1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 assert_spin_locked(&inode->i_lock); 124 WARN_ON_ONCE(inode->i_state & I_FREEING); 125 126 list_move(&inode->i_io_list, head); 127 128 /* dirty_time doesn't count as dirty_io until expiration */ 129 if (head != &wb->b_dirty_time) 130 return wb_io_lists_populated(wb); 131 132 wb_io_lists_depopulated(wb); 133 return false; 134 } 135 136 static void wb_wakeup(struct bdi_writeback *wb) 137 { 138 spin_lock_irq(&wb->work_lock); 139 if (test_bit(WB_registered, &wb->state)) 140 mod_delayed_work(bdi_wq, &wb->dwork, 0); 141 spin_unlock_irq(&wb->work_lock); 142 } 143 144 /* 145 * This function is used when the first inode for this wb is marked dirty. It 146 * wakes-up the corresponding bdi thread which should then take care of the 147 * periodic background write-out of dirty inodes. Since the write-out would 148 * starts only 'dirty_writeback_interval' centisecs from now anyway, we just 149 * set up a timer which wakes the bdi thread up later. 150 * 151 * Note, we wouldn't bother setting up the timer, but this function is on the 152 * fast-path (used by '__mark_inode_dirty()'), so we save few context switches 153 * by delaying the wake-up. 154 * 155 * We have to be careful not to postpone flush work if it is scheduled for 156 * earlier. Thus we use queue_delayed_work(). 157 */ 158 static void wb_wakeup_delayed(struct bdi_writeback *wb) 159 { 160 unsigned long timeout; 161 162 timeout = msecs_to_jiffies(dirty_writeback_interval * 10); 163 spin_lock_irq(&wb->work_lock); 164 if (test_bit(WB_registered, &wb->state)) 165 queue_delayed_work(bdi_wq, &wb->dwork, timeout); 166 spin_unlock_irq(&wb->work_lock); 167 } 168 169 static void finish_writeback_work(struct wb_writeback_work *work) 170 { 171 struct wb_completion *done = work->done; 172 173 if (work->auto_free) 174 kfree(work); 175 if (done) { 176 wait_queue_head_t *waitq = done->waitq; 177 178 /* @done can't be accessed after the following dec */ 179 if (atomic_dec_and_test(&done->cnt)) 180 wake_up_all(waitq); 181 } 182 } 183 184 static void wb_queue_work(struct bdi_writeback *wb, 185 struct wb_writeback_work *work) 186 { 187 trace_writeback_queue(wb, work); 188 189 if (work->done) 190 atomic_inc(&work->done->cnt); 191 192 spin_lock_irq(&wb->work_lock); 193 194 if (test_bit(WB_registered, &wb->state)) { 195 list_add_tail(&work->list, &wb->work_list); 196 mod_delayed_work(bdi_wq, &wb->dwork, 0); 197 } else 198 finish_writeback_work(work); 199 200 spin_unlock_irq(&wb->work_lock); 201 } 202 203 /** 204 * wb_wait_for_completion - wait for completion of bdi_writeback_works 205 * @done: target wb_completion 206 * 207 * Wait for one or more work items issued to @bdi with their ->done field 208 * set to @done, which should have been initialized with 209 * DEFINE_WB_COMPLETION(). This function returns after all such work items 210 * are completed. Work items which are waited upon aren't freed 211 * automatically on completion. 212 */ 213 void wb_wait_for_completion(struct wb_completion *done) 214 { 215 atomic_dec(&done->cnt); /* put down the initial count */ 216 wait_event(*done->waitq, !atomic_read(&done->cnt)); 217 } 218 219 #ifdef CONFIG_CGROUP_WRITEBACK 220 221 /* 222 * Parameters for foreign inode detection, see wbc_detach_inode() to see 223 * how they're used. 224 * 225 * These paramters are inherently heuristical as the detection target 226 * itself is fuzzy. All we want to do is detaching an inode from the 227 * current owner if it's being written to by some other cgroups too much. 228 * 229 * The current cgroup writeback is built on the assumption that multiple 230 * cgroups writing to the same inode concurrently is very rare and a mode 231 * of operation which isn't well supported. As such, the goal is not 232 * taking too long when a different cgroup takes over an inode while 233 * avoiding too aggressive flip-flops from occasional foreign writes. 234 * 235 * We record, very roughly, 2s worth of IO time history and if more than 236 * half of that is foreign, trigger the switch. The recording is quantized 237 * to 16 slots. To avoid tiny writes from swinging the decision too much, 238 * writes smaller than 1/8 of avg size are ignored. 239 */ 240 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 241 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 242 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 243 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 244 245 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 246 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 247 /* each slot's duration is 2s / 16 */ 248 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 249 /* if foreign slots >= 8, switch */ 250 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 251 /* one round can affect upto 5 slots */ 252 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 253 254 /* 255 * Maximum inodes per isw. A specific value has been chosen to make 256 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 257 */ 258 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 259 / sizeof(struct inode *)) 260 261 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 262 static struct workqueue_struct *isw_wq; 263 264 void __inode_attach_wb(struct inode *inode, struct folio *folio) 265 { 266 struct backing_dev_info *bdi = inode_to_bdi(inode); 267 struct bdi_writeback *wb = NULL; 268 269 if (inode_cgwb_enabled(inode)) { 270 struct cgroup_subsys_state *memcg_css; 271 272 if (folio) { 273 memcg_css = mem_cgroup_css_from_folio(folio); 274 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 275 } else { 276 /* must pin memcg_css, see wb_get_create() */ 277 memcg_css = task_get_css(current, memory_cgrp_id); 278 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 279 css_put(memcg_css); 280 } 281 } 282 283 if (!wb) 284 wb = &bdi->wb; 285 286 /* 287 * There may be multiple instances of this function racing to 288 * update the same inode. Use cmpxchg() to tell the winner. 289 */ 290 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 291 wb_put(wb); 292 } 293 294 /** 295 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 296 * @inode: inode of interest with i_lock held 297 * @wb: target bdi_writeback 298 * 299 * Remove the inode from wb's io lists and if necessarily put onto b_attached 300 * list. Only inodes attached to cgwb's are kept on this list. 301 */ 302 static void inode_cgwb_move_to_attached(struct inode *inode, 303 struct bdi_writeback *wb) 304 { 305 assert_spin_locked(&wb->list_lock); 306 assert_spin_locked(&inode->i_lock); 307 WARN_ON_ONCE(inode->i_state & I_FREEING); 308 309 inode->i_state &= ~I_SYNC_QUEUED; 310 if (wb != &wb->bdi->wb) 311 list_move(&inode->i_io_list, &wb->b_attached); 312 else 313 list_del_init(&inode->i_io_list); 314 wb_io_lists_depopulated(wb); 315 } 316 317 /** 318 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 319 * @inode: inode of interest with i_lock held 320 * 321 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 322 * held on entry and is released on return. The returned wb is guaranteed 323 * to stay @inode's associated wb until its list_lock is released. 324 */ 325 static struct bdi_writeback * 326 locked_inode_to_wb_and_lock_list(struct inode *inode) 327 __releases(&inode->i_lock) 328 __acquires(&wb->list_lock) 329 { 330 while (true) { 331 struct bdi_writeback *wb = inode_to_wb(inode); 332 333 /* 334 * inode_to_wb() association is protected by both 335 * @inode->i_lock and @wb->list_lock but list_lock nests 336 * outside i_lock. Drop i_lock and verify that the 337 * association hasn't changed after acquiring list_lock. 338 */ 339 wb_get(wb); 340 spin_unlock(&inode->i_lock); 341 spin_lock(&wb->list_lock); 342 343 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 344 if (likely(wb == inode->i_wb)) { 345 wb_put(wb); /* @inode already has ref */ 346 return wb; 347 } 348 349 spin_unlock(&wb->list_lock); 350 wb_put(wb); 351 cpu_relax(); 352 spin_lock(&inode->i_lock); 353 } 354 } 355 356 /** 357 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 358 * @inode: inode of interest 359 * 360 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 361 * on entry. 362 */ 363 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 364 __acquires(&wb->list_lock) 365 { 366 spin_lock(&inode->i_lock); 367 return locked_inode_to_wb_and_lock_list(inode); 368 } 369 370 struct inode_switch_wbs_context { 371 struct rcu_work work; 372 373 /* 374 * Multiple inodes can be switched at once. The switching procedure 375 * consists of two parts, separated by a RCU grace period. To make 376 * sure that the second part is executed for each inode gone through 377 * the first part, all inode pointers are placed into a NULL-terminated 378 * array embedded into struct inode_switch_wbs_context. Otherwise 379 * an inode could be left in a non-consistent state. 380 */ 381 struct bdi_writeback *new_wb; 382 struct inode *inodes[]; 383 }; 384 385 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 386 { 387 down_write(&bdi->wb_switch_rwsem); 388 } 389 390 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 391 { 392 up_write(&bdi->wb_switch_rwsem); 393 } 394 395 static bool inode_do_switch_wbs(struct inode *inode, 396 struct bdi_writeback *old_wb, 397 struct bdi_writeback *new_wb) 398 { 399 struct address_space *mapping = inode->i_mapping; 400 XA_STATE(xas, &mapping->i_pages, 0); 401 struct folio *folio; 402 bool switched = false; 403 404 spin_lock(&inode->i_lock); 405 xa_lock_irq(&mapping->i_pages); 406 407 /* 408 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 409 * path owns the inode and we shouldn't modify ->i_io_list. 410 */ 411 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 412 goto skip_switch; 413 414 trace_inode_switch_wbs(inode, old_wb, new_wb); 415 416 /* 417 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 418 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to 419 * folios actually under writeback. 