1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include "internal.h" 30 31 /* 32 * 4MB minimal write chunk size 33 */ 34 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 35 36 /* 37 * Passed into wb_writeback(), essentially a subset of writeback_control 38 */ 39 struct wb_writeback_work { 40 long nr_pages; 41 struct super_block *sb; 42 unsigned long *older_than_this; 43 enum writeback_sync_modes sync_mode; 44 unsigned int tagged_writepages:1; 45 unsigned int for_kupdate:1; 46 unsigned int range_cyclic:1; 47 unsigned int for_background:1; 48 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 49 enum wb_reason reason; /* why was writeback initiated? */ 50 51 struct list_head list; /* pending work list */ 52 struct completion *done; /* set if the caller waits */ 53 }; 54 55 /** 56 * writeback_in_progress - determine whether there is writeback in progress 57 * @bdi: the device's backing_dev_info structure. 58 * 59 * Determine whether there is writeback waiting to be handled against a 60 * backing device. 61 */ 62 int writeback_in_progress(struct backing_dev_info *bdi) 63 { 64 return test_bit(BDI_writeback_running, &bdi->state); 65 } 66 EXPORT_SYMBOL(writeback_in_progress); 67 68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 69 { 70 struct super_block *sb = inode->i_sb; 71 72 if (strcmp(sb->s_type->name, "bdev") == 0) 73 return inode->i_mapping->backing_dev_info; 74 75 return sb->s_bdi; 76 } 77 78 static inline struct inode *wb_inode(struct list_head *head) 79 { 80 return list_entry(head, struct inode, i_wb_list); 81 } 82 83 /* 84 * Include the creation of the trace points after defining the 85 * wb_writeback_work structure and inline functions so that the definition 86 * remains local to this file. 87 */ 88 #define CREATE_TRACE_POINTS 89 #include <trace/events/writeback.h> 90 91 static void bdi_queue_work(struct backing_dev_info *bdi, 92 struct wb_writeback_work *work) 93 { 94 trace_writeback_queue(bdi, work); 95 96 spin_lock_bh(&bdi->wb_lock); 97 list_add_tail(&work->list, &bdi->work_list); 98 spin_unlock_bh(&bdi->wb_lock); 99 100 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 101 } 102 103 static void 104 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 105 bool range_cyclic, enum wb_reason reason) 106 { 107 struct wb_writeback_work *work; 108 109 /* 110 * This is WB_SYNC_NONE writeback, so if allocation fails just 111 * wakeup the thread for old dirty data writeback 112 */ 113 work = kzalloc(sizeof(*work), GFP_ATOMIC); 114 if (!work) { 115 trace_writeback_nowork(bdi); 116 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 117 return; 118 } 119 120 work->sync_mode = WB_SYNC_NONE; 121 work->nr_pages = nr_pages; 122 work->range_cyclic = range_cyclic; 123 work->reason = reason; 124 125 bdi_queue_work(bdi, work); 126 } 127 128 /** 129 * bdi_start_writeback - start writeback 130 * @bdi: the backing device to write from 131 * @nr_pages: the number of pages to write 132 * @reason: reason why some writeback work was initiated 133 * 134 * Description: 135 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 136 * started when this function returns, we make no guarantees on 137 * completion. Caller need not hold sb s_umount semaphore. 138 * 139 */ 140 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 141 enum wb_reason reason) 142 { 143 __bdi_start_writeback(bdi, nr_pages, true, reason); 144 } 145 146 /** 147 * bdi_start_background_writeback - start background writeback 148 * @bdi: the backing device to write from 149 * 150 * Description: 151 * This makes sure WB_SYNC_NONE background writeback happens. When 152 * this function returns, it is only guaranteed that for given BDI 153 * some IO is happening if we are over background dirty threshold. 154 * Caller need not hold sb s_umount semaphore. 155 */ 156 void bdi_start_background_writeback(struct backing_dev_info *bdi) 157 { 158 /* 159 * We just wake up the flusher thread. It will perform background 160 * writeback as soon as there is no other work to do. 161 */ 162 trace_writeback_wake_background(bdi); 163 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 164 } 165 166 /* 167 * Remove the inode from the writeback list it is on. 168 */ 169 void inode_wb_list_del(struct inode *inode) 170 { 171 struct backing_dev_info *bdi = inode_to_bdi(inode); 172 173 spin_lock(&bdi->wb.list_lock); 174 list_del_init(&inode->i_wb_list); 175 spin_unlock(&bdi->wb.list_lock); 176 } 177 178 /* 179 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 180 * furthest end of its superblock's dirty-inode list. 181 * 182 * Before stamping the inode's ->dirtied_when, we check to see whether it is 183 * already the most-recently-dirtied inode on the b_dirty list. If that is 184 * the case then the inode must have been redirtied while it was being written 185 * out and we don't reset its dirtied_when. 186 */ 187 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 188 { 189 assert_spin_locked(&wb->list_lock); 190 if (!list_empty(&wb->b_dirty)) { 191 struct inode *tail; 192 193 tail = wb_inode(wb->b_dirty.next); 194 if (time_before(inode->dirtied_when, tail->dirtied_when)) 195 inode->dirtied_when = jiffies; 196 } 197 list_move(&inode->i_wb_list, &wb->b_dirty); 198 } 199 200 /* 201 * requeue inode for re-scanning after bdi->b_io list is exhausted. 