xref: /linux/fs/fs-writeback.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 	assert_spin_locked(&inode->i_lock);
124 	WARN_ON_ONCE(inode->i_state & I_FREEING);
125 
126 	list_move(&inode->i_io_list, head);
127 
128 	/* dirty_time doesn't count as dirty_io until expiration */
129 	if (head != &wb->b_dirty_time)
130 		return wb_io_lists_populated(wb);
131 
132 	wb_io_lists_depopulated(wb);
133 	return false;
134 }
135 
136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138 	spin_lock_irq(&wb->work_lock);
139 	if (test_bit(WB_registered, &wb->state))
140 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 	spin_unlock_irq(&wb->work_lock);
142 }
143 
144 /*
145  * This function is used when the first inode for this wb is marked dirty. It
146  * wakes-up the corresponding bdi thread which should then take care of the
147  * periodic background write-out of dirty inodes. Since the write-out would
148  * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149  * set up a timer which wakes the bdi thread up later.
150  *
151  * Note, we wouldn't bother setting up the timer, but this function is on the
152  * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153  * by delaying the wake-up.
154  *
155  * We have to be careful not to postpone flush work if it is scheduled for
156  * earlier. Thus we use queue_delayed_work().
157  */
158 static void wb_wakeup_delayed(struct bdi_writeback *wb)
159 {
160 	unsigned long timeout;
161 
162 	timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163 	spin_lock_irq(&wb->work_lock);
164 	if (test_bit(WB_registered, &wb->state))
165 		queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166 	spin_unlock_irq(&wb->work_lock);
167 }
168 
169 static void finish_writeback_work(struct wb_writeback_work *work)
170 {
171 	struct wb_completion *done = work->done;
172 
173 	if (work->auto_free)
174 		kfree(work);
175 	if (done) {
176 		wait_queue_head_t *waitq = done->waitq;
177 
178 		/* @done can't be accessed after the following dec */
179 		if (atomic_dec_and_test(&done->cnt))
180 			wake_up_all(waitq);
181 	}
182 }
183 
184 static void wb_queue_work(struct bdi_writeback *wb,
185 			  struct wb_writeback_work *work)
186 {
187 	trace_writeback_queue(wb, work);
188 
189 	if (work->done)
190 		atomic_inc(&work->done->cnt);
191 
192 	spin_lock_irq(&wb->work_lock);
193 
194 	if (test_bit(WB_registered, &wb->state)) {
195 		list_add_tail(&work->list, &wb->work_list);
196 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
197 	} else
198 		finish_writeback_work(work);
199 
200 	spin_unlock_irq(&wb->work_lock);
201 }
202 
203 /**
204  * wb_wait_for_completion - wait for completion of bdi_writeback_works
205  * @done: target wb_completion
206  *
207  * Wait for one or more work items issued to @bdi with their ->done field
208  * set to @done, which should have been initialized with
209  * DEFINE_WB_COMPLETION().  This function returns after all such work items
210  * are completed.  Work items which are waited upon aren't freed
211  * automatically on completion.
212  */
213 void wb_wait_for_completion(struct wb_completion *done)
214 {
215 	atomic_dec(&done->cnt);		/* put down the initial count */
216 	wait_event(*done->waitq, !atomic_read(&done->cnt));
217 }
218 
219 #ifdef CONFIG_CGROUP_WRITEBACK
220 
221 /*
222  * Parameters for foreign inode detection, see wbc_detach_inode() to see
223  * how they're used.
224  *
225  * These paramters are inherently heuristical as the detection target
226  * itself is fuzzy.  All we want to do is detaching an inode from the
227  * current owner if it's being written to by some other cgroups too much.
228  *
229  * The current cgroup writeback is built on the assumption that multiple
230  * cgroups writing to the same inode concurrently is very rare and a mode
231  * of operation which isn't well supported.  As such, the goal is not
232  * taking too long when a different cgroup takes over an inode while
233  * avoiding too aggressive flip-flops from occasional foreign writes.
234  *
235  * We record, very roughly, 2s worth of IO time history and if more than
236  * half of that is foreign, trigger the switch.  The recording is quantized
237  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
238  * writes smaller than 1/8 of avg size are ignored.
239  */
240 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
241 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
242 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
243 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
244 
245 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
246 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
247 					/* each slot's duration is 2s / 16 */
248 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
249 					/* if foreign slots >= 8, switch */
250 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
251 					/* one round can affect upto 5 slots */
252 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
253 
254 /*
255  * Maximum inodes per isw.  A specific value has been chosen to make
256  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
257  */
258 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
259                                 / sizeof(struct inode *))
260 
261 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
262 static struct workqueue_struct *isw_wq;
263 
264 void __inode_attach_wb(struct inode *inode, struct folio *folio)
265 {
266 	struct backing_dev_info *bdi = inode_to_bdi(inode);
267 	struct bdi_writeback *wb = NULL;
268 
269 	if (inode_cgwb_enabled(inode)) {
270 		struct cgroup_subsys_state *memcg_css;
271 
272 		if (folio) {
273 			memcg_css = mem_cgroup_css_from_folio(folio);
274 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
275 		} else {
276 			/* must pin memcg_css, see wb_get_create() */
277 			memcg_css = task_get_css(current, memory_cgrp_id);
278 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
279 			css_put(memcg_css);
280 		}
281 	}
282 
283 	if (!wb)
284 		wb = &bdi->wb;
285 
286 	/*
287 	 * There may be multiple instances of this function racing to
288 	 * update the same inode.  Use cmpxchg() to tell the winner.
289 	 */
290 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
291 		wb_put(wb);
292 }
293 
294 /**
295  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
296  * @inode: inode of interest with i_lock held
297  * @wb: target bdi_writeback
298  *
299  * Remove the inode from wb's io lists and if necessarily put onto b_attached
300  * list.  Only inodes attached to cgwb's are kept on this list.
301  */
302 static void inode_cgwb_move_to_attached(struct inode *inode,
303 					struct bdi_writeback *wb)
304 {
305 	assert_spin_locked(&wb->list_lock);
306 	assert_spin_locked(&inode->i_lock);
307 	WARN_ON_ONCE(inode->i_state & I_FREEING);
308 
309 	inode->i_state &= ~I_SYNC_QUEUED;
310 	if (wb != &wb->bdi->wb)
311 		list_move(&inode->i_io_list, &wb->b_attached);
312 	else
313 		list_del_init(&inode->i_io_list);
314 	wb_io_lists_depopulated(wb);
315 }
316 
317 /**
318  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
319  * @inode: inode of interest with i_lock held
320  *
321  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
322  * held on entry and is released on return.  The returned wb is guaranteed
323  * to stay @inode's associated wb until its list_lock is released.