420 */ 421 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 422 if (folio_test_dirty(folio)) { 423 long nr = folio_nr_pages(folio); 424 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); 425 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); 426 } 427 } 428 429 xas_set(&xas, 0); 430 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 431 long nr = folio_nr_pages(folio); 432 WARN_ON_ONCE(!folio_test_writeback(folio)); 433 wb_stat_mod(old_wb, WB_WRITEBACK, -nr); 434 wb_stat_mod(new_wb, WB_WRITEBACK, nr); 435 } 436 437 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 438 atomic_dec(&old_wb->writeback_inodes); 439 atomic_inc(&new_wb->writeback_inodes); 440 } 441 442 wb_get(new_wb); 443 444 /* 445 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 446 * the specific list @inode was on is ignored and the @inode is put on 447 * ->b_dirty which is always correct including from ->b_dirty_time. 448 * The transfer preserves @inode->dirtied_when ordering. If the @inode 449 * was clean, it means it was on the b_attached list, so move it onto 450 * the b_attached list of @new_wb. 451 */ 452 if (!list_empty(&inode->i_io_list)) { 453 inode->i_wb = new_wb; 454 455 if (inode->i_state & I_DIRTY_ALL) { 456 struct inode *pos; 457 458 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 459 if (time_after_eq(inode->dirtied_when, 460 pos->dirtied_when)) 461 break; 462 inode_io_list_move_locked(inode, new_wb, 463 pos->i_io_list.prev); 464 } else { 465 inode_cgwb_move_to_attached(inode, new_wb); 466 } 467 } else { 468 inode->i_wb = new_wb; 469 } 470 471 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 472 inode->i_wb_frn_winner = 0; 473 inode->i_wb_frn_avg_time = 0; 474 inode->i_wb_frn_history = 0; 475 switched = true; 476 skip_switch: 477 /* 478 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 479 * ensures that the new wb is visible if they see !I_WB_SWITCH. 480 */ 481 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 482 483 xa_unlock_irq(&mapping->i_pages); 484 spin_unlock(&inode->i_lock); 485 486 return switched; 487 } 488 489 static void inode_switch_wbs_work_fn(struct work_struct *work) 490 { 491 struct inode_switch_wbs_context *isw = 492 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 493 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 494 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 495 struct bdi_writeback *new_wb = isw->new_wb; 496 unsigned long nr_switched = 0; 497 struct inode **inodep; 498 499 /* 500 * If @inode switches cgwb membership while sync_inodes_sb() is 501 * being issued, sync_inodes_sb() might miss it. Synchronize. 502 */ 503 down_read(&bdi->wb_switch_rwsem); 504 505 /* 506 * By the time control reaches here, RCU grace period has passed 507 * since I_WB_SWITCH assertion and all wb stat update transactions 508 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 509 * synchronizing against the i_pages lock. 510 * 511 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 512 * gives us exclusion against all wb related operations on @inode 513 * including IO list manipulations and stat updates. 514 */ 515 if (old_wb < new_wb) { 516 spin_lock(&old_wb->list_lock); 517 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 518 } else { 519 spin_lock(&new_wb->list_lock); 520 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 521 } 522 523 for (inodep = isw->inodes; *inodep; inodep++) { 524 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 525 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 526 nr_switched++; 527 } 528 529 spin_unlock(&new_wb->list_lock); 530 spin_unlock(&old_wb->list_lock); 531 532 up_read(&bdi->wb_switch_rwsem); 533 534 if (nr_switched) { 535 wb_wakeup(new_wb); 536 wb_put_many(old_wb, nr_switched); 537 } 538 539 for (inodep = isw->inodes; *inodep; inodep++) 540 iput(*inodep); 541 wb_put(new_wb); 542 kfree(isw); 543 atomic_dec(&isw_nr_in_flight); 544 } 545 546 static bool inode_prepare_wbs_switch(struct inode *inode, 547 struct bdi_writeback *new_wb) 548 { 549 /* 550 * Paired with smp_mb() in cgroup_writeback_umount(). 551 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 552 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 553 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 554 */ 555 smp_mb(); 556 557 if (IS_DAX(inode)) 558 return false; 559 560 /* while holding I_WB_SWITCH, no one else can update the association */ 561 spin_lock(&inode->i_lock); 562 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 563 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 564 inode_to_wb(inode) == new_wb) { 565 spin_unlock(&inode->i_lock); 566 return false; 567 } 568 inode->i_state |= I_WB_SWITCH; 569 __iget(inode); 570 spin_unlock(&inode->i_lock); 571 572 return true; 573 } 574 575 /** 576 * inode_switch_wbs - change the wb association of an inode 577 * @inode: target inode 578 * @new_wb_id: ID of the new wb 579 * 580 * Switch @inode's wb association to the wb identified by @new_wb_id. The 581 * switching is performed asynchronously and may fail silently. 582 */ 583 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 584 { 585 struct backing_dev_info *bdi = inode_to_bdi(inode); 586 struct cgroup_subsys_state *memcg_css; 587 struct inode_switch_wbs_context *isw; 588 589 /* noop if seems to be already in progress */ 590 if (inode->i_state & I_WB_SWITCH) 591 return; 592 593 /* avoid queueing a new switch if too many are already in flight */ 594 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 595 return; 596 597 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); 598 if (!isw) 599 return; 600 601 atomic_inc(&isw_nr_in_flight); 602 603 /* find and pin the new wb */ 604 rcu_read_lock(); 605 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 606 if (memcg_css && !css_tryget(memcg_css)) 607 memcg_css = NULL; 608 rcu_read_unlock(); 609 if (!memcg_css) 610 goto out_free; 611 612 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 613 css_put(memcg_css); 614 if (!isw->new_wb) 615 goto out_free; 616 617 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 618 goto out_free; 619 620 isw->inodes[0] = inode; 621 622 /* 623 * In addition to synchronizing among switchers, I_WB_SWITCH tells 624 * the RCU protected stat update paths to grab the i_page 625 * lock so that stat transfer can synchronize against them. 626 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 627 */ 628 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 629 queue_rcu_work(isw_wq, &isw->work); 630 return; 631 632 out_free: 633 atomic_dec(&isw_nr_in_flight); 634 if (isw->new_wb) 635 wb_put(isw->new_wb); 636 kfree(isw); 637 } 638 639 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw, 640 struct list_head *list, int *nr) 641 { 642 struct inode *inode; 643 644 list_for_each_entry(inode, list, i_io_list) { 645 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 646 continue; 647 648 isw->inodes[*nr] = inode; 649 (*nr)++; 650 651 if (*nr >= WB_MAX_INODES_PER_ISW - 1) 652 return true; 653 } 654 return false; 655 } 656 657 /** 658 * cleanup_offline_cgwb - detach associated inodes 659 * @wb: target wb 660 * 661 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 662 * to eventually release the dying @wb. Returns %true if not all inodes were 663 * switched and the function has to be restarted. 664 */ 665 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 666 { 667 struct cgroup_subsys_state *memcg_css; 668 struct inode_switch_wbs_context *isw; 669 int nr; 670 bool restart = false; 671 672 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), 673 GFP_KERNEL); 674 if (!isw) 675 return restart; 676 677 atomic_inc(&isw_nr_in_flight); 678 679 for (memcg_css = wb->memcg_css->parent; memcg_css; 680 memcg_css = memcg_css->parent) { 681 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 682 if (isw->new_wb) 683 break; 684 } 685 if (unlikely(!isw->new_wb)) 686 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 687 688 nr = 0; 689 spin_lock(&wb->list_lock); 690 /* 691 * In addition to the inodes that have completed writeback, also switch 692 * cgwbs for those inodes only with dirty timestamps. Otherwise, those 693 * inodes won't be written back for a long time when lazytime is 694 * enabled, and thus pinning the dying cgwbs. It won't break the 695 * bandwidth restrictions, as writeback of inode metadata is not 696 * accounted for. 697 */ 698 restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr); 699 if (!restart) 700 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr); 701 spin_unlock(&wb->list_lock); 702 703 /* no attached inodes? bail out */ 704 if (nr == 0) { 705 atomic_dec(&isw_nr_in_flight); 706 wb_put(isw->new_wb); 707 kfree(isw); 708 return restart; 709 } 710 711 /* 712 * In addition to synchronizing among switchers, I_WB_SWITCH tells 713 * the RCU protected stat update paths to grab the i_page 714 * lock so that stat transfer can synchronize against them. 715 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 716 */ 717 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 718 queue_rcu_work(isw_wq, &isw->work); 719 720 return restart; 721 } 722 723 /** 724 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 725 * @wbc: writeback_control of interest 726 * @inode: target inode 727 * 728 * @inode is locked and about to be written back under the control of @wbc. 729 * Record @inode's writeback context into @wbc and unlock the i_lock. On 730 * writeback completion, wbc_detach_inode() should be called. This is used 731 * to track the cgroup writeback context. 732 */ 733 static void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 734 struct inode *inode) 735 __releases(&inode->i_lock) 736 { 737 if (!inode_cgwb_enabled(inode)) { 738 spin_unlock(&inode->i_lock); 739 return; 740 } 741 742 wbc->wb = inode_to_wb(inode); 743 wbc->inode = inode; 744 745 wbc->wb_id = wbc->wb->memcg_css->id; 746 wbc->wb_lcand_id = inode->i_wb_frn_winner; 747 wbc->wb_tcand_id = 0; 748 wbc->wb_bytes = 0; 749 wbc->wb_lcand_bytes = 0; 750 wbc->wb_tcand_bytes = 0; 751 752 wb_get(wbc->wb); 753 spin_unlock(&inode->i_lock); 754 755 /* 756 * A dying wb indicates that either the blkcg associated with the 757 * memcg changed or the associated memcg is dying. In the first 758 * case, a replacement wb should already be available and we should 759 * refresh the wb immediately. In the second case, trying to 760 * refresh will keep failing. 761 */ 762 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 763 inode_switch_wbs(inode, wbc->wb_id); 764 } 765 766 /** 767 * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite 768 * @wbc: writeback_control of interest 769 * @inode: target inode 770 * 771 * This function is to be used by __filemap_fdatawrite_range(), which is an 772 * alternative entry point into writeback code, and first ensures @inode is 773 * associated with a bdi_writeback and attaches it to @wbc. 774 */ 775 void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, 776 struct inode *inode) 777 { 778 spin_lock(&inode->i_lock); 779 inode_attach_wb(inode, NULL); 780 wbc_attach_and_unlock_inode(wbc, inode); 781 } 782 EXPORT_SYMBOL_GPL(wbc_attach_fdatawrite_inode); 783 784 /** 785 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 786 * @wbc: writeback_control of the just finished writeback 787 * 788 * To be called after a writeback attempt of an inode finishes and undoes 789 * wbc_attach_and_unlock_inode(). Can be called under any context. 790 * 791 * As concurrent write sharing of an inode is expected to be very rare and 792 * memcg only tracks page ownership on first-use basis severely confining 793 * the usefulness of such sharing, cgroup writeback tracks ownership 794 * per-inode. While the support for concurrent write sharing of an inode 795 * is deemed unnecessary, an inode being written to by different cgroups at 796 * different points in time is a lot more common, and, more importantly, 797 * charging only by first-use can too readily lead to grossly incorrect 798 * behaviors (single foreign page can lead to gigabytes of writeback to be 799 * incorrectly attributed). 