1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include "internal.h" 31 32 /* 33 * 4MB minimal write chunk size 34 */ 35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_work { 41 long nr_pages; 42 struct super_block *sb; 43 unsigned long *older_than_this; 44 enum writeback_sync_modes sync_mode; 45 unsigned int tagged_writepages:1; 46 unsigned int for_kupdate:1; 47 unsigned int range_cyclic:1; 48 unsigned int for_background:1; 49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 50 enum wb_reason reason; /* why was writeback initiated? */ 51 52 struct list_head list; /* pending work list */ 53 struct completion *done; /* set if the caller waits */ 54 }; 55 56 /** 57 * writeback_in_progress - determine whether there is writeback in progress 58 * @bdi: the device's backing_dev_info structure. 59 * 60 * Determine whether there is writeback waiting to be handled against a 61 * backing device. 62 */ 63 int writeback_in_progress(struct backing_dev_info *bdi) 64 { 65 return test_bit(BDI_writeback_running, &bdi->state); 66 } 67 EXPORT_SYMBOL(writeback_in_progress); 68 69 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 70 { 71 struct super_block *sb = inode->i_sb; 72 73 if (sb_is_blkdev_sb(sb)) 74 return inode->i_mapping->backing_dev_info; 75 76 return sb->s_bdi; 77 } 78 79 static inline struct inode *wb_inode(struct list_head *head) 80 { 81 return list_entry(head, struct inode, i_wb_list); 82 } 83 84 /* 85 * Include the creation of the trace points after defining the 86 * wb_writeback_work structure and inline functions so that the definition 87 * remains local to this file. 88 */ 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/writeback.h> 91 92 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 93 94 static void bdi_wakeup_thread(struct backing_dev_info *bdi) 95 { 96 spin_lock_bh(&bdi->wb_lock); 97 if (test_bit(BDI_registered, &bdi->state)) 98 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 99 spin_unlock_bh(&bdi->wb_lock); 100 } 101 102 static void bdi_queue_work(struct backing_dev_info *bdi, 103 struct wb_writeback_work *work) 104 { 105 trace_writeback_queue(bdi, work); 106 107 spin_lock_bh(&bdi->wb_lock); 108 if (!test_bit(BDI_registered, &bdi->state)) { 109 if (work->done) 110 complete(work->done); 111 goto out_unlock; 112 } 113 list_add_tail(&work->list, &bdi->work_list); 114 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 115 out_unlock: 116 spin_unlock_bh(&bdi->wb_lock); 117 } 118 119 static void 120 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 121 bool range_cyclic, enum wb_reason reason) 122 { 123 struct wb_writeback_work *work; 124 125 /* 126 * This is WB_SYNC_NONE writeback, so if allocation fails just 127 * wakeup the thread for old dirty data writeback 128 */ 129 work = kzalloc(sizeof(*work), GFP_ATOMIC); 130 if (!work) { 131 trace_writeback_nowork(bdi); 132 bdi_wakeup_thread(bdi); 133 return; 134 } 135 136 work->sync_mode = WB_SYNC_NONE; 137 work->nr_pages = nr_pages; 138 work->range_cyclic = range_cyclic; 139 work->reason = reason; 140 141 bdi_queue_work(bdi, work); 142 } 143 144 /** 145 * bdi_start_writeback - start writeback 146 * @bdi: the backing device to write from 147 * @nr_pages: the number of pages to write 148 * @reason: reason why some writeback work was initiated 149 * 150 * Description: 151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 152 * started when this function returns, we make no guarantees on 153 * completion. Caller need not hold sb s_umount semaphore. 154 * 155 */ 156 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 157 enum wb_reason reason) 158 { 159 __bdi_start_writeback(bdi, nr_pages, true, reason); 160 } 161 162 /** 163 * bdi_start_background_writeback - start background writeback 164 * @bdi: the backing device to write from 165 * 166 * Description: 167 * This makes sure WB_SYNC_NONE background writeback happens. When 168 * this function returns, it is only guaranteed that for given BDI 169 * some IO is happening if we are over background dirty threshold. 170 * Caller need not hold sb s_umount semaphore. 171 */ 172 void bdi_start_background_writeback(struct backing_dev_info *bdi) 173 { 174 /* 175 * We just wake up the flusher thread. It will perform background 176 * writeback as soon as there is no other work to do. 177 */ 178 trace_writeback_wake_background(bdi); 179 bdi_wakeup_thread(bdi); 180 } 181 182 /* 183 * Remove the inode from the writeback list it is on. 184 */ 185 void inode_wb_list_del(struct inode *inode) 186 { 187 struct backing_dev_info *bdi = inode_to_bdi(inode); 188 189 spin_lock(&bdi->wb.list_lock); 190 list_del_init(&inode->i_wb_list); 191 spin_unlock(&bdi->wb.list_lock); 192 } 193 194 /* 195 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 196 * furthest end of its superblock's dirty-inode list. 197 * 198 * Before stamping the inode's ->dirtied_when, we check to see whether it is 199 * already the most-recently-dirtied inode on the b_dirty list. If that is 200 * the case then the inode must have been redirtied while it was being written 201 * out and we don't reset its dirtied_when. 202 */ 203 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 204 { 205 assert_spin_locked(&wb->list_lock); 206 if (!list_empty(&wb->b_dirty)) { 207 struct inode *tail; 208 209 tail = wb_inode(wb->b_dirty.next); 210 if (time_before(inode->dirtied_when, tail->dirtied_when)) 211 inode->dirtied_when = jiffies; 212 } 213 list_move(&inode->i_wb_list, &wb->b_dirty); 214 } 215 216 /* 217 * requeue inode for re-scanning after bdi->b_io list is exhausted. 