xref: /linux/fs/fs-writeback.c (revision 987b741c52c7c6c68d46fbaeb95b8d1087f10b7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 
124 	list_move(&inode->i_io_list, head);
125 
126 	/* dirty_time doesn't count as dirty_io until expiration */
127 	if (head != &wb->b_dirty_time)
128 		return wb_io_lists_populated(wb);
129 
130 	wb_io_lists_depopulated(wb);
131 	return false;
132 }
133 
134 /**
135  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
136  * @inode: inode to be removed
137  * @wb: bdi_writeback @inode is being removed from
138  *
139  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
140  * clear %WB_has_dirty_io if all are empty afterwards.
141  */
142 static void inode_io_list_del_locked(struct inode *inode,
143 				     struct bdi_writeback *wb)
144 {
145 	assert_spin_locked(&wb->list_lock);
146 	assert_spin_locked(&inode->i_lock);
147 
148 	inode->i_state &= ~I_SYNC_QUEUED;
149 	list_del_init(&inode->i_io_list);
150 	wb_io_lists_depopulated(wb);
151 }
152 
153 static void wb_wakeup(struct bdi_writeback *wb)
154 {
155 	spin_lock_bh(&wb->work_lock);
156 	if (test_bit(WB_registered, &wb->state))
157 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
158 	spin_unlock_bh(&wb->work_lock);
159 }
160 
161 static void finish_writeback_work(struct bdi_writeback *wb,
162 				  struct wb_writeback_work *work)
163 {
164 	struct wb_completion *done = work->done;
165 
166 	if (work->auto_free)
167 		kfree(work);
168 	if (done) {
169 		wait_queue_head_t *waitq = done->waitq;
170 
171 		/* @done can't be accessed after the following dec */
172 		if (atomic_dec_and_test(&done->cnt))
173 			wake_up_all(waitq);
174 	}
175 }
176 
177 static void wb_queue_work(struct bdi_writeback *wb,
178 			  struct wb_writeback_work *work)
179 {
180 	trace_writeback_queue(wb, work);
181 
182 	if (work->done)
183 		atomic_inc(&work->done->cnt);
184 
185 	spin_lock_bh(&wb->work_lock);
186 
187 	if (test_bit(WB_registered, &wb->state)) {
188 		list_add_tail(&work->list, &wb->work_list);
189 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
190 	} else
191 		finish_writeback_work(wb, work);
192 
193 	spin_unlock_bh(&wb->work_lock);
194 }
195 
196 /**
197  * wb_wait_for_completion - wait for completion of bdi_writeback_works
198  * @done: target wb_completion
199  *
200  * Wait for one or more work items issued to @bdi with their ->done field
201  * set to @done, which should have been initialized with
202  * DEFINE_WB_COMPLETION().  This function returns after all such work items
203  * are completed.  Work items which are waited upon aren't freed
204  * automatically on completion.
205  */
206 void wb_wait_for_completion(struct wb_completion *done)
207 {
208 	atomic_dec(&done->cnt);		/* put down the initial count */
209 	wait_event(*done->waitq, !atomic_read(&done->cnt));
210 }
211 
212 #ifdef CONFIG_CGROUP_WRITEBACK
213 
214 /*
215  * Parameters for foreign inode detection, see wbc_detach_inode() to see
216  * how they're used.
217  *
218  * These paramters are inherently heuristical as the detection target
219  * itself is fuzzy.  All we want to do is detaching an inode from the
220  * current owner if it's being written to by some other cgroups too much.
221  *
222  * The current cgroup writeback is built on the assumption that multiple
223  * cgroups writing to the same inode concurrently is very rare and a mode
224  * of operation which isn't well supported.  As such, the goal is not
225  * taking too long when a different cgroup takes over an inode while
226  * avoiding too aggressive flip-flops from occasional foreign writes.
227  *
228  * We record, very roughly, 2s worth of IO time history and if more than
229  * half of that is foreign, trigger the switch.  The recording is quantized
230  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
231  * writes smaller than 1/8 of avg size are ignored.
232  */
233 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
234 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
235 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
236 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
237 
238 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
239 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
240 					/* each slot's duration is 2s / 16 */
241 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
242 					/* if foreign slots >= 8, switch */
243 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
244 					/* one round can affect upto 5 slots */
245 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
246 
247 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
248 static struct workqueue_struct *isw_wq;
249 
250 void __inode_attach_wb(struct inode *inode, struct page *page)
251 {
252 	struct backing_dev_info *bdi = inode_to_bdi(inode);
253 	struct bdi_writeback *wb = NULL;
254 
255 	if (inode_cgwb_enabled(inode)) {
256 		struct cgroup_subsys_state *memcg_css;
257 
258 		if (page) {
259 			memcg_css = mem_cgroup_css_from_page(page);
260 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
261 		} else {
262 			/* must pin memcg_css, see wb_get_create() */
263 			memcg_css = task_get_css(current, memory_cgrp_id);
264 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
265 			css_put(memcg_css);
266 		}
267 	}
268 
269 	if (!wb)
270 		wb = &bdi->wb;
271 
272 	/*
273 	 * There may be multiple instances of this function racing to
274 	 * update the same inode.  Use cmpxchg() to tell the winner.
275 	 */
276 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
277 		wb_put(wb);
278 }
279 EXPORT_SYMBOL_GPL(__inode_attach_wb);
280 
281 /**
282  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
283  * @inode: inode of interest with i_lock held
284  *
285  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
286  * held on entry and is released on return.  The returned wb is guaranteed
287  * to stay @inode's associated wb until its list_lock is released.
288  */
289 static struct bdi_writeback *
290 locked_inode_to_wb_and_lock_list(struct inode *inode)
291 	__releases(&inode->i_lock)
292 	__acquires(&wb->list_lock)
293 {
294 	while (true) {
295 		struct bdi_writeback *wb = inode_to_wb(inode);
296 
297 		/*
298 		 * inode_to_wb() association is protected by both
299 		 * @inode->i_lock and @wb->list_lock but list_lock nests
300 		 * outside i_lock.  Drop i_lock and verify that the
301 		 * association hasn't changed after acquiring list_lock.
302 		 */
303 		wb_get(wb);
304 		spin_unlock(&inode->i_lock);
305 		spin_lock(&wb->list_lock);
306 
307 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
308 		if (likely(wb == inode->i_wb)) {
309 			wb_put(wb);	/* @inode already has ref */
310 			return wb;
311 		}
312 
313 		spin_unlock(&wb->list_lock);
314 		wb_put(wb);
315 		cpu_relax();
316 		spin_lock(&inode->i_lock);
317 	}
318 }
319 
320 /**
321  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
322  * @inode: inode of interest
323  *
324  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
325  * on entry.
326  */
327 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
328 	__acquires(&wb->list_lock)
329 {
330 	spin_lock(&inode->i_lock);
331 	return locked_inode_to_wb_and_lock_list(inode);
332 }
333 
334 struct inode_switch_wbs_context {
335 	struct inode		*inode;
336 	struct bdi_writeback	*new_wb;
337 
338 	struct rcu_head		rcu_head;
339 	struct work_struct	work;
340 };
341 
342 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
343 {
344 	down_write(&bdi->wb_switch_rwsem);
345 }
346 
347 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
348 {
349 	up_write(&bdi->wb_switch_rwsem);
350 }
351 
352 static void inode_switch_wbs_work_fn(struct work_struct *work)
353 {
354 	struct inode_switch_wbs_context *isw =
355 		container_of(work, struct inode_switch_wbs_context, work);
356 	struct inode *inode = isw->inode;
357 	struct backing_dev_info *bdi = inode_to_bdi(inode);
358 	struct address_space *mapping = inode->i_mapping;
359 	struct bdi_writeback *old_wb = inode->i_wb;
360 	struct bdi_writeback *new_wb = isw->new_wb;
361 	XA_STATE(xas, &mapping->i_pages, 0);
362 	struct page *page;
363 	bool switched = false;
364 
365 	/*
366 	 * If @inode switches cgwb membership while sync_inodes_sb() is
367 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
368 	 */
369 	down_read(&bdi->wb_switch_rwsem);
370 
371 	/*
372 	 * By the time control reaches here, RCU grace period has passed
373 	 * since I_WB_SWITCH assertion and all wb stat update transactions
374 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
375 	 * synchronizing against the i_pages lock.
376 	 *
377 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
378 	 * gives us exclusion against all wb related operations on @inode
379 	 * including IO list manipulations and stat updates.
380 	 */
381 	if (old_wb < new_wb) {
382 		spin_lock(&old_wb->list_lock);
383 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
384 	} else {
385 		spin_lock(&new_wb->list_lock);
386 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
387 	}
388 	spin_lock(&inode->i_lock);
389 	xa_lock_irq(&mapping->i_pages);
390 
391 	/*
392 	 * Once I_FREEING is visible under i_lock, the eviction path owns
393 	 * the inode and we shouldn't modify ->i_io_list.
394 	 */
395 	if (unlikely(inode->i_state & I_FREEING))
396 		goto skip_switch;
397 
398 	trace_inode_switch_wbs(inode, old_wb, new_wb);
399 
400 	/*
401 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
402 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
403 	 * pages actually under writeback.
404 	 */
405 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
406 		if (PageDirty(page)) {
407 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
408 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
409 		}
410 	}
411 
412 	xas_set(&xas, 0);
413 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
414 		WARN_ON_ONCE(!PageWriteback(page));
415 		dec_wb_stat(old_wb, WB_WRITEBACK);
416 		inc_wb_stat(new_wb, WB_WRITEBACK);
417 	}
418 
419 	wb_get(new_wb);
420 
421 	/*
422 	 * Transfer to @new_wb's IO list if necessary.  The specific list
423 	 * @inode was on is ignored and the inode is put on ->b_dirty which
424 	 * is always correct including from ->b_dirty_time.  The transfer
425 	 * preserves @inode->dirtied_when ordering.