800 * 801 * To resolve this issue, cgroup writeback detects the majority dirtier of 802 * an inode and transfers the ownership to it. To avoid unnecessary 803 * oscillation, the detection mechanism keeps track of history and gives 804 * out the switch verdict only if the foreign usage pattern is stable over 805 * a certain amount of time and/or writeback attempts. 806 * 807 * On each writeback attempt, @wbc tries to detect the majority writer 808 * using Boyer-Moore majority vote algorithm. In addition to the byte 809 * count from the majority voting, it also counts the bytes written for the 810 * current wb and the last round's winner wb (max of last round's current 811 * wb, the winner from two rounds ago, and the last round's majority 812 * candidate). Keeping track of the historical winner helps the algorithm 813 * to semi-reliably detect the most active writer even when it's not the 814 * absolute majority. 815 * 816 * Once the winner of the round is determined, whether the winner is 817 * foreign or not and how much IO time the round consumed is recorded in 818 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 819 * over a certain threshold, the switch verdict is given. 820 */ 821 void wbc_detach_inode(struct writeback_control *wbc) 822 { 823 struct bdi_writeback *wb = wbc->wb; 824 struct inode *inode = wbc->inode; 825 unsigned long avg_time, max_bytes, max_time; 826 u16 history; 827 int max_id; 828 829 if (!wb) 830 return; 831 832 history = inode->i_wb_frn_history; 833 avg_time = inode->i_wb_frn_avg_time; 834 835 /* pick the winner of this round */ 836 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 837 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 838 max_id = wbc->wb_id; 839 max_bytes = wbc->wb_bytes; 840 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 841 max_id = wbc->wb_lcand_id; 842 max_bytes = wbc->wb_lcand_bytes; 843 } else { 844 max_id = wbc->wb_tcand_id; 845 max_bytes = wbc->wb_tcand_bytes; 846 } 847 848 /* 849 * Calculate the amount of IO time the winner consumed and fold it 850 * into the running average kept per inode. If the consumed IO 851 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 852 * deciding whether to switch or not. This is to prevent one-off 853 * small dirtiers from skewing the verdict. 854 */ 855 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 856 wb->avg_write_bandwidth); 857 if (avg_time) 858 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 859 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 860 else 861 avg_time = max_time; /* immediate catch up on first run */ 862 863 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 864 int slots; 865 866 /* 867 * The switch verdict is reached if foreign wb's consume 868 * more than a certain proportion of IO time in a 869 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 870 * history mask where each bit represents one sixteenth of 871 * the period. Determine the number of slots to shift into 872 * history from @max_time. 873 */ 874 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 875 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 876 history <<= slots; 877 if (wbc->wb_id != max_id) 878 history |= (1U << slots) - 1; 879 880 if (history) 881 trace_inode_foreign_history(inode, wbc, history); 882 883 /* 884 * Switch if the current wb isn't the consistent winner. 885 * If there are multiple closely competing dirtiers, the 886 * inode may switch across them repeatedly over time, which 887 * is okay. The main goal is avoiding keeping an inode on 888 * the wrong wb for an extended period of time. 889 */ 890 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS) 891 inode_switch_wbs(inode, max_id); 892 } 893 894 /* 895 * Multiple instances of this function may race to update the 896 * following fields but we don't mind occassional inaccuracies. 897 */ 898 inode->i_wb_frn_winner = max_id; 899 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 900 inode->i_wb_frn_history = history; 901 902 wb_put(wbc->wb); 903 wbc->wb = NULL; 904 } 905 EXPORT_SYMBOL_GPL(wbc_detach_inode); 906 907 /** 908 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 909 * @wbc: writeback_control of the writeback in progress 910 * @folio: folio being written out 911 * @bytes: number of bytes being written out 912 * 913 * @bytes from @folio are about to written out during the writeback 914 * controlled by @wbc. Keep the book for foreign inode detection. See 915 * wbc_detach_inode(). 916 */ 917 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio, 918 size_t bytes) 919 { 920 struct cgroup_subsys_state *css; 921 int id; 922 923 /* 924 * pageout() path doesn't attach @wbc to the inode being written 925 * out. This is intentional as we don't want the function to block 926 * behind a slow cgroup. Ultimately, we want pageout() to kick off 927 * regular writeback instead of writing things out itself. 928 */ 929 if (!wbc->wb || wbc->no_cgroup_owner) 930 return; 931 932 css = mem_cgroup_css_from_folio(folio); 933 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 934 if (!(css->flags & CSS_ONLINE)) 935 return; 936 937 id = css->id; 938 939 if (id == wbc->wb_id) { 940 wbc->wb_bytes += bytes; 941 return; 942 } 943 944 if (id == wbc->wb_lcand_id) 945 wbc->wb_lcand_bytes += bytes; 946 947 /* Boyer-Moore majority vote algorithm */ 948 if (!wbc->wb_tcand_bytes) 949 wbc->wb_tcand_id = id; 950 if (id == wbc->wb_tcand_id) 951 wbc->wb_tcand_bytes += bytes; 952 else 953 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 954 } 955 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 956 957 /** 958 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 959 * @wb: target bdi_writeback to split @nr_pages to 960 * @nr_pages: number of pages to write for the whole bdi 961 * 962 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 963 * relation to the total write bandwidth of all wb's w/ dirty inodes on 964 * @wb->bdi. 965 */ 966 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 967 { 968 unsigned long this_bw = wb->avg_write_bandwidth; 969 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 970 971 if (nr_pages == LONG_MAX) 972 return LONG_MAX; 973 974 /* 975 * This may be called on clean wb's and proportional distribution 976 * may not make sense, just use the original @nr_pages in those 977 * cases. In general, we wanna err on the side of writing more. 978 */ 979 if (!tot_bw || this_bw >= tot_bw) 980 return nr_pages; 981 else 982 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 983 } 984 985 /** 986 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 987 * @bdi: target backing_dev_info 988 * @base_work: wb_writeback_work to issue 989 * @skip_if_busy: skip wb's which already have writeback in progress 990 * 991 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 992 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 993 * distributed to the busy wbs according to each wb's proportion in the 994 * total active write bandwidth of @bdi. 995 */ 996 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 997 struct wb_writeback_work *base_work, 998 bool skip_if_busy) 999 { 1000 struct bdi_writeback *last_wb = NULL; 1001 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 1002 struct bdi_writeback, bdi_node); 1003 1004 might_sleep(); 1005 restart: 1006 rcu_read_lock(); 1007 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 1008 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 1009 struct wb_writeback_work fallback_work; 1010 struct wb_writeback_work *work; 1011 long nr_pages; 1012 1013 if (last_wb) { 1014 wb_put(last_wb); 1015 last_wb = NULL; 1016 } 1017 1018 /* SYNC_ALL writes out I_DIRTY_TIME too */ 1019 if (!wb_has_dirty_io(wb) && 1020 (base_work->sync_mode == WB_SYNC_NONE || 1021 list_empty(&wb->b_dirty_time))) 1022 continue; 1023 if (skip_if_busy && writeback_in_progress(wb)) 1024 continue; 1025 1026 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 1027 1028 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1029 if (work) { 1030 *work = *base_work; 1031 work->nr_pages = nr_pages; 1032 work->auto_free = 1; 1033 wb_queue_work(wb, work); 1034 continue; 1035 } 1036 1037 /* 1038 * If wb_tryget fails, the wb has been shutdown, skip it. 1039 * 1040 * Pin @wb so that it stays on @bdi->wb_list. This allows 1041 * continuing iteration from @wb after dropping and 1042 * regrabbing rcu read lock. 1043 */ 1044 if (!wb_tryget(wb)) 1045 continue; 1046 1047 /* alloc failed, execute synchronously using on-stack fallback */ 1048 work = &fallback_work; 1049 *work = *base_work; 1050 work->nr_pages = nr_pages; 1051 work->auto_free = 0; 1052 work->done = &fallback_work_done; 1053 1054 wb_queue_work(wb, work); 1055 last_wb = wb; 1056 1057 rcu_read_unlock(); 1058 wb_wait_for_completion(&fallback_work_done); 1059 goto restart; 1060 } 1061 rcu_read_unlock(); 1062 1063 if (last_wb) 1064 wb_put(last_wb); 1065 } 1066 1067 /** 1068 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1069 * @bdi_id: target bdi id 1070 * @memcg_id: target memcg css id 1071 * @reason: reason why some writeback work initiated 1072 * @done: target wb_completion 1073 * 1074 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1075 * with the specified parameters. 1076 */ 1077 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, 1078 enum wb_reason reason, struct wb_completion *done) 1079 { 1080 struct backing_dev_info *bdi; 1081 struct cgroup_subsys_state *memcg_css; 1082 struct bdi_writeback *wb; 1083 struct wb_writeback_work *work; 1084 unsigned long dirty; 1085 int ret; 1086 1087 /* lookup bdi and memcg */ 1088 bdi = bdi_get_by_id(bdi_id); 1089 if (!bdi) 1090 return -ENOENT; 1091 1092 rcu_read_lock(); 1093 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1094 if (memcg_css && !css_tryget(memcg_css)) 1095 memcg_css = NULL; 1096 rcu_read_unlock(); 1097 if (!memcg_css) { 1098 ret = -ENOENT; 1099 goto out_bdi_put; 1100 } 1101 1102 /* 1103 * And find the associated wb. If the wb isn't there already 1104 * there's nothing to flush, don't create one. 1105 */ 1106 wb = wb_get_lookup(bdi, memcg_css); 1107 if (!wb) { 1108 ret = -ENOENT; 1109 goto out_css_put; 1110 } 1111 1112 /* 1113 * The caller is attempting to write out most of 1114 * the currently dirty pages. Let's take the current dirty page 1115 * count and inflate it by 25% which should be large enough to 1116 * flush out most dirty pages while avoiding getting livelocked by 1117 * concurrent dirtiers. 