xref: /linux/fs/fs-writeback.c (revision 9d14070f656addddce3d63fd483de46930b51850)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include "internal.h"
30 
31 /*
32  * Passed into wb_writeback(), essentially a subset of writeback_control
33  */
34 struct wb_writeback_work {
35 	long nr_pages;
36 	struct super_block *sb;
37 	unsigned long *older_than_this;
38 	enum writeback_sync_modes sync_mode;
39 	unsigned int tagged_writepages:1;
40 	unsigned int for_kupdate:1;
41 	unsigned int range_cyclic:1;
42 	unsigned int for_background:1;
43 	enum wb_reason reason;		/* why was writeback initiated? */
44 
45 	struct list_head list;		/* pending work list */
46 	struct completion *done;	/* set if the caller waits */
47 };
48 
49 /*
50  * Include the creation of the trace points after defining the
51  * wb_writeback_work structure so that the definition remains local to this
52  * file.
53  */
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/writeback.h>
56 
57 /*
58  * We don't actually have pdflush, but this one is exported though /proc...
59  */
60 int nr_pdflush_threads;
61 
62 /**
63  * writeback_in_progress - determine whether there is writeback in progress
64  * @bdi: the device's backing_dev_info structure.
65  *
66  * Determine whether there is writeback waiting to be handled against a
67  * backing device.
68  */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71 	return test_bit(BDI_writeback_running, &bdi->state);
72 }
73 
74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
75 {
76 	struct super_block *sb = inode->i_sb;
77 
78 	if (strcmp(sb->s_type->name, "bdev") == 0)
79 		return inode->i_mapping->backing_dev_info;
80 
81 	return sb->s_bdi;
82 }
83 
84 static inline struct inode *wb_inode(struct list_head *head)
85 {
86 	return list_entry(head, struct inode, i_wb_list);
87 }
88 
89 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
90 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
91 {
92 	if (bdi->wb.task) {
93 		wake_up_process(bdi->wb.task);
94 	} else {
95 		/*
96 		 * The bdi thread isn't there, wake up the forker thread which
97 		 * will create and run it.
98 		 */
99 		wake_up_process(default_backing_dev_info.wb.task);
100 	}
101 }
102 
103 static void bdi_queue_work(struct backing_dev_info *bdi,
104 			   struct wb_writeback_work *work)
105 {
106 	trace_writeback_queue(bdi, work);
107 
108 	spin_lock_bh(&bdi->wb_lock);
109 	list_add_tail(&work->list, &bdi->work_list);
110 	if (!bdi->wb.task)
111 		trace_writeback_nothread(bdi, work);
112 	bdi_wakeup_flusher(bdi);
113 	spin_unlock_bh(&bdi->wb_lock);
114 }
115 
116 static void
117 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
118 		      bool range_cyclic, enum wb_reason reason)
119 {
120 	struct wb_writeback_work *work;
121 
122 	/*
123 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
124 	 * wakeup the thread for old dirty data writeback
125 	 */
126 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
127 	if (!work) {
128 		if (bdi->wb.task) {
129 			trace_writeback_nowork(bdi);
130 			wake_up_process(bdi->wb.task);
131 		}
132 		return;
133 	}
134 
135 	work->sync_mode	= WB_SYNC_NONE;
136 	work->nr_pages	= nr_pages;
137 	work->range_cyclic = range_cyclic;
138 	work->reason	= reason;
139 
140 	bdi_queue_work(bdi, work);
141 }
142 
143 /**
144  * bdi_start_writeback - start writeback
145  * @bdi: the backing device to write from
146  * @nr_pages: the number of pages to write
147  * @reason: reason why some writeback work was initiated
148  *
149  * Description:
150  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
151  *   started when this function returns, we make no guarantees on
152  *   completion. Caller need not hold sb s_umount semaphore.
153  *
154  */
155 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
156 			enum wb_reason reason)
157 {
158 	__bdi_start_writeback(bdi, nr_pages, true, reason);
159 }
160 
161 /**
162  * bdi_start_background_writeback - start background writeback
163  * @bdi: the backing device to write from
164  *
165  * Description:
166  *   This makes sure WB_SYNC_NONE background writeback happens. When
167  *   this function returns, it is only guaranteed that for given BDI
168  *   some IO is happening if we are over background dirty threshold.
169  *   Caller need not hold sb s_umount semaphore.
170  */
171 void bdi_start_background_writeback(struct backing_dev_info *bdi)
172 {
173 	/*
174 	 * We just wake up the flusher thread. It will perform background
175 	 * writeback as soon as there is no other work to do.
176 	 */
177 	trace_writeback_wake_background(bdi);
178 	spin_lock_bh(&bdi->wb_lock);
179 	bdi_wakeup_flusher(bdi);
180 	spin_unlock_bh(&bdi->wb_lock);
181 }
182 
183 /*
184  * Remove the inode from the writeback list it is on.
185  */
186 void inode_wb_list_del(struct inode *inode)
187 {
188 	struct backing_dev_info *bdi = inode_to_bdi(inode);
189 
190 	spin_lock(&bdi->wb.list_lock);
191 	list_del_init(&inode->i_wb_list);
192 	spin_unlock(&bdi->wb.list_lock);
193 }
194 
195 /*
196  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
197  * furthest end of its superblock's dirty-inode list.
198  *
199  * Before stamping the inode's ->dirtied_when, we check to see whether it is
200  * already the most-recently-dirtied inode on the b_dirty list.  If that is
201  * the case then the inode must have been redirtied while it was being written
202  * out and we don't reset its dirtied_when.