202 */ 203 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 204 { 205 assert_spin_locked(&wb->list_lock); 206 list_move(&inode->i_wb_list, &wb->b_more_io); 207 } 208 209 static void inode_sync_complete(struct inode *inode) 210 { 211 inode->i_state &= ~I_SYNC; 212 /* If inode is clean an unused, put it into LRU now... */ 213 inode_add_lru(inode); 214 /* Waiters must see I_SYNC cleared before being woken up */ 215 smp_mb(); 216 wake_up_bit(&inode->i_state, __I_SYNC); 217 } 218 219 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 220 { 221 bool ret = time_after(inode->dirtied_when, t); 222 #ifndef CONFIG_64BIT 223 /* 224 * For inodes being constantly redirtied, dirtied_when can get stuck. 225 * It _appears_ to be in the future, but is actually in distant past. 226 * This test is necessary to prevent such wrapped-around relative times 227 * from permanently stopping the whole bdi writeback. 228 */ 229 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 230 #endif 231 return ret; 232 } 233 234 /* 235 * Move expired (dirtied before work->older_than_this) dirty inodes from 236 * @delaying_queue to @dispatch_queue. 237 */ 238 static int move_expired_inodes(struct list_head *delaying_queue, 239 struct list_head *dispatch_queue, 240 struct wb_writeback_work *work) 241 { 242 LIST_HEAD(tmp); 243 struct list_head *pos, *node; 244 struct super_block *sb = NULL; 245 struct inode *inode; 246 int do_sb_sort = 0; 247 int moved = 0; 248 249 while (!list_empty(delaying_queue)) { 250 inode = wb_inode(delaying_queue->prev); 251 if (work->older_than_this && 252 inode_dirtied_after(inode, *work->older_than_this)) 253 break; 254 if (sb && sb != inode->i_sb) 255 do_sb_sort = 1; 256 sb = inode->i_sb; 257 list_move(&inode->i_wb_list, &tmp); 258 moved++; 259 } 260 261 /* just one sb in list, splice to dispatch_queue and we're done */ 262 if (!do_sb_sort) { 263 list_splice(&tmp, dispatch_queue); 264 goto out; 265 } 266 267 /* Move inodes from one superblock together */ 268 while (!list_empty(&tmp)) { 269 sb = wb_inode(tmp.prev)->i_sb; 270 list_for_each_prev_safe(pos, node, &tmp) { 271 inode = wb_inode(pos); 272 if (inode->i_sb == sb) 273 list_move(&inode->i_wb_list, dispatch_queue); 274 } 275 } 276 out: 277 return moved; 278 } 279 280 /* 281 * Queue all expired dirty inodes for io, eldest first. 282 * Before 283 * newly dirtied b_dirty b_io b_more_io 284 * =============> gf edc BA 285 * After 286 * newly dirtied b_dirty b_io b_more_io 287 * =============> g fBAedc 288 * | 289 * +--> dequeue for IO 290 */ 291 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 292 { 293 int moved; 294 assert_spin_locked(&wb->list_lock); 295 list_splice_init(&wb->b_more_io, &wb->b_io); 296 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 297 trace_writeback_queue_io(wb, work, moved); 298 } 299 300 static int write_inode(struct inode *inode, struct writeback_control *wbc) 301 { 302 int ret; 303 304 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 305 trace_writeback_write_inode_start(inode, wbc); 306 ret = inode->i_sb->s_op->write_inode(inode, wbc); 307 trace_writeback_write_inode(inode, wbc); 308 return ret; 309 } 310 return 0; 311 } 312 313 /* 314 * Wait for writeback on an inode to complete. Called with i_lock held. 315 * Caller must make sure inode cannot go away when we drop i_lock. 316 */ 317 static void __inode_wait_for_writeback(struct inode *inode) 318 __releases(inode->i_lock) 319 __acquires(inode->i_lock) 320 { 321 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 322 wait_queue_head_t *wqh; 323 324 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 325 while (inode->i_state & I_SYNC) { 326 spin_unlock(&inode->i_lock); 327 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 328 spin_lock(&inode->i_lock); 329 } 330 } 331 332 /* 333 * Wait for writeback on an inode to complete. Caller must have inode pinned. 334 */ 335 void inode_wait_for_writeback(struct inode *inode) 336 { 337 spin_lock(&inode->i_lock); 338 __inode_wait_for_writeback(inode); 339 spin_unlock(&inode->i_lock); 340 } 341 342 /* 343 * Sleep until I_SYNC is cleared. This function must be called with i_lock 344 * held and drops it. It is aimed for callers not holding any inode reference 345 * so once i_lock is dropped, inode can go away. 346 */ 347 static void inode_sleep_on_writeback(struct inode *inode) 348 __releases(inode->i_lock) 349 { 350 DEFINE_WAIT(wait); 351 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 352 int sleep; 353 354 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 355 sleep = inode->i_state & I_SYNC; 356 spin_unlock(&inode->i_lock); 357 if (sleep) 358 schedule(); 359 finish_wait(wqh, &wait); 360 } 361 362 /* 363 * Find proper writeback list for the inode depending on its current state and 364 * possibly also change of its state while we were doing writeback. Here we 365 * handle things such as livelock prevention or fairness of writeback among 366 * inodes. This function can be called only by flusher thread - noone else 367 * processes all inodes in writeback lists and requeueing inodes behind flusher 368 * thread's back can have unexpected consequences. 369 */ 370 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 371 struct writeback_control *wbc) 372 { 373 if (inode->i_state & I_FREEING) 374 return; 375 376 /* 377 * Sync livelock prevention. Each inode is tagged and synced in one 378 * shot. If still dirty, it will be redirty_tail()'ed below. Update 379 * the dirty time to prevent enqueue and sync it again. 