1118 * 1119 * BTW the memcg stats are flushed periodically and this is best-effort 1120 * estimation, so some potential error is ok. 1121 */ 1122 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); 1123 dirty = dirty * 10 / 8; 1124 1125 /* issue the writeback work */ 1126 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1127 if (work) { 1128 work->nr_pages = dirty; 1129 work->sync_mode = WB_SYNC_NONE; 1130 work->range_cyclic = 1; 1131 work->reason = reason; 1132 work->done = done; 1133 work->auto_free = 1; 1134 wb_queue_work(wb, work); 1135 ret = 0; 1136 } else { 1137 ret = -ENOMEM; 1138 } 1139 1140 wb_put(wb); 1141 out_css_put: 1142 css_put(memcg_css); 1143 out_bdi_put: 1144 bdi_put(bdi); 1145 return ret; 1146 } 1147 1148 /** 1149 * cgroup_writeback_umount - flush inode wb switches for umount 1150 * @sb: target super_block 1151 * 1152 * This function is called when a super_block is about to be destroyed and 1153 * flushes in-flight inode wb switches. An inode wb switch goes through 1154 * RCU and then workqueue, so the two need to be flushed in order to ensure 1155 * that all previously scheduled switches are finished. As wb switches are 1156 * rare occurrences and synchronize_rcu() can take a while, perform 1157 * flushing iff wb switches are in flight. 1158 */ 1159 void cgroup_writeback_umount(struct super_block *sb) 1160 { 1161 1162 if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK)) 1163 return; 1164 1165 /* 1166 * SB_ACTIVE should be reliably cleared before checking 1167 * isw_nr_in_flight, see generic_shutdown_super(). 1168 */ 1169 smp_mb(); 1170 1171 if (atomic_read(&isw_nr_in_flight)) { 1172 /* 1173 * Use rcu_barrier() to wait for all pending callbacks to 1174 * ensure that all in-flight wb switches are in the workqueue. 1175 */ 1176 rcu_barrier(); 1177 flush_workqueue(isw_wq); 1178 } 1179 } 1180 1181 static int __init cgroup_writeback_init(void) 1182 { 1183 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1184 if (!isw_wq) 1185 return -ENOMEM; 1186 return 0; 1187 } 1188 fs_initcall(cgroup_writeback_init); 1189 1190 #else /* CONFIG_CGROUP_WRITEBACK */ 1191 1192 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1193 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1194 1195 static void inode_cgwb_move_to_attached(struct inode *inode, 1196 struct bdi_writeback *wb) 1197 { 1198 assert_spin_locked(&wb->list_lock); 1199 assert_spin_locked(&inode->i_lock); 1200 WARN_ON_ONCE(inode->i_state & I_FREEING); 1201 1202 inode->i_state &= ~I_SYNC_QUEUED; 1203 list_del_init(&inode->i_io_list); 1204 wb_io_lists_depopulated(wb); 1205 } 1206 1207 static struct bdi_writeback * 1208 locked_inode_to_wb_and_lock_list(struct inode *inode) 1209 __releases(&inode->i_lock) 1210 __acquires(&wb->list_lock) 1211 { 1212 struct bdi_writeback *wb = inode_to_wb(inode); 1213 1214 spin_unlock(&inode->i_lock); 1215 spin_lock(&wb->list_lock); 1216 return wb; 1217 } 1218 1219 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1220 __acquires(&wb->list_lock) 1221 { 1222 struct bdi_writeback *wb = inode_to_wb(inode); 1223 1224 spin_lock(&wb->list_lock); 1225 return wb; 1226 } 1227 1228 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1229 { 1230 return nr_pages; 1231 } 1232 1233 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1234 struct wb_writeback_work *base_work, 1235 bool skip_if_busy) 1236 { 1237 might_sleep(); 1238 1239 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1240 base_work->auto_free = 0; 1241 wb_queue_work(&bdi->wb, base_work); 1242 } 1243 } 1244 1245 static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 1246 struct inode *inode) 1247 __releases(&inode->i_lock) 1248 { 1249 spin_unlock(&inode->i_lock); 1250 } 1251 1252 #endif /* CONFIG_CGROUP_WRITEBACK */ 1253 1254 /* 1255 * Add in the number of potentially dirty inodes, because each inode 1256 * write can dirty pagecache in the underlying blockdev. 1257 */ 1258 static unsigned long get_nr_dirty_pages(void) 1259 { 1260 return global_node_page_state(NR_FILE_DIRTY) + 1261 get_nr_dirty_inodes(); 1262 } 1263 1264 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1265 { 1266 if (!wb_has_dirty_io(wb)) 1267 return; 1268 1269 /* 1270 * All callers of this function want to start writeback of all 1271 * dirty pages. Places like vmscan can call this at a very 1272 * high frequency, causing pointless allocations of tons of 1273 * work items and keeping the flusher threads busy retrieving 1274 * that work. Ensure that we only allow one of them pending and 1275 * inflight at the time. 1276 */ 1277 if (test_bit(WB_start_all, &wb->state) || 1278 test_and_set_bit(WB_start_all, &wb->state)) 1279 return; 1280 1281 wb->start_all_reason = reason; 1282 wb_wakeup(wb); 1283 } 1284 1285 /** 1286 * wb_start_background_writeback - start background writeback 1287 * @wb: bdi_writback to write from 1288 * 1289 * Description: 1290 * This makes sure WB_SYNC_NONE background writeback happens. When 1291 * this function returns, it is only guaranteed that for given wb 1292 * some IO is happening if we are over background dirty threshold. 1293 * Caller need not hold sb s_umount semaphore. 1294 */ 1295 void wb_start_background_writeback(struct bdi_writeback *wb) 1296 { 1297 /* 1298 * We just wake up the flusher thread. It will perform background 1299 * writeback as soon as there is no other work to do. 1300 */ 1301 trace_writeback_wake_background(wb); 1302 wb_wakeup(wb); 1303 } 1304 1305 /* 1306 * Remove the inode from the writeback list it is on. 1307 */ 1308 void inode_io_list_del(struct inode *inode) 1309 { 1310 struct bdi_writeback *wb; 1311 1312 wb = inode_to_wb_and_lock_list(inode); 1313 spin_lock(&inode->i_lock); 1314 1315 inode->i_state &= ~I_SYNC_QUEUED; 1316 list_del_init(&inode->i_io_list); 1317 wb_io_lists_depopulated(wb); 1318 1319 spin_unlock(&inode->i_lock); 1320 spin_unlock(&wb->list_lock); 1321 } 1322 EXPORT_SYMBOL(inode_io_list_del); 1323 1324 /* 1325 * mark an inode as under writeback on the sb 1326 */ 1327 void sb_mark_inode_writeback(struct inode *inode) 1328 { 1329 struct super_block *sb = inode->i_sb; 1330 unsigned long flags; 1331 1332 if (list_empty(&inode->i_wb_list)) { 1333 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1334 if (list_empty(&inode->i_wb_list)) { 1335 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1336 trace_sb_mark_inode_writeback(inode); 1337 } 1338 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1339 } 1340 } 1341 1342 /* 1343 * clear an inode as under writeback on the sb 1344 */ 1345 void sb_clear_inode_writeback(struct inode *inode) 1346 { 1347 struct super_block *sb = inode->i_sb; 1348 unsigned long flags; 1349 1350 if (!list_empty(&inode->i_wb_list)) { 1351 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1352 if (!list_empty(&inode->i_wb_list)) { 1353 list_del_init(&inode->i_wb_list); 1354 trace_sb_clear_inode_writeback(inode); 1355 } 1356 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1357 } 1358 } 1359 1360 /* 1361 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1362 * furthest end of its superblock's dirty-inode list. 1363 * 1364 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1365 * already the most-recently-dirtied inode on the b_dirty list. If that is 1366 * the case then the inode must have been redirtied while it was being written 1367 * out and we don't reset its dirtied_when. 1368 */ 1369 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1370 { 1371 assert_spin_locked(&inode->i_lock); 1372 1373 inode->i_state &= ~I_SYNC_QUEUED; 1374 /* 1375 * When the inode is being freed just don't bother with dirty list 1376 * tracking. Flush worker will ignore this inode anyway and it will 1377 * trigger assertions in inode_io_list_move_locked(). 1378 */ 1379 if (inode->i_state & I_FREEING) { 1380 list_del_init(&inode->i_io_list); 1381 wb_io_lists_depopulated(wb); 1382 return; 1383 } 1384 if (!list_empty(&wb->b_dirty)) { 1385 struct inode *tail; 1386 1387 tail = wb_inode(wb->b_dirty.next); 1388 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1389 inode->dirtied_when = jiffies; 1390 } 1391 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1392 } 1393 1394 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1395 { 1396 spin_lock(&inode->i_lock); 1397 redirty_tail_locked(inode, wb); 1398 spin_unlock(&inode->i_lock); 1399 } 1400 1401 /* 1402 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1403 */ 1404 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1405 { 1406 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1407 } 1408 1409 static void inode_sync_complete(struct inode *inode) 1410 { 1411 assert_spin_locked(&inode->i_lock); 1412 1413 inode->i_state &= ~I_SYNC; 1414 /* If inode is clean an unused, put it into LRU now... */ 1415 inode_add_lru(inode); 1416 /* Called with inode->i_lock which ensures memory ordering. */ 1417 inode_wake_up_bit(inode, __I_SYNC); 1418 } 1419 1420 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1421 { 1422 bool ret = time_after(inode->dirtied_when, t); 1423 #ifndef CONFIG_64BIT 1424 /* 1425 * For inodes being constantly redirtied, dirtied_when can get stuck. 1426 * It _appears_ to be in the future, but is actually in distant past. 1427 * This test is necessary to prevent such wrapped-around relative times 1428 * from permanently stopping the whole bdi writeback. 1429 */ 1430 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1431 #endif 1432 return ret; 1433 } 1434 1435 /* 1436 * Move expired (dirtied before dirtied_before) dirty inodes from 1437 * @delaying_queue to @dispatch_queue. 1438 */ 1439 static int move_expired_inodes(struct list_head *delaying_queue, 1440 struct list_head *dispatch_queue, 1441 unsigned long dirtied_before) 1442 { 1443 LIST_HEAD(tmp); 1444 struct list_head *pos, *node; 1445 struct super_block *sb = NULL; 1446 struct inode *inode; 1447 int do_sb_sort = 0; 1448 int moved = 0; 1449 1450 while (!list_empty(delaying_queue)) { 1451 inode = wb_inode(delaying_queue->prev); 1452 if (inode_dirtied_after(inode, dirtied_before)) 1453 break; 1454 spin_lock(&inode->i_lock); 1455 list_move(&inode->i_io_list, &tmp); 1456 moved++; 1457 inode->i_state |= I_SYNC_QUEUED; 1458 spin_unlock(&inode->i_lock); 1459 if (sb_is_blkdev_sb(inode->i_sb)) 1460 continue; 1461 if (sb && sb != inode->i_sb) 1462 do_sb_sort = 1; 1463 sb = inode->i_sb; 1464 } 1465 1466 /* just one sb in list, splice to dispatch_queue and we're done */ 1467 if (!do_sb_sort) { 1468 list_splice(&tmp, dispatch_queue); 1469 goto out; 1470 } 1471 1472 /* 1473 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', 1474 * we don't take inode->i_lock here because it is just a pointless overhead. 1475 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is 1476 * fully under our control. 1477 */ 1478 while (!list_empty(&tmp)) { 1479 sb = wb_inode(tmp.prev)->i_sb; 1480 list_for_each_prev_safe(pos, node, &tmp) { 1481 inode = wb_inode(pos); 1482 if (inode->i_sb == sb) 1483 list_move(&inode->i_io_list, dispatch_queue); 1484 } 1485 } 1486 out: 1487 return moved; 1488 } 1489 1490 /* 1491 * Queue all expired dirty inodes for io, eldest first. 