218 */ 219 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 220 { 221 assert_spin_locked(&wb->list_lock); 222 list_move(&inode->i_wb_list, &wb->b_more_io); 223 } 224 225 static void inode_sync_complete(struct inode *inode) 226 { 227 inode->i_state &= ~I_SYNC; 228 /* If inode is clean an unused, put it into LRU now... */ 229 inode_add_lru(inode); 230 /* Waiters must see I_SYNC cleared before being woken up */ 231 smp_mb(); 232 wake_up_bit(&inode->i_state, __I_SYNC); 233 } 234 235 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 236 { 237 bool ret = time_after(inode->dirtied_when, t); 238 #ifndef CONFIG_64BIT 239 /* 240 * For inodes being constantly redirtied, dirtied_when can get stuck. 241 * It _appears_ to be in the future, but is actually in distant past. 242 * This test is necessary to prevent such wrapped-around relative times 243 * from permanently stopping the whole bdi writeback. 244 */ 245 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 246 #endif 247 return ret; 248 } 249 250 /* 251 * Move expired (dirtied before work->older_than_this) dirty inodes from 252 * @delaying_queue to @dispatch_queue. 253 */ 254 static int move_expired_inodes(struct list_head *delaying_queue, 255 struct list_head *dispatch_queue, 256 struct wb_writeback_work *work) 257 { 258 LIST_HEAD(tmp); 259 struct list_head *pos, *node; 260 struct super_block *sb = NULL; 261 struct inode *inode; 262 int do_sb_sort = 0; 263 int moved = 0; 264 265 while (!list_empty(delaying_queue)) { 266 inode = wb_inode(delaying_queue->prev); 267 if (work->older_than_this && 268 inode_dirtied_after(inode, *work->older_than_this)) 269 break; 270 list_move(&inode->i_wb_list, &tmp); 271 moved++; 272 if (sb_is_blkdev_sb(inode->i_sb)) 273 continue; 274 if (sb && sb != inode->i_sb) 275 do_sb_sort = 1; 276 sb = inode->i_sb; 277 } 278 279 /* just one sb in list, splice to dispatch_queue and we're done */ 280 if (!do_sb_sort) { 281 list_splice(&tmp, dispatch_queue); 282 goto out; 283 } 284 285 /* Move inodes from one superblock together */ 286 while (!list_empty(&tmp)) { 287 sb = wb_inode(tmp.prev)->i_sb; 288 list_for_each_prev_safe(pos, node, &tmp) { 289 inode = wb_inode(pos); 290 if (inode->i_sb == sb) 291 list_move(&inode->i_wb_list, dispatch_queue); 292 } 293 } 294 out: 295 return moved; 296 } 297 298 /* 299 * Queue all expired dirty inodes for io, eldest first. 300 * Before 301 * newly dirtied b_dirty b_io b_more_io 302 * =============> gf edc BA 303 * After 304 * newly dirtied b_dirty b_io b_more_io 305 * =============> g fBAedc 306 * | 307 * +--> dequeue for IO 308 */ 309 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 310 { 311 int moved; 312 assert_spin_locked(&wb->list_lock); 313 list_splice_init(&wb->b_more_io, &wb->b_io); 314 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 315 trace_writeback_queue_io(wb, work, moved); 316 } 317 318 static int write_inode(struct inode *inode, struct writeback_control *wbc) 319 { 320 int ret; 321 322 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 323 trace_writeback_write_inode_start(inode, wbc); 324 ret = inode->i_sb->s_op->write_inode(inode, wbc); 325 trace_writeback_write_inode(inode, wbc); 326 return ret; 327 } 328 return 0; 329 } 330 331 /* 332 * Wait for writeback on an inode to complete. Called with i_lock held. 333 * Caller must make sure inode cannot go away when we drop i_lock. 334 */ 335 static void __inode_wait_for_writeback(struct inode *inode) 336 __releases(inode->i_lock) 337 __acquires(inode->i_lock) 338 { 339 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 340 wait_queue_head_t *wqh; 341 342 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 343 while (inode->i_state & I_SYNC) { 344 spin_unlock(&inode->i_lock); 345 __wait_on_bit(wqh, &wq, bit_wait, 346 TASK_UNINTERRUPTIBLE); 347 spin_lock(&inode->i_lock); 348 } 349 } 350 351 /* 352 * Wait for writeback on an inode to complete. Caller must have inode pinned. 353 */ 354 void inode_wait_for_writeback(struct inode *inode) 355 { 356 spin_lock(&inode->i_lock); 357 __inode_wait_for_writeback(inode); 358 spin_unlock(&inode->i_lock); 359 } 360 361 /* 362 * Sleep until I_SYNC is cleared. This function must be called with i_lock 363 * held and drops it. It is aimed for callers not holding any inode reference 364 * so once i_lock is dropped, inode can go away. 365 */ 366 static void inode_sleep_on_writeback(struct inode *inode) 367 __releases(inode->i_lock) 368 { 369 DEFINE_WAIT(wait); 370 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 371 int sleep; 372 373 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 374 sleep = inode->i_state & I_SYNC; 375 spin_unlock(&inode->i_lock); 376 if (sleep) 377 schedule(); 378 finish_wait(wqh, &wait); 379 } 380 381 /* 382 * Find proper writeback list for the inode depending on its current state and 383 * possibly also change of its state while we were doing writeback. Here we 384 * handle things such as livelock prevention or fairness of writeback among 385 * inodes. This function can be called only by flusher thread - noone else 386 * processes all inodes in writeback lists and requeueing inodes behind flusher 387 * thread's back can have unexpected consequences. 