1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 akpm@zip.com.au 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/sched.h> 20 #include <linux/fs.h> 21 #include <linux/mm.h> 22 #include <linux/writeback.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/buffer_head.h> 26 #include "internal.h" 27 28 /** 29 * __mark_inode_dirty - internal function 30 * @inode: inode to mark 31 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 32 * Mark an inode as dirty. Callers should use mark_inode_dirty or 33 * mark_inode_dirty_sync. 34 * 35 * Put the inode on the super block's dirty list. 36 * 37 * CAREFUL! We mark it dirty unconditionally, but move it onto the 38 * dirty list only if it is hashed or if it refers to a blockdev. 39 * If it was not hashed, it will never be added to the dirty list 40 * even if it is later hashed, as it will have been marked dirty already. 41 * 42 * In short, make sure you hash any inodes _before_ you start marking 43 * them dirty. 44 * 45 * This function *must* be atomic for the I_DIRTY_PAGES case - 46 * set_page_dirty() is called under spinlock in several places. 47 * 48 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 49 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 50 * the kernel-internal blockdev inode represents the dirtying time of the 51 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 52 * page->mapping->host, so the page-dirtying time is recorded in the internal 53 * blockdev inode. 54 */ 55 void __mark_inode_dirty(struct inode *inode, int flags) 56 { 57 struct super_block *sb = inode->i_sb; 58 59 /* 60 * Don't do this for I_DIRTY_PAGES - that doesn't actually 61 * dirty the inode itself 62 */ 63 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 64 if (sb->s_op->dirty_inode) 65 sb->s_op->dirty_inode(inode); 66 } 67 68 /* 69 * make sure that changes are seen by all cpus before we test i_state 70 * -- mikulas 71 */ 72 smp_mb(); 73 74 /* avoid the locking if we can */ 75 if ((inode->i_state & flags) == flags) 76 return; 77 78 if (unlikely(block_dump)) { 79 struct dentry *dentry = NULL; 80 const char *name = "?"; 81 82 if (!list_empty(&inode->i_dentry)) { 83 dentry = list_entry(inode->i_dentry.next, 84 struct dentry, d_alias); 85 if (dentry && dentry->d_name.name) 86 name = (const char *) dentry->d_name.name; 87 } 88 89 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) 90 printk(KERN_DEBUG 91 "%s(%d): dirtied inode %lu (%s) on %s\n", 92 current->comm, task_pid_nr(current), inode->i_ino, 93 name, inode->i_sb->s_id); 94 } 95 96 spin_lock(&inode_lock); 97 if ((inode->i_state & flags) != flags) { 98 const int was_dirty = inode->i_state & I_DIRTY; 99 100 inode->i_state |= flags; 101 102 /* 103 * If the inode is being synced, just update its dirty state. 104 * The unlocker will place the inode on the appropriate 105 * superblock list, based upon its state. 106 */ 107 if (inode->i_state & I_SYNC) 108 goto out; 109 110 /* 111 * Only add valid (hashed) inodes to the superblock's 112 * dirty list. Add blockdev inodes as well. 113 */ 114 if (!S_ISBLK(inode->i_mode)) { 115 if (hlist_unhashed(&inode->i_hash)) 116 goto out; 117 } 118 if (inode->i_state & (I_FREEING|I_CLEAR)) 119 goto out; 120 121 /* 122 * If the inode was already on s_dirty/s_io/s_more_io, don't 123 * reposition it (that would break s_dirty time-ordering). 124 */ 125 if (!was_dirty) { 126 inode->dirtied_when = jiffies; 127 list_move(&inode->i_list, &sb->s_dirty); 128 } 129 } 130 out: 131 spin_unlock(&inode_lock); 132 } 133 134 EXPORT_SYMBOL(__mark_inode_dirty); 135 136 static int write_inode(struct inode *inode, int sync) 137 { 138 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 139 return inode->i_sb->s_op->write_inode(inode, sync); 140 return 0; 141 } 142 143 /* 144 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 145 * furthest end of its superblock's dirty-inode list. 146 * 147 * Before stamping the inode's ->dirtied_when, we check to see whether it is 148 * already the