324  */
325 static struct bdi_writeback *
326 locked_inode_to_wb_and_lock_list(struct inode *inode)
327 	__releases(&inode->i_lock)
328 	__acquires(&wb->list_lock)
329 {
330 	while (true) {
331 		struct bdi_writeback *wb = inode_to_wb(inode);
332 
333 		/*
334 		 * inode_to_wb() association is protected by both
335 		 * @inode->i_lock and @wb->list_lock but list_lock nests
336 		 * outside i_lock.  Drop i_lock and verify that the
337 		 * association hasn't changed after acquiring list_lock.
338 		 */
339 		wb_get(wb);
340 		spin_unlock(&inode->i_lock);
341 		spin_lock(&wb->list_lock);
342 
343 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
344 		if (likely(wb == inode->i_wb)) {
345 			wb_put(wb);	/* @inode already has ref */
346 			return wb;
347 		}
348 
349 		spin_unlock(&wb->list_lock);
350 		wb_put(wb);
351 		cpu_relax();
352 		spin_lock(&inode->i_lock);
353 	}
354 }
355 
356 /**
357  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
358  * @inode: inode of interest
359  *
360  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
361  * on entry.
362  */
363 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
364 	__acquires(&wb->list_lock)
365 {
366 	spin_lock(&inode->i_lock);
367 	return locked_inode_to_wb_and_lock_list(inode);
368 }
369 
370 struct inode_switch_wbs_context {
371 	struct rcu_work		work;
372 
373 	/*
374 	 * Multiple inodes can be switched at once.  The switching procedure
375 	 * consists of two parts, separated by a RCU grace period.  To make
376 	 * sure that the second part is executed for each inode gone through
377 	 * the first part, all inode pointers are placed into a NULL-terminated
378 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
379 	 * an inode could be left in a non-consistent state.
380 	 */
381 	struct bdi_writeback	*new_wb;
382 	struct inode		*inodes[];
383 };
384 
385 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
386 {
387 	down_write(&bdi->wb_switch_rwsem);
388 }
389 
390 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
391 {
392 	up_write(&bdi->wb_switch_rwsem);
393 }
394 
395 static bool inode_do_switch_wbs(struct inode *inode,
396 				struct bdi_writeback *old_wb,
397 				struct bdi_writeback *new_wb)
398 {
399 	struct address_space *mapping = inode->i_mapping;
400 	XA_STATE(xas, &mapping->i_pages, 0);
401 	struct folio *folio;
402 	bool switched = false;
403 
404 	spin_lock(&inode->i_lock);
405 	xa_lock_irq(&mapping->i_pages);
406 
407 	/*
408 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
409 	 * path owns the inode and we shouldn't modify ->i_io_list.
410 	 */
411 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
412 		goto skip_switch;
413 
414 	trace_inode_switch_wbs(inode, old_wb, new_wb);
415 
416 	/*
417 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
418 	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
419 	 * folios actually under writeback.
420 	 */
421 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
422 		if (folio_test_dirty(folio)) {
423 			long nr = folio_nr_pages(folio);
424 			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
425 			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
426 		}
427 	}
428 
429 	xas_set(&xas, 0);
430 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
431 		long nr = folio_nr_pages(folio);
432 		WARN_ON_ONCE(!folio_test_writeback(folio));
433 		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
434 		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
435 	}
436 
437 	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
438 		atomic_dec(&old_wb->writeback_inodes);
439 		atomic_inc(&new_wb->writeback_inodes);
440 	}
441 
442 	wb_get(new_wb);
443 
444 	/*
445 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
446 	 * the specific list @inode was on is ignored and the @inode is put on
447 	 * ->b_dirty which is always correct including from ->b_dirty_time.
448 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
449 	 * was clean, it means it was on the b_attached list, so move it onto
450 	 * the b_attached list of @new_wb.
451 	 */
452 	if (!list_empty(&inode->i_io_list)) {
453 		inode->i_wb = new_wb;
454 
455 		if (inode->i_state & I_DIRTY_ALL) {
456 			struct inode *pos;
457 
458 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
459 				if (time_after_eq(inode->dirtied_when,
460 						  pos->dirtied_when))
461 					break;
462 			inode_io_list_move_locked(inode, new_wb,
463 						  pos->i_io_list.prev);
464 		} else {
465 			inode_cgwb_move_to_attached(inode, new_wb);
466 		}
467 	} else {
468 		inode->i_wb = new_wb;
469 	}
470 
471 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
472 	inode->i_wb_frn_winner = 0;
473 	inode->i_wb_frn_avg_time = 0;
474 	inode->i_wb_frn_history = 0;
475 	switched = true;
476 skip_switch:
477 	/*
478 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
479 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
480 	 */
481 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
482 
483 	xa_unlock_irq(&mapping->i_pages);
484 	spin_unlock(&inode->i_lock);
485 
486 	return switched;
487 }
488 
489 static void inode_switch_wbs_work_fn(struct work_struct *work)
490 {
491 	struct inode_switch_wbs_context *isw =
492 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
493 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
494 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
495 	struct bdi_writeback *new_wb = isw->new_wb;
496 	unsigned long nr_switched = 0;
497 	struct inode **inodep;
498 
499 	/*
500 	 * If @inode switches cgwb membership while sync_inodes_sb() is
501 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
502 	 */
503 	down_read(&bdi->wb_switch_rwsem);
504 
505 	/*
506 	 * By the time control reaches here, RCU grace period has passed
507 	 * since I_WB_SWITCH assertion and all wb stat update transactions
508 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
509 	 * synchronizing against the i_pages lock.
510 	 *
511 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
512 	 * gives us exclusion against all wb related operations on @inode
513 	 * including IO list manipulations and stat updates.