388 */ 389 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 390 struct writeback_control *wbc) 391 { 392 if (inode->i_state & I_FREEING) 393 return; 394 395 /* 396 * Sync livelock prevention. Each inode is tagged and synced in one 397 * shot. If still dirty, it will be redirty_tail()'ed below. Update 398 * the dirty time to prevent enqueue and sync it again. 399 */ 400 if ((inode->i_state & I_DIRTY) && 401 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 402 inode->dirtied_when = jiffies; 403 404 if (wbc->pages_skipped) { 405 /* 406 * writeback is not making progress due to locked 407 * buffers. Skip this inode for now. 408 */ 409 redirty_tail(inode, wb); 410 return; 411 } 412 413 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 414 /* 415 * We didn't write back all the pages. nfs_writepages() 416 * sometimes bales out without doing anything. 417 */ 418 if (wbc->nr_to_write <= 0) { 419 /* Slice used up. Queue for next turn. */ 420 requeue_io(inode, wb); 421 } else { 422 /* 423 * Writeback blocked by something other than 424 * congestion. Delay the inode for some time to 425 * avoid spinning on the CPU (100% iowait) 426 * retrying writeback of the dirty page/inode 427 * that cannot be performed immediately. 428 */ 429 redirty_tail(inode, wb); 430 } 431 } else if (inode->i_state & I_DIRTY) { 432 /* 433 * Filesystems can dirty the inode during writeback operations, 434 * such as delayed allocation during submission or metadata 435 * updates after data IO completion. 436 */ 437 redirty_tail(inode, wb); 438 } else { 439 /* The inode is clean. Remove from writeback lists. */ 440 list_del_init(&inode->i_wb_list); 441 } 442 } 443 444 /* 445 * Write out an inode and its dirty pages. Do not update the writeback list 446 * linkage. That is left to the caller. The caller is also responsible for 447 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 448 */ 449 static int 450 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 451 { 452 struct address_space *mapping = inode->i_mapping; 453 long nr_to_write = wbc->nr_to_write; 454 unsigned dirty; 455 int ret; 456 457 WARN_ON(!(inode->i_state & I_SYNC)); 458 459 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 460 461 ret = do_writepages(mapping, wbc); 462 463 /* 464 * Make sure to wait on the data before writing out the metadata. 465 * This is important for filesystems that modify metadata on data 466 * I/O completion. We don't do it for sync(2) writeback because it has a 467 * separate, external IO completion path and ->sync_fs for guaranteeing 468 * inode metadata is written back correctly. 469 */ 470 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 471 int err = filemap_fdatawait(mapping); 472 if (ret == 0) 473 ret = err; 474 } 475 476 /* 477 * Some filesystems may redirty the inode during the writeback 478 * due to delalloc, clear dirty metadata flags right before 479 * write_inode() 480 */ 481 spin_lock(&inode->i_lock); 482 483 dirty = inode->i_state & I_DIRTY; 484 inode->i_state &= ~I_DIRTY; 485 486 /* 487 * Paired with smp_mb() in __mark_inode_dirty(). This allows 488 * __mark_inode_dirty() to test i_state without grabbing i_lock - 489 * either they see the I_DIRTY bits cleared or we see the dirtied 490 * inode. 491 * 492 * I_DIRTY_PAGES is always cleared together above even if @mapping 493 * still has dirty pages. The flag is reinstated after smp_mb() if 494 * necessary. This guarantees that either __mark_inode_dirty() 495 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 496 */ 497 smp_mb(); 498 499 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 500 inode->i_state |= I_DIRTY_PAGES; 501 502 spin_unlock(&inode->i_lock); 503 504 /* Don't write the inode if only I_DIRTY_PAGES was set */ 505 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 506 int err = write_inode(inode, wbc); 507 if (ret == 0) 508 ret = err; 509 } 510 trace_writeback_single_inode(inode, wbc, nr_to_write); 511 return ret; 512 } 513 514 /* 515 * Write out an inode's dirty pages. Either the caller has an active reference 516 * on the inode or the inode has I_WILL_FREE set. 517 * 518 * This function is designed to be called for writing back one inode which 519 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 520 * and does more profound writeback list handling in writeback_sb_inodes(). 521 */ 522 static int 523 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 524 struct writeback_control *wbc) 525 { 526 int ret = 0; 527 528 spin_lock(&inode->i_lock); 529 if (!atomic_read(&inode->i_count)) 530 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 531 else 532 WARN_ON(inode->i_state & I_WILL_FREE); 533 534 if (inode->i_state & I_SYNC) { 535 if (wbc->sync_mode != WB_SYNC_ALL) 536 goto out; 537 /* 538 * It's a data-integrity sync. We must wait. Since callers hold 539 * inode reference or inode has I_WILL_FREE set, it cannot go 540 * away under us. 541 */ 542 __inode_wait_for_writeback(inode); 543 } 544 WARN_ON(inode->i_state & I_SYNC); 545 /* 546 * Skip inode if it is clean and we have no outstanding writeback in 547 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 548 * function since flusher thread may be doing for example sync in 549 * parallel and if we move the inode, it could get skipped. So here we 550 * make sure inode is on some writeback list and leave it there unless 551 * we have completely cleaned the inode. 552 */ 553 if (!