most-recently-dirtied inode on the s_dirty list. If that is 149 * the case then the inode must have been redirtied while it was being written 150 * out and we don't reset its dirtied_when. 151 */ 152 static void redirty_tail(struct inode *inode) 153 { 154 struct super_block *sb = inode->i_sb; 155 156 if (!list_empty(&sb->s_dirty)) { 157 struct inode *tail_inode; 158 159 tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list); 160 if (!time_after_eq(inode->dirtied_when, 161 tail_inode->dirtied_when)) 162 inode->dirtied_when = jiffies; 163 } 164 list_move(&inode->i_list, &sb->s_dirty); 165 } 166 167 /* 168 * requeue inode for re-scanning after sb->s_io list is exhausted. 169 */ 170 static void requeue_io(struct inode *inode) 171 { 172 list_move(&inode->i_list, &inode->i_sb->s_more_io); 173 } 174 175 static void inode_sync_complete(struct inode *inode) 176 { 177 /* 178 * Prevent speculative execution through spin_unlock(&inode_lock); 179 */ 180 smp_mb(); 181 wake_up_bit(&inode->i_state, __I_SYNC); 182 } 183 184 /* 185 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 186 */ 187 static void move_expired_inodes(struct list_head *delaying_queue, 188 struct list_head *dispatch_queue, 189 unsigned long *older_than_this) 190 { 191 while (!list_empty(delaying_queue)) { 192 struct inode *inode = list_entry(delaying_queue->prev, 193 struct inode, i_list); 194 if (older_than_this && 195 time_after(inode->dirtied_when, *older_than_this)) 196 break; 197 list_move(&inode->i_list, dispatch_queue); 198 } 199 } 200 201 /* 202 * Queue all expired dirty inodes for io, eldest first. 203 */ 204 static void queue_io(struct super_block *sb, 205 unsigned long *older_than_this) 206 { 207 list_splice_init(&sb->s_more_io, sb->s_io.prev); 208 move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this); 209 } 210 211 int sb_has_dirty_inodes(struct super_block *sb) 212 { 213 return !list_empty(&sb->s_dirty) || 214 !list_empty(&sb->s_io) || 215 !list_empty(&sb->s_more_io); 216 } 217 EXPORT_SYMBOL(sb_has_dirty_inodes); 218 219 /* 220 * Write a single inode's dirty pages and inode data out to disk. 221 * If `wait' is set, wait on the writeout. 222 * 223 * The whole writeout design is quite complex and fragile. We want to avoid 224 * starvation of particular inodes when others are being redirtied, prevent 225 * livelocks, etc. 226 * 227 * Called under inode_lock. 228 */ 229 static int 230 __sync_single_inode(struct inode *inode, struct writeback_control *wbc) 231 { 232 unsigned dirty; 233 struct address_space *mapping = inode->i_mapping; 234 int wait = wbc->sync_mode == WB_SYNC_ALL; 235 int ret; 236 237 BUG_ON(inode->i_state & I_SYNC); 238 239 /* Set I_SYNC, reset I_DIRTY */ 240 dirty = inode->i_state & I_DIRTY; 241 inode->i_state |= I_SYNC; 242 inode->i_state &= ~I_DIRTY; 243 244 spin_unlock(&inode_lock); 245 246 ret = do_writepages(mapping, wbc); 247 248 /* Don't write the inode if only I_DIRTY_PAGES was set */ 249 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 250 int err = write_inode(inode, wait); 251 if (ret == 0) 252 ret = err; 253 } 254 255 if (wait) { 256 int err = filemap_fdatawait(mapping); 257 if (ret == 0) 258 ret = err; 259 } 260 261 spin_lock(&inode_lock); 262 inode->i_state &= ~I_SYNC; 263 if (!(inode->i_state & I_FREEING)) { 264 if (!(inode->i_state & I_DIRTY) && 265 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 266 /* 267 * We didn't write back all the pages. nfs_writepages() 268 * sometimes bales out without doing anything. Redirty 269 * the inode; Move it from s_io onto s_more_io/s_dirty. 270 */ 271 /* 272 * akpm: if the caller was the kupdate function we put 273 * this inode at the head of s_dirty so it gets first 274 * consideration. Otherwise, move it to the tail, for 275 * the reasons described there. I'm not really sure 276 * how much sense this makes. Presumably I had a good 277 * reasons for doing it this way, and I'd rather not 278 * muck with it at present. 