426 	 */
427 	if (!list_empty(&inode->i_io_list)) {
428 		struct inode *pos;
429 
430 		inode_io_list_del_locked(inode, old_wb);
431 		inode->i_wb = new_wb;
432 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
433 			if (time_after_eq(inode->dirtied_when,
434 					  pos->dirtied_when))
435 				break;
436 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
437 	} else {
438 		inode->i_wb = new_wb;
439 	}
440 
441 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
442 	inode->i_wb_frn_winner = 0;
443 	inode->i_wb_frn_avg_time = 0;
444 	inode->i_wb_frn_history = 0;
445 	switched = true;
446 skip_switch:
447 	/*
448 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
449 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
450 	 */
451 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
452 
453 	xa_unlock_irq(&mapping->i_pages);
454 	spin_unlock(&inode->i_lock);
455 	spin_unlock(&new_wb->list_lock);
456 	spin_unlock(&old_wb->list_lock);
457 
458 	up_read(&bdi->wb_switch_rwsem);
459 
460 	if (switched) {
461 		wb_wakeup(new_wb);
462 		wb_put(old_wb);
463 	}
464 	wb_put(new_wb);
465 
466 	iput(inode);
467 	kfree(isw);
468 
469 	atomic_dec(&isw_nr_in_flight);
470 }
471 
472 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
473 {
474 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
475 				struct inode_switch_wbs_context, rcu_head);
476 
477 	/* needs to grab bh-unsafe locks, bounce to work item */
478 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
479 	queue_work(isw_wq, &isw->work);
480 }
481 
482 /**
483  * inode_switch_wbs - change the wb association of an inode
484  * @inode: target inode
485  * @new_wb_id: ID of the new wb
486  *
487  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
488  * switching is performed asynchronously and may fail silently.
489  */
490 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
491 {
492 	struct backing_dev_info *bdi = inode_to_bdi(inode);
493 	struct cgroup_subsys_state *memcg_css;
494 	struct inode_switch_wbs_context *isw;
495 
496 	/* noop if seems to be already in progress */
497 	if (inode->i_state & I_WB_SWITCH)
498 		return;
499 
500 	/* avoid queueing a new switch if too many are already in flight */
501 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
502 		return;
503 
504 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
505 	if (!isw)
506 		return;
507 
508 	/* find and pin the new wb */
509 	rcu_read_lock();
510 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
511 	if (memcg_css)
512 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
513 	rcu_read_unlock();
514 	if (!isw->new_wb)
515 		goto out_free;
516 
517 	/* while holding I_WB_SWITCH, no one else can update the association */
518 	spin_lock(&inode->i_lock);
519 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
520 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
521 	    inode_to_wb(inode) == isw->new_wb) {
522 		spin_unlock(&inode->i_lock);
523 		goto out_free;
524 	}
525 	inode->i_state |= I_WB_SWITCH;
526 	__iget(inode);
527 	spin_unlock(&inode->i_lock);
528 
529 	isw->inode = inode;
530 
531 	/*
532 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
533 	 * the RCU protected stat update paths to grab the i_page
534 	 * lock so that stat transfer can synchronize against them.
535 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
536 	 */
537 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
538 
539 	atomic_inc(&isw_nr_in_flight);
540 	return;
541 
542 out_free:
543 	if (isw->new_wb)
544 		wb_put(isw->new_wb);
545 	kfree(isw);
546 }
547 
548 /**
549  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
550  * @wbc: writeback_control of interest
551  * @inode: target inode
552  *
553  * @inode is locked and about to be written back under the control of @wbc.
554  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
555  * writeback completion, wbc_detach_inode() should be called.  This is used
556  * to track the cgroup writeback context.
557  */
558 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
559 				 struct inode *inode)
560 {
561 	if (!inode_cgwb_enabled(inode)) {
562 		spin_unlock(&inode->i_lock);
563 		return;
564 	}
565 
566 	wbc->wb = inode_to_wb(inode);
567 	wbc->inode = inode;
568 
569 	wbc->wb_id = wbc->wb->memcg_css->id;
570 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
571 	wbc->wb_tcand_id = 0;
572 	wbc->wb_bytes = 0;
573 	wbc->wb_lcand_bytes = 0;
574 	wbc->wb_tcand_bytes = 0;
575 
576 	wb_get(wbc->wb);
577 	spin_unlock(&inode->i_lock);
578 
579 	/*
580 	 * A dying wb indicates that either the blkcg associated with the
581 	 * memcg changed or the associated memcg is dying.  In the first
582 	 * case, a replacement wb should already be available and we should
583 	 * refresh the wb immediately.  In the second case, trying to
584 	 * refresh will keep failing.
585 	 */
586 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
587 		inode_switch_wbs(inode, wbc->wb_id);
588 }
589 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
590 
591 /**
592  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
593  * @wbc: writeback_control of the just finished writeback
594  *
595  * To be called after a writeback attempt of an inode finishes and undoes
596  * wbc_attach_and_unlock_inode().  Can be called under any context.
597  *
598  * As concurrent write sharing of an inode is expected to be very rare and
599  * memcg only tracks page ownership on first-use basis severely confining
600  * the usefulness of such sharing, cgroup writeback tracks ownership
601  * per-inode.  While the support for concurrent write sharing of an inode
602  * is deemed unnecessary, an inode being written to by different cgroups at
603  * different points in time is a lot more common, and, more importantly,
604  * charging only by first-use can too readily lead to grossly incorrect
605  * behaviors (single foreign page can lead to gigabytes of writeback to be
606  * incorrectly attributed).
607  *
608  * To resolve this issue, cgroup writeback detects the majority dirtier of
609  * an inode and transfers the ownership to it.  To avoid unnnecessary
610  * oscillation, the detection mechanism keeps track of history and gives
611  * out the switch verdict only if the foreign usage pattern is stable over
612  * a certain amount of time and/or writeback attempts.
613  *
614  * On each writeback attempt, @wbc tries to detect the majority writer
615  * using Boyer-Moore majority vote algorithm.  In addition to the byte
616  * count from the majority voting, it also counts the bytes written for the
617  * current wb and the last round's winner wb (max of last round's current
618  * wb, the winner from two rounds ago, and the last round's majority
619  * candidate).  Keeping track of the historical winner helps the algorithm
620  * to semi-reliably detect the most active writer even when it's not the
621  * absolute majority.
622  *
623  * Once the winner of the round is determined, whether the winner is
624  * foreign or not and how much IO time the round consumed is recorded in
625  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
626  * over a certain threshold, the switch verdict is given.
627  */
628 void wbc_detach_inode(struct writeback_control *wbc)
629 {
630 	struct bdi_writeback *wb = wbc->wb;
631 	struct inode *inode = wbc->inode;
632 	unsigned long avg_time, max_bytes, max_time;
633 	u16 history;
634 	int max_id;
635 
636 	if (!wb)
637 		return;
638 
639 	history = inode->i_wb_frn_history;
640 	avg_time = inode->i_wb_frn_avg_time;
641 
642 	/* pick the winner of this round */
643 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
644 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
645 		max_id = wbc->wb_id;
646 		max_bytes = wbc->wb_bytes;
647 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
648 		max_id = wbc->wb_lcand_id;
649 		max_bytes = wbc->wb_lcand_bytes;
650 	} else {
651 		max_id = wbc->wb_tcand_id;
652 		max_bytes = wbc->wb_tcand_bytes;
653 	}
654 
655 	/*
656 	 * Calculate the amount of IO time the winner consumed and fold it
657 	 * into the running average kept per inode.  If the consumed IO
658 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
659 	 * deciding whether to switch or not.  This is to prevent one-off
660 	 * small dirtiers from skewing the verdict.
661 	 */
662 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
663 				wb->avg_write_bandwidth);
664 	if (avg_time)
665 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
666 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
667 	else
668 		avg_time = max_time;	/* immediate catch up on first run */
669 
670 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
671 		int slots;
672 
673 		/*
674 		 * The switch verdict is reached if foreign wb's consume
675 		 * more than a certain proportion of IO time in a
676 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
677 		 * history mask where each bit represents one sixteenth of
678 		 * the period.  Determine the number of slots to shift into
679 		 * history from @max_time.
680 		 */
681 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
682 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
683 		history <<= slots;
684 		if (wbc->wb_id != max_id)
685 			history |= (1U << slots) - 1;
686 
687 		if (history)
688 			trace_inode_foreign_history(inode, wbc, history);
689 
690 		/*
691 		 * Switch if the current wb isn't the consistent winner.
692 		 * If there are multiple closely competing dirtiers, the
693 		 * inode may switch across them repeatedly over time, which
694 		 * is okay.  The main goal is avoiding keeping an inode on
695 		 * the wrong wb for an extended period of time.
696 		 */
697 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
698 			inode_switch_wbs(inode, max_id);
699 	}
700 
701 	/*
702 	 * Multiple instances of this function may race to update the
703 	 * following fields but we don't mind occassional inaccuracies.
704 	 */
705 	inode->i_wb_frn_winner = max_id;
706 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
707 	inode->i_wb_frn_history = history;
708 
709 	wb_put(wbc->wb);
710 	wbc->wb = NULL;
711 }
712 EXPORT_SYMBOL_GPL(wbc_detach_inode);
713 
714 /**
715  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
716  * @wbc: writeback_control of the writeback in progress
717  * @page: page being written out
718  * @bytes: number of bytes being written out
719  *
720  * @bytes from @page are about to written out during the writeback
721  * controlled by @wbc.  Keep the book for foreign inode detection.  See
722  * wbc_detach_inode().
723  */
724 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
725 			      size_t bytes)
726 {
727 	struct cgroup_subsys_state *css;
728 	int id;
729 
730 	/*
731 	 * pageout() path doesn't attach @wbc to the inode being written
732 	 * out.  This is intentional as we don't want the function to block
733 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
734 	 * regular writeback instead of writing things out itself.
735 	 */
736 	if (!wbc->wb || wbc->no_cgroup_owner)
737 		return;
738 
739 	css = mem_cgroup_css_from_page(page);
740 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
741 	if (!(css->flags & CSS_ONLINE))
742 		return;
743 
744 	id = css->id;
745 
746 	if (id == wbc->wb_id) {
747 		wbc->wb_bytes += bytes;
748 		return;
749 	}
750 
751 	if (id == wbc->wb_lcand_id)
752 		wbc->wb_lcand_bytes += bytes;
753 
754 	/* Boyer-Moore majority vote algorithm */
755 	if (!wbc->wb_tcand_bytes)
756 		wbc->wb_tcand_id = id;
757 	if (id == wbc->wb_tcand_id)
758 		wbc->wb_tcand_bytes += bytes;
759 	else
760 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
761 }
762 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
763 
764 /**
765  * inode_congested - test whether an inode is congested
766  * @inode: inode to test for congestion (may be NULL)
767  * @cong_bits: mask of WB_[a]sync_congested bits to test
768  *
769  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
770  * bits to test and the return value is the mask of set bits.