(inode->i_state & I_DIRTY) && 554 (wbc->sync_mode != WB_SYNC_ALL || 555 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 556 goto out; 557 inode->i_state |= I_SYNC; 558 spin_unlock(&inode->i_lock); 559 560 ret = __writeback_single_inode(inode, wbc); 561 562 spin_lock(&wb->list_lock); 563 spin_lock(&inode->i_lock); 564 /* 565 * If inode is clean, remove it from writeback lists. Otherwise don't 566 * touch it. See comment above for explanation. 567 */ 568 if (!(inode->i_state & I_DIRTY)) 569 list_del_init(&inode->i_wb_list); 570 spin_unlock(&wb->list_lock); 571 inode_sync_complete(inode); 572 out: 573 spin_unlock(&inode->i_lock); 574 return ret; 575 } 576 577 static long writeback_chunk_size(struct backing_dev_info *bdi, 578 struct wb_writeback_work *work) 579 { 580 long pages; 581 582 /* 583 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 584 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 585 * here avoids calling into writeback_inodes_wb() more than once. 586 * 587 * The intended call sequence for WB_SYNC_ALL writeback is: 588 * 589 * wb_writeback() 590 * writeback_sb_inodes() <== called only once 591 * write_cache_pages() <== called once for each inode 592 * (quickly) tag currently dirty pages 593 * (maybe slowly) sync all tagged pages 594 */ 595 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 596 pages = LONG_MAX; 597 else { 598 pages = min(bdi->avg_write_bandwidth / 2, 599 global_dirty_limit / DIRTY_SCOPE); 600 pages = min(pages, work->nr_pages); 601 pages = round_down(pages + MIN_WRITEBACK_PAGES, 602 MIN_WRITEBACK_PAGES); 603 } 604 605 return pages; 606 } 607 608 /* 609 * Write a portion of b_io inodes which belong to @sb. 610 * 611 * Return the number of pages and/or inodes written. 612 */ 613 static long writeback_sb_inodes(struct super_block *sb, 614 struct bdi_writeback *wb, 615 struct wb_writeback_work *work) 616 { 617 struct writeback_control wbc = { 618 .sync_mode = work->sync_mode, 619 .tagged_writepages = work->tagged_writepages, 620 .for_kupdate = work->for_kupdate, 621 .for_background = work->for_background, 622 .for_sync = work->for_sync, 623 .range_cyclic = work->range_cyclic, 624 .range_start = 0, 625 .range_end = LLONG_MAX, 626 }; 627 unsigned long start_time = jiffies; 628 long write_chunk; 629 long wrote = 0; /* count both pages and inodes */ 630 631 while (!list_empty(&wb->b_io)) { 632 struct inode *inode = wb_inode(wb->b_io.prev); 633 634 if (inode->i_sb != sb) { 635 if (work->sb) { 636 /* 637 * We only want to write back data for this 638 * superblock, move all inodes not belonging 639 * to it back onto the dirty list. 640 */ 641 redirty_tail(inode, wb); 642 continue; 643 } 644 645 /* 646 * The inode belongs to a different superblock. 647 * Bounce back to the caller to unpin this and 648 * pin the next superblock. 649 */ 650 break; 651 } 652 653 /* 654 * Don't bother with new inodes or inodes being freed, first 655 * kind does not need periodic writeout yet, and for the latter 656 * kind writeout is handled by the freer. 657 */ 658 spin_lock(&inode->i_lock); 659 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 660 spin_unlock(&inode->i_lock); 661 redirty_tail(inode, wb); 662 continue; 663 } 664 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 665 /* 666 * If this inode is locked for writeback and we are not 667 * doing writeback-for-data-integrity, move it to 668 * b_more_io so that writeback can proceed with the 669 * other inodes on s_io. 670 * 671 * We'll have another go at writing back this inode 672 * when we completed a full scan of b_io. 673 */ 674 spin_unlock(&inode->i_lock); 675 requeue_io(inode, wb); 676 trace_writeback_sb_inodes_requeue(inode); 677 continue; 678 } 679 spin_unlock(&wb->list_lock); 680 681 /* 682 * We already requeued the inode if it had I_SYNC set and we 683 * are doing WB_SYNC_NONE writeback. So this catches only the 684 * WB_SYNC_ALL case. 685 */ 686 if (inode->i_state & I_SYNC) { 687 /* Wait for I_SYNC. This function drops i_lock... */ 688 inode_sleep_on_writeback(inode); 689 /* Inode may be gone, start again */ 690 spin_lock(&wb->list_lock); 691 continue; 692 } 693 inode->i_state |= I_SYNC; 694 spin_unlock(&inode->i_lock); 695 696 write_chunk = writeback_chunk_size(wb->bdi, work); 697 wbc.nr_to_write = write_chunk; 698 wbc.pages_skipped = 0; 699 700 /* 701 * We use I_SYNC to pin the inode in memory. While it is set 702 * evict_inode() will wait so the inode cannot be freed. 703 */ 704 __writeback_single_inode(inode, &wbc); 705 706 work->nr_pages -= write_chunk - wbc.nr_to_write; 707 wrote += write_chunk - wbc.nr_to_write; 708 spin_lock(&wb->list_lock); 709 spin_lock(&inode->i_lock); 710 if (!(inode->i_state & I_DIRTY)) 711 wrote++; 712 requeue_inode(inode, wb, &wbc); 713 inode_sync_complete(inode); 714 spin_unlock(&inode->i_lock); 715 cond_resched_lock(&wb->list_lock); 716 /* 717 * bail out to wb_writeback() often enough to check 718 * background threshold and other termination conditions. 