514 	 */
515 	if (old_wb < new_wb) {
516 		spin_lock(&old_wb->list_lock);
517 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
518 	} else {
519 		spin_lock(&new_wb->list_lock);
520 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
521 	}
522 
523 	for (inodep = isw->inodes; *inodep; inodep++) {
524 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
525 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
526 			nr_switched++;
527 	}
528 
529 	spin_unlock(&new_wb->list_lock);
530 	spin_unlock(&old_wb->list_lock);
531 
532 	up_read(&bdi->wb_switch_rwsem);
533 
534 	if (nr_switched) {
535 		wb_wakeup(new_wb);
536 		wb_put_many(old_wb, nr_switched);
537 	}
538 
539 	for (inodep = isw->inodes; *inodep; inodep++)
540 		iput(*inodep);
541 	wb_put(new_wb);
542 	kfree(isw);
543 	atomic_dec(&isw_nr_in_flight);
544 }
545 
546 static bool inode_prepare_wbs_switch(struct inode *inode,
547 				     struct bdi_writeback *new_wb)
548 {
549 	/*
550 	 * Paired with smp_mb() in cgroup_writeback_umount().
551 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
552 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
553 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
554 	 */
555 	smp_mb();
556 
557 	if (IS_DAX(inode))
558 		return false;
559 
560 	/* while holding I_WB_SWITCH, no one else can update the association */
561 	spin_lock(&inode->i_lock);
562 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
563 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
564 	    inode_to_wb(inode) == new_wb) {
565 		spin_unlock(&inode->i_lock);
566 		return false;
567 	}
568 	inode->i_state |= I_WB_SWITCH;
569 	__iget(inode);
570 	spin_unlock(&inode->i_lock);
571 
572 	return true;
573 }
574 
575 /**
576  * inode_switch_wbs - change the wb association of an inode
577  * @inode: target inode
578  * @new_wb_id: ID of the new wb
579  *
580  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
581  * switching is performed asynchronously and may fail silently.
582  */
583 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
584 {
585 	struct backing_dev_info *bdi = inode_to_bdi(inode);
586 	struct cgroup_subsys_state *memcg_css;
587 	struct inode_switch_wbs_context *isw;
588 
589 	/* noop if seems to be already in progress */
590 	if (inode->i_state & I_WB_SWITCH)
591 		return;
592 
593 	/* avoid queueing a new switch if too many are already in flight */
594 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
595 		return;
596 
597 	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
598 	if (!isw)
599 		return;
600 
601 	atomic_inc(&isw_nr_in_flight);
602 
603 	/* find and pin the new wb */
604 	rcu_read_lock();
605 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
606 	if (memcg_css && !css_tryget(memcg_css))
607 		memcg_css = NULL;
608 	rcu_read_unlock();
609 	if (!memcg_css)
610 		goto out_free;
611 
612 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
613 	css_put(memcg_css);
614 	if (!isw->new_wb)
615 		goto out_free;
616 
617 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
618 		goto out_free;
619 
620 	isw->inodes[0] = inode;
621 
622 	/*
623 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
624 	 * the RCU protected stat update paths to grab the i_page
625 	 * lock so that stat transfer can synchronize against them.
626 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
627 	 */
628 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
629 	queue_rcu_work(isw_wq, &isw->work);
630 	return;
631 
632 out_free:
633 	atomic_dec(&isw_nr_in_flight);
634 	if (isw->new_wb)
635 		wb_put(isw->new_wb);
636 	kfree(isw);
637 }
638 
639 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
640 				   struct list_head *list, int *nr)
641 {
642 	struct inode *inode;
643 
644 	list_for_each_entry(inode, list, i_io_list) {
645 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
646 			continue;
647 
648 		isw->inodes[*nr] = inode;
649 		(*nr)++;
650 
651 		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
652 			return true;
653 	}
654 	return false;
655 }
656 
657 /**
658  * cleanup_offline_cgwb - detach associated inodes
659  * @wb: target wb
660  *
661  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
662  * to eventually release the dying @wb.  Returns %true if not all inodes were
663  * switched and the function has to be restarted.
664  */
665 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
666 {
667 	struct cgroup_subsys_state *memcg_css;
668 	struct inode_switch_wbs_context *isw;
669 	int nr;
670 	bool restart = false;
671 
672 	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
673 		      GFP_KERNEL);
674 	if (!isw)
675 		return restart;
676 
677 	atomic_inc(&isw_nr_in_flight);
678 
679 	for (memcg_css = wb->memcg_css->parent; memcg_css;
680 	     memcg_css = memcg_css->parent) {
681 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
682 		if (isw->new_wb)
683 			break;
684 	}
685 	if (unlikely(!isw->new_wb))
686 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
687 
688 	nr = 0;
689 	spin_lock(&wb->list_lock);
690 	/*
691 	 * In addition to the inodes that have completed writeback, also switch
692 	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
693 	 * inodes won't be written back for a long time when lazytime is
694 	 * enabled, and thus pinning the dying cgwbs. It won't break the
695 	 * bandwidth restrictions, as writeback of inode metadata is not
696 	 * accounted for.
697 	 */
698 	restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
699 	if (!restart)
700 		restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
701 	spin_unlock(&wb->list_lock);
702 
703 	/* no attached inodes? bail out */
704 	if (nr == 0) {
705 		atomic_dec(&isw_nr_in_flight);
706 		wb_put(isw->new_wb);
707 		kfree(isw);
708 		return restart;
709 	}
710 
711 	/*
712 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
713 	 * the RCU protected stat update paths to grab the i_page
714 	 * lock so that stat transfer can synchronize against them.
715 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
716 	 */
717 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
718 	queue_rcu_work(isw_wq, &isw->work);
719 
720 	return restart;
721 }
722 
723 /**
724  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
725  * @wbc: writeback_control of interest
726  * @inode: target inode
727  *
728  * @inode is locked and about to be written back under the control of @wbc.
729  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
730  * writeback completion, wbc_detach_inode() should be called.  This is used
731  * to track the cgroup writeback context.
732  */
733 static void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
734 		struct inode *inode)
735 	__releases(&inode->i_lock)
736 {
737 	if (!inode_cgwb_enabled(inode)) {
738 		spin_unlock(&inode->i_lock);
739 		return;
740 	}
741 
742 	wbc->wb = inode_to_wb(inode);
743 	wbc->inode = inode;
744 
745 	wbc->wb_id = wbc->wb->memcg_css->id;
746 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
747 	wbc->wb_tcand_id = 0;
748 	wbc->wb_bytes = 0;
749 	wbc->wb_lcand_bytes = 0;
750 	wbc->wb_tcand_bytes = 0;
751 
752 	wb_get(wbc->wb);
753 	spin_unlock(&inode->i_lock);
754 
755 	/*
756 	 * A dying wb indicates that either the blkcg associated with the
757 	 * memcg changed or the associated memcg is dying.  In the first
758 	 * case, a replacement wb should already be available and we should
759 	 * refresh the wb immediately.  In the second case, trying to
760 	 * refresh will keep failing.
