work that raced with us exiting */ 972 if (!list_empty(&bdi->work_list)) 973 wb_do_writeback(wb, 1); 974 975 trace_writeback_thread_stop(bdi); 976 return 0; 977 } 978 979 980 /* 981 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 982 * the whole world. 983 */ 984 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 985 { 986 struct backing_dev_info *bdi; 987 988 if (!nr_pages) { 989 nr_pages = global_page_state(NR_FILE_DIRTY) + 990 global_page_state(NR_UNSTABLE_NFS); 991 } 992 993 rcu_read_lock(); 994 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 995 if (!bdi_has_dirty_io(bdi)) 996 continue; 997 __bdi_start_writeback(bdi, nr_pages, false, reason); 998 } 999 rcu_read_unlock(); 1000 } 1001 1002 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1003 { 1004 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1005 struct dentry *dentry; 1006 const char *name = "?"; 1007 1008 dentry = d_find_alias(inode); 1009 if (dentry) { 1010 spin_lock(&dentry->d_lock); 1011 name = (const char *) dentry->d_name.name; 1012 } 1013 printk(KERN_DEBUG 1014 "%s(%d): dirtied inode %lu (%s) on %s\n", 1015 current->comm, task_pid_nr(current), inode->i_ino, 1016 name, inode->i_sb->s_id); 1017 if (dentry) { 1018 spin_unlock(&dentry->d_lock); 1019 dput(dentry); 1020 } 1021 } 1022 } 1023 1024 /** 1025 * __mark_inode_dirty - internal function 1026 * @inode: inode to mark 1027 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1028 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1029 * mark_inode_dirty_sync. 1030 * 1031 * Put the inode on the super block's dirty list. 1032 * 1033 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1034 * dirty list only if it is hashed or if it refers to a blockdev. 1035 * If it was not hashed, it will never be added to the dirty list 1036 * even if it is later hashed, as it will have been marked dirty already. 1037 * 1038 * In short, make sure you hash any inodes _before_ you start marking 1039 * them dirty. 1040 * 1041 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1042 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1043 * the kernel-internal blockdev inode represents the dirtying time of the 1044 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1045 * page->mapping->host, so the page-dirtying time is recorded in the internal 1046 * blockdev inode. 1047 */ 1048 void __mark_inode_dirty(struct inode *inode, int flags) 1049 { 1050 struct super_block *sb = inode->i_sb; 1051 struct backing_dev_info *bdi = NULL; 1052 1053 /* 1054 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1055 * dirty the inode itself 1056 */ 1057 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1058 if (sb->s_op->dirty_inode) 1059 sb->s_op->dirty_inode(inode, flags); 1060 } 1061 1062 /* 1063 * make sure that changes are seen by all cpus before we test i_state 1064 * -- mikulas 1065 */ 1066 smp_mb(); 1067 1068 /* avoid the locking if we can */ 1069 if ((inode->i_state & flags) == flags) 1070 return; 1071 1072 if (unlikely(block_dump)) 1073 block_dump___mark_inode_dirty(inode); 1074 1075 spin_lock(&inode->i_lock); 1076 if ((inode->i_state & flags) != flags) { 1077 const int was_dirty = inode->i_state & I_DIRTY; 1078 1079 inode->i_state |= flags; 1080 1081 /* 1082 * If the inode is being synced, just update its dirty state. 1083 * The unlocker will place the inode on the appropriate 1084 * superblock list, based upon its state. 1085 */ 1086 if (inode->i_state & I_SYNC) 1087 goto out_unlock_inode; 1088 1089 /* 1090 * Only add valid (hashed) inodes to the superblock's 1091 * dirty list. Add blockdev inodes as well. 1092 */ 1093 if (!S_ISBLK(inode->i_mode)) { 1094 if (inode_unhashed(inode)) 1095 goto out_unlock_inode; 1096 } 1097 if (inode->i_state & I_FREEING) 1098 goto out_unlock_inode; 1099 1100 /* 1101 * If the inode was already on b_dirty/b_io/b_more_io, don't 1102 * reposition it (that would break b_dirty time-ordering). 1103 */ 1104 if (!was_dirty) { 1105 bool wakeup_bdi = false; 1106 bdi = inode_to_bdi(inode); 1107 1108 if (bdi_cap_writeback_dirty(bdi)) { 1109 WARN(!test_bit(BDI_registered, &bdi->state), 1110 "bdi-%s not registered\n", bdi->name); 1111 1112 /* 1113 * If this is the first dirty inode for this 1114 * bdi, we have to wake-up the corresponding 1115 * bdi thread to make sure background 1116 * write-back happens later. 