771  *
772  * If cgroup writeback is enabled for @inode, the congestion state is
773  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
774  * associated with @inode is congested; otherwise, the root wb's congestion
775  * state is used.
776  *
777  * @inode is allowed to be NULL as this function is often called on
778  * mapping->host which is NULL for the swapper space.
779  */
780 int inode_congested(struct inode *inode, int cong_bits)
781 {
782 	/*
783 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
784 	 * Start transaction iff ->i_wb is visible.
785 	 */
786 	if (inode && inode_to_wb_is_valid(inode)) {
787 		struct bdi_writeback *wb;
788 		struct wb_lock_cookie lock_cookie = {};
789 		bool congested;
790 
791 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
792 		congested = wb_congested(wb, cong_bits);
793 		unlocked_inode_to_wb_end(inode, &lock_cookie);
794 		return congested;
795 	}
796 
797 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
798 }
799 EXPORT_SYMBOL_GPL(inode_congested);
800 
801 /**
802  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
803  * @wb: target bdi_writeback to split @nr_pages to
804  * @nr_pages: number of pages to write for the whole bdi
805  *
806  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
807  * relation to the total write bandwidth of all wb's w/ dirty inodes on
808  * @wb->bdi.
809  */
810 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
811 {
812 	unsigned long this_bw = wb->avg_write_bandwidth;
813 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
814 
815 	if (nr_pages == LONG_MAX)
816 		return LONG_MAX;
817 
818 	/*
819 	 * This may be called on clean wb's and proportional distribution
820 	 * may not make sense, just use the original @nr_pages in those
821 	 * cases.  In general, we wanna err on the side of writing more.
822 	 */
823 	if (!tot_bw || this_bw >= tot_bw)
824 		return nr_pages;
825 	else
826 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
827 }
828 
829 /**
830  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
831  * @bdi: target backing_dev_info
832  * @base_work: wb_writeback_work to issue
833  * @skip_if_busy: skip wb's which already have writeback in progress
834  *
835  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
836  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
837  * distributed to the busy wbs according to each wb's proportion in the
838  * total active write bandwidth of @bdi.
839  */
840 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
841 				  struct wb_writeback_work *base_work,
842 				  bool skip_if_busy)
843 {
844 	struct bdi_writeback *last_wb = NULL;
845 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
846 					      struct bdi_writeback, bdi_node);
847 
848 	might_sleep();
849 restart:
850 	rcu_read_lock();
851 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
852 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
853 		struct wb_writeback_work fallback_work;
854 		struct wb_writeback_work *work;
855 		long nr_pages;
856 
857 		if (last_wb) {
858 			wb_put(last_wb);
859 			last_wb = NULL;
860 		}
861 
862 		/* SYNC_ALL writes out I_DIRTY_TIME too */
863 		if (!wb_has_dirty_io(wb) &&
864 		    (base_work->sync_mode == WB_SYNC_NONE ||
865 		     list_empty(&wb->b_dirty_time)))
866 			continue;
867 		if (skip_if_busy && writeback_in_progress(wb))
868 			continue;
869 
870 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
871 
872 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
873 		if (work) {
874 			*work = *base_work;
875 			work->nr_pages = nr_pages;
876 			work->auto_free = 1;
877 			wb_queue_work(wb, work);
878 			continue;
879 		}
880 
881 		/* alloc failed, execute synchronously using on-stack fallback */
882 		work = &fallback_work;
883 		*work = *base_work;
884 		work->nr_pages = nr_pages;
885 		work->auto_free = 0;
886 		work->done = &fallback_work_done;
887 
888 		wb_queue_work(wb, work);
889 
890 		/*
891 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
892 		 * continuing iteration from @wb after dropping and
893 		 * regrabbing rcu read lock.
894 		 */
895 		wb_get(wb);
896 		last_wb = wb;
897 
898 		rcu_read_unlock();
899 		wb_wait_for_completion(&fallback_work_done);
900 		goto restart;
901 	}
902 	rcu_read_unlock();
903 
904 	if (last_wb)
905 		wb_put(last_wb);
906 }
907 
908 /**
909  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
910  * @bdi_id: target bdi id
911  * @memcg_id: target memcg css id
912  * @nr: number of pages to write, 0 for best-effort dirty flushing
913  * @reason: reason why some writeback work initiated
914  * @done: target wb_completion
915  *
916  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
917  * with the specified parameters.
918  */
919 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
920 			   enum wb_reason reason, struct wb_completion *done)
921 {
922 	struct backing_dev_info *bdi;
923 	struct cgroup_subsys_state *memcg_css;
924 	struct bdi_writeback *wb;
925 	struct wb_writeback_work *work;
926 	int ret;
927 
928 	/* lookup bdi and memcg */
929 	bdi = bdi_get_by_id(bdi_id);
930 	if (!bdi)
931 		return -ENOENT;
932 
933 	rcu_read_lock();
934 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
935 	if (memcg_css && !css_tryget(memcg_css))
936 		memcg_css = NULL;
937 	rcu_read_unlock();
938 	if (!memcg_css) {
939 		ret = -ENOENT;
940 		goto out_bdi_put;
941 	}
942 
943 	/*
944 	 * And find the associated wb.  If the wb isn't there already
945 	 * there's nothing to flush, don't create one.
946 	 */
947 	wb = wb_get_lookup(bdi, memcg_css);
948 	if (!wb) {
949 		ret = -ENOENT;
950 		goto out_css_put;
951 	}
952 
953 	/*
954 	 * If @nr is zero, the caller is attempting to write out most of
955 	 * the currently dirty pages.  Let's take the current dirty page
956 	 * count and inflate it by 25% which should be large enough to
957 	 * flush out most dirty pages while avoiding getting livelocked by
958 	 * concurrent dirtiers.
959 	 */
960 	if (!nr) {
961 		unsigned long filepages, headroom, dirty, writeback;
962 
963 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
964 				      &writeback);
965 		nr = dirty * 10 / 8;
966 	}
967 
968 	/* issue the writeback work */
969 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
970 	if (work) {
971 		work->nr_pages = nr;
972 		work->sync_mode = WB_SYNC_NONE;
973 		work->range_cyclic = 1;
974 		work->reason = reason;
975 		work->done = done;
976 		work->auto_free = 1;
977 		wb_queue_work(wb, work);
978 		ret = 0;
979 	} else {
980 		ret = -ENOMEM;
981 	}
982 
983 	wb_put(wb);
984 out_css_put:
985 	css_put(memcg_css);
986 out_bdi_put:
987 	bdi_put(bdi);
988 	return ret;
989 }
990 
991 /**
992  * cgroup_writeback_umount - flush inode wb switches for umount
993  *
994  * This function is called when a super_block is about to be destroyed and
995  * flushes in-flight inode wb switches.  An inode wb switch goes through
996  * RCU and then workqueue, so the two need to be flushed in order to ensure
997  * that all previously scheduled switches are finished.  As wb switches are
998  * rare occurrences and synchronize_rcu() can take a while, perform
999  * flushing iff wb switches are in flight.
1000  */
1001 void cgroup_writeback_umount(void)
1002 {
1003 	if (atomic_read(&isw_nr_in_flight)) {
1004 		/*
1005 		 * Use rcu_barrier() to wait for all pending callbacks to
1006 		 * ensure that all in-flight wb switches are in the workqueue.
1007 		 */
1008 		rcu_barrier();
1009 		flush_workqueue(isw_wq);
1010 	}
1011 }
1012 
1013 static int __init cgroup_writeback_init(void)
1014 {
1015 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1016 	if (!isw_wq)
1017 		return -ENOMEM;
1018 	return 0;
1019 }
1020 fs_initcall(cgroup_writeback_init);
1021 
1022 #else	/* CONFIG_CGROUP_WRITEBACK */
1023 
1024 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1025 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1026 
1027 static struct bdi_writeback *
1028 locked_inode_to_wb_and_lock_list(struct inode *inode)
1029 	__releases(&inode->i_lock)
1030 	__acquires(&wb->list_lock)
1031 {
1032 	struct bdi_writeback *wb = inode_to_wb(inode);
1033 
1034 	spin_unlock(&inode->i_lock);
1035 	spin_lock(&wb->list_lock);
1036 	return wb;
1037 }
1038 
1039 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1040 	__acquires(&wb->list_lock)
1041 {
1042 	struct bdi_writeback *wb = inode_to_wb(inode);
1043 
1044 	spin_lock(&wb->list_lock);
1045 	return wb;
1046 }
1047 
1048 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1049 {
1050 	return nr_pages;
1051 }
1052 
1053 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1054 				  struct wb_writeback_work *base_work,
1055 				  bool skip_if_busy)
1056 {
1057 	might_sleep();
1058 
1059 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1060 		base_work->auto_free = 0;
1061 		wb_queue_work(&bdi->wb, base_work);
1062 	}
1063 }
1064 
1065 #endif	/* CONFIG_CGROUP_WRITEBACK */
1066 
1067 /*
1068  * Add in the number of potentially dirty inodes, because each inode
1069  * write can dirty pagecache in the underlying blockdev.
1070  */
1071 static unsigned long get_nr_dirty_pages(void)
1072 {
1073 	return global_node_page_state(NR_FILE_DIRTY) +
1074 		get_nr_dirty_inodes();
1075 }
1076 
1077 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1078 {
1079 	if (!wb_has_dirty_io(wb))
1080 		return;
1081 
1082 	/*
1083 	 * All callers of this function want to start writeback of all
1084 	 * dirty pages. Places like vmscan can call this at a very
1085 	 * high frequency, causing pointless allocations of tons of
1086 	 * work items and keeping the flusher threads busy retrieving
1087 	 * that work. Ensure that we only allow one of them pending and
1088 	 * inflight at the time.
1089 	 */
1090 	if (test_bit(WB_start_all, &wb->state) ||
1091 	    test_and_set_bit(WB_start_all, &wb->state))
1092 		return;
1093 
1094 	wb->start_all_reason = reason;
1095 	wb_wakeup(wb);
1096 }
1097 
1098 /**
1099  * wb_start_background_writeback - start background writeback
1100  * @wb: bdi_writback to write from
1101  *
1102  * Description:
1103  *   This makes sure WB_SYNC_NONE background writeback happens. When
1104  *   this function returns, it is only guaranteed that for given wb
1105  *   some IO is happening if we are over background dirty threshold.