719 */ 720 if (wrote) { 721 if (time_is_before_jiffies(start_time + HZ / 10UL)) 722 break; 723 if (work->nr_pages <= 0) 724 break; 725 } 726 } 727 return wrote; 728 } 729 730 static long __writeback_inodes_wb(struct bdi_writeback *wb, 731 struct wb_writeback_work *work) 732 { 733 unsigned long start_time = jiffies; 734 long wrote = 0; 735 736 while (!list_empty(&wb->b_io)) { 737 struct inode *inode = wb_inode(wb->b_io.prev); 738 struct super_block *sb = inode->i_sb; 739 740 if (!grab_super_passive(sb)) { 741 /* 742 * grab_super_passive() may fail consistently due to 743 * s_umount being grabbed by someone else. Don't use 744 * requeue_io() to avoid busy retrying the inode/sb. 745 */ 746 redirty_tail(inode, wb); 747 continue; 748 } 749 wrote += writeback_sb_inodes(sb, wb, work); 750 drop_super(sb); 751 752 /* refer to the same tests at the end of writeback_sb_inodes */ 753 if (wrote) { 754 if (time_is_before_jiffies(start_time + HZ / 10UL)) 755 break; 756 if (work->nr_pages <= 0) 757 break; 758 } 759 } 760 /* Leave any unwritten inodes on b_io */ 761 return wrote; 762 } 763 764 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 765 enum wb_reason reason) 766 { 767 struct wb_writeback_work work = { 768 .nr_pages = nr_pages, 769 .sync_mode = WB_SYNC_NONE, 770 .range_cyclic = 1, 771 .reason = reason, 772 }; 773 774 spin_lock(&wb->list_lock); 775 if (list_empty(&wb->b_io)) 776 queue_io(wb, &work); 777 __writeback_inodes_wb(wb, &work); 778 spin_unlock(&wb->list_lock); 779 780 return nr_pages - work.nr_pages; 781 } 782 783 static bool over_bground_thresh(struct backing_dev_info *bdi) 784 { 785 unsigned long background_thresh, dirty_thresh; 786 787 global_dirty_limits(&background_thresh, &dirty_thresh); 788 789 if (global_page_state(NR_FILE_DIRTY) + 790 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 791 return true; 792 793 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 794 bdi_dirty_limit(bdi, background_thresh)) 795 return true; 796 797 return false; 798 } 799 800 /* 801 * Called under wb->list_lock. If there are multiple wb per bdi, 802 * only the flusher working on the first wb should do it. 803 */ 804 static void wb_update_bandwidth(struct bdi_writeback *wb, 805 unsigned long start_time) 806 { 807 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 808 } 809 810 /* 811 * Explicit flushing or periodic writeback of "old" data. 812 * 813 * Define "old": the first time one of an inode's pages is dirtied, we mark the 814 * dirtying-time in the inode's address_space. So this periodic writeback code 815 * just walks the superblock inode list, writing back any inodes which are 816 * older than a specific point in time. 817 * 818 * Try to run once per dirty_writeback_interval. But if a writeback event 819 * takes longer than a dirty_writeback_interval interval, then leave a 820 * one-second gap. 821 * 822 * older_than_this takes precedence over nr_to_write. So we'll only write back 823 * all dirty pages if they are all attached to "old" mappings. 824 */ 825 static long wb_writeback(struct bdi_writeback *wb, 826 struct wb_writeback_work *work) 827 { 828 unsigned long wb_start = jiffies; 829 long nr_pages = work->nr_pages; 830 unsigned long oldest_jif; 831 struct inode *inode; 832 long progress; 833 834 oldest_jif = jiffies; 835 work->older_than_this = &oldest_jif; 836 837 spin_lock(&wb->list_lock); 838 for (;;) { 839 /* 840 * Stop writeback when nr_pages has been consumed 841 */ 842 if (work->nr_pages <= 0) 843 break; 844 845 /* 846 * Background writeout and kupdate-style writeback may 847 * run forever. Stop them if there is other work to do 848 * so that e.g. sync can proceed. They'll be restarted 849 * after the other works are all done. 850 */ 851 if ((work->for_background || work->for_kupdate) && 852 !list_empty(&wb->bdi->work_list)) 853 break; 854 855 /* 856 * For background writeout, stop when we are below the 857 * background dirty threshold 858 */ 859 if (work->for_background && !over_bground_thresh(wb->bdi)) 860 break; 861 862 /* 863 * Kupdate and background works are special and we want to 864 * include all inodes that need writing. Livelock avoidance is 865 * handled by these works yielding to any other work so we are 866 * safe. 867 */ 868 if (work->for_kupdate) { 869 oldest_jif = jiffies - 870 msecs_to_jiffies(dirty_expire_interval * 10); 871 } else if (work->for_background) 872 oldest_jif = jiffies; 873 874 trace_writeback_start(wb->bdi, work); 875 if (list_empty(&wb->b_io)) 876 queue_io(wb, work); 877 if (work->sb) 878 progress = writeback_sb_inodes(work->sb, wb, work); 879 else 880 progress = __writeback_inodes_wb(wb, work); 881 trace_writeback_written(wb->bdi, work); 882 883 wb_update_bandwidth(wb, wb_start); 884 885 /* 886 * Did we write something? Try for more 887 * 888 * Dirty inodes are moved to b_io for writeback in batches. 889 * The completion of the current batch does not necessarily 890 * mean the overall work is done. So we keep looping as long 891 * as made some progress on cleaning pages or inodes. 892 */ 893 if (progress) 894 continue; 895 /* 896 * No more inodes for IO, bail 897 */ 898 if (list_empty(&wb->b_more_io)) 899 break; 900 /* 901 * Nothing written. Wait for some inode to 902 * become available for writeback. Otherwise 903 * we'll just busyloop. 904 */ 905 if (!list_empty(&wb->b_more_io)) { 906 trace_writeback_wait(wb->bdi, work); 907 inode = wb_inode(wb->b_more_io.prev); 908 spin_lock(&inode->i_lock); 909 spin_unlock(&wb->list_lock); 910 /* This function drops i_lock... */ 911 inode_sleep_on_writeback(inode); 912 spin_lock(&wb->list_lock); 913 } 914 } 915 spin_unlock(&wb->list_lock); 916 917 return nr_pages - work->nr_pages; 918 } 919 920 /* 921 * Return the next wb_writeback_work struct that hasn't been processed yet. 922 */ 923 static struct wb_writeback_work * 924 get_next_work_item(struct backing_dev_info *bdi) 925 { 926 struct wb_writeback_work *work = NULL; 927 928 spin_lock_bh(&bdi->wb_lock); 929 if (!list_empty(&bdi->work_list)) { 930 work = list_entry(bdi->work_list.next, 931 struct wb_writeback_work, list); 932 list_del_init(&work->list); 933 } 934 spin_unlock_bh(&bdi->wb_lock); 935 return work; 936 } 937 938 /* 939 * Add in the number of potentially dirty inodes, because each inode 940 * write can dirty pagecache in the underlying blockdev. 