761 	 */
762 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
763 		inode_switch_wbs(inode, wbc->wb_id);
764 }
765 
766 /**
767  * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
768  * @wbc: writeback_control of interest
769  * @inode: target inode
770  *
771  * This function is to be used by __filemap_fdatawrite_range(), which is an
772  * alternative entry point into writeback code, and first ensures @inode is
773  * associated with a bdi_writeback and attaches it to @wbc.
774  */
775 void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
776 		struct inode *inode)
777 {
778 	spin_lock(&inode->i_lock);
779 	inode_attach_wb(inode, NULL);
780 	wbc_attach_and_unlock_inode(wbc, inode);
781 }
782 EXPORT_SYMBOL_GPL(wbc_attach_fdatawrite_inode);
783 
784 /**
785  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
786  * @wbc: writeback_control of the just finished writeback
787  *
788  * To be called after a writeback attempt of an inode finishes and undoes
789  * wbc_attach_and_unlock_inode().  Can be called under any context.
790  *
791  * As concurrent write sharing of an inode is expected to be very rare and
792  * memcg only tracks page ownership on first-use basis severely confining
793  * the usefulness of such sharing, cgroup writeback tracks ownership
794  * per-inode.  While the support for concurrent write sharing of an inode
795  * is deemed unnecessary, an inode being written to by different cgroups at
796  * different points in time is a lot more common, and, more importantly,
797  * charging only by first-use can too readily lead to grossly incorrect
798  * behaviors (single foreign page can lead to gigabytes of writeback to be
799  * incorrectly attributed).
800  *
801  * To resolve this issue, cgroup writeback detects the majority dirtier of
802  * an inode and transfers the ownership to it.  To avoid unnecessary
803  * oscillation, the detection mechanism keeps track of history and gives
804  * out the switch verdict only if the foreign usage pattern is stable over
805  * a certain amount of time and/or writeback attempts.
806  *
807  * On each writeback attempt, @wbc tries to detect the majority writer
808  * using Boyer-Moore majority vote algorithm.  In addition to the byte
809  * count from the majority voting, it also counts the bytes written for the
810  * current wb and the last round's winner wb (max of last round's current
811  * wb, the winner from two rounds ago, and the last round's majority
812  * candidate).  Keeping track of the historical winner helps the algorithm
813  * to semi-reliably detect the most active writer even when it's not the
814  * absolute majority.
815  *
816  * Once the winner of the round is determined, whether the winner is
817  * foreign or not and how much IO time the round consumed is recorded in
818  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
819  * over a certain threshold, the switch verdict is given.
820  */
821 void wbc_detach_inode(struct writeback_control *wbc)
822 {
823 	struct bdi_writeback *wb = wbc->wb;
824 	struct inode *inode = wbc->inode;
825 	unsigned long avg_time, max_bytes, max_time;
826 	u16 history;
827 	int max_id;
828 
829 	if (!wb)
830 		return;
831 
832 	history = inode->i_wb_frn_history;
833 	avg_time = inode->i_wb_frn_avg_time;
834 
835 	/* pick the winner of this round */
836 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
837 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
838 		max_id = wbc->wb_id;
839 		max_bytes = wbc->wb_bytes;
840 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
841 		max_id = wbc->wb_lcand_id;
842 		max_bytes = wbc->wb_lcand_bytes;
843 	} else {
844 		max_id = wbc->wb_tcand_id;
845 		max_bytes = wbc->wb_tcand_bytes;
846 	}
847 
848 	/*
849 	 * Calculate the amount of IO time the winner consumed and fold it
850 	 * into the running average kept per inode.  If the consumed IO
851 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
852 	 * deciding whether to switch or not.  This is to prevent one-off
853 	 * small dirtiers from skewing the verdict.
854 	 */
855 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
856 				wb->avg_write_bandwidth);
857 	if (avg_time)
858 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
859 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
860 	else
861 		avg_time = max_time;	/* immediate catch up on first run */
862 
863 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
864 		int slots;
865 
866 		/*
867 		 * The switch verdict is reached if foreign wb's consume
868 		 * more than a certain proportion of IO time in a
869 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
870 		 * history mask where each bit represents one sixteenth of
871 		 * the period.  Determine the number of slots to shift into
872 		 * history from @max_time.
873 		 */
874 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
875 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
876 		history <<= slots;
877 		if (wbc->wb_id != max_id)
878 			history |= (1U << slots) - 1;
879 
880 		if (history)
881 			trace_inode_foreign_history(inode, wbc, history);
882 
883 		/*
884 		 * Switch if the current wb isn't the consistent winner.
885 		 * If there are multiple closely competing dirtiers, the
886 		 * inode may switch across them repeatedly over time, which
887 		 * is okay.  The main goal is avoiding keeping an inode on
888 		 * the wrong wb for an extended period of time.
889 		 */
890 		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
891 			inode_switch_wbs(inode, max_id);
892 	}
893 
894 	/*
895 	 * Multiple instances of this function may race to update the
896 	 * following fields but we don't mind occassional inaccuracies.
897 	 */
898 	inode->i_wb_frn_winner = max_id;
899 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
900 	inode->i_wb_frn_history = history;
901 
902 	wb_put(wbc->wb);
903 	wbc->wb = NULL;
904 }
905 EXPORT_SYMBOL_GPL(wbc_detach_inode);
906 
907 /**
908  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
909  * @wbc: writeback_control of the writeback in progress
910  * @folio: folio being written out
911  * @bytes: number of bytes being written out
912  *
913  * @bytes from @folio are about to written out during the writeback
914  * controlled by @wbc.  Keep the book for foreign inode detection.  See
915  * wbc_detach_inode().
916  */
917 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio,
918 			      size_t bytes)
919 {
920 	struct cgroup_subsys_state *css;
921 	int id;
922 
923 	/*
924 	 * pageout() path doesn't attach @wbc to the inode being written
925 	 * out.  This is intentional as we don't want the function to block
926 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
927 	 * regular writeback instead of writing things out itself.