1106  *   Caller need not hold sb s_umount semaphore.
1107  */
1108 void wb_start_background_writeback(struct bdi_writeback *wb)
1109 {
1110 	/*
1111 	 * We just wake up the flusher thread. It will perform background
1112 	 * writeback as soon as there is no other work to do.
1113 	 */
1114 	trace_writeback_wake_background(wb);
1115 	wb_wakeup(wb);
1116 }
1117 
1118 /*
1119  * Remove the inode from the writeback list it is on.
1120  */
1121 void inode_io_list_del(struct inode *inode)
1122 {
1123 	struct bdi_writeback *wb;
1124 
1125 	wb = inode_to_wb_and_lock_list(inode);
1126 	spin_lock(&inode->i_lock);
1127 	inode_io_list_del_locked(inode, wb);
1128 	spin_unlock(&inode->i_lock);
1129 	spin_unlock(&wb->list_lock);
1130 }
1131 EXPORT_SYMBOL(inode_io_list_del);
1132 
1133 /*
1134  * mark an inode as under writeback on the sb
1135  */
1136 void sb_mark_inode_writeback(struct inode *inode)
1137 {
1138 	struct super_block *sb = inode->i_sb;
1139 	unsigned long flags;
1140 
1141 	if (list_empty(&inode->i_wb_list)) {
1142 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1143 		if (list_empty(&inode->i_wb_list)) {
1144 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1145 			trace_sb_mark_inode_writeback(inode);
1146 		}
1147 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1148 	}
1149 }
1150 
1151 /*
1152  * clear an inode as under writeback on the sb
1153  */
1154 void sb_clear_inode_writeback(struct inode *inode)
1155 {
1156 	struct super_block *sb = inode->i_sb;
1157 	unsigned long flags;
1158 
1159 	if (!list_empty(&inode->i_wb_list)) {
1160 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1161 		if (!list_empty(&inode->i_wb_list)) {
1162 			list_del_init(&inode->i_wb_list);
1163 			trace_sb_clear_inode_writeback(inode);
1164 		}
1165 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1166 	}
1167 }
1168 
1169 /*
1170  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1171  * furthest end of its superblock's dirty-inode list.
1172  *
1173  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1174  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1175  * the case then the inode must have been redirtied while it was being written
1176  * out and we don't reset its dirtied_when.
1177  */
1178 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1179 {
1180 	assert_spin_locked(&inode->i_lock);
1181 
1182 	if (!list_empty(&wb->b_dirty)) {
1183 		struct inode *tail;
1184 
1185 		tail = wb_inode(wb->b_dirty.next);
1186 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1187 			inode->dirtied_when = jiffies;
1188 	}
1189 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1190 	inode->i_state &= ~I_SYNC_QUEUED;
1191 }
1192 
1193 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1194 {
1195 	spin_lock(&inode->i_lock);
1196 	redirty_tail_locked(inode, wb);
1197 	spin_unlock(&inode->i_lock);
1198 }
1199 
1200 /*
1201  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1202  */
1203 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1204 {
1205 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1206 }
1207 
1208 static void inode_sync_complete(struct inode *inode)
1209 {
1210 	inode->i_state &= ~I_SYNC;
1211 	/* If inode is clean an unused, put it into LRU now... */
1212 	inode_add_lru(inode);
1213 	/* Waiters must see I_SYNC cleared before being woken up */
1214 	smp_mb();
1215 	wake_up_bit(&inode->i_state, __I_SYNC);
1216 }
1217 
1218 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1219 {
1220 	bool ret = time_after(inode->dirtied_when, t);
1221 #ifndef CONFIG_64BIT
1222 	/*
1223 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1224 	 * It _appears_ to be in the future, but is actually in distant past.
1225 	 * This test is necessary to prevent such wrapped-around relative times
1226 	 * from permanently stopping the whole bdi writeback.
1227 	 */
1228 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1229 #endif
1230 	return ret;
1231 }
1232 
1233 #define EXPIRE_DIRTY_ATIME 0x0001
1234 
1235 /*
1236  * Move expired (dirtied before dirtied_before) dirty inodes from
1237  * @delaying_queue to @dispatch_queue.
1238  */
1239 static int move_expired_inodes(struct list_head *delaying_queue,
1240 			       struct list_head *dispatch_queue,
1241 			       unsigned long dirtied_before)
1242 {
1243 	LIST_HEAD(tmp);
1244 	struct list_head *pos, *node;
1245 	struct super_block *sb = NULL;
1246 	struct inode *inode;
1247 	int do_sb_sort = 0;
1248 	int moved = 0;
1249 
1250 	while (!list_empty(delaying_queue)) {
1251 		inode = wb_inode(delaying_queue->prev);
1252 		if (inode_dirtied_after(inode, dirtied_before))
1253 			break;
1254 		list_move(&inode->i_io_list, &tmp);
1255 		moved++;
1256 		spin_lock(&inode->i_lock);
1257 		inode->i_state |= I_SYNC_QUEUED;
1258 		spin_unlock(&inode->i_lock);
1259 		if (sb_is_blkdev_sb(inode->i_sb))
1260 			continue;
1261 		if (sb && sb != inode->i_sb)
1262 			do_sb_sort = 1;
1263 		sb = inode->i_sb;
1264 	}
1265 
1266 	/* just one sb in list, splice to dispatch_queue and we're done */
1267 	if (!do_sb_sort) {
1268 		list_splice(&tmp, dispatch_queue);
1269 		goto out;
1270 	}
1271 
1272 	/* Move inodes from one superblock together */
1273 	while (!list_empty(&tmp)) {
1274 		sb = wb_inode(tmp.prev)->i_sb;
1275 		list_for_each_prev_safe(pos, node, &tmp) {
1276 			inode = wb_inode(pos);
1277 			if (inode->i_sb == sb)
1278 				list_move(&inode->i_io_list, dispatch_queue);
1279 		}
1280 	}
1281 out:
1282 	return moved;
1283 }
1284 
1285 /*
1286  * Queue all expired dirty inodes for io, eldest first.
1287  * Before
1288  *         newly dirtied     b_dirty    b_io    b_more_io
1289  *         =============>    gf         edc     BA
1290  * After
1291  *         newly dirtied     b_dirty    b_io    b_more_io
1292  *         =============>    g          fBAedc
1293  *                                           |
1294  *                                           +--> dequeue for IO
1295  */
1296 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1297 		     unsigned long dirtied_before)
1298 {
1299 	int moved;
1300 	unsigned long time_expire_jif = dirtied_before;
1301 
1302 	assert_spin_locked(&wb->list_lock);
1303 	list_splice_init(&wb->b_more_io, &wb->b_io);
1304 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1305 	if (!work->for_sync)
1306 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1307 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1308 				     time_expire_jif);
1309 	if (moved)
1310 		wb_io_lists_populated(wb);
1311 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1312 }
1313 
1314 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1315 {
1316 	int ret;
1317 
1318 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1319 		trace_writeback_write_inode_start(inode, wbc);
1320 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1321 		trace_writeback_write_inode(inode, wbc);
1322 		return ret;
1323 	}
1324 	return 0;
1325 }
1326 
1327 /*
1328  * Wait for writeback on an inode to complete. Called with i_lock held.
1329  * Caller must make sure inode cannot go away when we drop i_lock.
1330  */
1331 static void __inode_wait_for_writeback(struct inode *inode)
1332 	__releases(inode->i_lock)
1333 	__acquires(inode->i_lock)
1334 {
1335 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1336 	wait_queue_head_t *wqh;
1337 
1338 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1339 	while (inode->i_state & I_SYNC) {
1340 		spin_unlock(&inode->i_lock);
1341 		__wait_on_bit(wqh, &wq, bit_wait,
1342 			      TASK_UNINTERRUPTIBLE);
1343 		spin_lock(&inode->i_lock);
1344 	}
1345 }
1346 
1347 /*
1348  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1349  */
1350 void inode_wait_for_writeback(struct inode *inode)
1351 {
1352 	spin_lock(&inode->i_lock);
1353 	__inode_wait_for_writeback(inode);
1354 	spin_unlock(&inode->i_lock);
1355 }
1356 
1357 /*
1358  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1359  * held and drops it. It is aimed for callers not holding any inode reference
1360  * so once i_lock is dropped, inode can go away.
1361  */
1362 static void inode_sleep_on_writeback(struct inode *inode)
1363 	__releases(inode->i_lock)
1364 {
1365 	DEFINE_WAIT(wait);
1366 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1367 	int sleep;
1368 
1369 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1370 	sleep = inode->i_state & I_SYNC;
1371 	spin_unlock(&inode->i_lock);
1372 	if (sleep)
1373 		schedule();
1374 	finish_wait(wqh, &wait);
1375 }
1376 
1377 /*
1378  * Find proper writeback list for the inode depending on its current state and
1379  * possibly also change of its state while we were doing writeback.  Here we
1380  * handle things such as livelock prevention or fairness of writeback among
1381  * inodes. This function can be called only by flusher thread - noone else
1382  * processes all inodes in writeback lists and requeueing inodes behind flusher
1383  * thread's back can have unexpected consequences.
1384  */
1385 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1386 			  struct writeback_control *wbc)
1387 {
1388 	if (inode->i_state & I_FREEING)
1389 		return;
1390 
1391 	/*
1392 	 * Sync livelock prevention. Each inode is tagged and synced in one
1393 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1394 	 * the dirty time to prevent enqueue and sync it again.
1395 	 */
1396 	if ((inode->i_state & I_DIRTY) &&
1397 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1398 		inode->dirtied_when = jiffies;
1399 
1400 	if (wbc->pages_skipped) {
1401 		/*
1402 		 * writeback is not making progress due to locked
1403 		 * buffers. Skip this inode for now.
1404 		 */
1405 		redirty_tail_locked(inode, wb);
1406 		return;
1407 	}
1408 
1409 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1410 		/*
1411 		 * We didn't write back all the pages.  nfs_writepages()
1412 		 * sometimes bales out without doing anything.