279 */ 280 if (wbc->for_kupdate) { 281 /* 282 * For the kupdate function we move the inode 283 * to s_more_io so it will get more writeout as 284 * soon as the queue becomes uncongested. 285 */ 286 inode->i_state |= I_DIRTY_PAGES; 287 requeue_io(inode); 288 } else { 289 /* 290 * Otherwise fully redirty the inode so that 291 * other inodes on this superblock will get some 292 * writeout. Otherwise heavy writing to one 293 * file would indefinitely suspend writeout of 294 * all the other files. 295 */ 296 inode->i_state |= I_DIRTY_PAGES; 297 redirty_tail(inode); 298 } 299 } else if (inode->i_state & I_DIRTY) { 300 /* 301 * Someone redirtied the inode while were writing back 302 * the pages. 303 */ 304 redirty_tail(inode); 305 } else if (atomic_read(&inode->i_count)) { 306 /* 307 * The inode is clean, inuse 308 */ 309 list_move(&inode->i_list, &inode_in_use); 310 } else { 311 /* 312 * The inode is clean, unused 313 */ 314 list_move(&inode->i_list, &inode_unused); 315 } 316 } 317 inode_sync_complete(inode); 318 return ret; 319 } 320 321 /* 322 * Write out an inode's dirty pages. Called under inode_lock. Either the 323 * caller has ref on the inode (either via __iget or via syscall against an fd) 324 * or the inode has I_WILL_FREE set (via generic_forget_inode) 325 */ 326 static int 327 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 328 { 329 wait_queue_head_t *wqh; 330 331 if (!atomic_read(&inode->i_count)) 332 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 333 else 334 WARN_ON(inode->i_state & I_WILL_FREE); 335 336 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_SYNC)) { 337 struct address_space *mapping = inode->i_mapping; 338 int ret; 339 340 /* 341 * We're skipping this inode because it's locked, and we're not 342 * doing writeback-for-data-integrity. Move it to s_more_io so 343 * that writeback can proceed with the other inodes on s_io. 344 * We'll have another go at writing back this inode when we 345 * completed a full scan of s_io. 346 */ 347 requeue_io(inode); 348 349 /* 350 * Even if we don't actually write the inode itself here, 351 * we can at least start some of the data writeout.. 352 */ 353 spin_unlock(&inode_lock); 354 ret = do_writepages(mapping, wbc); 355 spin_lock(&inode_lock); 356 return ret; 357 } 358 359 /* 360 * It's a data-integrity sync. We must wait. 361 */ 362 if (inode->i_state & I_SYNC) { 363 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 364 365 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 366 do { 367 spin_unlock(&inode_lock); 368 __wait_on_bit(wqh, &wq, inode_wait, 369 TASK_UNINTERRUPTIBLE); 370 spin_lock(&inode_lock); 371 } while (inode->i_state & I_SYNC); 372 } 373 return __sync_single_inode(inode, wbc); 374 } 375 376 /* 377 * Write out a superblock's list of dirty inodes. A wait will be performed 378 * upon no inodes, all inodes or the final one, depending upon sync_mode. 379 * 380 * If older_than_this is non-NULL, then only write out inodes which 381 * had their first dirtying at a time earlier than *older_than_this. 382 * 383 * If we're a pdlfush thread, then implement pdflush collision avoidance 384 * against the entire list. 385 * 386 * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so 387 * that it can be located for waiting on in __writeback_single_inode(). 388 * 389 * Called under inode_lock. 390 * 391 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 392 * This function assumes that the blockdev superblock's inodes are backed by 393 * a variety of queues, so all inodes are searched. For other superblocks, 394 * assume that all inodes are backed by the same queue. 395 * 396 * FIXME: this linear search could get expensive with many fileystems. But 397 * how to fix? We need to go from an address_space to all inodes which share 398 * a queue with that address_space. (Easy: have a global "dirty superblocks" 399 * list). 