941 */ 942 static unsigned long get_nr_dirty_pages(void) 943 { 944 return global_page_state(NR_FILE_DIRTY) + 945 global_page_state(NR_UNSTABLE_NFS) + 946 get_nr_dirty_inodes(); 947 } 948 949 static long wb_check_background_flush(struct bdi_writeback *wb) 950 { 951 if (over_bground_thresh(wb->bdi)) { 952 953 struct wb_writeback_work work = { 954 .nr_pages = LONG_MAX, 955 .sync_mode = WB_SYNC_NONE, 956 .for_background = 1, 957 .range_cyclic = 1, 958 .reason = WB_REASON_BACKGROUND, 959 }; 960 961 return wb_writeback(wb, &work); 962 } 963 964 return 0; 965 } 966 967 static long wb_check_old_data_flush(struct bdi_writeback *wb) 968 { 969 unsigned long expired; 970 long nr_pages; 971 972 /* 973 * When set to zero, disable periodic writeback 974 */ 975 if (!dirty_writeback_interval) 976 return 0; 977 978 expired = wb->last_old_flush + 979 msecs_to_jiffies(dirty_writeback_interval * 10); 980 if (time_before(jiffies, expired)) 981 return 0; 982 983 wb->last_old_flush = jiffies; 984 nr_pages = get_nr_dirty_pages(); 985 986 if (nr_pages) { 987 struct wb_writeback_work work = { 988 .nr_pages = nr_pages, 989 .sync_mode = WB_SYNC_NONE, 990 .for_kupdate = 1, 991 .range_cyclic = 1, 992 .reason = WB_REASON_PERIODIC, 993 }; 994 995 return wb_writeback(wb, &work); 996 } 997 998 return 0; 999 } 1000 1001 /* 1002 * Retrieve work items and do the writeback they describe 1003 */ 1004 static long wb_do_writeback(struct bdi_writeback *wb) 1005 { 1006 struct backing_dev_info *bdi = wb->bdi; 1007 struct wb_writeback_work *work; 1008 long wrote = 0; 1009 1010 set_bit(BDI_writeback_running, &wb->bdi->state); 1011 while ((work = get_next_work_item(bdi)) != NULL) { 1012 1013 trace_writeback_exec(bdi, work); 1014 1015 wrote += wb_writeback(wb, work); 1016 1017 /* 1018 * Notify the caller of completion if this is a synchronous 1019 * work item, otherwise just free it. 1020 */ 1021 if (work->done) 1022 complete(work->done); 1023 else 1024 kfree(work); 1025 } 1026 1027 /* 1028 * Check for periodic writeback, kupdated() style 1029 */ 1030 wrote += wb_check_old_data_flush(wb); 1031 wrote += wb_check_background_flush(wb); 1032 clear_bit(BDI_writeback_running, &wb->bdi->state); 1033 1034 return wrote; 1035 } 1036 1037 /* 1038 * Handle writeback of dirty data for the device backed by this bdi. Also 1039 * reschedules periodically and does kupdated style flushing. 1040 */ 1041 void bdi_writeback_workfn(struct work_struct *work) 1042 { 1043 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1044 struct bdi_writeback, dwork); 1045 struct backing_dev_info *bdi = wb->bdi; 1046 long pages_written; 1047 1048 set_worker_desc("flush-%s", dev_name(bdi->dev)); 1049 current->flags |= PF_SWAPWRITE; 1050 1051 if (likely(!current_is_workqueue_rescuer() || 1052 !test_bit(BDI_registered, &bdi->state))) { 1053 /* 1054 * The normal path. Keep writing back @bdi until its 1055 * work_list is empty. Note that this path is also taken 1056 * if @bdi is shutting down even when we're running off the 1057 * rescuer as work_list needs to be drained. 1058 */ 1059 do { 1060 pages_written = wb_do_writeback(wb); 1061 trace_writeback_pages_written(pages_written); 1062 } while (!list_empty(&bdi->work_list)); 1063 } else { 1064 /* 1065 * bdi_wq can't get enough workers and we're running off 1066 * the emergency worker. Don't hog it. Hopefully, 1024 is 1067 * enough for efficient IO. 1068 */ 1069 pages_written = writeback_inodes_wb(&bdi->wb, 1024, 1070 WB_REASON_FORKER_THREAD); 1071 trace_writeback_pages_written(pages_written); 1072 } 1073 1074 if (!list_empty(&bdi->work_list)) 1075 mod_delayed_work(bdi_wq, &wb->dwork, 0); 1076 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1077 bdi_wakeup_thread_delayed(bdi); 1078 1079 current->flags &= ~PF_SWAPWRITE; 1080 } 1081 1082 /* 1083 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1084 * the whole world. 1085 */ 1086 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1087 { 1088 struct backing_dev_info *bdi; 1089 1090 if (!nr_pages) 1091 nr_pages = get_nr_dirty_pages(); 1092 1093 rcu_read_lock(); 1094 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1095 if (!bdi_has_dirty_io(bdi)) 1096 continue; 1097 __bdi_start_writeback(bdi, nr_pages, false, reason); 1098 } 1099 rcu_read_unlock(); 1100 } 1101 1102 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1103 { 1104 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1105 struct dentry *dentry; 1106 const char *name = "?"; 1107 1108 dentry = d_find_alias(inode); 1109 if (dentry) { 1110 spin_lock(&dentry->d_lock); 1111 name = (const char *) dentry->d_name.name; 1112 } 1113 printk(KERN_DEBUG 1114 "%s(%d): dirtied inode %lu (%s) on %s\n", 1115 current->comm, task_pid_nr(current), inode->i_ino, 1116 name, inode->i_sb->s_id); 1117 if (dentry) { 1118 spin_unlock(&dentry->d_lock); 1119 dput(dentry); 1120 } 1121 } 1122 } 1123 1124 /** 1125 * __mark_inode_dirty - internal function 1126 * @inode: inode to mark 1127 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1128 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1129 * mark_inode_dirty_sync. 1130 * 1131 * Put the inode on the super block's dirty list. 1132 * 1133 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1134 * dirty list only if it is hashed or if it refers to a blockdev. 