1413 		 */
1414 		if (wbc->nr_to_write <= 0) {
1415 			/* Slice used up. Queue for next turn. */
1416 			requeue_io(inode, wb);
1417 		} else {
1418 			/*
1419 			 * Writeback blocked by something other than
1420 			 * congestion. Delay the inode for some time to
1421 			 * avoid spinning on the CPU (100% iowait)
1422 			 * retrying writeback of the dirty page/inode
1423 			 * that cannot be performed immediately.
1424 			 */
1425 			redirty_tail_locked(inode, wb);
1426 		}
1427 	} else if (inode->i_state & I_DIRTY) {
1428 		/*
1429 		 * Filesystems can dirty the inode during writeback operations,
1430 		 * such as delayed allocation during submission or metadata
1431 		 * updates after data IO completion.
1432 		 */
1433 		redirty_tail_locked(inode, wb);
1434 	} else if (inode->i_state & I_DIRTY_TIME) {
1435 		inode->dirtied_when = jiffies;
1436 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1437 		inode->i_state &= ~I_SYNC_QUEUED;
1438 	} else {
1439 		/* The inode is clean. Remove from writeback lists. */
1440 		inode_io_list_del_locked(inode, wb);
1441 	}
1442 }
1443 
1444 /*
1445  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1446  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1447  *
1448  * This doesn't remove the inode from the writeback list it is on, except
1449  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1450  * expiration.  The caller is otherwise responsible for writeback list handling.
1451  *
1452  * The caller is also responsible for setting the I_SYNC flag beforehand and
1453  * calling inode_sync_complete() to clear it afterwards.
1454  */
1455 static int
1456 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1457 {
1458 	struct address_space *mapping = inode->i_mapping;
1459 	long nr_to_write = wbc->nr_to_write;
1460 	unsigned dirty;
1461 	int ret;
1462 
1463 	WARN_ON(!(inode->i_state & I_SYNC));
1464 
1465 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1466 
1467 	ret = do_writepages(mapping, wbc);
1468 
1469 	/*
1470 	 * Make sure to wait on the data before writing out the metadata.
1471 	 * This is important for filesystems that modify metadata on data
1472 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1473 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1474 	 * inode metadata is written back correctly.
1475 	 */
1476 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1477 		int err = filemap_fdatawait(mapping);
1478 		if (ret == 0)
1479 			ret = err;
1480 	}
1481 
1482 	/*
1483 	 * If the inode has dirty timestamps and we need to write them, call
1484 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1485 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1486 	 */
1487 	if ((inode->i_state & I_DIRTY_TIME) &&
1488 	    (wbc->sync_mode == WB_SYNC_ALL ||
1489 	     time_after(jiffies, inode->dirtied_time_when +
1490 			dirtytime_expire_interval * HZ))) {
1491 		trace_writeback_lazytime(inode);
1492 		mark_inode_dirty_sync(inode);
1493 	}
1494 
1495 	/*
1496 	 * Get and clear the dirty flags from i_state.  This needs to be done
1497 	 * after calling writepages because some filesystems may redirty the
1498 	 * inode during writepages due to delalloc.  It also needs to be done
1499 	 * after handling timestamp expiration, as that may dirty the inode too.
1500 	 */
1501 	spin_lock(&inode->i_lock);
1502 	dirty = inode->i_state & I_DIRTY;
1503 	inode->i_state &= ~dirty;
1504 
1505 	/*
1506 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1507 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1508 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1509 	 * inode.
1510 	 *
1511 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1512 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1513 	 * necessary.  This guarantees that either __mark_inode_dirty()
1514 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1515 	 */
1516 	smp_mb();
1517 
1518 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1519 		inode->i_state |= I_DIRTY_PAGES;
1520 
1521 	spin_unlock(&inode->i_lock);
1522 
1523 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1524 	if (dirty & ~I_DIRTY_PAGES) {
1525 		int err = write_inode(inode, wbc);
1526 		if (ret == 0)
1527 			ret = err;
1528 	}
1529 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1530 	return ret;
1531 }
1532 
1533 /*
1534  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1535  * the regular batched writeback done by the flusher threads in
1536  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1537  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1538  *
1539  * To prevent the inode from going away, either the caller must have a reference
1540  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1541  */
1542 static int writeback_single_inode(struct inode *inode,
1543 				  struct writeback_control *wbc)
1544 {
1545 	struct bdi_writeback *wb;
1546 	int ret = 0;
1547 
1548 	spin_lock(&inode->i_lock);
1549 	if (!atomic_read(&inode->i_count))
1550 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1551 	else
1552 		WARN_ON(inode->i_state & I_WILL_FREE);
1553 
1554 	if (inode->i_state & I_SYNC) {
1555 		/*
1556 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1557 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1558 		 * must wait for the existing writeback to complete, then do
1559 		 * writeback again if there's anything left.
1560 		 */
1561 		if (wbc->sync_mode != WB_SYNC_ALL)
1562 			goto out;
1563 		__inode_wait_for_writeback(inode);
1564 	}
1565 	WARN_ON(inode->i_state & I_SYNC);
1566 	/*
1567 	 * If the inode is already fully clean, then there's nothing to do.
1568 	 *
1569 	 * For data-integrity syncs we also need to check whether any pages are
1570 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1571 	 * there are any such pages, we'll need to wait for them.
1572 	 */
1573 	if (!(inode->i_state & I_DIRTY_ALL) &&
1574 	    (wbc->sync_mode != WB_SYNC_ALL ||
1575 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1576 		goto out;
1577 	inode->i_state |= I_SYNC;
1578 	wbc_attach_and_unlock_inode(wbc, inode);
1579 
1580 	ret = __writeback_single_inode(inode, wbc);
1581 
1582 	wbc_detach_inode(wbc);
1583 
1584 	wb = inode_to_wb_and_lock_list(inode);
1585 	spin_lock(&inode->i_lock);
1586 	/*
1587 	 * If the inode is now fully clean, then it can be safely removed from
1588 	 * its writeback list (if any).  Otherwise the flusher threads are
1589 	 * responsible for the writeback lists.
1590 	 */
1591 	if (!(inode->i_state & I_DIRTY_ALL))
1592 		inode_io_list_del_locked(inode, wb);
1593 	spin_unlock(&wb->list_lock);
1594 	inode_sync_complete(inode);
1595 out:
1596 	spin_unlock(&inode->i_lock);
1597 	return ret;
1598 }
1599 
1600 static long writeback_chunk_size(struct bdi_writeback *wb,
1601 				 struct wb_writeback_work *work)
1602 {
1603 	long pages;
1604 
1605 	/*
1606 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1607 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1608 	 * here avoids calling into writeback_inodes_wb() more than once.
1609 	 *
1610 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1611 	 *
1612 	 *      wb_writeback()
1613 	 *          writeback_sb_inodes()       <== called only once
1614 	 *              write_cache_pages()     <== called once for each inode
1615 	 *                   (quickly) tag currently dirty pages
1616 	 *                   (maybe slowly) sync all tagged pages
1617 	 */
1618 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1619 		pages = LONG_MAX;
1620 	else {
1621 		pages = min(wb->avg_write_bandwidth / 2,
1622 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1623 		pages = min(pages, work->nr_pages);
1624 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1625 				   MIN_WRITEBACK_PAGES);
1626 	}
1627 
1628 	return pages;
1629 }
1630 
1631 /*
1632  * Write a portion of b_io inodes which belong to @sb.
1633  *
1634  * Return the number of pages and/or inodes written.
1635  *
1636  * NOTE! This is called with wb->list_lock held, and will
1637  * unlock and relock that for each inode it ends up doing
1638  * IO for.
1639  */
1640 static long writeback_sb_inodes(struct super_block *sb,
1641 				struct bdi_writeback *wb,
1642 				struct wb_writeback_work *work)
1643 {
1644 	struct writeback_control wbc = {
1645 		.sync_mode		= work->sync_mode,
1646 		.tagged_writepages	= work->tagged_writepages,
1647 		.for_kupdate		= work->for_kupdate,
1648 		.for_background		= work->for_background,
1649 		.for_sync		= work->for_sync,
1650 		.range_cyclic		= work->range_cyclic,
1651 		.range_start		= 0,
1652 		.range_end		= LLONG_MAX,
1653 	};
1654 	unsigned long start_time = jiffies;
1655 	long write_chunk;
1656 	long wrote = 0;  /* count both pages and inodes */
1657 
1658 	while (!list_empty(&wb->b_io)) {
1659 		struct inode *inode = wb_inode(wb->b_io.prev);
1660 		struct bdi_writeback *tmp_wb;
1661 
1662 		if (inode->i_sb != sb) {
1663 			if (work->sb) {
1664 				/*
1665 				 * We only want to write back data for this
1666 				 * superblock, move all inodes not belonging
1667 				 * to it back onto the dirty list.
1668 				 */
1669 				redirty_tail(inode, wb);
1670 				continue;
1671 			}
1672 
1673 			/*
1674 			 * The inode belongs to a different superblock.
1675 			 * Bounce back to the caller to unpin this and
1676 			 * pin the next superblock.
1677 			 */
1678 			break;
1679 		}
1680 
1681 		/*
1682 		 * Don't bother with new inodes or inodes being freed, first
1683 		 * kind does not need periodic writeout yet, and for the latter
1684 		 * kind writeout is handled by the freer.
1685 		 */
1686 		spin_lock(&inode->i_lock);
1687 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1688 			redirty_tail_locked(inode, wb);
1689 			spin_unlock(&inode->i_lock);
1690 			continue;
1691 		}
1692 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1693 			/*
1694 			 * If this inode is locked for writeback and we are not
1695 			 * doing writeback-for-data-integrity, move it to
1696 			 * b_more_io so that writeback can proceed with the
1697 			 * other inodes on s_io.
1698 			 *
1699 			 * We'll have another go at writing back this inode
1700 			 * when we completed a full scan of b_io.
1701 			 */
1702 			spin_unlock(&inode->i_lock);
1703 			requeue_io(inode, wb);
1704 			trace_writeback_sb_inodes_requeue(inode);
1705 			continue;
1706 		}
1707 		spin_unlock(&wb->list_lock);
1708 
1709 		/*
1710 		 * We already requeued the inode if it had I_SYNC set and we
1711 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1712 		 * WB_SYNC_ALL case.