400 * 401 * The inodes to be written are parked on sb->s_io. They are moved back onto 402 * sb->s_dirty as they are selected for writing. This way, none can be missed 403 * on the writer throttling path, and we get decent balancing between many 404 * throttled threads: we don't want them all piling up on inode_sync_wait. 405 */ 406 static void 407 sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc) 408 { 409 const unsigned long start = jiffies; /* livelock avoidance */ 410 411 if (!wbc->for_kupdate || list_empty(&sb->s_io)) 412 queue_io(sb, wbc->older_than_this); 413 414 while (!list_empty(&sb->s_io)) { 415 struct inode *inode = list_entry(sb->s_io.prev, 416 struct inode, i_list); 417 struct address_space *mapping = inode->i_mapping; 418 struct backing_dev_info *bdi = mapping->backing_dev_info; 419 long pages_skipped; 420 421 if (!bdi_cap_writeback_dirty(bdi)) { 422 redirty_tail(inode); 423 if (sb_is_blkdev_sb(sb)) { 424 /* 425 * Dirty memory-backed blockdev: the ramdisk 426 * driver does this. Skip just this inode 427 */ 428 continue; 429 } 430 /* 431 * Dirty memory-backed inode against a filesystem other 432 * than the kernel-internal bdev filesystem. Skip the 433 * entire superblock. 434 */ 435 break; 436 } 437 438 if (wbc->nonblocking && bdi_write_congested(bdi)) { 439 wbc->encountered_congestion = 1; 440 if (!sb_is_blkdev_sb(sb)) 441 break; /* Skip a congested fs */ 442 requeue_io(inode); 443 continue; /* Skip a congested blockdev */ 444 } 445 446 if (wbc->bdi && bdi != wbc->bdi) { 447 if (!sb_is_blkdev_sb(sb)) 448 break; /* fs has the wrong queue */ 449 requeue_io(inode); 450 continue; /* blockdev has wrong queue */ 451 } 452 453 /* Was this inode dirtied after sync_sb_inodes was called? */ 454 if (time_after(inode->dirtied_when, start)) 455 break; 456 457 /* Is another pdflush already flushing this queue? */ 458 if (current_is_pdflush() && !writeback_acquire(bdi)) 459 break; 460 461 BUG_ON(inode->i_state & I_FREEING); 462 __iget(inode); 463 pages_skipped = wbc->pages_skipped; 464 __writeback_single_inode(inode, wbc); 465 if (wbc->sync_mode == WB_SYNC_HOLD) { 466 inode->dirtied_when = jiffies; 467 list_move(&inode->i_list, &sb->s_dirty); 468 } 469 if (current_is_pdflush()) 470 writeback_release(bdi); 471 if (wbc->pages_skipped != pages_skipped) { 472 /* 473 * writeback is not making progress due to locked 474 * buffers. Skip this inode for now. 475 */ 476 redirty_tail(inode); 477 } 478 spin_unlock(&inode_lock); 479 iput(inode); 480 cond_resched(); 481 spin_lock(&inode_lock); 482 if (wbc->nr_to_write <= 0) 483 break; 484 } 485 if (!list_empty(&sb->s_more_io)) 486 wbc->more_io = 1; 487 return; /* Leave any unwritten inodes on s_io */ 488 } 489 490 /* 491 * Start writeback of dirty pagecache data against all unlocked inodes. 492 * 493 * Note: 494 * We don't need to grab a reference to superblock here. If it has non-empty 495 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed 496 * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all 497 * empty. Since __sync_single_inode() regains inode_lock before it finally moves 498 * inode from superblock lists we are OK. 499 * 500 * If `older_than_this' is non-zero then only flush inodes which have a 501 * flushtime older than *older_than_this. 502 * 503 * If `bdi' is non-zero then we will scan the first inode against each 504 * superblock until we find the matching ones. One group will be the dirty 505 * inodes against a filesystem. Then when we hit the dummy blockdev superblock, 506 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not 507 * super-efficient but we're about to do a ton of I/O... 508 */ 509 void 510 writeback_inodes(struct writeback_control *wbc) 511 { 512 struct super_block *sb; 513 514 might_sleep(); 515 spin_lock(&sb_lock); 516 restart: 517 sb = sb_entry(super_blocks.prev); 518 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) { 519 if (sb_has_dirty_inodes(sb)) { 520 /* we're making our own get_super here */ 521 sb->s_count++; 522 spin_unlock(&sb_lock); 523 /* 524 * If we can't get the readlock, there's no sense in 525 * waiting around, most of the time the FS is going to 526 * be unmounted by the time it is released. 