1135 * If it was not hashed, it will never be added to the dirty list 1136 * even if it is later hashed, as it will have been marked dirty already. 1137 * 1138 * In short, make sure you hash any inodes _before_ you start marking 1139 * them dirty. 1140 * 1141 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1142 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1143 * the kernel-internal blockdev inode represents the dirtying time of the 1144 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1145 * page->mapping->host, so the page-dirtying time is recorded in the internal 1146 * blockdev inode. 1147 */ 1148 void __mark_inode_dirty(struct inode *inode, int flags) 1149 { 1150 struct super_block *sb = inode->i_sb; 1151 struct backing_dev_info *bdi = NULL; 1152 1153 /* 1154 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1155 * dirty the inode itself 1156 */ 1157 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1158 trace_writeback_dirty_inode_start(inode, flags); 1159 1160 if (sb->s_op->dirty_inode) 1161 sb->s_op->dirty_inode(inode, flags); 1162 1163 trace_writeback_dirty_inode(inode, flags); 1164 } 1165 1166 /* 1167 * Paired with smp_mb() in __writeback_single_inode() for the 1168 * following lockless i_state test. See there for details. 1169 */ 1170 smp_mb(); 1171 1172 if ((inode->i_state & flags) == flags) 1173 return; 1174 1175 if (unlikely(block_dump)) 1176 block_dump___mark_inode_dirty(inode); 1177 1178 spin_lock(&inode->i_lock); 1179 if ((inode->i_state & flags) != flags) { 1180 const int was_dirty = inode->i_state & I_DIRTY; 1181 1182 inode->i_state |= flags; 1183 1184 /* 1185 * If the inode is being synced, just update its dirty state. 1186 * The unlocker will place the inode on the appropriate 1187 * superblock list, based upon its state. 1188 */ 1189 if (inode->i_state & I_SYNC) 1190 goto out_unlock_inode; 1191 1192 /* 1193 * Only add valid (hashed) inodes to the superblock's 1194 * dirty list. Add blockdev inodes as well. 1195 */ 1196 if (!S_ISBLK(inode->i_mode)) { 1197 if (inode_unhashed(inode)) 1198 goto out_unlock_inode; 1199 } 1200 if (inode->i_state & I_FREEING) 1201 goto out_unlock_inode; 1202 1203 /* 1204 * If the inode was already on b_dirty/b_io/b_more_io, don't 1205 * reposition it (that would break b_dirty time-ordering). 1206 */ 1207 if (!was_dirty) { 1208 bool wakeup_bdi = false; 1209 bdi = inode_to_bdi(inode); 1210 1211 spin_unlock(&inode->i_lock); 1212 spin_lock(&bdi->wb.list_lock); 1213 if (bdi_cap_writeback_dirty(bdi)) { 1214 WARN(!test_bit(BDI_registered, &bdi->state), 1215 "bdi-%s not registered\n", bdi->name); 1216 1217 /* 1218 * If this is the first dirty inode for this 1219 * bdi, we have to wake-up the corresponding 1220 * bdi thread to make sure background 1221 * write-back happens later. 1222 */ 1223 if (!wb_has_dirty_io(&bdi->wb)) 1224 wakeup_bdi = true; 1225 } 1226 1227 inode->dirtied_when = jiffies; 1228 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1229 spin_unlock(&bdi->wb.list_lock); 1230 1231 if (wakeup_bdi) 1232 bdi_wakeup_thread_delayed(bdi); 1233 return; 1234 } 1235 } 1236 out_unlock_inode: 1237 spin_unlock(&inode->i_lock); 1238 1239 } 1240 EXPORT_SYMBOL(__mark_inode_dirty); 1241 1242 static void wait_sb_inodes(struct super_block *sb) 1243 { 1244 struct inode *inode, *old_inode = NULL; 1245 1246 /* 1247 * We need to be protected against the filesystem going from 1248 * r/o to r/w or vice versa. 1249 */ 1250 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1251 1252 spin_lock(&inode_sb_list_lock); 1253 1254 /* 1255 * Data integrity sync. Must wait for all pages under writeback, 1256 * because there may have been pages dirtied before our sync 1257 * call, but which had writeout started before we write it out. 1258 * In which case, the inode may not be on the dirty list, but 1259 * we still have to wait for that writeout. 1260 */ 1261 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1262 struct address_space *mapping = inode->i_mapping; 1263 1264 spin_lock(&inode->i_lock); 1265 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1266 (mapping->nrpages == 0)) { 1267 spin_unlock(&inode->i_lock); 1268 continue; 1269 } 1270 __iget(inode); 1271 spin_unlock(&inode->i_lock); 1272 spin_unlock(&inode_sb_list_lock); 1273 1274 /* 1275 * We hold a reference to 'inode' so it couldn't have been 1276 * removed from s_inodes list while we dropped the 1277 * inode_sb_list_lock. We cannot iput the inode now as we can 1278 * be holding the last reference and we cannot iput it under 1279 * inode_sb_list_lock. So we keep the reference and iput it 1280 * later. 