380 */ 381 if ((inode->i_state & I_DIRTY) && 382 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 383 inode->dirtied_when = jiffies; 384 385 if (wbc->pages_skipped) { 386 /* 387 * writeback is not making progress due to locked 388 * buffers. Skip this inode for now. 389 */ 390 redirty_tail(inode, wb); 391 return; 392 } 393 394 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 395 /* 396 * We didn't write back all the pages. nfs_writepages() 397 * sometimes bales out without doing anything. 398 */ 399 if (wbc->nr_to_write <= 0) { 400 /* Slice used up. Queue for next turn. */ 401 requeue_io(inode, wb); 402 } else { 403 /* 404 * Writeback blocked by something other than 405 * congestion. Delay the inode for some time to 406 * avoid spinning on the CPU (100% iowait) 407 * retrying writeback of the dirty page/inode 408 * that cannot be performed immediately. 409 */ 410 redirty_tail(inode, wb); 411 } 412 } else if (inode->i_state & I_DIRTY) { 413 /* 414 * Filesystems can dirty the inode during writeback operations, 415 * such as delayed allocation during submission or metadata 416 * updates after data IO completion. 417 */ 418 redirty_tail(inode, wb); 419 } else { 420 /* The inode is clean. Remove from writeback lists. */ 421 list_del_init(&inode->i_wb_list); 422 } 423 } 424 425 /* 426 * Write out an inode and its dirty pages. Do not update the writeback list 427 * linkage. That is left to the caller. The caller is also responsible for 428 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 429 */ 430 static int 431 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 432 { 433 struct address_space *mapping = inode->i_mapping; 434 long nr_to_write = wbc->nr_to_write; 435 unsigned dirty; 436 int ret; 437 438 WARN_ON(!(inode->i_state & I_SYNC)); 439 440 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 441 442 ret = do_writepages(mapping, wbc); 443 444 /* 445 * Make sure to wait on the data before writing out the metadata. 446 * This is important for filesystems that modify metadata on data 447 * I/O completion. We don't do it for sync(2) writeback because it has a 448 * separate, external IO completion path and ->sync_fs for guaranteeing 449 * inode metadata is written back correctly. 450 */ 451 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 452 int err = filemap_fdatawait(mapping); 453 if (ret == 0) 454 ret = err; 455 } 456 457 /* 458 * Some filesystems may redirty the inode during the writeback 459 * due to delalloc, clear dirty metadata flags right before 460 * write_inode() 461 */ 462 spin_lock(&inode->i_lock); 463 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */ 464 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 465 inode->i_state &= ~I_DIRTY_PAGES; 466 dirty = inode->i_state & I_DIRTY; 467 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 468 spin_unlock(&inode->i_lock); 469 /* Don't write the inode if only I_DIRTY_PAGES was set */ 470 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 471 int err = write_inode(inode, wbc); 472 if (ret == 0) 473 ret = err; 474 } 475 trace_writeback_single_inode(inode, wbc, nr_to_write); 476 return ret; 477 } 478 479 /* 480 * Write out an inode's dirty pages. Either the caller has an active reference 481 * on the inode or the inode has I_WILL_FREE set. 482 * 483 * This function is designed to be called for writing back one inode which 484 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 485 * and does more profound writeback list handling in writeback_sb_inodes(). 486 */ 487 static int 488 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 489 struct writeback_control *wbc) 490 { 491 int ret = 0; 492 493 spin_lock(&inode->i_lock); 494 if (!atomic_read(&inode->i_count)) 495 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 496 else 497 WARN_ON(inode->i_state & I_WILL_FREE); 498 499 if (inode->i_state & I_SYNC) { 500 if (wbc->sync_mode != WB_SYNC_ALL) 501 goto out; 502 /* 503 * It's a data-integrity sync. We must wait. Since callers hold 504 * inode reference or inode has I_WILL_FREE set, it cannot go 505 * away under us. 506 */ 507 __inode_wait_for_writeback(inode); 508 } 509 WARN_ON(inode->i_state & I_SYNC); 510 /* 511 * Skip inode if it is clean. We don't want to mess with writeback 512 * lists in this function since flusher thread may be doing for example 513 * sync in parallel and if we move the inode, it could get skipped. So 514 * here we make sure inode is on some writeback list and leave it there 515 * unless we have completely cleaned the inode. 516 */ 517 if (!(inode->i_state & I_DIRTY)) 518 goto out; 519 inode->i_state |= I_SYNC; 520 spin_unlock(&inode->i_lock); 521 522 ret = __writeback_single_inode(inode, wbc); 523 524 spin_lock(&wb->list_lock); 525 spin_lock(&inode->i_lock); 526 /* 527 * If inode is clean, remove it from writeback lists. Otherwise don't 528 * touch it. See comment above for explanation. 529 */ 530 if (!