527 */ 528 if (down_read_trylock(&sb->s_umount)) { 529 if (sb->s_root) { 530 spin_lock(&inode_lock); 531 sync_sb_inodes(sb, wbc); 532 spin_unlock(&inode_lock); 533 } 534 up_read(&sb->s_umount); 535 } 536 spin_lock(&sb_lock); 537 if (__put_super_and_need_restart(sb)) 538 goto restart; 539 } 540 if (wbc->nr_to_write <= 0) 541 break; 542 } 543 spin_unlock(&sb_lock); 544 } 545 546 /* 547 * writeback and wait upon the filesystem's dirty inodes. The caller will 548 * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is 549 * used to park the written inodes on sb->s_dirty for the wait pass. 550 * 551 * A finite limit is set on the number of pages which will be written. 552 * To prevent infinite livelock of sys_sync(). 553 * 554 * We add in the number of potentially dirty inodes, because each inode write 555 * can dirty pagecache in the underlying blockdev. 556 */ 557 void sync_inodes_sb(struct super_block *sb, int wait) 558 { 559 struct writeback_control wbc = { 560 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD, 561 .range_start = 0, 562 .range_end = LLONG_MAX, 563 }; 564 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 565 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 566 567 wbc.nr_to_write = nr_dirty + nr_unstable + 568 (inodes_stat.nr_inodes - inodes_stat.nr_unused) + 569 nr_dirty + nr_unstable; 570 wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */ 571 spin_lock(&inode_lock); 572 sync_sb_inodes(sb, &wbc); 573 spin_unlock(&inode_lock); 574 } 575 576 /* 577 * Rather lame livelock avoidance. 578 */ 579 static void set_sb_syncing(int val) 580 { 581 struct super_block *sb; 582 spin_lock(&sb_lock); 583 sb = sb_entry(super_blocks.prev); 584 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) { 585 sb->s_syncing = val; 586 } 587 spin_unlock(&sb_lock); 588 } 589 590 /** 591 * sync_inodes - writes all inodes to disk 592 * @wait: wait for completion 593 * 594 * sync_inodes() goes through each super block's dirty inode list, writes the 595 * inodes out, waits on the writeout and puts the inodes back on the normal 596 * list. 597 * 598 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle 599 * part of the sync functions is that the blockdev "superblock" is processed 600 * last. This is because the write_inode() function of a typical fs will 601 * perform no I/O, but will mark buffers in the blockdev mapping as dirty. 602 * What we want to do is to perform all that dirtying first, and then write 603 * back all those inode blocks via the blockdev mapping in one sweep. So the 604 * additional (somewhat redundant) sync_blockdev() calls here are to make 605 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with 606 * outstanding dirty inodes, the writeback goes block-at-a-time within the 607 * filesystem's write_inode(). This is extremely slow. 608 */ 609 static void __sync_inodes(int wait) 610 { 611 struct super_block *sb; 612 613 spin_lock(&sb_lock); 614 restart: 615 list_for_each_entry(sb, &super_blocks, s_list) { 616 if (sb->s_syncing) 617 continue; 618 sb->s_syncing = 1; 619 sb->s_count++; 620 spin_unlock(&sb_lock); 621 down_read(&sb->s_umount); 622 if (sb->s_root) { 623 sync_inodes_sb(sb, wait); 624 sync_blockdev(sb->s_bdev); 625 } 626 up_read(&sb->s_umount); 627 spin_lock(&sb_lock); 628 if (__put_super_and_need_restart(sb)) 629 goto restart; 630 } 631 spin_unlock(&sb_lock); 632 } 633 634 void sync_inodes(int wait) 635 { 636 set_sb_syncing(0); 637 __sync_inodes(0); 638 639 if (wait) { 640 set_sb_syncing(0); 641 __sync_inodes(1); 642 } 643 } 644 645 /** 646 * write_inode_now - write an inode to disk 647 * @inode: inode to write to disk 648 * @sync: whether the write should be synchronous or not 649 * 650 * This function commits an inode to disk immediately if it is dirty. This is 651 * primarily needed by knfsd. 