928 	 */
929 	if (!wbc->wb || wbc->no_cgroup_owner)
930 		return;
931 
932 	css = mem_cgroup_css_from_folio(folio);
933 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
934 	if (!(css->flags & CSS_ONLINE))
935 		return;
936 
937 	id = css->id;
938 
939 	if (id == wbc->wb_id) {
940 		wbc->wb_bytes += bytes;
941 		return;
942 	}
943 
944 	if (id == wbc->wb_lcand_id)
945 		wbc->wb_lcand_bytes += bytes;
946 
947 	/* Boyer-Moore majority vote algorithm */
948 	if (!wbc->wb_tcand_bytes)
949 		wbc->wb_tcand_id = id;
950 	if (id == wbc->wb_tcand_id)
951 		wbc->wb_tcand_bytes += bytes;
952 	else
953 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
954 }
955 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
956 
957 /**
958  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
959  * @wb: target bdi_writeback to split @nr_pages to
960  * @nr_pages: number of pages to write for the whole bdi
961  *
962  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
963  * relation to the total write bandwidth of all wb's w/ dirty inodes on
964  * @wb->bdi.
965  */
966 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
967 {
968 	unsigned long this_bw = wb->avg_write_bandwidth;
969 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
970 
971 	if (nr_pages == LONG_MAX)
972 		return LONG_MAX;
973 
974 	/*
975 	 * This may be called on clean wb's and proportional distribution
976 	 * may not make sense, just use the original @nr_pages in those
977 	 * cases.  In general, we wanna err on the side of writing more.
978 	 */
979 	if (!tot_bw || this_bw >= tot_bw)
980 		return nr_pages;
981 	else
982 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
983 }
984 
985 /**
986  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
987  * @bdi: target backing_dev_info
988  * @base_work: wb_writeback_work to issue
989  * @skip_if_busy: skip wb's which already have writeback in progress
990  *
991  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
992  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
993  * distributed to the busy wbs according to each wb's proportion in the
994  * total active write bandwidth of @bdi.
995  */
996 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
997 				  struct wb_writeback_work *base_work,
998 				  bool skip_if_busy)
999 {
1000 	struct bdi_writeback *last_wb = NULL;
1001 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
1002 					      struct bdi_writeback, bdi_node);
1003 
1004 	might_sleep();
1005 restart:
1006 	rcu_read_lock();
1007 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
1008 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
1009 		struct wb_writeback_work fallback_work;
1010 		struct wb_writeback_work *work;
1011 		long nr_pages;
1012 
1013 		if (last_wb) {
1014 			wb_put(last_wb);
1015 			last_wb = NULL;
1016 		}
1017 
1018 		/* SYNC_ALL writes out I_DIRTY_TIME too */
1019 		if (!wb_has_dirty_io(wb) &&
1020 		    (base_work->sync_mode == WB_SYNC_NONE ||
1021 		     list_empty(&wb->b_dirty_time)))
1022 			continue;
1023 		if (skip_if_busy && writeback_in_progress(wb))
1024 			continue;
1025 
1026 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1027 
1028 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1029 		if (work) {
1030 			*work = *base_work;
1031 			work->nr_pages = nr_pages;
1032 			work->auto_free = 1;
1033 			wb_queue_work(wb, work);
1034 			continue;
1035 		}
1036 
1037 		/*
1038 		 * If wb_tryget fails, the wb has been shutdown, skip it.
1039 		 *
1040 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1041 		 * continuing iteration from @wb after dropping and
1042 		 * regrabbing rcu read lock.
1043 		 */
1044 		if (!wb_tryget(wb))
1045 			continue;
1046 
1047 		/* alloc failed, execute synchronously using on-stack fallback */
1048 		work = &fallback_work;
1049 		*work = *base_work;
1050 		work->nr_pages = nr_pages;
1051 		work->auto_free = 0;
1052 		work->done = &fallback_work_done;
1053 
1054 		wb_queue_work(wb, work);
1055 		last_wb = wb;
1056 
1057 		rcu_read_unlock();
1058 		wb_wait_for_completion(&fallback_work_done);
1059 		goto restart;
1060 	}
1061 	rcu_read_unlock();
1062 
1063 	if (last_wb)
1064 		wb_put(last_wb);
1065 }
1066 
1067 /**
1068  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1069  * @bdi_id: target bdi id
1070  * @memcg_id: target memcg css id
1071  * @reason: reason why some writeback work initiated
1072  * @done: target wb_completion
1073  *
1074  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1075  * with the specified parameters.
1076  */
1077 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1078 			   enum wb_reason reason, struct wb_completion *done)
1079 {
1080 	struct backing_dev_info *bdi;
1081 	struct cgroup_subsys_state *memcg_css;
1082 	struct bdi_writeback *wb;
1083 	struct wb_writeback_work *work;
1084 	unsigned long dirty;
1085 	int ret;
1086 
1087 	/* lookup bdi and memcg */
1088 	bdi = bdi_get_by_id(bdi_id);
1089 	if (!bdi)
1090 		return -ENOENT;
1091 
1092 	rcu_read_lock();
1093 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1094 	if (memcg_css && !css_tryget(memcg_css))
1095 		memcg_css = NULL;
1096 	rcu_read_unlock();
1097 	if (!memcg_css) {
1098 		ret = -ENOENT;
1099 		goto out_bdi_put;
1100 	}
1101 
1102 	/*
1103 	 * And find the associated wb.  If the wb isn't there already
1104 	 * there's nothing to flush, don't create one.
1105 	 */
1106 	wb = wb_get_lookup(bdi, memcg_css);
1107 	if (!wb) {
1108 		ret = -ENOENT;
1109 		goto out_css_put;
1110 	}
1111 
1112 	/*
1113 	 * The caller is attempting to write out most of
1114 	 * the currently dirty pages.  Let's take the current dirty page
1115 	 * count and inflate it by 25% which should be large enough to
1116 	 * flush out most dirty pages while avoiding getting livelocked by
1117 	 * concurrent dirtiers.
1118 	 *
1119 	 * BTW the memcg stats are flushed periodically and this is best-effort
1120 	 * estimation, so some potential error is ok.
1121 	 */
1122 	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1123 	dirty = dirty * 10 / 8;
1124 
1125 	/* issue the writeback work */
1126 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1127 	if (work) {
1128 		work->nr_pages = dirty;
1129 		work->sync_mode = WB_SYNC_NONE;
1130 		work->range_cyclic = 1;
1131 		work->reason = reason;
1132 		work->done = done;
1133 		work->auto_free = 1;
1134 		wb_queue_work(wb, work);
1135 		ret = 0;
1136 	} else {
1137 		ret = -ENOMEM;
1138 	}
1139 
1140 	wb_put(wb);
1141 out_css_put:
1142 	css_put(memcg_css);
1143 out_bdi_put:
1144 	bdi_put(bdi);
1145 	return ret;
1146 }
1147 
1148 /**
1149  * cgroup_writeback_umount - flush inode wb switches for umount
1150  * @sb: target super_block
1151  *
1152  * This function is called when a super_block is about to be destroyed and
1153  * flushes in-flight inode wb switches.  An inode wb switch goes through
1154  * RCU and then workqueue, so the two need to be flushed in order to ensure
1155  * that all previously scheduled switches are finished.  As wb switches are
1156  * rare occurrences and synchronize_rcu() can take a while, perform
1157  * flushing iff wb switches are in flight.