203  */
204 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
205 {
206 	assert_spin_locked(&wb->list_lock);
207 	if (!list_empty(&wb->b_dirty)) {
208 		struct inode *tail;
209 
210 		tail = wb_inode(wb->b_dirty.next);
211 		if (time_before(inode->dirtied_when, tail->dirtied_when))
212 			inode->dirtied_when = jiffies;
213 	}
214 	list_move(&inode->i_wb_list, &wb->b_dirty);
215 }
216 
217 /*
218  * requeue inode for re-scanning after bdi->b_io list is exhausted.
219  */
220 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
221 {
222 	assert_spin_locked(&wb->list_lock);
223 	list_move(&inode->i_wb_list, &wb->b_more_io);
224 }
225 
226 static void inode_sync_complete(struct inode *inode)
227 {
228 	/*
229 	 * Prevent speculative execution through
230 	 * spin_unlock(&wb->list_lock);
231 	 */
232 
233 	smp_mb();
234 	wake_up_bit(&inode->i_state, __I_SYNC);
235 }
236 
237 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
238 {
239 	bool ret = time_after(inode->dirtied_when, t);
240 #ifndef CONFIG_64BIT
241 	/*
242 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
243 	 * It _appears_ to be in the future, but is actually in distant past.
244 	 * This test is necessary to prevent such wrapped-around relative times
245 	 * from permanently stopping the whole bdi writeback.
246 	 */
247 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
248 #endif
249 	return ret;
250 }
251 
252 /*
253  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
254  */
255 static int move_expired_inodes(struct list_head *delaying_queue,
256 			       struct list_head *dispatch_queue,
257 			       struct wb_writeback_work *work)
258 {
259 	LIST_HEAD(tmp);
260 	struct list_head *pos, *node;
261 	struct super_block *sb = NULL;
262 	struct inode *inode;
263 	int do_sb_sort = 0;
264 	int moved = 0;
265 
266 	while (!list_empty(delaying_queue)) {
267 		inode = wb_inode(delaying_queue->prev);
268 		if (work->older_than_this &&
269 		    inode_dirtied_after(inode, *work->older_than_this))
270 			break;
271 		if (sb && sb != inode->i_sb)
272 			do_sb_sort = 1;
273 		sb = inode->i_sb;
274 		list_move(&inode->i_wb_list, &tmp);
275 		moved++;
276 	}
277 
278 	/* just one sb in list, splice to dispatch_queue and we're done */
279 	if (!do_sb_sort) {
280 		list_splice(&tmp, dispatch_queue);
281 		goto out;
282 	}
283 
284 	/* Move inodes from one superblock together */
285 	while (!list_empty(&tmp)) {
286 		sb = wb_inode(tmp.prev)->i_sb;
287 		list_for_each_prev_safe(pos, node, &tmp) {
288 			inode = wb_inode(pos);
289 			if (inode->i_sb == sb)
290 				list_move(&inode->i_wb_list, dispatch_queue);
291 		}
292 	}
293 out:
294 	return moved;
295 }
296 
297 /*
298  * Queue all expired dirty inodes for io, eldest first.
299  * Before
300  *         newly dirtied     b_dirty    b_io    b_more_io
301  *         =============>    gf         edc     BA
302  * After
303  *         newly dirtied     b_dirty    b_io    b_more_io
304  *         =============>    g          fBAedc
305  *                                           |
306  *                                           +--> dequeue for IO
307  */
308 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
309 {
310 	int moved;
311 	assert_spin_locked(&wb->list_lock);
312 	list_splice_init(&wb->b_more_io, &wb->b_io);
313 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
314 	trace_writeback_queue_io(wb, work, moved);
315 }
316 
317 static int write_inode(struct inode *inode, struct writeback_control *wbc)
318 {
319 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
320 		return inode->i_sb->s_op->write_inode(inode, wbc);
321 	return 0;
322 }
323 
324 /*
325  * Wait for writeback on an inode to complete.
326  */
327 static void inode_wait_for_writeback(struct inode *inode,
328 				     struct bdi_writeback *wb)
329 {
330 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
331 	wait_queue_head_t *wqh;
332 
333 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
334 	while (inode->i_state & I_SYNC) {
335 		spin_unlock(&inode->i_lock);
336 		spin_unlock(&wb->list_lock);
337 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
338 		spin_lock(&wb->list_lock);
339 		spin_lock(&inode->i_lock);
340 	}
341 }
342 
343 /*
344  * Write out an inode's dirty pages.  Called under wb->list_lock and
345  * inode->i_lock.  Either the caller has an active reference on the inode or
346  * the inode has I_WILL_FREE set.
347  *
348  * If `wait' is set, wait on the writeout.
349  *
350  * The whole writeout design is quite complex and fragile.  We want to avoid
351  * starvation of particular inodes when others are being redirtied, prevent
352  * livelocks, etc.
353  */
354 static int
355 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
356 		       struct writeback_control *wbc)
357 {
358 	struct address_space *mapping = inode->i_mapping;
359 	long nr_to_write = wbc->nr_to_write;
360 	unsigned dirty;
361 	int ret;
362 
363 	assert_spin_locked(&wb->list_lock);
364 	assert_spin_locked(&inode->i_lock);
365 
366 	if (!atomic_read(&inode->i_count))
367 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
368 	else
369 		WARN_ON(inode->i_state & I_WILL_FREE);
370 
371 	if (inode->i_state & I_SYNC) {
372 		/*
373 		 * If this inode is locked for writeback and we are not doing
374 		 * writeback-for-data-integrity, move it to b_more_io so that
375 		 * writeback can proceed with the other inodes on s_io.
376 		 *
377 		 * We'll have another go at writing back this inode when we
378 		 * completed a full scan of b_io.