652 * 653 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 654 */ 655 int write_inode_now(struct inode *inode, int sync) 656 { 657 int ret; 658 struct writeback_control wbc = { 659 .nr_to_write = LONG_MAX, 660 .sync_mode = WB_SYNC_ALL, 661 .range_start = 0, 662 .range_end = LLONG_MAX, 663 }; 664 665 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 666 wbc.nr_to_write = 0; 667 668 might_sleep(); 669 spin_lock(&inode_lock); 670 ret = __writeback_single_inode(inode, &wbc); 671 spin_unlock(&inode_lock); 672 if (sync) 673 inode_sync_wait(inode); 674 return ret; 675 } 676 EXPORT_SYMBOL(write_inode_now); 677 678 /** 679 * sync_inode - write an inode and its pages to disk. 680 * @inode: the inode to sync 681 * @wbc: controls the writeback mode 682 * 683 * sync_inode() will write an inode and its pages to disk. It will also 684 * correctly update the inode on its superblock's dirty inode lists and will 685 * update inode->i_state. 686 * 687 * The caller must have a ref on the inode. 688 */ 689 int sync_inode(struct inode *inode, struct writeback_control *wbc) 690 { 691 int ret; 692 693 spin_lock(&inode_lock); 694 ret = __writeback_single_inode(inode, wbc); 695 spin_unlock(&inode_lock); 696 return ret; 697 } 698 EXPORT_SYMBOL(sync_inode); 699 700 /** 701 * generic_osync_inode - flush all dirty data for a given inode to disk 702 * @inode: inode to write 703 * @mapping: the address_space that should be flushed 704 * @what: what to write and wait upon 705 * 706 * This can be called by file_write functions for files which have the 707 * O_SYNC flag set, to flush dirty writes to disk. 708 * 709 * @what is a bitmask, specifying which part of the inode's data should be 710 * written and waited upon. 711 * 712 * OSYNC_DATA: i_mapping's dirty data 713 * OSYNC_METADATA: the buffers at i_mapping->private_list 714 * OSYNC_INODE: the inode itself 715 */ 716 717 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what) 718 { 719 int err = 0; 720 int need_write_inode_now = 0; 721 int err2; 722 723 if (what & OSYNC_DATA) 724 err = filemap_fdatawrite(mapping); 725 if (what & (OSYNC_METADATA|OSYNC_DATA)) { 726 err2 = sync_mapping_buffers(mapping); 727 if (!err) 728 err = err2; 729 } 730 if (what & OSYNC_DATA) { 731 err2 = filemap_fdatawait(mapping); 732 if (!err) 733 err = err2; 734 } 735 736 spin_lock(&inode_lock); 737 if ((inode->i_state & I_DIRTY) && 738 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC))) 739 need_write_inode_now = 1; 740 spin_unlock(&inode_lock); 741 742 if (need_write_inode_now) { 743 err2 = write_inode_now(inode, 1); 744 if (!err) 745 err = err2; 746 } 747 else 748 inode_sync_wait(inode); 749 750 return err; 751 } 752 753 EXPORT_SYMBOL(generic_osync_inode); 754 755 /** 756 * writeback_acquire: attempt to get exclusive writeback access to a device 757 * @bdi: the device's backing_dev_info structure 758 * 759 * It is a waste of resources to have more than one pdflush thread blocked on 760 * a single request queue. Exclusion at the request_queue level is obtained 761 * via a flag in the request_queue's backing_dev_info.state. 762 * 763 * Non-request_queue-backed address_spaces will share default_backing_dev_info, 764 * unless they implement their own. Which is somewhat inefficient, as this 765 * may prevent concurrent writeback against multiple devices. 766 */ 767 int writeback_acquire(struct backing_dev_info *bdi) 768 { 769 return !test_and_set_bit(BDI_pdflush, &bdi->state); 770 } 771 772 /** 773 * writeback_in_progress: determine whether there is writeback in progress 774 * @bdi: the device's backing_dev_info structure. 775 * 776 * Determine whether there is writeback in progress against a backing device. 777 */ 778 int writeback_in_progress(struct backing_dev_info *bdi) 779 { 780 return test_bit(BDI_pdflush, &bdi->state); 781 } 782 783 /** 784 * writeback_release: relinquish exclusive writeback access against a device. 785 * @bdi: the device's backing_dev_info structure 786 */ 787 void writeback_release(struct backing_dev_info *bdi) 788 { 789 BUG_ON(!writeback_in_progress(bdi)); 790 clear_bit(BDI_pdflush, &bdi->state); 791 } 792