1117 */ 1118 if (!wb_has_dirty_io(&bdi->wb)) 1119 wakeup_bdi = true; 1120 } 1121 1122 spin_unlock(&inode->i_lock); 1123 spin_lock(&bdi->wb.list_lock); 1124 inode->dirtied_when = jiffies; 1125 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1126 spin_unlock(&bdi->wb.list_lock); 1127 1128 if (wakeup_bdi) 1129 bdi_wakeup_thread_delayed(bdi); 1130 return; 1131 } 1132 } 1133 out_unlock_inode: 1134 spin_unlock(&inode->i_lock); 1135 1136 } 1137 EXPORT_SYMBOL(__mark_inode_dirty); 1138 1139 /* 1140 * Write out a superblock's list of dirty inodes. A wait will be performed 1141 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1142 * 1143 * If older_than_this is non-NULL, then only write out inodes which 1144 * had their first dirtying at a time earlier than *older_than_this. 1145 * 1146 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1147 * This function assumes that the blockdev superblock's inodes are backed by 1148 * a variety of queues, so all inodes are searched. For other superblocks, 1149 * assume that all inodes are backed by the same queue. 1150 * 1151 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1152 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1153 * on the writer throttling path, and we get decent balancing between many 1154 * throttled threads: we don't want them all piling up on inode_sync_wait. 1155 */ 1156 static void wait_sb_inodes(struct super_block *sb) 1157 { 1158 struct inode *inode, *old_inode = NULL; 1159 1160 /* 1161 * We need to be protected against the filesystem going from 1162 * r/o to r/w or vice versa. 1163 */ 1164 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1165 1166 spin_lock(&inode_sb_list_lock); 1167 1168 /* 1169 * Data integrity sync. Must wait for all pages under writeback, 1170 * because there may have been pages dirtied before our sync 1171 * call, but which had writeout started before we write it out. 1172 * In which case, the inode may not be on the dirty list, but 1173 * we still have to wait for that writeout. 1174 */ 1175 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1176 struct address_space *mapping = inode->i_mapping; 1177 1178 spin_lock(&inode->i_lock); 1179 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1180 (mapping->nrpages == 0)) { 1181 spin_unlock(&inode->i_lock); 1182 continue; 1183 } 1184 __iget(inode); 1185 spin_unlock(&inode->i_lock); 1186 spin_unlock(&inode_sb_list_lock); 1187 1188 /* 1189 * We hold a reference to 'inode' so it couldn't have been 1190 * removed from s_inodes list while we dropped the 1191 * inode_sb_list_lock. We cannot iput the inode now as we can 1192 * be holding the last reference and we cannot iput it under 1193 * inode_sb_list_lock. So we keep the reference and iput it 1194 * later. 1195 */ 1196 iput(old_inode); 1197 old_inode = inode; 1198 1199 filemap_fdatawait(mapping); 1200 1201 cond_resched(); 1202 1203 spin_lock(&inode_sb_list_lock); 1204 } 1205 spin_unlock(&inode_sb_list_lock); 1206 iput(old_inode); 1207 } 1208 1209 /** 1210 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1211 * @sb: the superblock 1212 * @nr: the number of pages to write 1213 * @reason: reason why some writeback work initiated 1214 * 1215 * Start writeback on some inodes on this super_block. No guarantees are made 1216 * on how many (if any) will be written, and this function does not wait 1217 * for IO completion of submitted IO. 1218 */ 1219 void writeback_inodes_sb_nr(struct super_block *sb, 1220 unsigned long nr, 1221 enum wb_reason reason) 1222 { 1223 DECLARE_COMPLETION_ONSTACK(done); 1224 struct wb_writeback_work work = { 1225 .sb = sb, 1226 .sync_mode = WB_SYNC_NONE, 1227 .tagged_writepages = 1, 1228 .done = &done, 1229 .nr_pages = nr, 1230 .reason = reason, 1231 }; 1232 1233 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1234 bdi_queue_work(sb->s_bdi, &work); 1235 wait_for_completion(&done); 1236 } 1237 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1238 1239 /** 1240 * writeback_inodes_sb - writeback dirty inodes from given super_block 1241 * @sb: the superblock 1242 * @reason: reason why some writeback work was initiated 1243 * 1244 * Start writeback on some inodes on this super_block. No guarantees are made 1245 * on how many (if any) will be written, and this function does not wait 1246 * for IO completion of submitted IO. 1247 */ 1248 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1249 { 1250 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1251 } 1252 EXPORT_SYMBOL(writeback_inodes_sb); 1253 1254 /** 1255 * writeback_inodes_sb_if_idle - start writeback if none underway 1256 * @sb: the superblock 1257 * @reason: reason why some writeback work was initiated 1258 * 1259 * Invoke writeback_inodes_sb if no writeback is currently underway. 