379 		 */
380 		if (wbc->sync_mode != WB_SYNC_ALL) {
381 			requeue_io(inode, wb);
382 			trace_writeback_single_inode_requeue(inode, wbc,
383 							     nr_to_write);
384 			return 0;
385 		}
386 
387 		/*
388 		 * It's a data-integrity sync.  We must wait.
389 		 */
390 		inode_wait_for_writeback(inode, wb);
391 	}
392 
393 	BUG_ON(inode->i_state & I_SYNC);
394 
395 	/* Set I_SYNC, reset I_DIRTY_PAGES */
396 	inode->i_state |= I_SYNC;
397 	inode->i_state &= ~I_DIRTY_PAGES;
398 	spin_unlock(&inode->i_lock);
399 	spin_unlock(&wb->list_lock);
400 
401 	ret = do_writepages(mapping, wbc);
402 
403 	/*
404 	 * Make sure to wait on the data before writing out the metadata.
405 	 * This is important for filesystems that modify metadata on data
406 	 * I/O completion.
407 	 */
408 	if (wbc->sync_mode == WB_SYNC_ALL) {
409 		int err = filemap_fdatawait(mapping);
410 		if (ret == 0)
411 			ret = err;
412 	}
413 
414 	/*
415 	 * Some filesystems may redirty the inode during the writeback
416 	 * due to delalloc, clear dirty metadata flags right before
417 	 * write_inode()
418 	 */
419 	spin_lock(&inode->i_lock);
420 	dirty = inode->i_state & I_DIRTY;
421 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
422 	spin_unlock(&inode->i_lock);
423 	/* Don't write the inode if only I_DIRTY_PAGES was set */
424 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
425 		int err = write_inode(inode, wbc);
426 		if (ret == 0)
427 			ret = err;
428 	}
429 
430 	spin_lock(&wb->list_lock);
431 	spin_lock(&inode->i_lock);
432 	inode->i_state &= ~I_SYNC;
433 	if (!(inode->i_state & I_FREEING)) {
434 		/*
435 		 * Sync livelock prevention. Each inode is tagged and synced in
436 		 * one shot. If still dirty, it will be redirty_tail()'ed below.
437 		 * Update the dirty time to prevent enqueue and sync it again.
438 		 */
439 		if ((inode->i_state & I_DIRTY) &&
440 		    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
441 			inode->dirtied_when = jiffies;
442 
443 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
444 			/*
445 			 * We didn't write back all the pages.  nfs_writepages()
446 			 * sometimes bales out without doing anything.
447 			 */
448 			inode->i_state |= I_DIRTY_PAGES;
449 			if (wbc->nr_to_write <= 0) {
450 				/*
451 				 * slice used up: queue for next turn
452 				 */
453 				requeue_io(inode, wb);
454 			} else {
455 				/*
456 				 * Writeback blocked by something other than
457 				 * congestion. Delay the inode for some time to
458 				 * avoid spinning on the CPU (100% iowait)
459 				 * retrying writeback of the dirty page/inode
460 				 * that cannot be performed immediately.
461 				 */
462 				redirty_tail(inode, wb);
463 			}
464 		} else if (inode->i_state & I_DIRTY) {
465 			/*
466 			 * Filesystems can dirty the inode during writeback
467 			 * operations, such as delayed allocation during
468 			 * submission or metadata updates after data IO
469 			 * completion.
470 			 */
471 			redirty_tail(inode, wb);
472 		} else {
473 			/*
474 			 * The inode is clean.  At this point we either have
475 			 * a reference to the inode or it's on it's way out.
476 			 * No need to add it back to the LRU.
477 			 */
478 			list_del_init(&inode->i_wb_list);
479 		}
480 	}
481 	inode_sync_complete(inode);
482 	trace_writeback_single_inode(inode, wbc, nr_to_write);
483 	return ret;
484 }
485 
486 static long writeback_chunk_size(struct backing_dev_info *bdi,
487 				 struct wb_writeback_work *work)
488 {
489 	long pages;
490 
491 	/*
492 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
493 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
494 	 * here avoids calling into writeback_inodes_wb() more than once.
495 	 *
496 	 * The intended call sequence for WB_SYNC_ALL writeback is:
497 	 *
498 	 *      wb_writeback()
499 	 *          writeback_sb_inodes()       <== called only once
500 	 *              write_cache_pages()     <== called once for each inode
501 	 *                   (quickly) tag currently dirty pages
502 	 *                   (maybe slowly) sync all tagged pages
503 	 */
504 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
505 		pages = LONG_MAX;
506 	else {
507 		pages = min(bdi->avg_write_bandwidth / 2,
508 			    global_dirty_limit / DIRTY_SCOPE);
509 		pages = min(pages, work->nr_pages);
510 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
511 				   MIN_WRITEBACK_PAGES);
512 	}
513 
514 	return pages;
515 }
516 
517 /*
518  * Write a portion of b_io inodes which belong to @sb.
519  *
520  * If @only_this_sb is true, then find and write all such
521  * inodes. Otherwise write only ones which go sequentially
522  * in reverse order.
523  *
524  * Return the number of pages and/or inodes written.
525  */
526 static long writeback_sb_inodes(struct super_block *sb,
527 				struct bdi_writeback *wb,
528 				struct wb_writeback_work *work)
529 {
530 	struct writeback_control wbc = {
531 		.sync_mode		= work->sync_mode,
532 		.tagged_writepages	= work->tagged_writepages,
533 		.for_kupdate		= work->for_kupdate,
534 		.for_background		= work->for_background,
535 		.range_cyclic		= work->range_cyclic,
536 		.range_start		= 0,
537 		.range_end		= LLONG_MAX,
538 	};
539 	unsigned long start_time = jiffies;
540 	long write_chunk;
541 	long wrote = 0;  /* count both pages and inodes */
542 
543 	while (!list_empty(&wb->b_io)) {
544 		struct inode *inode = wb_inode(wb->b_io.prev);
545 
546 		if (inode->i_sb != sb) {
547 			if (work->sb) {
548 				/*
549 				 * We only want to write back data for this
550 				 * superblock, move all inodes not belonging
551 				 * to it back onto the dirty list.