1158  */
1159 void cgroup_writeback_umount(struct super_block *sb)
1160 {
1161 
1162 	if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
1163 		return;
1164 
1165 	/*
1166 	 * SB_ACTIVE should be reliably cleared before checking
1167 	 * isw_nr_in_flight, see generic_shutdown_super().
1168 	 */
1169 	smp_mb();
1170 
1171 	if (atomic_read(&isw_nr_in_flight)) {
1172 		/*
1173 		 * Use rcu_barrier() to wait for all pending callbacks to
1174 		 * ensure that all in-flight wb switches are in the workqueue.
1175 		 */
1176 		rcu_barrier();
1177 		flush_workqueue(isw_wq);
1178 	}
1179 }
1180 
1181 static int __init cgroup_writeback_init(void)
1182 {
1183 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1184 	if (!isw_wq)
1185 		return -ENOMEM;
1186 	return 0;
1187 }
1188 fs_initcall(cgroup_writeback_init);
1189 
1190 #else	/* CONFIG_CGROUP_WRITEBACK */
1191 
1192 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1193 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1194 
1195 static void inode_cgwb_move_to_attached(struct inode *inode,
1196 					struct bdi_writeback *wb)
1197 {
1198 	assert_spin_locked(&wb->list_lock);
1199 	assert_spin_locked(&inode->i_lock);
1200 	WARN_ON_ONCE(inode->i_state & I_FREEING);
1201 
1202 	inode->i_state &= ~I_SYNC_QUEUED;
1203 	list_del_init(&inode->i_io_list);
1204 	wb_io_lists_depopulated(wb);
1205 }
1206 
1207 static struct bdi_writeback *
1208 locked_inode_to_wb_and_lock_list(struct inode *inode)
1209 	__releases(&inode->i_lock)
1210 	__acquires(&wb->list_lock)
1211 {
1212 	struct bdi_writeback *wb = inode_to_wb(inode);
1213 
1214 	spin_unlock(&inode->i_lock);
1215 	spin_lock(&wb->list_lock);
1216 	return wb;
1217 }
1218 
1219 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1220 	__acquires(&wb->list_lock)
1221 {
1222 	struct bdi_writeback *wb = inode_to_wb(inode);
1223 
1224 	spin_lock(&wb->list_lock);
1225 	return wb;
1226 }
1227 
1228 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1229 {
1230 	return nr_pages;
1231 }
1232 
1233 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1234 				  struct wb_writeback_work *base_work,
1235 				  bool skip_if_busy)
1236 {
1237 	might_sleep();
1238 
1239 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1240 		base_work->auto_free = 0;
1241 		wb_queue_work(&bdi->wb, base_work);
1242 	}
1243 }
1244 
1245 static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
1246 					       struct inode *inode)
1247 	__releases(&inode->i_lock)
1248 {
1249 	spin_unlock(&inode->i_lock);
1250 }
1251 
1252 #endif	/* CONFIG_CGROUP_WRITEBACK */
1253 
1254 /*
1255  * Add in the number of potentially dirty inodes, because each inode
1256  * write can dirty pagecache in the underlying blockdev.
1257  */
1258 static unsigned long get_nr_dirty_pages(void)
1259 {
1260 	return global_node_page_state(NR_FILE_DIRTY) +
1261 		get_nr_dirty_inodes();
1262 }
1263 
1264 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1265 {
1266 	if (!wb_has_dirty_io(wb))
1267 		return;
1268 
1269 	/*
1270 	 * All callers of this function want to start writeback of all
1271 	 * dirty pages. Places like vmscan can call this at a very
1272 	 * high frequency, causing pointless allocations of tons of
1273 	 * work items and keeping the flusher threads busy retrieving
1274 	 * that work. Ensure that we only allow one of them pending and
1275 	 * inflight at the time.
1276 	 */
1277 	if (test_bit(WB_start_all, &wb->state) ||
1278 	    test_and_set_bit(WB_start_all, &wb->state))
1279 		return;
1280 
1281 	wb->start_all_reason = reason;
1282 	wb_wakeup(wb);
1283 }
1284 
1285 /**
1286  * wb_start_background_writeback - start background writeback
1287  * @wb: bdi_writback to write from
1288  *
1289  * Description:
1290  *   This makes sure WB_SYNC_NONE background writeback happens. When
1291  *   this function returns, it is only guaranteed that for given wb
1292  *   some IO is happening if we are over background dirty threshold.
1293  *   Caller need not hold sb s_umount semaphore.
1294  */
1295 void wb_start_background_writeback(struct bdi_writeback *wb)
1296 {
1297 	/*
1298 	 * We just wake up the flusher thread. It will perform background
1299 	 * writeback as soon as there is no other work to do.
1300 	 */
1301 	trace_writeback_wake_background(wb);
1302 	wb_wakeup(wb);
1303 }
1304 
1305 /*
1306  * Remove the inode from the writeback list it is on.
1307  */
1308 void inode_io_list_del(struct inode *inode)
1309 {
1310 	struct bdi_writeback *wb;
1311 
1312 	wb = inode_to_wb_and_lock_list(inode);
1313 	spin_lock(&inode->i_lock);
1314 
1315 	inode->i_state &= ~I_SYNC_QUEUED;
1316 	list_del_init(&inode->i_io_list);
1317 	wb_io_lists_depopulated(wb);
1318 
1319 	spin_unlock(&inode->i_lock);
1320 	spin_unlock(&wb->list_lock);
1321 }
1322 EXPORT_SYMBOL(inode_io_list_del);
1323 
1324 /*
1325  * mark an inode as under writeback on the sb
1326  */
1327 void sb_mark_inode_writeback(struct inode *inode)
1328 {
1329 	struct super_block *sb = inode->i_sb;
1330 	unsigned long flags;
1331 
1332 	if (list_empty(&inode->i_wb_list)) {
1333 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1334 		if (list_empty(&inode->i_wb_list)) {
1335 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1336 			trace_sb_mark_inode_writeback(inode);
1337 		}
1338 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1339 	}
1340 }
1341 
1342 /*
1343  * clear an inode as under writeback on the sb
1344  */
1345 void sb_clear_inode_writeback(struct inode *inode)
1346 {
1347 	struct super_block *sb = inode->i_sb;
1348 	unsigned long flags;
1349 
1350 	if (!list_empty(&inode->i_wb_list)) {
1351 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1352 		if (!list_empty(&inode->i_wb_list)) {
1353 			list_del_init(&inode->i_wb_list);
1354 			trace_sb_clear_inode_writeback(inode);
1355 		}
1356 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1357 	}
1358 }
1359 
1360 /*
1361  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1362  * furthest end of its superblock's dirty-inode list.