1260 * Returns 1 if writeback was started, 0 if not. 1261 */ 1262 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason) 1263 { 1264 if (!writeback_in_progress(sb->s_bdi)) { 1265 down_read(&sb->s_umount); 1266 writeback_inodes_sb(sb, reason); 1267 up_read(&sb->s_umount); 1268 return 1; 1269 } else 1270 return 0; 1271 } 1272 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1273 1274 /** 1275 * writeback_inodes_sb_if_idle - start writeback if none underway 1276 * @sb: the superblock 1277 * @nr: the number of pages to write 1278 * @reason: reason why some writeback work was initiated 1279 * 1280 * Invoke writeback_inodes_sb if no writeback is currently underway. 1281 * Returns 1 if writeback was started, 0 if not. 1282 */ 1283 int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1284 unsigned long nr, 1285 enum wb_reason reason) 1286 { 1287 if (!writeback_in_progress(sb->s_bdi)) { 1288 down_read(&sb->s_umount); 1289 writeback_inodes_sb_nr(sb, nr, reason); 1290 up_read(&sb->s_umount); 1291 return 1; 1292 } else 1293 return 0; 1294 } 1295 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1296 1297 /** 1298 * sync_inodes_sb - sync sb inode pages 1299 * @sb: the superblock 1300 * 1301 * This function writes and waits on any dirty inode belonging to this 1302 * super_block. 1303 */ 1304 void sync_inodes_sb(struct super_block *sb) 1305 { 1306 DECLARE_COMPLETION_ONSTACK(done); 1307 struct wb_writeback_work work = { 1308 .sb = sb, 1309 .sync_mode = WB_SYNC_ALL, 1310 .nr_pages = LONG_MAX, 1311 .range_cyclic = 0, 1312 .done = &done, 1313 .reason = WB_REASON_SYNC, 1314 }; 1315 1316 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1317 1318 bdi_queue_work(sb->s_bdi, &work); 1319 wait_for_completion(&done); 1320 1321 wait_sb_inodes(sb); 1322 } 1323 EXPORT_SYMBOL(sync_inodes_sb); 1324 1325 /** 1326 * write_inode_now - write an inode to disk 1327 * @inode: inode to write to disk 1328 * @sync: whether the write should be synchronous or not 1329 * 1330 * This function commits an inode to disk immediately if it is dirty. This is 1331 * primarily needed by knfsd. 1332 * 1333 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1334 */ 1335 int write_inode_now(struct inode *inode, int sync) 1336 { 1337 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1338 int ret; 1339 struct writeback_control wbc = { 1340 .nr_to_write = LONG_MAX, 1341 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1342 .range_start = 0, 1343 .range_end = LLONG_MAX, 1344 }; 1345 1346 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1347 wbc.nr_to_write = 0; 1348 1349 might_sleep(); 1350 spin_lock(&wb->list_lock); 1351 spin_lock(&inode->i_lock); 1352 ret = writeback_single_inode(inode, wb, &wbc); 1353 spin_unlock(&inode->i_lock); 1354 spin_unlock(&wb->list_lock); 1355 if (sync) 1356 inode_sync_wait(inode); 1357 return ret; 1358 } 1359 EXPORT_SYMBOL(write_inode_now); 1360 1361 /** 1362 * sync_inode - write an inode and its pages to disk. 1363 * @inode: the inode to sync 1364 * @wbc: controls the writeback mode 1365 * 1366 * sync_inode() will write an inode and its pages to disk. It will also 1367 * correctly update the inode on its superblock's dirty inode lists and will 1368 * update inode->i_state. 1369 * 1370 * The caller must have a ref on the inode. 1371 */ 1372 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1373 { 1374 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1375 int ret; 1376 1377 spin_lock(&wb->list_lock); 1378 spin_lock(&inode->i_lock); 1379 ret = writeback_single_inode(inode, wb, wbc); 1380 spin_unlock(&inode->i_lock); 1381 spin_unlock(&wb->list_lock); 1382 return ret; 1383 } 1384 EXPORT_SYMBOL(sync_inode); 1385 1386 /** 1387 * sync_inode_metadata - write an inode to disk 1388 * @inode: the inode to sync 1389 * @wait: wait for I/O to complete. 1390 * 1391 * Write an inode to disk and adjust its dirty state after completion. 1392 * 1393 * Note: only writes the actual inode, no associated data or other metadata. 1394 */ 1395 int sync_inode_metadata(struct inode *inode, int wait) 1396 { 1397 struct writeback_control wbc = { 1398 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1399 .nr_to_write = 0, /* metadata-only */ 1400 }; 1401 1402 return sync_inode(inode, &wbc); 1403 } 1404 EXPORT_SYMBOL(sync_inode_metadata); 1405