552 				 */
553 				redirty_tail(inode, wb);
554 				continue;
555 			}
556 
557 			/*
558 			 * The inode belongs to a different superblock.
559 			 * Bounce back to the caller to unpin this and
560 			 * pin the next superblock.
561 			 */
562 			break;
563 		}
564 
565 		/*
566 		 * Don't bother with new inodes or inodes beeing freed, first
567 		 * kind does not need peridic writeout yet, and for the latter
568 		 * kind writeout is handled by the freer.
569 		 */
570 		spin_lock(&inode->i_lock);
571 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
572 			spin_unlock(&inode->i_lock);
573 			redirty_tail(inode, wb);
574 			continue;
575 		}
576 		__iget(inode);
577 		write_chunk = writeback_chunk_size(wb->bdi, work);
578 		wbc.nr_to_write = write_chunk;
579 		wbc.pages_skipped = 0;
580 
581 		writeback_single_inode(inode, wb, &wbc);
582 
583 		work->nr_pages -= write_chunk - wbc.nr_to_write;
584 		wrote += write_chunk - wbc.nr_to_write;
585 		if (!(inode->i_state & I_DIRTY))
586 			wrote++;
587 		if (wbc.pages_skipped) {
588 			/*
589 			 * writeback is not making progress due to locked
590 			 * buffers.  Skip this inode for now.
591 			 */
592 			redirty_tail(inode, wb);
593 		}
594 		spin_unlock(&inode->i_lock);
595 		spin_unlock(&wb->list_lock);
596 		iput(inode);
597 		cond_resched();
598 		spin_lock(&wb->list_lock);
599 		/*
600 		 * bail out to wb_writeback() often enough to check
601 		 * background threshold and other termination conditions.
602 		 */
603 		if (wrote) {
604 			if (time_is_before_jiffies(start_time + HZ / 10UL))
605 				break;
606 			if (work->nr_pages <= 0)
607 				break;
608 		}
609 	}
610 	return wrote;
611 }
612 
613 static long __writeback_inodes_wb(struct bdi_writeback *wb,
614 				  struct wb_writeback_work *work)
615 {
616 	unsigned long start_time = jiffies;
617 	long wrote = 0;
618 
619 	while (!list_empty(&wb->b_io)) {
620 		struct inode *inode = wb_inode(wb->b_io.prev);
621 		struct super_block *sb = inode->i_sb;
622 
623 		if (!grab_super_passive(sb)) {
624 			/*
625 			 * grab_super_passive() may fail consistently due to
626 			 * s_umount being grabbed by someone else. Don't use
627 			 * requeue_io() to avoid busy retrying the inode/sb.
628 			 */
629 			redirty_tail(inode, wb);
630 			continue;
631 		}
632 		wrote += writeback_sb_inodes(sb, wb, work);
633 		drop_super(sb);
634 
635 		/* refer to the same tests at the end of writeback_sb_inodes */
636 		if (wrote) {
637 			if (time_is_before_jiffies(start_time + HZ / 10UL))
638 				break;
639 			if (work->nr_pages <= 0)
640 				break;
641 		}
642 	}
643 	/* Leave any unwritten inodes on b_io */
644 	return wrote;
645 }
646 
647 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
648 				enum wb_reason reason)
649 {
650 	struct wb_writeback_work work = {
651 		.nr_pages	= nr_pages,
652 		.sync_mode	= WB_SYNC_NONE,
653 		.range_cyclic	= 1,
654 		.reason		= reason,
655 	};
656 
657 	spin_lock(&wb->list_lock);
658 	if (list_empty(&wb->b_io))
659 		queue_io(wb, &work);
660 	__writeback_inodes_wb(wb, &work);
661 	spin_unlock(&wb->list_lock);
662 
663 	return nr_pages - work.nr_pages;
664 }
665 
666 static bool over_bground_thresh(struct backing_dev_info *bdi)
667 {
668 	unsigned long background_thresh, dirty_thresh;
669 
670 	global_dirty_limits(&background_thresh, &dirty_thresh);
671 
672 	if (global_page_state(NR_FILE_DIRTY) +
673 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
674 		return true;
675 
676 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
677 				bdi_dirty_limit(bdi, background_thresh))
678 		return true;
679 
680 	return false;
681 }
682 
683 /*
684  * Called under wb->list_lock. If there are multiple wb per bdi,
685  * only the flusher working on the first wb should do it.
686  */
687 static void wb_update_bandwidth(struct bdi_writeback *wb,
688 				unsigned long start_time)
689 {
690 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
691 }
692 
693 /*
694  * Explicit flushing or periodic writeback of "old" data.
695  *
696  * Define "old": the first time one of an inode's pages is dirtied, we mark the
697  * dirtying-time in the inode's address_space.  So this periodic writeback code
698  * just walks the superblock inode list, writing back any inodes which are
699  * older than a specific point in time.
700  *
701  * Try to run once per dirty_writeback_interval.  But if a writeback event
702  * takes longer than a dirty_writeback_interval interval, then leave a
703  * one-second gap.
704  *
705  * older_than_this takes precedence over nr_to_write.  So we'll only write back
706  * all dirty pages if they are all attached to "old" mappings.