1363  *
1364  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1365  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1366  * the case then the inode must have been redirtied while it was being written
1367  * out and we don't reset its dirtied_when.
1368  */
1369 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1370 {
1371 	assert_spin_locked(&inode->i_lock);
1372 
1373 	inode->i_state &= ~I_SYNC_QUEUED;
1374 	/*
1375 	 * When the inode is being freed just don't bother with dirty list
1376 	 * tracking. Flush worker will ignore this inode anyway and it will
1377 	 * trigger assertions in inode_io_list_move_locked().
1378 	 */
1379 	if (inode->i_state & I_FREEING) {
1380 		list_del_init(&inode->i_io_list);
1381 		wb_io_lists_depopulated(wb);
1382 		return;
1383 	}
1384 	if (!list_empty(&wb->b_dirty)) {
1385 		struct inode *tail;
1386 
1387 		tail = wb_inode(wb->b_dirty.next);
1388 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1389 			inode->dirtied_when = jiffies;
1390 	}
1391 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1392 }
1393 
1394 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1395 {
1396 	spin_lock(&inode->i_lock);
1397 	redirty_tail_locked(inode, wb);
1398 	spin_unlock(&inode->i_lock);
1399 }
1400 
1401 /*
1402  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1403  */
1404 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1405 {
1406 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1407 }
1408 
1409 static void inode_sync_complete(struct inode *inode)
1410 {
1411 	assert_spin_locked(&inode->i_lock);
1412 
1413 	inode->i_state &= ~I_SYNC;
1414 	/* If inode is clean an unused, put it into LRU now... */
1415 	inode_add_lru(inode);
1416 	/* Called with inode->i_lock which ensures memory ordering. */
1417 	inode_wake_up_bit(inode, __I_SYNC);
1418 }
1419 
1420 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1421 {
1422 	bool ret = time_after(inode->dirtied_when, t);
1423 #ifndef CONFIG_64BIT
1424 	/*
1425 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1426 	 * It _appears_ to be in the future, but is actually in distant past.
1427 	 * This test is necessary to prevent such wrapped-around relative times
1428 	 * from permanently stopping the whole bdi writeback.
1429 	 */
1430 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1431 #endif
1432 	return ret;
1433 }
1434 
1435 /*
1436  * Move expired (dirtied before dirtied_before) dirty inodes from
1437  * @delaying_queue to @dispatch_queue.
1438  */
1439 static int move_expired_inodes(struct list_head *delaying_queue,
1440 			       struct list_head *dispatch_queue,
1441 			       unsigned long dirtied_before)
1442 {
1443 	LIST_HEAD(tmp);
1444 	struct list_head *pos, *node;
1445 	struct super_block *sb = NULL;
1446 	struct inode *inode;
1447 	int do_sb_sort = 0;
1448 	int moved = 0;
1449 
1450 	while (!list_empty(delaying_queue)) {
1451 		inode = wb_inode(delaying_queue->prev);
1452 		if (inode_dirtied_after(inode, dirtied_before))
1453 			break;
1454 		spin_lock(&inode->i_lock);
1455 		list_move(&inode->i_io_list, &tmp);
1456 		moved++;
1457 		inode->i_state |= I_SYNC_QUEUED;
1458 		spin_unlock(&inode->i_lock);
1459 		if (sb_is_blkdev_sb(inode->i_sb))
1460 			continue;
1461 		if (sb && sb != inode->i_sb)
1462 			do_sb_sort = 1;
1463 		sb = inode->i_sb;
1464 	}
1465 
1466 	/* just one sb in list, splice to dispatch_queue and we're done */
1467 	if (!do_sb_sort) {
1468 		list_splice(&tmp, dispatch_queue);
1469 		goto out;
1470 	}
1471 
1472 	/*
1473 	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1474 	 * we don't take inode->i_lock here because it is just a pointless overhead.
1475 	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1476 	 * fully under our control.
1477 	 */
1478 	while (!list_empty(&tmp)) {
1479 		sb = wb_inode(tmp.prev)->i_sb;
1480 		list_for_each_prev_safe(pos, node, &tmp) {
1481 			inode = wb_inode(pos);
1482 			if (inode->i_sb == sb)
1483 				list_move(&inode->i_io_list, dispatch_queue);
1484 		}
1485 	}
1486 out:
1487 	return moved;
1488 }
1489 
1490 /*
1491  * Queue all expired dirty inodes for io, eldest first.
1492  * Before
1493  *         newly dirtied     b_dirty    b_io    b_more_io
1494  *         =============>    gf         edc     BA
1495  * After
1496  *         newly dirtied     b_dirty    b_io    b_more_io
1497  *         =============>    g          fBAedc
1498  *                                           |
1499  *                                           +--> dequeue for IO
1500  */
1501 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1502 		     unsigned long dirtied_before)
1503 {
1504 	int moved;
1505 	unsigned long time_expire_jif = dirtied_before;
1506 
1507 	assert_spin_locked(&wb->list_lock);
1508 	list_splice_init(&wb->b_more_io, &wb->b_io);
1509 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1510 	if (!work->for_sync)
1511 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1512 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1513 				     time_expire_jif);
1514 	if (moved)
1515 		wb_io_lists_populated(wb);
1516 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1517 }
1518 
1519 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1520 {
1521 	int ret;
1522 
1523 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1524 		trace_writeback_write_inode_start(inode, wbc);
1525 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1526 		trace_writeback_write_inode(inode, wbc);
1527 		return ret;
1528 	}
1529 	return 0;
1530 }
1531 
1532 /*
1533  * Wait for writeback on an inode to complete. Called with i_lock held.
1534  * Caller must make sure inode cannot go away when we drop i_lock.