1492 * Before 1493 * newly dirtied b_dirty b_io b_more_io 1494 * =============> gf edc BA 1495 * After 1496 * newly dirtied b_dirty b_io b_more_io 1497 * =============> g fBAedc 1498 * | 1499 * +--> dequeue for IO 1500 */ 1501 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1502 unsigned long dirtied_before) 1503 { 1504 int moved; 1505 unsigned long time_expire_jif = dirtied_before; 1506 1507 assert_spin_locked(&wb->list_lock); 1508 list_splice_init(&wb->b_more_io, &wb->b_io); 1509 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1510 if (!work->for_sync) 1511 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1512 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1513 time_expire_jif); 1514 if (moved) 1515 wb_io_lists_populated(wb); 1516 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1517 } 1518 1519 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1520 { 1521 int ret; 1522 1523 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1524 trace_writeback_write_inode_start(inode, wbc); 1525 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1526 trace_writeback_write_inode(inode, wbc); 1527 return ret; 1528 } 1529 return 0; 1530 } 1531 1532 /* 1533 * Wait for writeback on an inode to complete. Called with i_lock held. 1534 * Caller must make sure inode cannot go away when we drop i_lock. 1535 */ 1536 void inode_wait_for_writeback(struct inode *inode) 1537 { 1538 struct wait_bit_queue_entry wqe; 1539 struct wait_queue_head *wq_head; 1540 1541 assert_spin_locked(&inode->i_lock); 1542 1543 if (!(inode->i_state & I_SYNC)) 1544 return; 1545 1546 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC); 1547 for (;;) { 1548 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 1549 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */ 1550 if (!(inode->i_state & I_SYNC)) 1551 break; 1552 spin_unlock(&inode->i_lock); 1553 schedule(); 1554 spin_lock(&inode->i_lock); 1555 } 1556 finish_wait(wq_head, &wqe.wq_entry); 1557 } 1558 1559 /* 1560 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1561 * held and drops it. It is aimed for callers not holding any inode reference 1562 * so once i_lock is dropped, inode can go away. 1563 */ 1564 static void inode_sleep_on_writeback(struct inode *inode) 1565 __releases(inode->i_lock) 1566 { 1567 struct wait_bit_queue_entry wqe; 1568 struct wait_queue_head *wq_head; 1569 bool sleep; 1570 1571 assert_spin_locked(&inode->i_lock); 1572 1573 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC); 1574 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 1575 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */ 1576 sleep = !!(inode->i_state & I_SYNC); 1577 spin_unlock(&inode->i_lock); 1578 if (sleep) 1579 schedule(); 1580 finish_wait(wq_head, &wqe.wq_entry); 1581 } 1582 1583 /* 1584 * Find proper writeback list for the inode depending on its current state and 1585 * possibly also change of its state while we were doing writeback. Here we 1586 * handle things such as livelock prevention or fairness of writeback among 1587 * inodes. This function can be called only by flusher thread - noone else 1588 * processes all inodes in writeback lists and requeueing inodes behind flusher 1589 * thread's back can have unexpected consequences. 1590 */ 1591 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1592 struct writeback_control *wbc, 1593 unsigned long dirtied_before) 1594 { 1595 if (inode->i_state & I_FREEING) 1596 return; 1597 1598 /* 1599 * Sync livelock prevention. Each inode is tagged and synced in one 1600 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1601 * the dirty time to prevent enqueue and sync it again. 1602 */ 1603 if ((inode->i_state & I_DIRTY) && 1604 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1605 inode->dirtied_when = jiffies; 1606 1607 if (wbc->pages_skipped) { 1608 /* 1609 * Writeback is not making progress due to locked buffers. 1610 * Skip this inode for now. Although having skipped pages 1611 * is odd for clean inodes, it can happen for some 1612 * filesystems so handle that gracefully. 1613 */ 1614 if (inode->i_state & I_DIRTY_ALL) 1615 redirty_tail_locked(inode, wb); 1616 else 1617 inode_cgwb_move_to_attached(inode, wb); 1618 return; 1619 } 1620 1621 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1622 /* 1623 * We didn't write back all the pages. nfs_writepages() 1624 * sometimes bales out without doing anything. 1625 */ 1626 if (wbc->nr_to_write <= 0 && 1627 !inode_dirtied_after(inode, dirtied_before)) { 1628 /* Slice used up. Queue for next turn. */ 1629 requeue_io(inode, wb); 1630 } else { 1631 /* 1632 * Writeback blocked by something other than 1633 * congestion. Delay the inode for some time to 1634 * avoid spinning on the CPU (100% iowait) 1635 * retrying writeback of the dirty page/inode 1636 * that cannot be performed immediately. 1637 */ 1638 redirty_tail_locked(inode, wb); 1639 } 1640 } else if (inode->i_state & I_DIRTY) { 1641 /* 1642 * Filesystems can dirty the inode during writeback operations, 1643 * such as delayed allocation during submission or metadata 1644 * updates after data IO completion. 1645 */ 1646 redirty_tail_locked(inode, wb); 1647 } else if (inode->i_state & I_DIRTY_TIME) { 1648 inode->dirtied_when = jiffies; 1649 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1650 inode->i_state &= ~I_SYNC_QUEUED; 1651 } else { 1652 /* The inode is clean. Remove from writeback lists. */ 1653 inode_cgwb_move_to_attached(inode, wb); 1654 } 1655 } 1656 1657 /* 1658 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1659 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1660 * 1661 * This doesn't remove the inode from the writeback list it is on, except 1662 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1663 * expiration. The caller is otherwise responsible for writeback list handling. 1664 * 1665 * The caller is also responsible for setting the I_SYNC flag beforehand and 1666 * calling inode_sync_complete() to clear it afterwards. 1667 */ 1668 static int 1669 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1670 { 1671 struct address_space *mapping = inode->i_mapping; 1672 long nr_to_write = wbc->nr_to_write; 1673 unsigned dirty; 1674 int ret; 1675 1676 WARN_ON(!(inode->i_state & I_SYNC)); 1677 1678 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1679 1680 ret = do_writepages(mapping, wbc); 1681 1682 /* 1683 * Make sure to wait on the data before writing out the metadata. 1684 * This is important for filesystems that modify metadata on data 1685 * I/O completion. We don't do it for sync(2) writeback because it has a 1686 * separate, external IO completion path and ->sync_fs for guaranteeing 1687 * inode metadata is written back correctly. 1688 */ 1689 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1690 int err = filemap_fdatawait(mapping); 1691 if (ret == 0) 1692 ret = err; 1693 } 1694 1695 /* 1696 * If the inode has dirty timestamps and we need to write them, call 1697 * mark_inode_dirty_sync() to notify the filesystem about it and to 1698 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1699 */ 1700 if ((inode->i_state & I_DIRTY_TIME) && 1701 (wbc->sync_mode == WB_SYNC_ALL || 1702 time_after(jiffies, inode->dirtied_time_when + 1703 dirtytime_expire_interval * HZ))) { 1704 trace_writeback_lazytime(inode); 1705 mark_inode_dirty_sync(inode); 1706 } 1707 1708 /* 1709 * Get and clear the dirty flags from i_state. This needs to be done 1710 * after calling writepages because some filesystems may redirty the 1711 * inode during writepages due to delalloc. It also needs to be done 1712 * after handling timestamp expiration, as that may dirty the inode too. 1713 */ 1714 spin_lock(&inode->i_lock); 1715 dirty = inode->i_state & I_DIRTY; 1716 inode->i_state &= ~dirty; 1717 1718 /* 1719 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1720 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1721 * either they see the I_DIRTY bits cleared or we see the dirtied 1722 * inode. 1723 * 1724 * I_DIRTY_PAGES is always cleared together above even if @mapping 1725 * still has dirty pages. The flag is reinstated after smp_mb() if 1726 * necessary. This guarantees that either __mark_inode_dirty() 1727 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1728 */ 1729 smp_mb(); 1730 1731 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1732 inode->i_state |= I_DIRTY_PAGES; 1733 else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) { 1734 if (!(inode->i_state & I_DIRTY_PAGES)) { 1735 inode->i_state &= ~I_PINNING_NETFS_WB; 1736 wbc->unpinned_netfs_wb = true; 1737 dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */ 1738 } 1739 } 1740 1741 spin_unlock(&inode->i_lock); 1742 1743 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1744 if (dirty & ~I_DIRTY_PAGES) { 1745 int err = write_inode(inode, wbc); 1746 if (ret == 0) 1747 ret = err; 1748 } 1749 wbc->unpinned_netfs_wb = false; 1750 trace_writeback_single_inode(inode, wbc, nr_to_write); 1751 return ret; 1752 } 1753 1754 /* 1755 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1756 * the regular batched writeback done by the flusher threads in 1757 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1758 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1759 * 1760 * To prevent the inode from going away, either the caller must have a reference 1761 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1762 */ 1763 static int writeback_single_inode(struct inode *inode, 1764 struct writeback_control *wbc) 1765 { 1766 struct bdi_writeback *wb; 1767 int ret = 0; 1768 1769 spin_lock(&inode->i_lock); 1770 if (!atomic_read(&inode->i_count)) 1771 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1772 else 1773 WARN_ON(inode->i_state & I_WILL_FREE); 1774 1775 if (inode->i_state & I_SYNC) { 1776 /* 1777 * Writeback is already running on the inode. For WB_SYNC_NONE, 1778 * that's enough and we can just return. For WB_SYNC_ALL, we 1779 * must wait for the existing writeback to complete, then do 1780 * writeback again if there's anything left. 1781 */ 1782 if (wbc->sync_mode != WB_SYNC_ALL) 1783 goto out; 1784 inode_wait_for_writeback(inode); 1785 } 1786 WARN_ON(inode->i_state & I_SYNC); 1787 /* 1788 * If the inode is already fully clean, then there's nothing to do. 1789 * 1790 * For data-integrity syncs we also need to check whether any pages are 1791 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1792 * there are any such pages, we'll need to wait for them. 1793 */ 1794 if (!(inode->i_state & I_DIRTY_ALL) && 1795 (wbc->sync_mode != WB_SYNC_ALL || 1796 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1797 goto out; 1798 inode->i_state |= I_SYNC; 1799 wbc_attach_and_unlock_inode(wbc, inode); 1800 1801 ret = __writeback_single_inode(inode, wbc); 1802 1803 wbc_detach_inode(wbc); 1804 1805 wb = inode_to_wb_and_lock_list(inode); 1806 spin_lock(&inode->i_lock); 1807 /* 1808 * If the inode is freeing, its i_io_list shoudn't be updated 1809 * as it can be finally deleted at this moment. 