707  */
708 static long wb_writeback(struct bdi_writeback *wb,
709 			 struct wb_writeback_work *work)
710 {
711 	unsigned long wb_start = jiffies;
712 	long nr_pages = work->nr_pages;
713 	unsigned long oldest_jif;
714 	struct inode *inode;
715 	long progress;
716 
717 	oldest_jif = jiffies;
718 	work->older_than_this = &oldest_jif;
719 
720 	spin_lock(&wb->list_lock);
721 	for (;;) {
722 		/*
723 		 * Stop writeback when nr_pages has been consumed
724 		 */
725 		if (work->nr_pages <= 0)
726 			break;
727 
728 		/*
729 		 * Background writeout and kupdate-style writeback may
730 		 * run forever. Stop them if there is other work to do
731 		 * so that e.g. sync can proceed. They'll be restarted
732 		 * after the other works are all done.
733 		 */
734 		if ((work->for_background || work->for_kupdate) &&
735 		    !list_empty(&wb->bdi->work_list))
736 			break;
737 
738 		/*
739 		 * For background writeout, stop when we are below the
740 		 * background dirty threshold
741 		 */
742 		if (work->for_background && !over_bground_thresh(wb->bdi))
743 			break;
744 
745 		if (work->for_kupdate) {
746 			oldest_jif = jiffies -
747 				msecs_to_jiffies(dirty_expire_interval * 10);
748 			work->older_than_this = &oldest_jif;
749 		}
750 
751 		trace_writeback_start(wb->bdi, work);
752 		if (list_empty(&wb->b_io))
753 			queue_io(wb, work);
754 		if (work->sb)
755 			progress = writeback_sb_inodes(work->sb, wb, work);
756 		else
757 			progress = __writeback_inodes_wb(wb, work);
758 		trace_writeback_written(wb->bdi, work);
759 
760 		wb_update_bandwidth(wb, wb_start);
761 
762 		/*
763 		 * Did we write something? Try for more
764 		 *
765 		 * Dirty inodes are moved to b_io for writeback in batches.
766 		 * The completion of the current batch does not necessarily
767 		 * mean the overall work is done. So we keep looping as long
768 		 * as made some progress on cleaning pages or inodes.
769 		 */
770 		if (progress)
771 			continue;
772 		/*
773 		 * No more inodes for IO, bail
774 		 */
775 		if (list_empty(&wb->b_more_io))
776 			break;
777 		/*
778 		 * Nothing written. Wait for some inode to
779 		 * become available for writeback. Otherwise
780 		 * we'll just busyloop.
781 		 */
782 		if (!list_empty(&wb->b_more_io))  {
783 			trace_writeback_wait(wb->bdi, work);
784 			inode = wb_inode(wb->b_more_io.prev);
785 			spin_lock(&inode->i_lock);
786 			inode_wait_for_writeback(inode, wb);
787 			spin_unlock(&inode->i_lock);
788 		}
789 	}
790 	spin_unlock(&wb->list_lock);
791 
792 	return nr_pages - work->nr_pages;
793 }
794 
795 /*
796  * Return the next wb_writeback_work struct that hasn't been processed yet.
797  */
798 static struct wb_writeback_work *
799 get_next_work_item(struct backing_dev_info *bdi)
800 {
801 	struct wb_writeback_work *work = NULL;
802 
803 	spin_lock_bh(&bdi->wb_lock);
804 	if (!list_empty(&bdi->work_list)) {
805 		work = list_entry(bdi->work_list.next,
806 				  struct wb_writeback_work, list);
807 		list_del_init(&work->list);
808 	}
809 	spin_unlock_bh(&bdi->wb_lock);
810 	return work;
811 }
812 
813 /*
814  * Add in the number of potentially dirty inodes, because each inode
815  * write can dirty pagecache in the underlying blockdev.
816  */
817 static unsigned long get_nr_dirty_pages(void)
818 {
819 	return global_page_state(NR_FILE_DIRTY) +
820 		global_page_state(NR_UNSTABLE_NFS) +
821 		get_nr_dirty_inodes();
822 }
823 
824 static long wb_check_background_flush(struct bdi_writeback *wb)
825 {
826 	if (over_bground_thresh(wb->bdi)) {
827 
828 		struct wb_writeback_work work = {
829 			.nr_pages	= LONG_MAX,
830 			.sync_mode	= WB_SYNC_NONE,
831 			.for_background	= 1,
832 			.range_cyclic	= 1,
833 			.reason		= WB_REASON_BACKGROUND,
834 		};
835 
836 		return wb_writeback(wb, &work);
837 	}
838 
839 	return 0;
840 }
841 
842 static long wb_check_old_data_flush(struct bdi_writeback *wb)
843 {
844 	unsigned long expired;
845 	long nr_pages;
846 
847 	/*
848 	 * When set to zero, disable periodic writeback
849 	 */
850 	if (!dirty_writeback_interval)
851 		return 0;
852 
853 	expired = wb->last_old_flush +
854 			msecs_to_jiffies(dirty_writeback_interval * 10);
855 	if (time_before(jiffies, expired))
856 		return 0;
857 
858 	wb->last_old_flush = jiffies;
859 	nr_pages = get_nr_dirty_pages();
860 
861 	if (nr_pages) {
862 		struct wb_writeback_work work = {
863 			.nr_pages	= nr_pages,
864 			.sync_mode	= WB_SYNC_NONE,
865 			.for_kupdate	= 1,
866 			.range_cyclic	= 1,
867 			.reason		= WB_REASON_PERIODIC,
868 		};
869 
870 		return wb_writeback(wb, &work);
871 	}
872 
873 	return 0;
874 }
875 
876 /*
877  * Retrieve work items and do the writeback they describe
878  */
879 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
880 {
881 	struct backing_dev_info *bdi = wb->bdi;
882 	struct wb_writeback_work *work;
883 	long wrote = 0;
884 
885 	set_bit(BDI_writeback_running, &wb->bdi->state);
886 	while ((work = get_next_work_item(bdi)) != NULL) {
887 		/*
888 		 * Override sync mode, in case we must wait for completion
889 		 * because this thread is exiting now.