(inode->i_state & I_DIRTY)) 531 list_del_init(&inode->i_wb_list); 532 spin_unlock(&wb->list_lock); 533 inode_sync_complete(inode); 534 out: 535 spin_unlock(&inode->i_lock); 536 return ret; 537 } 538 539 static long writeback_chunk_size(struct backing_dev_info *bdi, 540 struct wb_writeback_work *work) 541 { 542 long pages; 543 544 /* 545 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 546 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 547 * here avoids calling into writeback_inodes_wb() more than once. 548 * 549 * The intended call sequence for WB_SYNC_ALL writeback is: 550 * 551 * wb_writeback() 552 * writeback_sb_inodes() <== called only once 553 * write_cache_pages() <== called once for each inode 554 * (quickly) tag currently dirty pages 555 * (maybe slowly) sync all tagged pages 556 */ 557 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 558 pages = LONG_MAX; 559 else { 560 pages = min(bdi->avg_write_bandwidth / 2, 561 global_dirty_limit / DIRTY_SCOPE); 562 pages = min(pages, work->nr_pages); 563 pages = round_down(pages + MIN_WRITEBACK_PAGES, 564 MIN_WRITEBACK_PAGES); 565 } 566 567 return pages; 568 } 569 570 /* 571 * Write a portion of b_io inodes which belong to @sb. 572 * 573 * Return the number of pages and/or inodes written. 574 */ 575 static long writeback_sb_inodes(struct super_block *sb, 576 struct bdi_writeback *wb, 577 struct wb_writeback_work *work) 578 { 579 struct writeback_control wbc = { 580 .sync_mode = work->sync_mode, 581 .tagged_writepages = work->tagged_writepages, 582 .for_kupdate = work->for_kupdate, 583 .for_background = work->for_background, 584 .for_sync = work->for_sync, 585 .range_cyclic = work->range_cyclic, 586 .range_start = 0, 587 .range_end = LLONG_MAX, 588 }; 589 unsigned long start_time = jiffies; 590 long write_chunk; 591 long wrote = 0; /* count both pages and inodes */ 592 593 while (!list_empty(&wb->b_io)) { 594 struct inode *inode = wb_inode(wb->b_io.prev); 595 596 if (inode->i_sb != sb) { 597 if (work->sb) { 598 /* 599 * We only want to write back data for this 600 * superblock, move all inodes not belonging 601 * to it back onto the dirty list. 602 */ 603 redirty_tail(inode, wb); 604 continue; 605 } 606 607 /* 608 * The inode belongs to a different superblock. 609 * Bounce back to the caller to unpin this and 610 * pin the next superblock. 611 */ 612 break; 613 } 614 615 /* 616 * Don't bother with new inodes or inodes being freed, first 617 * kind does not need periodic writeout yet, and for the latter 618 * kind writeout is handled by the freer. 619 */ 620 spin_lock(&inode->i_lock); 621 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 622 spin_unlock(&inode->i_lock); 623 redirty_tail(inode, wb); 624 continue; 625 } 626 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 627 /* 628 * If this inode is locked for writeback and we are not 629 * doing writeback-for-data-integrity, move it to 630 * b_more_io so that writeback can proceed with the 631 * other inodes on s_io. 632 * 633 * We'll have another go at writing back this inode 634 * when we completed a full scan of b_io. 635 */ 636 spin_unlock(&inode->i_lock); 637 requeue_io(inode, wb); 638 trace_writeback_sb_inodes_requeue(inode); 639 continue; 640 } 641 spin_unlock(&wb->list_lock); 642 643 /* 644 * We already requeued the inode if it had I_SYNC set and we 645 * are doing WB_SYNC_NONE writeback. So this catches only the 646 * WB_SYNC_ALL case. 647 */ 648 if (inode->i_state & I_SYNC) { 649 /* Wait for I_SYNC. This function drops i_lock... */ 650 inode_sleep_on_writeback(inode); 651 /* Inode may be gone, start again */ 652 spin_lock(&wb->list_lock); 653 continue; 654 } 655 inode->i_state |= I_SYNC; 656 spin_unlock(&inode->i_lock); 657 658 write_chunk = writeback_chunk_size(wb->bdi, work); 659 wbc.nr_to_write = write_chunk; 660 wbc.pages_skipped = 0; 661 662 /* 663 * We use I_SYNC to pin the inode in memory. While it is set 664 * evict_inode() will wait so the inode cannot be freed. 665 */ 666 __writeback_single_inode(inode, &wbc); 667 668 work->nr_pages -= write_chunk - wbc.nr_to_write; 669 wrote += write_chunk - wbc.nr_to_write; 670 spin_lock(&wb->list_lock); 671 spin_lock(&inode->i_lock); 672 if (!(inode->i_state & I_DIRTY)) 673 wrote++; 674 requeue_inode(inode, wb, &wbc); 675 inode_sync_complete(inode); 676 spin_unlock(&inode->i_lock); 677 cond_resched_lock(&wb->list_lock); 678 /* 679 * bail out to wb_writeback() often enough to check 680 * background threshold and other termination conditions. 681 */ 682 if (wrote) { 683 if (time_is_before_jiffies(start_time + HZ / 10UL)) 684 break; 685 if (work->nr_pages <= 0) 686 break; 687 } 688 } 689 return wrote; 690 } 691 692 static long __writeback_inodes_wb(struct bdi_writeback *wb, 693 struct wb_writeback_work *work) 694 { 695 unsigned long start_time = jiffies; 696 long wrote = 0; 697 698 while (!list_empty(&wb->b_io)) { 699 struct inode *inode = wb_inode(wb->b_io.prev); 700 struct super_block *sb = inode->i_sb; 701 702 if (!grab_super_passive(sb)) { 703 /* 704 * grab_super_passive() may fail consistently due to 705 * s_umount being grabbed by someone else. Don't use 706 * requeue_io() to avoid busy retrying the inode/sb. 707 */ 708 redirty_tail(inode, wb); 709 continue; 710 } 711 wrote += writeback_sb_inodes(sb, wb, work); 712 drop_super(sb); 713 714 /* refer to the same tests at the end of writeback_sb_inodes */ 715 if (wrote) { 716 if (time_is_before_jiffies(start_time + HZ / 10UL)) 717 break; 718 if (work->nr_pages <= 0) 719 break; 720 } 721 } 722 /* Leave any unwritten