1810 */ 1811 if (!(inode->i_state & I_FREEING)) { 1812 /* 1813 * If the inode is now fully clean, then it can be safely 1814 * removed from its writeback list (if any). Otherwise the 1815 * flusher threads are responsible for the writeback lists. 1816 */ 1817 if (!(inode->i_state & I_DIRTY_ALL)) 1818 inode_cgwb_move_to_attached(inode, wb); 1819 else if (!(inode->i_state & I_SYNC_QUEUED)) { 1820 if ((inode->i_state & I_DIRTY)) 1821 redirty_tail_locked(inode, wb); 1822 else if (inode->i_state & I_DIRTY_TIME) { 1823 inode->dirtied_when = jiffies; 1824 inode_io_list_move_locked(inode, 1825 wb, 1826 &wb->b_dirty_time); 1827 } 1828 } 1829 } 1830 1831 spin_unlock(&wb->list_lock); 1832 inode_sync_complete(inode); 1833 out: 1834 spin_unlock(&inode->i_lock); 1835 return ret; 1836 } 1837 1838 static long writeback_chunk_size(struct bdi_writeback *wb, 1839 struct wb_writeback_work *work) 1840 { 1841 long pages; 1842 1843 /* 1844 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1845 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1846 * here avoids calling into writeback_inodes_wb() more than once. 1847 * 1848 * The intended call sequence for WB_SYNC_ALL writeback is: 1849 * 1850 * wb_writeback() 1851 * writeback_sb_inodes() <== called only once 1852 * write_cache_pages() <== called once for each inode 1853 * (quickly) tag currently dirty pages 1854 * (maybe slowly) sync all tagged pages 1855 */ 1856 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1857 pages = LONG_MAX; 1858 else { 1859 pages = min(wb->avg_write_bandwidth / 2, 1860 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1861 pages = min(pages, work->nr_pages); 1862 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1863 MIN_WRITEBACK_PAGES); 1864 } 1865 1866 return pages; 1867 } 1868 1869 /* 1870 * Write a portion of b_io inodes which belong to @sb. 1871 * 1872 * Return the number of pages and/or inodes written. 1873 * 1874 * NOTE! This is called with wb->list_lock held, and will 1875 * unlock and relock that for each inode it ends up doing 1876 * IO for. 1877 */ 1878 static long writeback_sb_inodes(struct super_block *sb, 1879 struct bdi_writeback *wb, 1880 struct wb_writeback_work *work) 1881 { 1882 struct writeback_control wbc = { 1883 .sync_mode = work->sync_mode, 1884 .tagged_writepages = work->tagged_writepages, 1885 .for_kupdate = work->for_kupdate, 1886 .for_background = work->for_background, 1887 .for_sync = work->for_sync, 1888 .range_cyclic = work->range_cyclic, 1889 .range_start = 0, 1890 .range_end = LLONG_MAX, 1891 }; 1892 unsigned long start_time = jiffies; 1893 long write_chunk; 1894 long total_wrote = 0; /* count both pages and inodes */ 1895 unsigned long dirtied_before = jiffies; 1896 1897 if (work->for_kupdate) 1898 dirtied_before = jiffies - 1899 msecs_to_jiffies(dirty_expire_interval * 10); 1900 1901 while (!list_empty(&wb->b_io)) { 1902 struct inode *inode = wb_inode(wb->b_io.prev); 1903 struct bdi_writeback *tmp_wb; 1904 long wrote; 1905 1906 if (inode->i_sb != sb) { 1907 if (work->sb) { 1908 /* 1909 * We only want to write back data for this 1910 * superblock, move all inodes not belonging 1911 * to it back onto the dirty list. 1912 */ 1913 redirty_tail(inode, wb); 1914 continue; 1915 } 1916 1917 /* 1918 * The inode belongs to a different superblock. 1919 * Bounce back to the caller to unpin this and 1920 * pin the next superblock. 1921 */ 1922 break; 1923 } 1924 1925 /* 1926 * Don't bother with new inodes or inodes being freed, first 1927 * kind does not need periodic writeout yet, and for the latter 1928 * kind writeout is handled by the freer. 1929 */ 1930 spin_lock(&inode->i_lock); 1931 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1932 redirty_tail_locked(inode, wb); 1933 spin_unlock(&inode->i_lock); 1934 continue; 1935 } 1936 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1937 /* 1938 * If this inode is locked for writeback and we are not 1939 * doing writeback-for-data-integrity, move it to 1940 * b_more_io so that writeback can proceed with the 1941 * other inodes on s_io. 1942 * 1943 * We'll have another go at writing back this inode 1944 * when we completed a full scan of b_io. 1945 */ 1946 requeue_io(inode, wb); 1947 spin_unlock(&inode->i_lock); 1948 trace_writeback_sb_inodes_requeue(inode); 1949 continue; 1950 } 1951 spin_unlock(&wb->list_lock); 1952 1953 /* 1954 * We already requeued the inode if it had I_SYNC set and we 1955 * are doing WB_SYNC_NONE writeback. So this catches only the 1956 * WB_SYNC_ALL case. 1957 */ 1958 if (inode->i_state & I_SYNC) { 1959 /* Wait for I_SYNC. This function drops i_lock... */ 1960 inode_sleep_on_writeback(inode); 1961 /* Inode may be gone, start again */ 1962 spin_lock(&wb->list_lock); 1963 continue; 1964 } 1965 inode->i_state |= I_SYNC; 1966 wbc_attach_and_unlock_inode(&wbc, inode); 1967 1968 write_chunk = writeback_chunk_size(wb, work); 1969 wbc.nr_to_write = write_chunk; 1970 wbc.pages_skipped = 0; 1971 1972 /* 1973 * We use I_SYNC to pin the inode in memory. While it is set 1974 * evict_inode() will wait so the inode cannot be freed. 1975 */ 1976 __writeback_single_inode(inode, &wbc); 1977 1978 wbc_detach_inode(&wbc); 1979 work->nr_pages -= write_chunk - wbc.nr_to_write; 1980 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; 1981 wrote = wrote < 0 ? 0 : wrote; 1982 total_wrote += wrote; 1983 1984 if (need_resched()) { 1985 /* 1986 * We're trying to balance between building up a nice 1987 * long list of IOs to improve our merge rate, and 1988 * getting those IOs out quickly for anyone throttling 1989 * in balance_dirty_pages(). cond_resched() doesn't 1990 * unplug, so get our IOs out the door before we 1991 * give up the CPU. 1992 */ 1993 blk_flush_plug(current->plug, false); 1994 cond_resched(); 1995 } 1996 1997 /* 1998 * Requeue @inode if still dirty. Be careful as @inode may 1999 * have been switched to another wb in the meantime. 2000 */ 2001 tmp_wb = inode_to_wb_and_lock_list(inode); 2002 spin_lock(&inode->i_lock); 2003 if (!(inode->i_state & I_DIRTY_ALL)) 2004 total_wrote++; 2005 requeue_inode(inode, tmp_wb, &wbc, dirtied_before); 2006 inode_sync_complete(inode); 2007 spin_unlock(&inode->i_lock); 2008 2009 if (unlikely(tmp_wb != wb)) { 2010 spin_unlock(&tmp_wb->list_lock); 2011 spin_lock(&wb->list_lock); 2012 } 2013 2014 /* 2015 * bail out to wb_writeback() often enough to check 2016 * background threshold and other termination conditions. 2017 */ 2018 if (total_wrote) { 2019 if (time_is_before_jiffies(start_time + HZ / 10UL)) 2020 break; 2021 if (work->nr_pages <= 0) 2022 break; 2023 } 2024 } 2025 return total_wrote; 2026 } 2027 2028 static long __writeback_inodes_wb(struct bdi_writeback *wb, 2029 struct wb_writeback_work *work) 2030 { 2031 unsigned long start_time = jiffies; 2032 long wrote = 0; 2033 2034 while (!list_empty(&wb->b_io)) { 2035 struct inode *inode = wb_inode(wb->b_io.prev); 2036 struct super_block *sb = inode->i_sb; 2037 2038 if (!super_trylock_shared(sb)) { 2039 /* 2040 * super_trylock_shared() may fail consistently due to 2041 * s_umount being grabbed by someone else. Don't use 2042 * requeue_io() to avoid busy retrying the inode/sb. 2043 */ 2044 redirty_tail(inode, wb); 2045 continue; 2046 } 2047 wrote += writeback_sb_inodes(sb, wb, work); 2048 up_read(&sb->s_umount); 2049 2050 /* refer to the same tests at the end of writeback_sb_inodes */ 2051 if (wrote) { 2052 if (time_is_before_jiffies(start_time + HZ / 10UL)) 2053 break; 2054 if (work->nr_pages <= 0) 2055 break; 2056 } 2057 } 2058 /* Leave any unwritten inodes on b_io */ 2059 return wrote; 2060 } 2061 2062 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 2063 enum wb_reason reason) 2064 { 2065 struct wb_writeback_work work = { 2066 .nr_pages = nr_pages, 2067 .sync_mode = WB_SYNC_NONE, 2068 .range_cyclic = 1, 2069 .reason = reason, 2070 }; 2071 struct blk_plug plug; 2072 2073 blk_start_plug(&plug); 2074 spin_lock(&wb->list_lock); 2075 if (list_empty(&wb->b_io)) 2076 queue_io(wb, &work, jiffies); 2077 __writeback_inodes_wb(wb, &work); 2078 spin_unlock(&wb->list_lock); 2079 blk_finish_plug(&plug); 2080 2081 return nr_pages - work.nr_pages; 2082 } 2083 2084 /* 2085 * Explicit flushing or periodic writeback of "old" data. 2086 * 2087 * Define "old": the first time one of an inode's pages is dirtied, we mark the 2088 * dirtying-time in the inode's address_space. So this periodic writeback code 2089 * just walks the superblock inode list, writing back any inodes which are 2090 * older than a specific point in time. 2091 * 2092 * Try to run once per dirty_writeback_interval. But if a writeback event 2093 * takes longer than a dirty_writeback_interval interval, then leave a 2094 * one-second gap. 2095 * 2096 * dirtied_before takes precedence over nr_to_write. So we'll only write back 2097 * all dirty pages if they are all attached to "old" mappings. 2098 */ 2099 static long wb_writeback(struct bdi_writeback *wb, 2100 struct wb_writeback_work *work) 2101 { 2102 long nr_pages = work->nr_pages; 2103 unsigned long dirtied_before = jiffies; 2104 struct inode *inode; 2105 long progress; 2106 struct blk_plug plug; 2107 bool queued = false; 2108 2109 blk_start_plug(&plug); 2110 for (;;) { 2111 /* 2112 * Stop writeback when nr_pages has been consumed 2113 */ 2114 if (work->nr_pages <= 0) 2115 break; 2116 2117 /* 2118 * Background writeout and kupdate-style writeback may 2119 * run forever. Stop them if there is other work to do 2120 * so that e.g. sync can proceed. They'll be restarted 2121 * after the other works are all done. 2122 */ 2123 if ((work->for_background || work->for_kupdate) && 2124 !list_empty(&wb->work_list)) 2125 break; 2126 2127 /* 2128 * For background writeout, stop when we are below the 2129 * background dirty threshold 2130 */ 2131 if (work->for_background && !wb_over_bg_thresh(wb)) 2132 break; 2133 2134 2135 spin_lock(&wb->list_lock); 2136 2137 trace_writeback_start(wb, work); 2138 if (list_empty(&wb->b_io)) { 2139 /* 2140 * Kupdate and background works are special and we want 2141 * to include all inodes that need writing. Livelock 2142 * avoidance is handled by these works yielding to any 2143 * other work so we are safe. 2144 */ 2145 if (work->for_kupdate) { 2146 dirtied_before = jiffies - 2147 msecs_to_jiffies(dirty_expire_interval * 2148 10); 2149 } else if (work->for_background) 2150 dirtied_before = jiffies; 2151 2152 queue_io(wb, work, dirtied_before); 2153 queued = true; 2154 } 2155 if (work->sb) 2156 progress = writeback_sb_inodes(work->sb, wb, work); 2157 else 2158 progress = __writeback_inodes_wb(wb, work); 2159 trace_writeback_written(wb, work); 2160 2161 /* 2162 * Did we write something? Try for more 2163 * 2164 * Dirty inodes are moved to b_io for writeback in batches. 