890 		 */
891 		if (force_wait)
892 			work->sync_mode = WB_SYNC_ALL;
893 
894 		trace_writeback_exec(bdi, work);
895 
896 		wrote += wb_writeback(wb, work);
897 
898 		/*
899 		 * Notify the caller of completion if this is a synchronous
900 		 * work item, otherwise just free it.
901 		 */
902 		if (work->done)
903 			complete(work->done);
904 		else
905 			kfree(work);
906 	}
907 
908 	/*
909 	 * Check for periodic writeback, kupdated() style
910 	 */
911 	wrote += wb_check_old_data_flush(wb);
912 	wrote += wb_check_background_flush(wb);
913 	clear_bit(BDI_writeback_running, &wb->bdi->state);
914 
915 	return wrote;
916 }
917 
918 /*
919  * Handle writeback of dirty data for the device backed by this bdi. Also
920  * wakes up periodically and does kupdated style flushing.
921  */
922 int bdi_writeback_thread(void *data)
923 {
924 	struct bdi_writeback *wb = data;
925 	struct backing_dev_info *bdi = wb->bdi;
926 	long pages_written;
927 
928 	current->flags |= PF_SWAPWRITE;
929 	set_freezable();
930 	wb->last_active = jiffies;
931 
932 	/*
933 	 * Our parent may run at a different priority, just set us to normal
934 	 */
935 	set_user_nice(current, 0);
936 
937 	trace_writeback_thread_start(bdi);
938 
939 	while (!kthread_freezable_should_stop(NULL)) {
940 		/*
941 		 * Remove own delayed wake-up timer, since we are already awake
942 		 * and we'll take care of the preriodic write-back.
943 		 */
944 		del_timer(&wb->wakeup_timer);
945 
946 		pages_written = wb_do_writeback(wb, 0);
947 
948 		trace_writeback_pages_written(pages_written);
949 
950 		if (pages_written)
951 			wb->last_active = jiffies;
952 
953 		set_current_state(TASK_INTERRUPTIBLE);
954 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
955 			__set_current_state(TASK_RUNNING);
956 			continue;
957 		}
958 
959 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
960 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
961 		else {
962 			/*
963 			 * We have nothing to do, so can go sleep without any
964 			 * timeout and save power. When a work is queued or
965 			 * something is made dirty - we will be woken up.
966 			 */
967 			schedule();
968 		}
969 	}
970 
971 	/* Flush any work that raced with us exiting */
972 	if (!list_empty(&bdi->work_list))
973 		wb_do_writeback(wb, 1);
974 
975 	trace_writeback_thread_stop(bdi);
976 	return 0;
977 }
978 
979 
980 /*
981  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
982  * the whole world.
983  */
984 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
985 {
986 	struct backing_dev_info *bdi;
987 
988 	if (!nr_pages) {
989 		nr_pages = global_page_state(NR_FILE_DIRTY) +
990 				global_page_state(NR_UNSTABLE_NFS);
991 	}
992 
993 	rcu_read_lock();
994 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
995 		if (!bdi_has_dirty_io(bdi))
996 			continue;
997 		__bdi_start_writeback(bdi, nr_pages, false, reason);
998 	}
999 	rcu_read_unlock();
1000 }
1001 
1002 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1003 {
1004 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1005 		struct dentry *dentry;
1006 		const char *name = "?";
1007 
1008 		dentry = d_find_alias(inode);
1009 		if (dentry) {
1010 			spin_lock(&dentry->d_lock);
1011 			name = (const char *) dentry->d_name.name;
1012 		}
1013 		printk(KERN_DEBUG
1014 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1015 		       current->comm, task_pid_nr(current), inode->i_ino,
1016 		       name, inode->i_sb->s_id);
1017 		if (dentry) {
1018 			spin_unlock(&dentry->d_lock);
1019 			dput(dentry);
1020 		}
1021 	}
1022 }
1023 
1024 /**
1025  *	__mark_inode_dirty -	internal function
1026  *	@inode: inode to mark
1027  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1028  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1029  *  	mark_inode_dirty_sync.
1030  *
1031  * Put the inode on the super block's dirty list.
1032  *
1033  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1034  * dirty list only if it is hashed or if it refers to a blockdev.
1035  * If it was not hashed, it will never be added to the dirty list
1036  * even if it is later hashed, as it will have been marked dirty already.
1037  *
1038  * In short, make sure you hash any inodes _before_ you start marking
1039  * them dirty.
1040  *
1041  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1042  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1043  * the kernel-internal blockdev inode represents the dirtying time of the
1044  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1045  * page->mapping->host, so the page-dirtying time is recorded in the internal
1046  * blockdev inode.
1047  */
1048 void __mark_inode_dirty(struct inode *inode, int flags)
1049 {
1050 	struct super_block *sb = inode->i_sb;
1051 	struct backing_dev_info *bdi = NULL;
1052 
1053 	/*
1054 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1055 	 * dirty the inode itself
1056 	 */
1057 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1058 		if (sb->s_op->dirty_inode)
1059 			sb->s_op->dirty_inode(inode, flags);
1060 	}
1061 
1062 	/*
1063 	 * make sure that changes are seen by all cpus before we test i_state
1064 	 * -- mikulas
1065 	 */
1066 	smp_mb();
1067 
1068 	/* avoid the locking if we can */
1069 	if ((inode->i_state & flags) == flags)
1070 		return;
1071 
1072 	if (unlikely(block_dump))
1073 		block_dump___mark_inode_dirty(inode);
1074 
1075 	spin_lock(&inode->i_lock);
1076 	if ((inode->i_state & flags) != flags) {
1077 		const int was_dirty = inode->i_state & I_DIRTY;
1078 
1079 		inode->i_state |= flags;
1080 
1081 		/*
1082 		 * If the inode is being synced, just update its dirty state.