inodes on b_io */ 723 return wrote; 724 } 725 726 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 727 enum wb_reason reason) 728 { 729 struct wb_writeback_work work = { 730 .nr_pages = nr_pages, 731 .sync_mode = WB_SYNC_NONE, 732 .range_cyclic = 1, 733 .reason = reason, 734 }; 735 736 spin_lock(&wb->list_lock); 737 if (list_empty(&wb->b_io)) 738 queue_io(wb, &work); 739 __writeback_inodes_wb(wb, &work); 740 spin_unlock(&wb->list_lock); 741 742 return nr_pages - work.nr_pages; 743 } 744 745 static bool over_bground_thresh(struct backing_dev_info *bdi) 746 { 747 unsigned long background_thresh, dirty_thresh; 748 749 global_dirty_limits(&background_thresh, &dirty_thresh); 750 751 if (global_page_state(NR_FILE_DIRTY) + 752 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 753 return true; 754 755 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 756 bdi_dirty_limit(bdi, background_thresh)) 757 return true; 758 759 return false; 760 } 761 762 /* 763 * Called under wb->list_lock. If there are multiple wb per bdi, 764 * only the flusher working on the first wb should do it. 765 */ 766 static void wb_update_bandwidth(struct bdi_writeback *wb, 767 unsigned long start_time) 768 { 769 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 770 } 771 772 /* 773 * Explicit flushing or periodic writeback of "old" data. 774 * 775 * Define "old": the first time one of an inode's pages is dirtied, we mark the 776 * dirtying-time in the inode's address_space. So this periodic writeback code 777 * just walks the superblock inode list, writing back any inodes which are 778 * older than a specific point in time. 779 * 780 * Try to run once per dirty_writeback_interval. But if a writeback event 781 * takes longer than a dirty_writeback_interval interval, then leave a 782 * one-second gap. 783 * 784 * older_than_this takes precedence over nr_to_write. So we'll only write back 785 * all dirty pages if they are all attached to "old" mappings. 786 */ 787 static long wb_writeback(struct bdi_writeback *wb, 788 struct wb_writeback_work *work) 789 { 790 unsigned long wb_start = jiffies; 791 long nr_pages = work->nr_pages; 792 unsigned long oldest_jif; 793 struct inode *inode; 794 long progress; 795 796 oldest_jif = jiffies; 797 work->older_than_this = &oldest_jif; 798 799 spin_lock(&wb->list_lock); 800 for (;;) { 801 /* 802 * Stop writeback when nr_pages has been consumed 803 */ 804 if (work->nr_pages <= 0) 805 break; 806 807 /* 808 * Background writeout and kupdate-style writeback may 809 * run forever. Stop them if there is other work to do 810 * so that e.g. sync can proceed. They'll be restarted 811 * after the other works are all done. 812 */ 813 if ((work->for_background || work->for_kupdate) && 814 !list_empty(&wb->bdi->work_list)) 815 break; 816 817 /* 818 * For background writeout, stop when we are below the 819 * background dirty threshold 820 */ 821 if (work->for_background && !over_bground_thresh(wb->bdi)) 822 break; 823 824 /* 825 * Kupdate and background works are special and we want to 826 * include all inodes that need writing. Livelock avoidance is 827 * handled by these works yielding to any other work so we are 828 * safe. 829 */ 830 if (work->for_kupdate) { 831 oldest_jif = jiffies - 832 msecs_to_jiffies(dirty_expire_interval * 10); 833 } else if (work->for_background) 834 oldest_jif = jiffies; 835 836 trace_writeback_start(wb->bdi, work); 837 if (list_empty(&wb->b_io)) 838 queue_io(wb, work); 839 if (work->sb) 840 progress = writeback_sb_inodes(work->sb, wb, work); 841 else 842 progress = __writeback_inodes_wb(wb, work); 843 trace_writeback_written(wb->bdi, work); 844 845 wb_update_bandwidth(wb, wb_start); 846 847 /* 848 * Did we write something? Try for more 849 * 850 * Dirty inodes are moved to b_io for writeback in batches. 851 * The completion of the current batch does not necessarily 852 * mean the overall work is done. So we keep looping as long 853 * as made some progress on cleaning pages or inodes. 854 */ 855 if (progress) 856 continue; 857 /* 858 * No more inodes for IO, bail 859 */ 860 if (list_empty(&wb->b_more_io)) 861 break; 862 /* 863 * Nothing written. Wait for some inode to 864 * become available for writeback. Otherwise 865 * we'll just busyloop. 866 */ 867 if (!list_empty(&wb->b_more_io)) { 868 trace_writeback_wait(wb->bdi, work); 869 inode = wb_inode(wb->b_more_io.prev); 870 spin_lock(&inode->i_lock); 871 spin_unlock(&wb->list_lock); 872 /* This function drops i_lock... */ 873 inode_sleep_on_writeback(inode); 874 spin_lock(&wb->list_lock); 875 } 876 } 877 spin_unlock(&wb->list_lock); 878 879 return nr_pages - work->nr_pages; 880 } 881 882 /* 883 * Return the next wb_writeback_work struct that hasn't been processed yet. 884 */ 885 static struct wb_writeback_work * 886 get_next_work_item(struct backing_dev_info *bdi) 887 { 888 struct wb_writeback_work *work = NULL; 889 890 spin_lock_bh(&bdi->wb_lock); 891 if (!list_empty(&bdi->work_list)) { 892 work = list_entry(bdi->work_list.next, 893 struct wb_writeback_work, list); 894 list_del_init(&work->list); 895 } 896 spin_unlock_bh(&bdi->wb_lock); 897 return work; 898 } 899 900 /* 901 * Add in the number of potentially dirty inodes, because each inode 902 * write can dirty pagecache in the underlying blockdev. 