2165 * The completion of the current batch does not necessarily 2166 * mean the overall work is done. So we keep looping as long 2167 * as made some progress on cleaning pages or inodes. 2168 */ 2169 if (progress || !queued) { 2170 spin_unlock(&wb->list_lock); 2171 continue; 2172 } 2173 2174 /* 2175 * No more inodes for IO, bail 2176 */ 2177 if (list_empty(&wb->b_more_io)) { 2178 spin_unlock(&wb->list_lock); 2179 break; 2180 } 2181 2182 /* 2183 * Nothing written. Wait for some inode to 2184 * become available for writeback. Otherwise 2185 * we'll just busyloop. 2186 */ 2187 trace_writeback_wait(wb, work); 2188 inode = wb_inode(wb->b_more_io.prev); 2189 spin_lock(&inode->i_lock); 2190 spin_unlock(&wb->list_lock); 2191 /* This function drops i_lock... */ 2192 inode_sleep_on_writeback(inode); 2193 } 2194 blk_finish_plug(&plug); 2195 2196 return nr_pages - work->nr_pages; 2197 } 2198 2199 /* 2200 * Return the next wb_writeback_work struct that hasn't been processed yet. 2201 */ 2202 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2203 { 2204 struct wb_writeback_work *work = NULL; 2205 2206 spin_lock_irq(&wb->work_lock); 2207 if (!list_empty(&wb->work_list)) { 2208 work = list_entry(wb->work_list.next, 2209 struct wb_writeback_work, list); 2210 list_del_init(&work->list); 2211 } 2212 spin_unlock_irq(&wb->work_lock); 2213 return work; 2214 } 2215 2216 static long wb_check_background_flush(struct bdi_writeback *wb) 2217 { 2218 if (wb_over_bg_thresh(wb)) { 2219 2220 struct wb_writeback_work work = { 2221 .nr_pages = LONG_MAX, 2222 .sync_mode = WB_SYNC_NONE, 2223 .for_background = 1, 2224 .range_cyclic = 1, 2225 .reason = WB_REASON_BACKGROUND, 2226 }; 2227 2228 return wb_writeback(wb, &work); 2229 } 2230 2231 return 0; 2232 } 2233 2234 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2235 { 2236 unsigned long expired; 2237 long nr_pages; 2238 2239 /* 2240 * When set to zero, disable periodic writeback 2241 */ 2242 if (!dirty_writeback_interval) 2243 return 0; 2244 2245 expired = wb->last_old_flush + 2246 msecs_to_jiffies(dirty_writeback_interval * 10); 2247 if (time_before(jiffies, expired)) 2248 return 0; 2249 2250 wb->last_old_flush = jiffies; 2251 nr_pages = get_nr_dirty_pages(); 2252 2253 if (nr_pages) { 2254 struct wb_writeback_work work = { 2255 .nr_pages = nr_pages, 2256 .sync_mode = WB_SYNC_NONE, 2257 .for_kupdate = 1, 2258 .range_cyclic = 1, 2259 .reason = WB_REASON_PERIODIC, 2260 }; 2261 2262 return wb_writeback(wb, &work); 2263 } 2264 2265 return 0; 2266 } 2267 2268 static long wb_check_start_all(struct bdi_writeback *wb) 2269 { 2270 long nr_pages; 2271 2272 if (!test_bit(WB_start_all, &wb->state)) 2273 return 0; 2274 2275 nr_pages = get_nr_dirty_pages(); 2276 if (nr_pages) { 2277 struct wb_writeback_work work = { 2278 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2279 .sync_mode = WB_SYNC_NONE, 2280 .range_cyclic = 1, 2281 .reason = wb->start_all_reason, 2282 }; 2283 2284 nr_pages = wb_writeback(wb, &work); 2285 } 2286 2287 clear_bit(WB_start_all, &wb->state); 2288 return nr_pages; 2289 } 2290 2291 2292 /* 2293 * Retrieve work items and do the writeback they describe 2294 */ 2295 static long wb_do_writeback(struct bdi_writeback *wb) 2296 { 2297 struct wb_writeback_work *work; 2298 long wrote = 0; 2299 2300 set_bit(WB_writeback_running, &wb->state); 2301 while ((work = get_next_work_item(wb)) != NULL) { 2302 trace_writeback_exec(wb, work); 2303 wrote += wb_writeback(wb, work); 2304 finish_writeback_work(work); 2305 } 2306 2307 /* 2308 * Check for a flush-everything request 2309 */ 2310 wrote += wb_check_start_all(wb); 2311 2312 /* 2313 * Check for periodic writeback, kupdated() style 2314 */ 2315 wrote += wb_check_old_data_flush(wb); 2316 wrote += wb_check_background_flush(wb); 2317 clear_bit(WB_writeback_running, &wb->state); 2318 2319 return wrote; 2320 } 2321 2322 /* 2323 * Handle writeback of dirty data for the device backed by this bdi. Also 2324 * reschedules periodically and does kupdated style flushing. 2325 */ 2326 void wb_workfn(struct work_struct *work) 2327 { 2328 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2329 struct bdi_writeback, dwork); 2330 long pages_written; 2331 2332 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2333 2334 if (likely(!current_is_workqueue_rescuer() || 2335 !test_bit(WB_registered, &wb->state))) { 2336 /* 2337 * The normal path. Keep writing back @wb until its 2338 * work_list is empty. Note that this path is also taken 2339 * if @wb is shutting down even when we're running off the 2340 * rescuer as work_list needs to be drained. 2341 */ 2342 do { 2343 pages_written = wb_do_writeback(wb); 2344 trace_writeback_pages_written(pages_written); 2345 } while (!list_empty(&wb->work_list)); 2346 } else { 2347 /* 2348 * bdi_wq can't get enough workers and we're running off 2349 * the emergency worker. Don't hog it. Hopefully, 1024 is 2350 * enough for efficient IO. 2351 */ 2352 pages_written = writeback_inodes_wb(wb, 1024, 2353 WB_REASON_FORKER_THREAD); 2354 trace_writeback_pages_written(pages_written); 2355 } 2356 2357 if (!list_empty(&wb->work_list)) 2358 wb_wakeup(wb); 2359 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2360 wb_wakeup_delayed(wb); 2361 } 2362 2363 /* 2364 * Start writeback of all dirty pages on this bdi. 2365 */ 2366 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2367 enum wb_reason reason) 2368 { 2369 struct bdi_writeback *wb; 2370 2371 if (!bdi_has_dirty_io(bdi)) 2372 return; 2373 2374 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2375 wb_start_writeback(wb, reason); 2376 } 2377 2378 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2379 enum wb_reason reason) 2380 { 2381 rcu_read_lock(); 2382 __wakeup_flusher_threads_bdi(bdi, reason); 2383 rcu_read_unlock(); 2384 } 2385 2386 /* 2387 * Wakeup the flusher threads to start writeback of all currently dirty pages 2388 */ 2389 void wakeup_flusher_threads(enum wb_reason reason) 2390 { 2391 struct backing_dev_info *bdi; 2392 2393 /* 2394 * If we are expecting writeback progress we must submit plugged IO. 2395 */ 2396 blk_flush_plug(current->plug, true); 2397 2398 rcu_read_lock(); 2399 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2400 __wakeup_flusher_threads_bdi(bdi, reason); 2401 rcu_read_unlock(); 2402 } 2403 2404 /* 2405 * Wake up bdi's periodically to make sure dirtytime inodes gets 2406 * written back periodically. We deliberately do *not* check the 2407 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2408 * kernel to be constantly waking up once there are any dirtytime 2409 * inodes on the system. So instead we define a separate delayed work 2410 * function which gets called much more rarely. (By default, only 2411 * once every 12 hours.) 2412 * 2413 * If there is any other write activity going on in the file system, 2414 * this function won't be necessary. But if the only thing that has 2415 * happened on the file system is a dirtytime inode caused by an atime 2416 * update, we need this infrastructure below to make sure that inode 2417 * eventually gets pushed out to disk. 2418 */ 2419 static void wakeup_dirtytime_writeback(struct work_struct *w); 2420 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2421 2422 static void wakeup_dirtytime_writeback(struct work_struct *w) 2423 { 2424 struct backing_dev_info *bdi; 2425 2426 rcu_read_lock(); 2427 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2428 struct bdi_writeback *wb; 2429 2430 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2431 if (!list_empty(&wb->b_dirty_time)) 2432 wb_wakeup(wb); 2433 } 2434 rcu_read_unlock(); 2435 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2436 } 2437 2438 static int __init start_dirtytime_writeback(void) 2439 { 2440 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2441 return 0; 2442 } 2443 __initcall(start_dirtytime_writeback); 2444 2445 int dirtytime_interval_handler(const struct ctl_table *table, int write, 2446 void *buffer, size_t *lenp, loff_t *ppos) 2447 { 2448 int ret; 2449 2450 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2451 if (ret == 0 && write) 2452 mod_delayed_work(system_wq, &dirtytime_work, 0); 2453 return ret; 2454 } 2455 2456 /** 2457 * __mark_inode_dirty - internal function to mark an inode dirty 2458 * 2459 * @inode: inode to mark 2460 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2461 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2462 * with I_DIRTY_PAGES. 2463 * 2464 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2465 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2466 * 2467 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2468 * instead of calling this directly. 2469 * 2470 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2471 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2472 * even if they are later hashed, as they will have been marked dirty already. 2473 * 2474 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2475 * 2476 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2477 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2478 * the kernel-internal blockdev inode represents the dirtying time of the 2479 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2480 * page->mapping->host, so the page-dirtying time is recorded in the internal 2481 * blockdev inode. 2482 */ 2483 void __mark_inode_dirty(struct inode *inode, int flags) 2484 { 2485 struct super_block *sb = inode->i_sb; 2486 int dirtytime = 0; 2487 struct bdi_writeback *wb = NULL; 2488 2489 trace_writeback_mark_inode_dirty(inode, flags); 2490 2491 if (flags & I_DIRTY_INODE) { 2492 /* 2493 * Inode timestamp update will piggback on this dirtying. 2494 * We tell ->dirty_inode callback that timestamps need to 2495 * be updated by setting I_DIRTY_TIME in flags. 2496 */ 2497 if (inode->i_state & I_DIRTY_TIME) { 2498 spin_lock(&inode->i_lock); 2499 if (inode->i_state & I_DIRTY_TIME) { 2500 inode->i_state &= ~I_DIRTY_TIME; 2501 flags |= I_DIRTY_TIME; 2502 } 2503 spin_unlock(&inode->i_lock); 2504 } 2505 2506 /* 2507 * Notify the filesystem about the inode being dirtied, so that 2508 * (if needed) it can update on-disk fields and journal the 2509 * inode. This is only needed when the inode itself is being 2510 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2511 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2512 */ 2513 trace_writeback_dirty_inode_start(inode, flags); 2514 if (sb->s_op->dirty_inode) 2515 sb->s_op->dirty_inode(inode, 2516 flags & (I_DIRTY_INODE | I_DIRTY_TIME)); 2517 trace_writeback_dirty_inode(inode, flags); 2518 2519 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2520 flags &= ~I_DIRTY_TIME; 2521 } else { 2522 /* 2523 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2524 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2525 * in one call to __mark_inode_dirty().) 