1083 		 * The unlocker will place the inode on the appropriate
1084 		 * superblock list, based upon its state.
1085 		 */
1086 		if (inode->i_state & I_SYNC)
1087 			goto out_unlock_inode;
1088 
1089 		/*
1090 		 * Only add valid (hashed) inodes to the superblock's
1091 		 * dirty list.  Add blockdev inodes as well.
1092 		 */
1093 		if (!S_ISBLK(inode->i_mode)) {
1094 			if (inode_unhashed(inode))
1095 				goto out_unlock_inode;
1096 		}
1097 		if (inode->i_state & I_FREEING)
1098 			goto out_unlock_inode;
1099 
1100 		/*
1101 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1102 		 * reposition it (that would break b_dirty time-ordering).
1103 		 */
1104 		if (!was_dirty) {
1105 			bool wakeup_bdi = false;
1106 			bdi = inode_to_bdi(inode);
1107 
1108 			if (bdi_cap_writeback_dirty(bdi)) {
1109 				WARN(!test_bit(BDI_registered, &bdi->state),
1110 				     "bdi-%s not registered\n", bdi->name);
1111 
1112 				/*
1113 				 * If this is the first dirty inode for this
1114 				 * bdi, we have to wake-up the corresponding
1115 				 * bdi thread to make sure background
1116 				 * write-back happens later.
1117 				 */
1118 				if (!wb_has_dirty_io(&bdi->wb))
1119 					wakeup_bdi = true;
1120 			}
1121 
1122 			spin_unlock(&inode->i_lock);
1123 			spin_lock(&bdi->wb.list_lock);
1124 			inode->dirtied_when = jiffies;
1125 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1126 			spin_unlock(&bdi->wb.list_lock);
1127 
1128 			if (wakeup_bdi)
1129 				bdi_wakeup_thread_delayed(bdi);
1130 			return;
1131 		}
1132 	}
1133 out_unlock_inode:
1134 	spin_unlock(&inode->i_lock);
1135 
1136 }
1137 EXPORT_SYMBOL(__mark_inode_dirty);
1138 
1139 /*
1140  * Write out a superblock's list of dirty inodes.  A wait will be performed
1141  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1142  *
1143  * If older_than_this is non-NULL, then only write out inodes which
1144  * had their first dirtying at a time earlier than *older_than_this.
1145  *
1146  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1147  * This function assumes that the blockdev superblock's inodes are backed by
1148  * a variety of queues, so all inodes are searched.  For other superblocks,
1149  * assume that all inodes are backed by the same queue.
1150  *
1151  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1152  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1153  * on the writer throttling path, and we get decent balancing between many
1154  * throttled threads: we don't want them all piling up on inode_sync_wait.
1155  */
1156 static void wait_sb_inodes(struct super_block *sb)
1157 {
1158 	struct inode *inode, *old_inode = NULL;
1159 
1160 	/*
1161 	 * We need to be protected against the filesystem going from
1162 	 * r/o to r/w or vice versa.
1163 	 */
1164 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1165 
1166 	spin_lock(&inode_sb_list_lock);
1167 
1168 	/*
1169 	 * Data integrity sync. Must wait for all pages under writeback,
1170 	 * because there may have been pages dirtied before our sync
1171 	 * call, but which had writeout started before we write it out.
1172 	 * In which case, the inode may not be on the dirty list, but
1173 	 * we still have to wait for that writeout.
1174 	 */
1175 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1176 		struct address_space *mapping = inode->i_mapping;
1177 
1178 		spin_lock(&inode->i_lock);
1179 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1180 		    (mapping->nrpages == 0)) {
1181 			spin_unlock(&inode->i_lock);
1182 			continue;
1183 		}
1184 		__iget(inode);
1185 		spin_unlock(&inode->i_lock);
1186 		spin_unlock(&inode_sb_list_lock);
1187 
1188 		/*
1189 		 * We hold a reference to 'inode' so it couldn't have been
1190 		 * removed from s_inodes list while we dropped the
1191 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1192 		 * be holding the last reference and we cannot iput it under
1193 		 * inode_sb_list_lock. So we keep the reference and iput it
1194 		 * later.
1195 		 */
1196 		iput(old_inode);
1197 		old_inode = inode;
1198 
1199 		filemap_fdatawait(mapping);
1200 
1201 		cond_resched();
1202 
1203 		spin_lock(&inode_sb_list_lock);
1204 	}
1205 	spin_unlock(&inode_sb_list_lock);
1206 	iput(old_inode);
1207 }
1208 
1209 /**
1210  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1211  * @sb: the superblock
1212  * @nr: the number of pages to write
1213  * @reason: reason why some writeback work initiated
1214  *
1215  * Start writeback on some inodes on this super_block. No guarantees are made
1216  * on how many (if any) will be written, and this function does not wait
1217  * for IO completion of submitted IO.