903 */ 904 static unsigned long get_nr_dirty_pages(void) 905 { 906 return global_page_state(NR_FILE_DIRTY) + 907 global_page_state(NR_UNSTABLE_NFS) + 908 get_nr_dirty_inodes(); 909 } 910 911 static long wb_check_background_flush(struct bdi_writeback *wb) 912 { 913 if (over_bground_thresh(wb->bdi)) { 914 915 struct wb_writeback_work work = { 916 .nr_pages = LONG_MAX, 917 .sync_mode = WB_SYNC_NONE, 918 .for_background = 1, 919 .range_cyclic = 1, 920 .reason = WB_REASON_BACKGROUND, 921 }; 922 923 return wb_writeback(wb, &work); 924 } 925 926 return 0; 927 } 928 929 static long wb_check_old_data_flush(struct bdi_writeback *wb) 930 { 931 unsigned long expired; 932 long nr_pages; 933 934 /* 935 * When set to zero, disable periodic writeback 936 */ 937 if (!dirty_writeback_interval) 938 return 0; 939 940 expired = wb->last_old_flush + 941 msecs_to_jiffies(dirty_writeback_interval * 10); 942 if (time_before(jiffies, expired)) 943 return 0; 944 945 wb->last_old_flush = jiffies; 946 nr_pages = get_nr_dirty_pages(); 947 948 if (nr_pages) { 949 struct wb_writeback_work work = { 950 .nr_pages = nr_pages, 951 .sync_mode = WB_SYNC_NONE, 952 .for_kupdate = 1, 953 .range_cyclic = 1, 954 .reason = WB_REASON_PERIODIC, 955 }; 956 957 return wb_writeback(wb, &work); 958 } 959 960 return 0; 961 } 962 963 /* 964 * Retrieve work items and do the writeback they describe 965 */ 966 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 967 { 968 struct backing_dev_info *bdi = wb->bdi; 969 struct wb_writeback_work *work; 970 long wrote = 0; 971 972 set_bit(BDI_writeback_running, &wb->bdi->state); 973 while ((work = get_next_work_item(bdi)) != NULL) { 974 /* 975 * Override sync mode, in case we must wait for completion 976 * because this thread is exiting now. 977 */ 978 if (force_wait) 979 work->sync_mode = WB_SYNC_ALL; 980 981 trace_writeback_exec(bdi, work); 982 983 wrote += wb_writeback(wb, work); 984 985 /* 986 * Notify the caller of completion if this is a synchronous 987 * work item, otherwise just free it. 988 */ 989 if (work->done) 990 complete(work->done); 991 else 992 kfree(work); 993 } 994 995 /* 996 * Check for periodic writeback, kupdated() style 997 */ 998 wrote += wb_check_old_data_flush(wb); 999 wrote += wb_check_background_flush(wb); 1000 clear_bit(BDI_writeback_running, &wb->bdi->state); 1001 1002 return wrote; 1003 } 1004 1005 /* 1006 * Handle writeback of dirty data for the device backed by this bdi. Also 1007 * reschedules periodically and does kupdated style flushing. 1008 */ 1009 void bdi_writeback_workfn(struct work_struct *work) 1010 { 1011 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1012 struct bdi_writeback, dwork); 1013 struct backing_dev_info *bdi = wb->bdi; 1014 long pages_written; 1015 1016 set_worker_desc("flush-%s", dev_name(bdi->dev)); 1017 current->flags |= PF_SWAPWRITE; 1018 1019 if (likely(!current_is_workqueue_rescuer() || 1020 list_empty(&bdi->bdi_list))) { 1021 /* 1022 * The normal path. Keep writing back @bdi until its 1023 * work_list is empty. Note that this path is also taken 1024 * if @bdi is shutting down even when we're running off the 1025 * rescuer as work_list needs to be drained. 1026 */ 1027 do { 1028 pages_written = wb_do_writeback(wb, 0); 1029 trace_writeback_pages_written(pages_written); 1030 } while (!list_empty(&bdi->work_list)); 1031 } else { 1032 /* 1033 * bdi_wq can't get enough workers and we're running off 1034 * the emergency worker. Don't hog it. Hopefully, 1024 is 1035 * enough for efficient IO. 1036 */ 1037 pages_written = writeback_inodes_wb(&bdi->wb, 1024, 1038 WB_REASON_FORKER_THREAD); 1039 trace_writeback_pages_written(pages_written); 1040 } 1041 1042 if (!list_empty(&bdi->work_list) || 1043 (wb_has_dirty_io(wb) && dirty_writeback_interval)) 1044 queue_delayed_work(bdi_wq, &wb->dwork, 1045 msecs_to_jiffies(dirty_writeback_interval * 10)); 1046 1047 current->flags &= ~PF_SWAPWRITE; 1048 } 1049 1050 /* 1051 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1052 * the whole world. 1053 */ 1054 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1055 { 1056 struct backing_dev_info *bdi; 1057 1058 if (!nr_pages) { 1059 nr_pages = global_page_state(NR_FILE_DIRTY) + 1060 global_page_state(NR_UNSTABLE_NFS); 1061 } 1062 1063 rcu_read_lock(); 1064 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1065 if (!bdi_has_dirty_io(bdi)) 1066 continue; 1067 __bdi_start_writeback(bdi, nr_pages, false, reason); 1068 } 1069 rcu_read_unlock(); 1070 } 1071 1072 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1073 { 1074 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1075 struct dentry *dentry; 1076 const char *name = "?"; 1077 1078 dentry = d_find_alias(inode); 1079 if (dentry) { 1080 spin_lock(&dentry->d_lock); 1081 name = (const char *) dentry->d_name.name; 1082 } 1083 printk(KERN_DEBUG 1084 "%s(%d): dirtied inode %lu (%s) on %s\n", 1085 current->comm, task_pid_nr(current), inode->i_ino, 1086 name, inode->i_sb->s_id); 1087 if (dentry) { 1088 spin_unlock(&dentry->d_lock); 1089 dput(dentry); 1090 } 1091 } 1092 } 1093 1094 /** 1095 * __mark_inode_dirty - internal function 1096 * @inode: inode to mark 1097 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1098 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1099 * mark_inode_dirty_sync. 1100 * 1101 * Put the inode on the super block's dirty list. 1102 * 1103 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1104 * dirty list only if it is hashed or if it refers to a blockdev. 