1713 		 */
1714 		if (inode->i_state & I_SYNC) {
1715 			/* Wait for I_SYNC. This function drops i_lock... */
1716 			inode_sleep_on_writeback(inode);
1717 			/* Inode may be gone, start again */
1718 			spin_lock(&wb->list_lock);
1719 			continue;
1720 		}
1721 		inode->i_state |= I_SYNC;
1722 		wbc_attach_and_unlock_inode(&wbc, inode);
1723 
1724 		write_chunk = writeback_chunk_size(wb, work);
1725 		wbc.nr_to_write = write_chunk;
1726 		wbc.pages_skipped = 0;
1727 
1728 		/*
1729 		 * We use I_SYNC to pin the inode in memory. While it is set
1730 		 * evict_inode() will wait so the inode cannot be freed.
1731 		 */
1732 		__writeback_single_inode(inode, &wbc);
1733 
1734 		wbc_detach_inode(&wbc);
1735 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1736 		wrote += write_chunk - wbc.nr_to_write;
1737 
1738 		if (need_resched()) {
1739 			/*
1740 			 * We're trying to balance between building up a nice
1741 			 * long list of IOs to improve our merge rate, and
1742 			 * getting those IOs out quickly for anyone throttling
1743 			 * in balance_dirty_pages().  cond_resched() doesn't
1744 			 * unplug, so get our IOs out the door before we
1745 			 * give up the CPU.
1746 			 */
1747 			blk_flush_plug(current);
1748 			cond_resched();
1749 		}
1750 
1751 		/*
1752 		 * Requeue @inode if still dirty.  Be careful as @inode may
1753 		 * have been switched to another wb in the meantime.
1754 		 */
1755 		tmp_wb = inode_to_wb_and_lock_list(inode);
1756 		spin_lock(&inode->i_lock);
1757 		if (!(inode->i_state & I_DIRTY_ALL))
1758 			wrote++;
1759 		requeue_inode(inode, tmp_wb, &wbc);
1760 		inode_sync_complete(inode);
1761 		spin_unlock(&inode->i_lock);
1762 
1763 		if (unlikely(tmp_wb != wb)) {
1764 			spin_unlock(&tmp_wb->list_lock);
1765 			spin_lock(&wb->list_lock);
1766 		}
1767 
1768 		/*
1769 		 * bail out to wb_writeback() often enough to check
1770 		 * background threshold and other termination conditions.
1771 		 */
1772 		if (wrote) {
1773 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1774 				break;
1775 			if (work->nr_pages <= 0)
1776 				break;
1777 		}
1778 	}
1779 	return wrote;
1780 }
1781 
1782 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1783 				  struct wb_writeback_work *work)
1784 {
1785 	unsigned long start_time = jiffies;
1786 	long wrote = 0;
1787 
1788 	while (!list_empty(&wb->b_io)) {
1789 		struct inode *inode = wb_inode(wb->b_io.prev);
1790 		struct super_block *sb = inode->i_sb;
1791 
1792 		if (!trylock_super(sb)) {
1793 			/*
1794 			 * trylock_super() may fail consistently due to
1795 			 * s_umount being grabbed by someone else. Don't use
1796 			 * requeue_io() to avoid busy retrying the inode/sb.
1797 			 */
1798 			redirty_tail(inode, wb);
1799 			continue;
1800 		}
1801 		wrote += writeback_sb_inodes(sb, wb, work);
1802 		up_read(&sb->s_umount);
1803 
1804 		/* refer to the same tests at the end of writeback_sb_inodes */
1805 		if (wrote) {
1806 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1807 				break;
1808 			if (work->nr_pages <= 0)
1809 				break;
1810 		}
1811 	}
1812 	/* Leave any unwritten inodes on b_io */
1813 	return wrote;
1814 }
1815 
1816 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1817 				enum wb_reason reason)
1818 {
1819 	struct wb_writeback_work work = {
1820 		.nr_pages	= nr_pages,
1821 		.sync_mode	= WB_SYNC_NONE,
1822 		.range_cyclic	= 1,
1823 		.reason		= reason,
1824 	};
1825 	struct blk_plug plug;
1826 
1827 	blk_start_plug(&plug);
1828 	spin_lock(&wb->list_lock);
1829 	if (list_empty(&wb->b_io))
1830 		queue_io(wb, &work, jiffies);
1831 	__writeback_inodes_wb(wb, &work);
1832 	spin_unlock(&wb->list_lock);
1833 	blk_finish_plug(&plug);
1834 
1835 	return nr_pages - work.nr_pages;
1836 }
1837 
1838 /*
1839  * Explicit flushing or periodic writeback of "old" data.
1840  *
1841  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1842  * dirtying-time in the inode's address_space.  So this periodic writeback code
1843  * just walks the superblock inode list, writing back any inodes which are
1844  * older than a specific point in time.
1845  *
1846  * Try to run once per dirty_writeback_interval.  But if a writeback event
1847  * takes longer than a dirty_writeback_interval interval, then leave a
1848  * one-second gap.
1849  *
1850  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1851  * all dirty pages if they are all attached to "old" mappings.
1852  */
1853 static long wb_writeback(struct bdi_writeback *wb,
1854 			 struct wb_writeback_work *work)
1855 {
1856 	unsigned long wb_start = jiffies;
1857 	long nr_pages = work->nr_pages;
1858 	unsigned long dirtied_before = jiffies;
1859 	struct inode *inode;
1860 	long progress;
1861 	struct blk_plug plug;
1862 
1863 	blk_start_plug(&plug);
1864 	spin_lock(&wb->list_lock);
1865 	for (;;) {
1866 		/*
1867 		 * Stop writeback when nr_pages has been consumed
1868 		 */
1869 		if (work->nr_pages <= 0)
1870 			break;
1871 
1872 		/*
1873 		 * Background writeout and kupdate-style writeback may
1874 		 * run forever. Stop them if there is other work to do
1875 		 * so that e.g. sync can proceed. They'll be restarted
1876 		 * after the other works are all done.
1877 		 */
1878 		if ((work->for_background || work->for_kupdate) &&
1879 		    !list_empty(&wb->work_list))
1880 			break;
1881 
1882 		/*
1883 		 * For background writeout, stop when we are below the
1884 		 * background dirty threshold
1885 		 */
1886 		if (work->for_background && !wb_over_bg_thresh(wb))
1887 			break;
1888 
1889 		/*
1890 		 * Kupdate and background works are special and we want to
1891 		 * include all inodes that need writing. Livelock avoidance is
1892 		 * handled by these works yielding to any other work so we are
1893 		 * safe.
1894 		 */
1895 		if (work->for_kupdate) {
1896 			dirtied_before = jiffies -
1897 				msecs_to_jiffies(dirty_expire_interval * 10);
1898 		} else if (work->for_background)
1899 			dirtied_before = jiffies;
1900 
1901 		trace_writeback_start(wb, work);
1902 		if (list_empty(&wb->b_io))
1903 			queue_io(wb, work, dirtied_before);
1904 		if (work->sb)
1905 			progress = writeback_sb_inodes(work->sb, wb, work);
1906 		else
1907 			progress = __writeback_inodes_wb(wb, work);
1908 		trace_writeback_written(wb, work);
1909 
1910 		wb_update_bandwidth(wb, wb_start);
1911 
1912 		/*
1913 		 * Did we write something? Try for more
1914 		 *
1915 		 * Dirty inodes are moved to b_io for writeback in batches.
1916 		 * The completion of the current batch does not necessarily
1917 		 * mean the overall work is done. So we keep looping as long
1918 		 * as made some progress on cleaning pages or inodes.
1919 		 */
1920 		if (progress)
1921 			continue;
1922 		/*
1923 		 * No more inodes for IO, bail
1924 		 */
1925 		if (list_empty(&wb->b_more_io))
1926 			break;
1927 		/*
1928 		 * Nothing written. Wait for some inode to
1929 		 * become available for writeback. Otherwise
1930 		 * we'll just busyloop.
1931 		 */
1932 		trace_writeback_wait(wb, work);
1933 		inode = wb_inode(wb->b_more_io.prev);
1934 		spin_lock(&inode->i_lock);
1935 		spin_unlock(&wb->list_lock);
1936 		/* This function drops i_lock... */
1937 		inode_sleep_on_writeback(inode);
1938 		spin_lock(&wb->list_lock);
1939 	}
1940 	spin_unlock(&wb->list_lock);
1941 	blk_finish_plug(&plug);
1942 
1943 	return nr_pages - work->nr_pages;
1944 }
1945 
1946 /*
1947  * Return the next wb_writeback_work struct that hasn't been processed yet.