2526 */ 2527 dirtytime = flags & I_DIRTY_TIME; 2528 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2529 } 2530 2531 /* 2532 * Paired with smp_mb() in __writeback_single_inode() for the 2533 * following lockless i_state test. See there for details. 2534 */ 2535 smp_mb(); 2536 2537 if ((inode->i_state & flags) == flags) 2538 return; 2539 2540 spin_lock(&inode->i_lock); 2541 if ((inode->i_state & flags) != flags) { 2542 const int was_dirty = inode->i_state & I_DIRTY; 2543 2544 inode_attach_wb(inode, NULL); 2545 2546 inode->i_state |= flags; 2547 2548 /* 2549 * Grab inode's wb early because it requires dropping i_lock and we 2550 * need to make sure following checks happen atomically with dirty 2551 * list handling so that we don't move inodes under flush worker's 2552 * hands. 2553 */ 2554 if (!was_dirty) { 2555 wb = locked_inode_to_wb_and_lock_list(inode); 2556 spin_lock(&inode->i_lock); 2557 } 2558 2559 /* 2560 * If the inode is queued for writeback by flush worker, just 2561 * update its dirty state. Once the flush worker is done with 2562 * the inode it will place it on the appropriate superblock 2563 * list, based upon its state. 2564 */ 2565 if (inode->i_state & I_SYNC_QUEUED) 2566 goto out_unlock; 2567 2568 /* 2569 * Only add valid (hashed) inodes to the superblock's 2570 * dirty list. Add blockdev inodes as well. 2571 */ 2572 if (!S_ISBLK(inode->i_mode)) { 2573 if (inode_unhashed(inode)) 2574 goto out_unlock; 2575 } 2576 if (inode->i_state & I_FREEING) 2577 goto out_unlock; 2578 2579 /* 2580 * If the inode was already on b_dirty/b_io/b_more_io, don't 2581 * reposition it (that would break b_dirty time-ordering). 2582 */ 2583 if (!was_dirty) { 2584 struct list_head *dirty_list; 2585 bool wakeup_bdi = false; 2586 2587 inode->dirtied_when = jiffies; 2588 if (dirtytime) 2589 inode->dirtied_time_when = jiffies; 2590 2591 if (inode->i_state & I_DIRTY) 2592 dirty_list = &wb->b_dirty; 2593 else 2594 dirty_list = &wb->b_dirty_time; 2595 2596 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2597 dirty_list); 2598 2599 spin_unlock(&wb->list_lock); 2600 spin_unlock(&inode->i_lock); 2601 trace_writeback_dirty_inode_enqueue(inode); 2602 2603 /* 2604 * If this is the first dirty inode for this bdi, 2605 * we have to wake-up the corresponding bdi thread 2606 * to make sure background write-back happens 2607 * later. 2608 */ 2609 if (wakeup_bdi && 2610 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2611 wb_wakeup_delayed(wb); 2612 return; 2613 } 2614 } 2615 out_unlock: 2616 if (wb) 2617 spin_unlock(&wb->list_lock); 2618 spin_unlock(&inode->i_lock); 2619 } 2620 EXPORT_SYMBOL(__mark_inode_dirty); 2621 2622 /* 2623 * The @s_sync_lock is used to serialise concurrent sync operations 2624 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2625 * Concurrent callers will block on the s_sync_lock rather than doing contending 2626 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2627 * has been issued up to the time this function is enter is guaranteed to be 2628 * completed by the time we have gained the lock and waited for all IO that is 2629 * in progress regardless of the order callers are granted the lock. 2630 */ 2631 static void wait_sb_inodes(struct super_block *sb) 2632 { 2633 LIST_HEAD(sync_list); 2634 2635 /* 2636 * We need to be protected against the filesystem going from 2637 * r/o to r/w or vice versa. 2638 */ 2639 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2640 2641 mutex_lock(&sb->s_sync_lock); 2642 2643 /* 2644 * Splice the writeback list onto a temporary list to avoid waiting on 2645 * inodes that have started writeback after this point. 2646 * 2647 * Use rcu_read_lock() to keep the inodes around until we have a 2648 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2649 * the local list because inodes can be dropped from either by writeback 2650 * completion. 2651 */ 2652 rcu_read_lock(); 2653 spin_lock_irq(&sb->s_inode_wblist_lock); 2654 list_splice_init(&sb->s_inodes_wb, &sync_list); 2655 2656 /* 2657 * Data integrity sync. Must wait for all pages under writeback, because 2658 * there may have been pages dirtied before our sync call, but which had 2659 * writeout started before we write it out. In which case, the inode 2660 * may not be on the dirty list, but we still have to wait for that 2661 * writeout. 2662 */ 2663 while (!list_empty(&sync_list)) { 2664 struct inode *inode = list_first_entry(&sync_list, struct inode, 2665 i_wb_list); 2666 struct address_space *mapping = inode->i_mapping; 2667 2668 /* 2669 * Move each inode back to the wb list before we drop the lock 2670 * to preserve consistency between i_wb_list and the mapping 2671 * writeback tag. Writeback completion is responsible to remove 2672 * the inode from either list once the writeback tag is cleared. 2673 */ 2674 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2675 2676 /* 2677 * The mapping can appear untagged while still on-list since we 2678 * do not have the mapping lock. Skip it here, wb completion 2679 * will remove it. 2680 */ 2681 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2682 continue; 2683 2684 spin_unlock_irq(&sb->s_inode_wblist_lock); 2685 2686 spin_lock(&inode->i_lock); 2687 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2688 spin_unlock(&inode->i_lock); 2689 2690 spin_lock_irq(&sb->s_inode_wblist_lock); 2691 continue; 2692 } 2693 __iget(inode); 2694 spin_unlock(&inode->i_lock); 2695 rcu_read_unlock(); 2696 2697 /* 2698 * We keep the error status of individual mapping so that 2699 * applications can catch the writeback error using fsync(2). 2700 * See filemap_fdatawait_keep_errors() for details. 2701 */ 2702 filemap_fdatawait_keep_errors(mapping); 2703 2704 cond_resched(); 2705 2706 iput(inode); 2707 2708 rcu_read_lock(); 2709 spin_lock_irq(&sb->s_inode_wblist_lock); 2710 } 2711 spin_unlock_irq(&sb->s_inode_wblist_lock); 2712 rcu_read_unlock(); 2713 mutex_unlock(&sb->s_sync_lock); 2714 } 2715 2716 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2717 enum wb_reason reason, bool skip_if_busy) 2718 { 2719 struct backing_dev_info *bdi = sb->s_bdi; 2720 DEFINE_WB_COMPLETION(done, bdi); 2721 struct wb_writeback_work work = { 2722 .sb = sb, 2723 .sync_mode = WB_SYNC_NONE, 2724 .tagged_writepages = 1, 2725 .done = &done, 2726 .nr_pages = nr, 2727 .reason = reason, 2728 }; 2729 2730 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2731 return; 2732 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2733 2734 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2735 wb_wait_for_completion(&done); 2736 } 2737 2738 /** 2739 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2740 * @sb: the superblock 2741 * @nr: the number of pages to write 2742 * @reason: reason why some writeback work initiated 2743 * 2744 * Start writeback on some inodes on this super_block. No guarantees are made 2745 * on how many (if any) will be written, and this function does not wait 2746 * for IO completion of submitted IO. 2747 */ 2748 void writeback_inodes_sb_nr(struct super_block *sb, 2749 unsigned long nr, 2750 enum wb_reason reason) 2751 { 2752 __writeback_inodes_sb_nr(sb, nr, reason, false); 2753 } 2754 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2755 2756 /** 2757 * writeback_inodes_sb - writeback dirty inodes from given super_block 2758 * @sb: the superblock 2759 * @reason: reason why some writeback work was initiated 2760 * 2761 * Start writeback on some inodes on this super_block. No guarantees are made 2762 * on how many (if any) will be written, and this function does not wait 2763 * for IO completion of submitted IO. 2764 */ 2765 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2766 { 2767 writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2768 } 2769 EXPORT_SYMBOL(writeback_inodes_sb); 2770 2771 /** 2772 * try_to_writeback_inodes_sb - try to start writeback if none underway 2773 * @sb: the superblock 2774 * @reason: reason why some writeback work was initiated 2775 * 2776 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2777 */ 2778 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2779 { 2780 if (!down_read_trylock(&sb->s_umount)) 2781 return; 2782 2783 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2784 up_read(&sb->s_umount); 2785 } 2786 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2787 2788 /** 2789 * sync_inodes_sb - sync sb inode pages 2790 * @sb: the superblock 2791 * 2792 * This function writes and waits on any dirty inode belonging to this 2793 * super_block. 2794 */ 2795 void sync_inodes_sb(struct super_block *sb) 2796 { 2797 struct backing_dev_info *bdi = sb->s_bdi; 2798 DEFINE_WB_COMPLETION(done, bdi); 2799 struct wb_writeback_work work = { 2800 .sb = sb, 2801 .sync_mode = WB_SYNC_ALL, 2802 .nr_pages = LONG_MAX, 2803 .range_cyclic = 0, 2804 .done = &done, 2805 .reason = WB_REASON_SYNC, 2806 .for_sync = 1, 2807 }; 2808 2809 /* 2810 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2811 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2812 * bdi_has_dirty() need to be written out too. 2813 */ 2814 if (bdi == &noop_backing_dev_info) 2815 return; 2816 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2817 2818 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2819 bdi_down_write_wb_switch_rwsem(bdi); 2820 bdi_split_work_to_wbs(bdi, &work, false); 2821 wb_wait_for_completion(&done); 2822 bdi_up_write_wb_switch_rwsem(bdi); 2823 2824 wait_sb_inodes(sb); 2825 } 2826 EXPORT_SYMBOL(sync_inodes_sb); 2827 2828 /** 2829 * write_inode_now - write an inode to disk 2830 * @inode: inode to write to disk 2831 * @sync: whether the write should be synchronous or not 2832 * 2833 * This function commits an inode to disk immediately if it is dirty. This is 2834 * primarily needed by knfsd. 2835 * 2836 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2837 */ 2838 int write_inode_now(struct inode *inode, int sync) 2839 { 2840 struct writeback_control wbc = { 2841 .nr_to_write = LONG_MAX, 2842 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2843 .range_start = 0, 2844 .range_end = LLONG_MAX, 2845 }; 2846 2847 if (!mapping_can_writeback(inode->i_mapping)) 2848 wbc.nr_to_write = 0; 2849 2850 might_sleep(); 2851 return writeback_single_inode(inode, &wbc); 2852 } 2853 EXPORT_SYMBOL(write_inode_now); 2854 2855 /** 2856 * sync_inode_metadata - write an inode to disk 2857 * @inode: the inode to sync 2858 * @wait: wait for I/O to complete. 2859 * 2860 * Write an inode to disk and adjust its dirty state after completion. 2861 * 2862 * Note: only writes the actual inode, no associated data or other metadata. 2863 */ 2864 int sync_inode_metadata(struct inode *inode, int wait) 2865 { 2866 struct writeback_control wbc = { 2867 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2868 .nr_to_write = 0, /* metadata-only */ 2869 }; 2870 2871 return writeback_single_inode(inode, &wbc); 2872 } 2873 EXPORT_SYMBOL(sync_inode_metadata); 2874