1105 * If it was not hashed, it will never be added to the dirty list 1106 * even if it is later hashed, as it will have been marked dirty already. 1107 * 1108 * In short, make sure you hash any inodes _before_ you start marking 1109 * them dirty. 1110 * 1111 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1112 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1113 * the kernel-internal blockdev inode represents the dirtying time of the 1114 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1115 * page->mapping->host, so the page-dirtying time is recorded in the internal 1116 * blockdev inode. 1117 */ 1118 void __mark_inode_dirty(struct inode *inode, int flags) 1119 { 1120 struct super_block *sb = inode->i_sb; 1121 struct backing_dev_info *bdi = NULL; 1122 1123 /* 1124 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1125 * dirty the inode itself 1126 */ 1127 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1128 trace_writeback_dirty_inode_start(inode, flags); 1129 1130 if (sb->s_op->dirty_inode) 1131 sb->s_op->dirty_inode(inode, flags); 1132 1133 trace_writeback_dirty_inode(inode, flags); 1134 } 1135 1136 /* 1137 * make sure that changes are seen by all cpus before we test i_state 1138 * -- mikulas 1139 */ 1140 smp_mb(); 1141 1142 /* avoid the locking if we can */ 1143 if ((inode->i_state & flags) == flags) 1144 return; 1145 1146 if (unlikely(block_dump)) 1147 block_dump___mark_inode_dirty(inode); 1148 1149 spin_lock(&inode->i_lock); 1150 if ((inode->i_state & flags) != flags) { 1151 const int was_dirty = inode->i_state & I_DIRTY; 1152 1153 inode->i_state |= flags; 1154 1155 /* 1156 * If the inode is being synced, just update its dirty state. 1157 * The unlocker will place the inode on the appropriate 1158 * superblock list, based upon its state. 1159 */ 1160 if (inode->i_state & I_SYNC) 1161 goto out_unlock_inode; 1162 1163 /* 1164 * Only add valid (hashed) inodes to the superblock's 1165 * dirty list. Add blockdev inodes as well. 1166 */ 1167 if (!S_ISBLK(inode->i_mode)) { 1168 if (inode_unhashed(inode)) 1169 goto out_unlock_inode; 1170 } 1171 if (inode->i_state & I_FREEING) 1172 goto out_unlock_inode; 1173 1174 /* 1175 * If the inode was already on b_dirty/b_io/b_more_io, don't 1176 * reposition it (that would break b_dirty time-ordering). 1177 */ 1178 if (!was_dirty) { 1179 bool wakeup_bdi = false; 1180 bdi = inode_to_bdi(inode); 1181 1182 if (bdi_cap_writeback_dirty(bdi)) { 1183 WARN(!test_bit(BDI_registered, &bdi->state), 1184 "bdi-%s not registered\n", bdi->name); 1185 1186 /* 1187 * If this is the first dirty inode for this 1188 * bdi, we have to wake-up the corresponding 1189 * bdi thread to make sure background 1190 * write-back happens later. 1191 */ 1192 if (!wb_has_dirty_io(&bdi->wb)) 1193 wakeup_bdi = true; 1194 } 1195 1196 spin_unlock(&inode->i_lock); 1197 spin_lock(&bdi->wb.list_lock); 1198 inode->dirtied_when = jiffies; 1199 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1200 spin_unlock(&bdi->wb.list_lock); 1201 1202 if (wakeup_bdi) 1203 bdi_wakeup_thread_delayed(bdi); 1204 return; 1205 } 1206 } 1207 out_unlock_inode: 1208 spin_unlock(&inode->i_lock); 1209 1210 } 1211 EXPORT_SYMBOL(__mark_inode_dirty); 1212 1213 static void wait_sb_inodes(struct super_block *sb) 1214 { 1215 struct inode *inode, *old_inode = NULL; 1216 1217 /* 1218 * We need to be protected against the filesystem going from 1219 * r/o to r/w or vice versa. 1220 */ 1221 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1222 1223 spin_lock(&inode_sb_list_lock); 1224 1225 /* 1226 * Data integrity sync. Must wait for all pages under writeback, 1227 * because there may have been pages dirtied before our sync 1228 * call, but which had writeout started before we write it out. 1229 * In which case, the inode may not be on the dirty list, but 1230 * we still have to wait for that writeout. 1231 */ 1232 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1233 struct address_space *mapping = inode->i_mapping; 1234 1235 spin_lock(&inode->i_lock); 1236 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1237 (mapping->nrpages == 0)) { 1238 spin_unlock(&inode->i_lock); 1239 continue; 1240 } 1241 __iget(inode); 1242 spin_unlock(&inode->i_lock); 1243 spin_unlock(&inode_sb_list_lock); 1244 1245 /* 1246 * We hold a reference to 'inode' so it couldn't have been 1247 * removed from s_inodes list while we dropped the 1248 * inode_sb_list_lock. We cannot iput the inode now as we can 1249 * be holding the last reference and we cannot iput it under 1250 * inode_sb_list_lock. So we keep the reference and iput it 1251 * later. 