1948  */
1949 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1950 {
1951 	struct wb_writeback_work *work = NULL;
1952 
1953 	spin_lock_bh(&wb->work_lock);
1954 	if (!list_empty(&wb->work_list)) {
1955 		work = list_entry(wb->work_list.next,
1956 				  struct wb_writeback_work, list);
1957 		list_del_init(&work->list);
1958 	}
1959 	spin_unlock_bh(&wb->work_lock);
1960 	return work;
1961 }
1962 
1963 static long wb_check_background_flush(struct bdi_writeback *wb)
1964 {
1965 	if (wb_over_bg_thresh(wb)) {
1966 
1967 		struct wb_writeback_work work = {
1968 			.nr_pages	= LONG_MAX,
1969 			.sync_mode	= WB_SYNC_NONE,
1970 			.for_background	= 1,
1971 			.range_cyclic	= 1,
1972 			.reason		= WB_REASON_BACKGROUND,
1973 		};
1974 
1975 		return wb_writeback(wb, &work);
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1982 {
1983 	unsigned long expired;
1984 	long nr_pages;
1985 
1986 	/*
1987 	 * When set to zero, disable periodic writeback
1988 	 */
1989 	if (!dirty_writeback_interval)
1990 		return 0;
1991 
1992 	expired = wb->last_old_flush +
1993 			msecs_to_jiffies(dirty_writeback_interval * 10);
1994 	if (time_before(jiffies, expired))
1995 		return 0;
1996 
1997 	wb->last_old_flush = jiffies;
1998 	nr_pages = get_nr_dirty_pages();
1999 
2000 	if (nr_pages) {
2001 		struct wb_writeback_work work = {
2002 			.nr_pages	= nr_pages,
2003 			.sync_mode	= WB_SYNC_NONE,
2004 			.for_kupdate	= 1,
2005 			.range_cyclic	= 1,
2006 			.reason		= WB_REASON_PERIODIC,
2007 		};
2008 
2009 		return wb_writeback(wb, &work);
2010 	}
2011 
2012 	return 0;
2013 }
2014 
2015 static long wb_check_start_all(struct bdi_writeback *wb)
2016 {
2017 	long nr_pages;
2018 
2019 	if (!test_bit(WB_start_all, &wb->state))
2020 		return 0;
2021 
2022 	nr_pages = get_nr_dirty_pages();
2023 	if (nr_pages) {
2024 		struct wb_writeback_work work = {
2025 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2026 			.sync_mode	= WB_SYNC_NONE,
2027 			.range_cyclic	= 1,
2028 			.reason		= wb->start_all_reason,
2029 		};
2030 
2031 		nr_pages = wb_writeback(wb, &work);
2032 	}
2033 
2034 	clear_bit(WB_start_all, &wb->state);
2035 	return nr_pages;
2036 }
2037 
2038 
2039 /*
2040  * Retrieve work items and do the writeback they describe
2041  */
2042 static long wb_do_writeback(struct bdi_writeback *wb)
2043 {
2044 	struct wb_writeback_work *work;
2045 	long wrote = 0;
2046 
2047 	set_bit(WB_writeback_running, &wb->state);
2048 	while ((work = get_next_work_item(wb)) != NULL) {
2049 		trace_writeback_exec(wb, work);
2050 		wrote += wb_writeback(wb, work);
2051 		finish_writeback_work(wb, work);
2052 	}
2053 
2054 	/*
2055 	 * Check for a flush-everything request
2056 	 */
2057 	wrote += wb_check_start_all(wb);
2058 
2059 	/*
2060 	 * Check for periodic writeback, kupdated() style
2061 	 */
2062 	wrote += wb_check_old_data_flush(wb);
2063 	wrote += wb_check_background_flush(wb);
2064 	clear_bit(WB_writeback_running, &wb->state);
2065 
2066 	return wrote;
2067 }
2068 
2069 /*
2070  * Handle writeback of dirty data for the device backed by this bdi. Also
2071  * reschedules periodically and does kupdated style flushing.
2072  */
2073 void wb_workfn(struct work_struct *work)
2074 {
2075 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2076 						struct bdi_writeback, dwork);
2077 	long pages_written;
2078 
2079 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2080 	current->flags |= PF_SWAPWRITE;
2081 
2082 	if (likely(!current_is_workqueue_rescuer() ||
2083 		   !test_bit(WB_registered, &wb->state))) {
2084 		/*
2085 		 * The normal path.  Keep writing back @wb until its
2086 		 * work_list is empty.  Note that this path is also taken
2087 		 * if @wb is shutting down even when we're running off the
2088 		 * rescuer as work_list needs to be drained.
2089 		 */
2090 		do {
2091 			pages_written = wb_do_writeback(wb);
2092 			trace_writeback_pages_written(pages_written);
2093 		} while (!list_empty(&wb->work_list));
2094 	} else {
2095 		/*
2096 		 * bdi_wq can't get enough workers and we're running off
2097 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2098 		 * enough for efficient IO.
2099 		 */
2100 		pages_written = writeback_inodes_wb(wb, 1024,
2101 						    WB_REASON_FORKER_THREAD);
2102 		trace_writeback_pages_written(pages_written);
2103 	}
2104 
2105 	if (!list_empty(&wb->work_list))
2106 		wb_wakeup(wb);
2107 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2108 		wb_wakeup_delayed(wb);
2109 
2110 	current->flags &= ~PF_SWAPWRITE;
2111 }
2112 
2113 /*
2114  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2115  * write back the whole world.
2116  */
2117 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2118 					 enum wb_reason reason)
2119 {
2120 	struct bdi_writeback *wb;
2121 
2122 	if (!bdi_has_dirty_io(bdi))
2123 		return;
2124 
2125 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2126 		wb_start_writeback(wb, reason);
2127 }
2128 
2129 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2130 				enum wb_reason reason)
2131 {
2132 	rcu_read_lock();
2133 	__wakeup_flusher_threads_bdi(bdi, reason);
2134 	rcu_read_unlock();
2135 }
2136 
2137 /*
2138  * Wakeup the flusher threads to start writeback of all currently dirty pages
2139  */
2140 void wakeup_flusher_threads(enum wb_reason reason)
2141 {
2142 	struct backing_dev_info *bdi;
2143 
2144 	/*
2145 	 * If we are expecting writeback progress we must submit plugged IO.
2146 	 */
2147 	if (blk_needs_flush_plug(current))
2148 		blk_schedule_flush_plug(current);
2149 
2150 	rcu_read_lock();
2151 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2152 		__wakeup_flusher_threads_bdi(bdi, reason);
2153 	rcu_read_unlock();
2154 }
2155 
2156 /*
2157  * Wake up bdi's periodically to make sure dirtytime inodes gets
2158  * written back periodically.  We deliberately do *not* check the
2159  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2160  * kernel to be constantly waking up once there are any dirtytime
2161  * inodes on the system.  So instead we define a separate delayed work
2162  * function which gets called much more rarely.  (By default, only
2163  * once every 12 hours.)
2164  *
2165  * If there is any other write activity going on in the file system,
2166  * this function won't be necessary.  But if the only thing that has
2167  * happened on the file system is a dirtytime inode caused by an atime
2168  * update, we need this infrastructure below to make sure that inode
2169  * eventually gets pushed out to disk.
2170  */
2171 static void wakeup_dirtytime_writeback(struct work_struct *w);
2172 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2173 
2174 static void wakeup_dirtytime_writeback(struct work_struct *w)
2175 {
2176 	struct backing_dev_info *bdi;
2177 
2178 	rcu_read_lock();
2179 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2180 		struct bdi_writeback *wb;
2181 
2182 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2183 			if (!list_empty(&wb->b_dirty_time))
2184 				wb_wakeup(wb);
2185 	}
2186 	rcu_read_unlock();
2187 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2188 }
2189 
2190 static int __init start_dirtytime_writeback(void)
2191 {
2192 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2193 	return 0;
2194 }
2195 __initcall(start_dirtytime_writeback);
2196 
2197 int dirtytime_interval_handler(struct ctl_table *table, int write,
2198 			       void *buffer, size_t *lenp, loff_t *ppos)
2199 {
2200 	int ret;
2201 
2202 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2203 	if (ret == 0 && write)
2204 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2205 	return ret;
2206 }
2207 
2208 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2209 {
2210 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2211 		struct dentry *dentry;
2212 		const char *name = "?";
2213 
2214 		dentry = d_find_alias(inode);
2215 		if (dentry) {
2216 			spin_lock(&dentry->d_lock);
2217 			name = (const char *) dentry->d_name.name;
2218 		}
2219 		printk(KERN_DEBUG
2220 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2221 		       current->comm, task_pid_nr(current), inode->i_ino,
2222 		       name, inode->i_sb->s_id);
2223 		if (dentry) {
2224 			spin_unlock(&dentry->d_lock);
2225 			dput(dentry);
2226 		}
2227 	}
2228 }
2229 
2230 /**
2231  * __mark_inode_dirty -	internal function to mark an inode dirty
2232  *
2233  * @inode: inode to mark
2234  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2235  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2236  *	   with I_DIRTY_PAGES.
2237  *
2238  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2239  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2240  *
2241  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2242  * instead of calling this directly.
2243  *
2244  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2245  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2246  * even if they are later hashed, as they will have been marked dirty already.
2247  *
2248  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2249  *
2250  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2251  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2252  * the kernel-internal blockdev inode represents the dirtying time of the
2253  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2254  * page->mapping->host, so the page-dirtying time is recorded in the internal
2255  * blockdev inode.
2256  */
2257 void __mark_inode_dirty(struct inode *inode, int flags)
2258 {
2259 	struct super_block *sb = inode->i_sb;
2260 	int dirtytime = 0;
2261 
2262 	trace_writeback_mark_inode_dirty(inode, flags);
2263 
2264 	if (flags & I_DIRTY_INODE) {
2265 		/*
2266 		 * Notify the filesystem about the inode being dirtied, so that
2267 		 * (if needed) it can update on-disk fields and journal the
2268 		 * inode.  This is only needed when the inode itself is being
2269 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2270 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2271 		 */
2272 		trace_writeback_dirty_inode_start(inode, flags);
2273 		if (sb->s_op->dirty_inode)
2274 			sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2275 		trace_writeback_dirty_inode(inode, flags);
2276 
2277 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2278 		flags &= ~I_DIRTY_TIME;
2279 	} else {
2280 		/*
2281 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2282 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2283 		 * in one call to __mark_inode_dirty().)
2284 		 */
2285 		dirtytime = flags & I_DIRTY_TIME;
2286 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2287 	}
2288 
2289 	/*
2290 	 * Paired with smp_mb() in __writeback_single_inode() for the
2291 	 * following lockless i_state test.  See there for details.
2292 	 */
2293 	smp_mb();
2294 
2295 	if (((inode->i_state & flags) == flags) ||
2296 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2297 		return;
2298 
2299 	if (unlikely(block_dump))
2300 		block_dump___mark_inode_dirty(inode);
2301 
2302 	spin_lock(&inode->i_lock);
2303 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2304 		goto out_unlock_inode;
2305 	if ((inode->i_state & flags) != flags) {
2306 		const int was_dirty = inode->i_state & I_DIRTY;
2307 
2308 		inode_attach_wb(inode, NULL);
2309 
2310 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2311 		if (flags & I_DIRTY_INODE)
2312 			inode->i_state &= ~I_DIRTY_TIME;
2313 		inode->i_state |= flags;
2314 
2315 		/*
2316 		 * If the inode is queued for writeback by flush worker, just
2317 		 * update its dirty state. Once the flush worker is done with
2318 		 * the inode it will place it on the appropriate superblock
2319 		 * list, based upon its state.
2320 		 */
2321 		if (inode->i_state & I_SYNC_QUEUED)
2322 			goto out_unlock_inode;
2323 
2324 		/*
2325 		 * Only add valid (hashed) inodes to the superblock's
2326 		 * dirty list.  Add blockdev inodes as well.