1281 */ 1282 iput(old_inode); 1283 old_inode = inode; 1284 1285 filemap_fdatawait(mapping); 1286 1287 cond_resched(); 1288 1289 spin_lock(&inode_sb_list_lock); 1290 } 1291 spin_unlock(&inode_sb_list_lock); 1292 iput(old_inode); 1293 } 1294 1295 /** 1296 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1297 * @sb: the superblock 1298 * @nr: the number of pages to write 1299 * @reason: reason why some writeback work initiated 1300 * 1301 * Start writeback on some inodes on this super_block. No guarantees are made 1302 * on how many (if any) will be written, and this function does not wait 1303 * for IO completion of submitted IO. 1304 */ 1305 void writeback_inodes_sb_nr(struct super_block *sb, 1306 unsigned long nr, 1307 enum wb_reason reason) 1308 { 1309 DECLARE_COMPLETION_ONSTACK(done); 1310 struct wb_writeback_work work = { 1311 .sb = sb, 1312 .sync_mode = WB_SYNC_NONE, 1313 .tagged_writepages = 1, 1314 .done = &done, 1315 .nr_pages = nr, 1316 .reason = reason, 1317 }; 1318 1319 if (sb->s_bdi == &noop_backing_dev_info) 1320 return; 1321 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1322 bdi_queue_work(sb->s_bdi, &work); 1323 wait_for_completion(&done); 1324 } 1325 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1326 1327 /** 1328 * writeback_inodes_sb - writeback dirty inodes from given super_block 1329 * @sb: the superblock 1330 * @reason: reason why some writeback work was initiated 1331 * 1332 * Start writeback on some inodes on this super_block. No guarantees are made 1333 * on how many (if any) will be written, and this function does not wait 1334 * for IO completion of submitted IO. 1335 */ 1336 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1337 { 1338 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1339 } 1340 EXPORT_SYMBOL(writeback_inodes_sb); 1341 1342 /** 1343 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway 1344 * @sb: the superblock 1345 * @nr: the number of pages to write 1346 * @reason: the reason of writeback 1347 * 1348 * Invoke writeback_inodes_sb_nr if no writeback is currently underway. 1349 * Returns 1 if writeback was started, 0 if not. 1350 */ 1351 int try_to_writeback_inodes_sb_nr(struct super_block *sb, 1352 unsigned long nr, 1353 enum wb_reason reason) 1354 { 1355 if (writeback_in_progress(sb->s_bdi)) 1356 return 1; 1357 1358 if (!down_read_trylock(&sb->s_umount)) 1359 return 0; 1360 1361 writeback_inodes_sb_nr(sb, nr, reason); 1362 up_read(&sb->s_umount); 1363 return 1; 1364 } 1365 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr); 1366 1367 /** 1368 * try_to_writeback_inodes_sb - try to start writeback if none underway 1369 * @sb: the superblock 1370 * @reason: reason why some writeback work was initiated 1371 * 1372 * Implement by try_to_writeback_inodes_sb_nr() 1373 * Returns 1 if writeback was started, 0 if not. 1374 */ 1375 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1376 { 1377 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1378 } 1379 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 1380 1381 /** 1382 * sync_inodes_sb - sync sb inode pages 1383 * @sb: the superblock 1384 * 1385 * This function writes and waits on any dirty inode belonging to this 1386 * super_block. 1387 */ 1388 void sync_inodes_sb(struct super_block *sb) 1389 { 1390 DECLARE_COMPLETION_ONSTACK(done); 1391 struct wb_writeback_work work = { 1392 .sb = sb, 1393 .sync_mode = WB_SYNC_ALL, 1394 .nr_pages = LONG_MAX, 1395 .range_cyclic = 0, 1396 .done = &done, 1397 .reason = WB_REASON_SYNC, 1398 .for_sync = 1, 1399 }; 1400 1401 /* Nothing to do? */ 1402 if (sb->s_bdi == &noop_backing_dev_info) 1403 return; 1404 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1405 1406 bdi_queue_work(sb->s_bdi, &work); 1407 wait_for_completion(&done); 1408 1409 wait_sb_inodes(sb); 1410 } 1411 EXPORT_SYMBOL(sync_inodes_sb); 1412 1413 /** 1414 * write_inode_now - write an inode to disk 1415 * @inode: inode to write to disk 1416 * @sync: whether the write should be synchronous or not 1417 * 1418 * This function commits an inode to disk immediately if it is dirty. This is 1419 * primarily needed by knfsd. 1420 * 1421 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1422 */ 1423 int write_inode_now(struct inode *inode, int sync) 1424 { 1425 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1426 struct writeback_control wbc = { 1427 .nr_to_write = LONG_MAX, 1428 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1429 .range_start = 0, 1430 .range_end = LLONG_MAX, 1431 }; 1432 1433 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1434 wbc.nr_to_write = 0; 1435 1436 might_sleep(); 1437 return writeback_single_inode(inode, wb, &wbc); 1438 } 1439 EXPORT_SYMBOL(write_inode_now); 1440 1441 /** 1442 * sync_inode - write an inode and its pages to disk. 1443 * @inode: the inode to sync 1444 * @wbc: controls the writeback mode 1445 * 1446 * sync_inode() will write an inode and its pages to disk. It will also 1447 * correctly update the inode on its superblock's dirty inode lists and will 1448 * update inode->i_state. 1449 * 1450 * The caller must have a ref on the inode. 1451 */ 1452 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1453 { 1454 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 1455 } 1456 EXPORT_SYMBOL(sync_inode); 1457 1458 /** 1459 * sync_inode_metadata - write an inode to disk 1460 * @inode: the inode to sync 1461 * @wait: wait for I/O to complete. 1462 * 1463 * Write an inode to disk and adjust its dirty state after completion. 1464 * 1465 * Note: only writes the actual inode, no associated data or other metadata. 1466 */ 1467 int sync_inode_metadata(struct inode *inode, int wait) 1468 { 1469 struct writeback_control wbc = { 1470 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1471 .nr_to_write = 0, /* metadata-only */ 1472 }; 1473 1474 return sync_inode(inode, &wbc); 1475 } 1476 EXPORT_SYMBOL(sync_inode_metadata); 1477