1252 */ 1253 iput(old_inode); 1254 old_inode = inode; 1255 1256 filemap_fdatawait(mapping); 1257 1258 cond_resched(); 1259 1260 spin_lock(&inode_sb_list_lock); 1261 } 1262 spin_unlock(&inode_sb_list_lock); 1263 iput(old_inode); 1264 } 1265 1266 /** 1267 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1268 * @sb: the superblock 1269 * @nr: the number of pages to write 1270 * @reason: reason why some writeback work initiated 1271 * 1272 * Start writeback on some inodes on this super_block. No guarantees are made 1273 * on how many (if any) will be written, and this function does not wait 1274 * for IO completion of submitted IO. 1275 */ 1276 void writeback_inodes_sb_nr(struct super_block *sb, 1277 unsigned long nr, 1278 enum wb_reason reason) 1279 { 1280 DECLARE_COMPLETION_ONSTACK(done); 1281 struct wb_writeback_work work = { 1282 .sb = sb, 1283 .sync_mode = WB_SYNC_NONE, 1284 .tagged_writepages = 1, 1285 .done = &done, 1286 .nr_pages = nr, 1287 .reason = reason, 1288 }; 1289 1290 if (sb->s_bdi == &noop_backing_dev_info) 1291 return; 1292 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1293 bdi_queue_work(sb->s_bdi, &work); 1294 wait_for_completion(&done); 1295 } 1296 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1297 1298 /** 1299 * writeback_inodes_sb - writeback dirty inodes from given super_block 1300 * @sb: the superblock 1301 * @reason: reason why some writeback work was initiated 1302 * 1303 * Start writeback on some inodes on this super_block. No guarantees are made 1304 * on how many (if any) will be written, and this function does not wait 1305 * for IO completion of submitted IO. 1306 */ 1307 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1308 { 1309 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1310 } 1311 EXPORT_SYMBOL(writeback_inodes_sb); 1312 1313 /** 1314 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway 1315 * @sb: the superblock 1316 * @nr: the number of pages to write 1317 * @reason: the reason of writeback 1318 * 1319 * Invoke writeback_inodes_sb_nr if no writeback is currently underway. 1320 * Returns 1 if writeback was started, 0 if not. 1321 */ 1322 int try_to_writeback_inodes_sb_nr(struct super_block *sb, 1323 unsigned long nr, 1324 enum wb_reason reason) 1325 { 1326 if (writeback_in_progress(sb->s_bdi)) 1327 return 1; 1328 1329 if (!down_read_trylock(&sb->s_umount)) 1330 return 0; 1331 1332 writeback_inodes_sb_nr(sb, nr, reason); 1333 up_read(&sb->s_umount); 1334 return 1; 1335 } 1336 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr); 1337 1338 /** 1339 * try_to_writeback_inodes_sb - try to start writeback if none underway 1340 * @sb: the superblock 1341 * @reason: reason why some writeback work was initiated 1342 * 1343 * Implement by try_to_writeback_inodes_sb_nr() 1344 * Returns 1 if writeback was started, 0 if not. 1345 */ 1346 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1347 { 1348 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1349 } 1350 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 1351 1352 /** 1353 * sync_inodes_sb - sync sb inode pages 1354 * @sb: the superblock 1355 * 1356 * This function writes and waits on any dirty inode belonging to this 1357 * super_block. 1358 */ 1359 void sync_inodes_sb(struct super_block *sb) 1360 { 1361 DECLARE_COMPLETION_ONSTACK(done); 1362 struct wb_writeback_work work = { 1363 .sb = sb, 1364 .sync_mode = WB_SYNC_ALL, 1365 .nr_pages = LONG_MAX, 1366 .range_cyclic = 0, 1367 .done = &done, 1368 .reason = WB_REASON_SYNC, 1369 .for_sync = 1, 1370 }; 1371 1372 /* Nothing to do? */ 1373 if (sb->s_bdi == &noop_backing_dev_info) 1374 return; 1375 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1376 1377 bdi_queue_work(sb->s_bdi, &work); 1378 wait_for_completion(&done); 1379 1380 wait_sb_inodes(sb); 1381 } 1382 EXPORT_SYMBOL(sync_inodes_sb); 1383 1384 /** 1385 * write_inode_now - write an inode to disk 1386 * @inode: inode to write to disk 1387 * @sync: whether the write should be synchronous or not 1388 * 1389 * This function commits an inode to disk immediately if it is dirty. This is 1390 * primarily needed by knfsd. 1391 * 1392 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1393 */ 1394 int write_inode_now(struct inode *inode, int sync) 1395 { 1396 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1397 struct writeback_control wbc = { 1398 .nr_to_write = LONG_MAX, 1399 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1400 .range_start = 0, 1401 .range_end = LLONG_MAX, 1402 }; 1403 1404 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1405 wbc.nr_to_write = 0; 1406 1407 might_sleep(); 1408 return writeback_single_inode(inode, wb, &wbc); 1409 } 1410 EXPORT_SYMBOL(write_inode_now); 1411 1412 /** 1413 * sync_inode - write an inode and its pages to disk. 1414 * @inode: the inode to sync 1415 * @wbc: controls the writeback mode 1416 * 1417 * sync_inode() will write an inode and its pages to disk. It will also 1418 * correctly update the inode on its superblock's dirty inode lists and will 1419 * update inode->i_state. 1420 * 1421 * The caller must have a ref on the inode. 1422 */ 1423 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1424 { 1425 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 1426 } 1427 EXPORT_SYMBOL(sync_inode); 1428 1429 /** 1430 * sync_inode_metadata - write an inode to disk 1431 * @inode: the inode to sync 1432 * @wait: wait for I/O to complete. 1433 * 1434 * Write an inode to disk and adjust its dirty state after completion. 1435 * 1436 * Note: only writes the actual inode, no associated data or other metadata. 1437 */ 1438 int sync_inode_metadata(struct inode *inode, int wait) 1439 { 1440 struct writeback_control wbc = { 1441 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1442 .nr_to_write = 0, /* metadata-only */ 1443 }; 1444 1445 return sync_inode(inode, &wbc); 1446 } 1447 EXPORT_SYMBOL(sync_inode_metadata); 1448