2327 		 */
2328 		if (!S_ISBLK(inode->i_mode)) {
2329 			if (inode_unhashed(inode))
2330 				goto out_unlock_inode;
2331 		}
2332 		if (inode->i_state & I_FREEING)
2333 			goto out_unlock_inode;
2334 
2335 		/*
2336 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2337 		 * reposition it (that would break b_dirty time-ordering).
2338 		 */
2339 		if (!was_dirty) {
2340 			struct bdi_writeback *wb;
2341 			struct list_head *dirty_list;
2342 			bool wakeup_bdi = false;
2343 
2344 			wb = locked_inode_to_wb_and_lock_list(inode);
2345 
2346 			inode->dirtied_when = jiffies;
2347 			if (dirtytime)
2348 				inode->dirtied_time_when = jiffies;
2349 
2350 			if (inode->i_state & I_DIRTY)
2351 				dirty_list = &wb->b_dirty;
2352 			else
2353 				dirty_list = &wb->b_dirty_time;
2354 
2355 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2356 							       dirty_list);
2357 
2358 			spin_unlock(&wb->list_lock);
2359 			trace_writeback_dirty_inode_enqueue(inode);
2360 
2361 			/*
2362 			 * If this is the first dirty inode for this bdi,
2363 			 * we have to wake-up the corresponding bdi thread
2364 			 * to make sure background write-back happens
2365 			 * later.
2366 			 */
2367 			if (wakeup_bdi &&
2368 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2369 				wb_wakeup_delayed(wb);
2370 			return;
2371 		}
2372 	}
2373 out_unlock_inode:
2374 	spin_unlock(&inode->i_lock);
2375 }
2376 EXPORT_SYMBOL(__mark_inode_dirty);
2377 
2378 /*
2379  * The @s_sync_lock is used to serialise concurrent sync operations
2380  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2381  * Concurrent callers will block on the s_sync_lock rather than doing contending
2382  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2383  * has been issued up to the time this function is enter is guaranteed to be
2384  * completed by the time we have gained the lock and waited for all IO that is
2385  * in progress regardless of the order callers are granted the lock.
2386  */
2387 static void wait_sb_inodes(struct super_block *sb)
2388 {
2389 	LIST_HEAD(sync_list);
2390 
2391 	/*
2392 	 * We need to be protected against the filesystem going from
2393 	 * r/o to r/w or vice versa.
2394 	 */
2395 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2396 
2397 	mutex_lock(&sb->s_sync_lock);
2398 
2399 	/*
2400 	 * Splice the writeback list onto a temporary list to avoid waiting on
2401 	 * inodes that have started writeback after this point.
2402 	 *
2403 	 * Use rcu_read_lock() to keep the inodes around until we have a
2404 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2405 	 * the local list because inodes can be dropped from either by writeback
2406 	 * completion.
2407 	 */
2408 	rcu_read_lock();
2409 	spin_lock_irq(&sb->s_inode_wblist_lock);
2410 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2411 
2412 	/*
2413 	 * Data integrity sync. Must wait for all pages under writeback, because
2414 	 * there may have been pages dirtied before our sync call, but which had
2415 	 * writeout started before we write it out.  In which case, the inode
2416 	 * may not be on the dirty list, but we still have to wait for that
2417 	 * writeout.
2418 	 */
2419 	while (!list_empty(&sync_list)) {
2420 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2421 						       i_wb_list);
2422 		struct address_space *mapping = inode->i_mapping;
2423 
2424 		/*
2425 		 * Move each inode back to the wb list before we drop the lock
2426 		 * to preserve consistency between i_wb_list and the mapping
2427 		 * writeback tag. Writeback completion is responsible to remove
2428 		 * the inode from either list once the writeback tag is cleared.
2429 		 */
2430 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2431 
2432 		/*
2433 		 * The mapping can appear untagged while still on-list since we
2434 		 * do not have the mapping lock. Skip it here, wb completion
2435 		 * will remove it.
2436 		 */
2437 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2438 			continue;
2439 
2440 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2441 
2442 		spin_lock(&inode->i_lock);
2443 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2444 			spin_unlock(&inode->i_lock);
2445 
2446 			spin_lock_irq(&sb->s_inode_wblist_lock);
2447 			continue;
2448 		}
2449 		__iget(inode);
2450 		spin_unlock(&inode->i_lock);
2451 		rcu_read_unlock();
2452 
2453 		/*
2454 		 * We keep the error status of individual mapping so that
2455 		 * applications can catch the writeback error using fsync(2).
2456 		 * See filemap_fdatawait_keep_errors() for details.
2457 		 */
2458 		filemap_fdatawait_keep_errors(mapping);
2459 
2460 		cond_resched();
2461 
2462 		iput(inode);
2463 
2464 		rcu_read_lock();
2465 		spin_lock_irq(&sb->s_inode_wblist_lock);
2466 	}
2467 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2468 	rcu_read_unlock();
2469 	mutex_unlock(&sb->s_sync_lock);
2470 }
2471 
2472 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2473 				     enum wb_reason reason, bool skip_if_busy)
2474 {
2475 	struct backing_dev_info *bdi = sb->s_bdi;
2476 	DEFINE_WB_COMPLETION(done, bdi);
2477 	struct wb_writeback_work work = {
2478 		.sb			= sb,
2479 		.sync_mode		= WB_SYNC_NONE,
2480 		.tagged_writepages	= 1,
2481 		.done			= &done,
2482 		.nr_pages		= nr,
2483 		.reason			= reason,
2484 	};
2485 
2486 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2487 		return;
2488 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2489 
2490 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2491 	wb_wait_for_completion(&done);
2492 }
2493 
2494 /**
2495  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2496  * @sb: the superblock
2497  * @nr: the number of pages to write
2498  * @reason: reason why some writeback work initiated
2499  *
2500  * Start writeback on some inodes on this super_block. No guarantees are made
2501  * on how many (if any) will be written, and this function does not wait
2502  * for IO completion of submitted IO.
2503  */
2504 void writeback_inodes_sb_nr(struct super_block *sb,
2505 			    unsigned long nr,
2506 			    enum wb_reason reason)
2507 {
2508 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2509 }
2510 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2511 
2512 /**
2513  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2514  * @sb: the superblock
2515  * @reason: reason why some writeback work was initiated
2516  *
2517  * Start writeback on some inodes on this super_block. No guarantees are made
2518  * on how many (if any) will be written, and this function does not wait
2519  * for IO completion of submitted IO.
2520  */
2521 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2522 {
2523 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2524 }
2525 EXPORT_SYMBOL(writeback_inodes_sb);
2526 
2527 /**
2528  * try_to_writeback_inodes_sb - try to start writeback if none underway
2529  * @sb: the superblock
2530  * @reason: reason why some writeback work was initiated
2531  *
2532  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2533  */
2534 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2535 {
2536 	if (!down_read_trylock(&sb->s_umount))
2537 		return;
2538 
2539 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2540 	up_read(&sb->s_umount);
2541 }
2542 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2543 
2544 /**
2545  * sync_inodes_sb	-	sync sb inode pages
2546  * @sb: the superblock
2547  *
2548  * This function writes and waits on any dirty inode belonging to this
2549  * super_block.
2550  */
2551 void sync_inodes_sb(struct super_block *sb)
2552 {
2553 	struct backing_dev_info *bdi = sb->s_bdi;
2554 	DEFINE_WB_COMPLETION(done, bdi);
2555 	struct wb_writeback_work work = {
2556 		.sb		= sb,
2557 		.sync_mode	= WB_SYNC_ALL,
2558 		.nr_pages	= LONG_MAX,
2559 		.range_cyclic	= 0,
2560 		.done		= &done,
2561 		.reason		= WB_REASON_SYNC,
2562 		.for_sync	= 1,
2563 	};
2564 
2565 	/*
2566 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2567 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2568 	 * bdi_has_dirty() need to be written out too.
2569 	 */
2570 	if (bdi == &noop_backing_dev_info)
2571 		return;
2572 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2573 
2574 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2575 	bdi_down_write_wb_switch_rwsem(bdi);
2576 	bdi_split_work_to_wbs(bdi, &work, false);
2577 	wb_wait_for_completion(&done);
2578 	bdi_up_write_wb_switch_rwsem(bdi);
2579 
2580 	wait_sb_inodes(sb);
2581 }
2582 EXPORT_SYMBOL(sync_inodes_sb);
2583 
2584 /**
2585  * write_inode_now	-	write an inode to disk
2586  * @inode: inode to write to disk
2587  * @sync: whether the write should be synchronous or not
2588  *
2589  * This function commits an inode to disk immediately if it is dirty. This is
2590  * primarily needed by knfsd.
2591  *
2592  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2593  */
2594 int write_inode_now(struct inode *inode, int sync)
2595 {
2596 	struct writeback_control wbc = {
2597 		.nr_to_write = LONG_MAX,
2598 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2599 		.range_start = 0,
2600 		.range_end = LLONG_MAX,
2601 	};
2602 
2603 	if (!mapping_can_writeback(inode->i_mapping))
2604 		wbc.nr_to_write = 0;
2605 
2606 	might_sleep();
2607 	return writeback_single_inode(inode, &wbc);
2608 }
2609 EXPORT_SYMBOL(write_inode_now);
2610 
2611 /**
2612  * sync_inode - write an inode and its pages to disk.
2613  * @inode: the inode to sync
2614  * @wbc: controls the writeback mode
2615  *
2616  * sync_inode() will write an inode and its pages to disk.  It will also
2617  * correctly update the inode on its superblock's dirty inode lists and will
2618  * update inode->i_state.
2619  *
2620  * The caller must have a ref on the inode.
2621  */
2622 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2623 {
2624 	return writeback_single_inode(inode, wbc);
2625 }
2626 EXPORT_SYMBOL(sync_inode);
2627 
2628 /**
2629  * sync_inode_metadata - write an inode to disk
2630  * @inode: the inode to sync
2631  * @wait: wait for I/O to complete.
2632  *
2633  * Write an inode to disk and adjust its dirty state after completion.
2634  *
2635  * Note: only writes the actual inode, no associated data or other metadata.
2636  */
2637 int sync_inode_metadata(struct inode *inode, int wait)
2638 {
2639 	struct writeback_control wbc = {
2640 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2641 		.nr_to_write = 0, /* metadata-only */
2642 	};
2643 
2644 	return sync_inode(inode, &wbc);
2645 }
2646 EXPORT_SYMBOL(sync_inode_metadata);
2647