1218  */
1219 void writeback_inodes_sb_nr(struct super_block *sb,
1220 			    unsigned long nr,
1221 			    enum wb_reason reason)
1222 {
1223 	DECLARE_COMPLETION_ONSTACK(done);
1224 	struct wb_writeback_work work = {
1225 		.sb			= sb,
1226 		.sync_mode		= WB_SYNC_NONE,
1227 		.tagged_writepages	= 1,
1228 		.done			= &done,
1229 		.nr_pages		= nr,
1230 		.reason			= reason,
1231 	};
1232 
1233 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1234 	bdi_queue_work(sb->s_bdi, &work);
1235 	wait_for_completion(&done);
1236 }
1237 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1238 
1239 /**
1240  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1241  * @sb: the superblock
1242  * @reason: reason why some writeback work was initiated
1243  *
1244  * Start writeback on some inodes on this super_block. No guarantees are made
1245  * on how many (if any) will be written, and this function does not wait
1246  * for IO completion of submitted IO.
1247  */
1248 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1249 {
1250 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1251 }
1252 EXPORT_SYMBOL(writeback_inodes_sb);
1253 
1254 /**
1255  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1256  * @sb: the superblock
1257  * @reason: reason why some writeback work was initiated
1258  *
1259  * Invoke writeback_inodes_sb if no writeback is currently underway.
1260  * Returns 1 if writeback was started, 0 if not.
1261  */
1262 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1263 {
1264 	if (!writeback_in_progress(sb->s_bdi)) {
1265 		down_read(&sb->s_umount);
1266 		writeback_inodes_sb(sb, reason);
1267 		up_read(&sb->s_umount);
1268 		return 1;
1269 	} else
1270 		return 0;
1271 }
1272 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1273 
1274 /**
1275  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1276  * @sb: the superblock
1277  * @nr: the number of pages to write
1278  * @reason: reason why some writeback work was initiated
1279  *
1280  * Invoke writeback_inodes_sb if no writeback is currently underway.
1281  * Returns 1 if writeback was started, 0 if not.
1282  */
1283 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1284 				   unsigned long nr,
1285 				   enum wb_reason reason)
1286 {
1287 	if (!writeback_in_progress(sb->s_bdi)) {
1288 		down_read(&sb->s_umount);
1289 		writeback_inodes_sb_nr(sb, nr, reason);
1290 		up_read(&sb->s_umount);
1291 		return 1;
1292 	} else
1293 		return 0;
1294 }
1295 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1296 
1297 /**
1298  * sync_inodes_sb	-	sync sb inode pages
1299  * @sb: the superblock
1300  *
1301  * This function writes and waits on any dirty inode belonging to this
1302  * super_block.
1303  */
1304 void sync_inodes_sb(struct super_block *sb)
1305 {
1306 	DECLARE_COMPLETION_ONSTACK(done);
1307 	struct wb_writeback_work work = {
1308 		.sb		= sb,
1309 		.sync_mode	= WB_SYNC_ALL,
1310 		.nr_pages	= LONG_MAX,
1311 		.range_cyclic	= 0,
1312 		.done		= &done,
1313 		.reason		= WB_REASON_SYNC,
1314 	};
1315 
1316 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1317 
1318 	bdi_queue_work(sb->s_bdi, &work);
1319 	wait_for_completion(&done);
1320 
1321 	wait_sb_inodes(sb);
1322 }
1323 EXPORT_SYMBOL(sync_inodes_sb);
1324 
1325 /**
1326  * write_inode_now	-	write an inode to disk
1327  * @inode: inode to write to disk
1328  * @sync: whether the write should be synchronous or not
1329  *
1330  * This function commits an inode to disk immediately if it is dirty. This is
1331  * primarily needed by knfsd.
1332  *
1333  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1334  */
1335 int write_inode_now(struct inode *inode, int sync)
1336 {
1337 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1338 	int ret;
1339 	struct writeback_control wbc = {
1340 		.nr_to_write = LONG_MAX,
1341 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1342 		.range_start = 0,
1343 		.range_end = LLONG_MAX,
1344 	};
1345 
1346 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1347 		wbc.nr_to_write = 0;
1348 
1349 	might_sleep();
1350 	spin_lock(&wb->list_lock);
1351 	spin_lock(&inode->i_lock);
1352 	ret = writeback_single_inode(inode, wb, &wbc);
1353 	spin_unlock(&inode->i_lock);
1354 	spin_unlock(&wb->list_lock);
1355 	if (sync)
1356 		inode_sync_wait(inode);
1357 	return ret;
1358 }
1359 EXPORT_SYMBOL(write_inode_now);
1360 
1361 /**
1362  * sync_inode - write an inode and its pages to disk.
1363  * @inode: the inode to sync
1364  * @wbc: controls the writeback mode
1365  *
1366  * sync_inode() will write an inode and its pages to disk.  It will also
1367  * correctly update the inode on its superblock's dirty inode lists and will
1368  * update inode->i_state.
1369  *
1370  * The caller must have a ref on the inode.
1371  */
1372 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1373 {
1374 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1375 	int ret;
1376 
1377 	spin_lock(&wb->list_lock);
1378 	spin_lock(&inode->i_lock);
1379 	ret = writeback_single_inode(inode, wb, wbc);
1380 	spin_unlock(&inode->i_lock);
1381 	spin_unlock(&wb->list_lock);
1382 	return ret;
1383 }
1384 EXPORT_SYMBOL(sync_inode);
1385 
1386 /**
1387  * sync_inode_metadata - write an inode to disk
1388  * @inode: the inode to sync
1389  * @wait: wait for I/O to complete.
1390  *
1391  * Write an inode to disk and adjust its dirty state after completion.
1392  *
1393  * Note: only writes the actual inode, no associated data or other metadata.
1394  */
1395 int sync_inode_metadata(struct inode *inode, int wait)
1396 {
1397 	struct writeback_control wbc = {
1398 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1399 		.nr_to_write = 0, /* metadata-only */
1400 	};
1401 
1402 	return sync_inode(inode, &wbc);
1403 }
1404 EXPORT_SYMBOL(sync_inode_metadata);
1405