1535  */
1536 void inode_wait_for_writeback(struct inode *inode)
1537 {
1538 	struct wait_bit_queue_entry wqe;
1539 	struct wait_queue_head *wq_head;
1540 
1541 	assert_spin_locked(&inode->i_lock);
1542 
1543 	if (!(inode->i_state & I_SYNC))
1544 		return;
1545 
1546 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1547 	for (;;) {
1548 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1549 		/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1550 		if (!(inode->i_state & I_SYNC))
1551 			break;
1552 		spin_unlock(&inode->i_lock);
1553 		schedule();
1554 		spin_lock(&inode->i_lock);
1555 	}
1556 	finish_wait(wq_head, &wqe.wq_entry);
1557 }
1558 
1559 /*
1560  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1561  * held and drops it. It is aimed for callers not holding any inode reference
1562  * so once i_lock is dropped, inode can go away.
1563  */
1564 static void inode_sleep_on_writeback(struct inode *inode)
1565 	__releases(inode->i_lock)
1566 {
1567 	struct wait_bit_queue_entry wqe;
1568 	struct wait_queue_head *wq_head;
1569 	bool sleep;
1570 
1571 	assert_spin_locked(&inode->i_lock);
1572 
1573 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1574 	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1575 	/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1576 	sleep = !!(inode->i_state & I_SYNC);
1577 	spin_unlock(&inode->i_lock);
1578 	if (sleep)
1579 		schedule();
1580 	finish_wait(wq_head, &wqe.wq_entry);
1581 }
1582 
1583 /*
1584  * Find proper writeback list for the inode depending on its current state and
1585  * possibly also change of its state while we were doing writeback.  Here we
1586  * handle things such as livelock prevention or fairness of writeback among
1587  * inodes. This function can be called only by flusher thread - noone else
1588  * processes all inodes in writeback lists and requeueing inodes behind flusher
1589  * thread's back can have unexpected consequences.
1590  */
1591 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1592 			  struct writeback_control *wbc,
1593 			  unsigned long dirtied_before)
1594 {
1595 	if (inode->i_state & I_FREEING)
1596 		return;
1597 
1598 	/*
1599 	 * Sync livelock prevention. Each inode is tagged and synced in one
1600 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1601 	 * the dirty time to prevent enqueue and sync it again.
1602 	 */
1603 	if ((inode->i_state & I_DIRTY) &&
1604 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1605 		inode->dirtied_when = jiffies;
1606 
1607 	if (wbc->pages_skipped) {
1608 		/*
1609 		 * Writeback is not making progress due to locked buffers.
1610 		 * Skip this inode for now. Although having skipped pages
1611 		 * is odd for clean inodes, it can happen for some
1612 		 * filesystems so handle that gracefully.
1613 		 */
1614 		if (inode->i_state & I_DIRTY_ALL)
1615 			redirty_tail_locked(inode, wb);
1616 		else
1617 			inode_cgwb_move_to_attached(inode, wb);
1618 		return;
1619 	}
1620 
1621 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1622 		/*
1623 		 * We didn't write back all the pages.  nfs_writepages()
1624 		 * sometimes bales out without doing anything.
1625 		 */
1626 		if (wbc->nr_to_write <= 0 &&
1627 		    !inode_dirtied_after(inode, dirtied_before)) {
1628 			/* Slice used up. Queue for next turn. */
1629 			requeue_io(inode, wb);
1630 		} else {
1631 			/*
1632 			 * Writeback blocked by something other than
1633 			 * congestion. Delay the inode for some time to
1634 			 * avoid spinning on the CPU (100% iowait)
1635 			 * retrying writeback of the dirty page/inode
1636 			 * that cannot be performed immediately.
1637 			 */
1638 			redirty_tail_locked(inode, wb);
1639 		}
1640 	} else if (inode->i_state & I_DIRTY) {
1641 		/*
1642 		 * Filesystems can dirty the inode during writeback operations,
1643 		 * such as delayed allocation during submission or metadata
1644 		 * updates after data IO completion.
1645 		 */
1646 		redirty_tail_locked(inode, wb);
1647 	} else if (inode->i_state & I_DIRTY_TIME) {
1648 		inode->dirtied_when = jiffies;
1649 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1650 		inode->i_state &= ~I_SYNC_QUEUED;
1651 	} else {
1652 		/* The inode is clean. Remove from writeback lists. */
1653 		inode_cgwb_move_to_attached(inode, wb);
1654 	}
1655 }
1656 
1657 /*
1658  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1659  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1660  *
1661  * This doesn't remove the inode from the writeback list it is on, except
1662  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1663  * expiration.  The caller is otherwise responsible for writeback list handling.
1664  *
1665  * The caller is also responsible for setting the I_SYNC flag beforehand and
1666  * calling inode_sync_complete() to clear it afterwards.
1667  */
1668 static int
1669 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1670 {
1671 	struct address_space *mapping = inode->i_mapping;
1672 	long nr_to_write = wbc->nr_to_write;
1673 	unsigned dirty;
1674 	int ret;
1675 
1676 	WARN_ON(!(inode->i_state & I_SYNC));
1677 
1678 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1679 
1680 	ret = do_writepages(mapping, wbc);
1681 
1682 	/*
1683 	 * Make sure to wait on the data before writing out the metadata.
1684 	 * This is important for filesystems that modify metadata on data
1685 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1686 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1687 	 * inode metadata is written back correctly.
1688 	 */
1689 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1690 		int err = filemap_fdatawait(mapping);
1691 		if (ret == 0)
1692 			ret = err;
1693 	}
1694 
1695 	/*
1696 	 * If the inode has dirty timestamps and we need to write them, call
1697 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1698 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1699 	 */
1700 	if ((inode->i_state & I_DIRTY_TIME) &&
1701 	    (wbc->sync_mode == WB_SYNC_ALL ||
1702 	     time_after(jiffies, inode->dirtied_time_when +
1703 			dirtytime_expire_interval * HZ))) {
1704 		trace_writeback_lazytime(inode);
1705 		mark_inode_dirty_sync(inode);
1706 	}
1707 
1708 	/*
1709 	 * Get and clear the dirty flags from i_state.  This needs to be done
1710 	 * after calling writepages because some filesystems may redirty the
1711 	 * inode during writepages due to delalloc.  It also needs to be done
1712 	 * after handling timestamp expiration, as that may dirty the inode too.
1713 	 */
1714 	spin_lock(&inode->i_lock);
1715 	dirty = inode->i_state & I_DIRTY;
1716 	inode->i_state &= ~dirty;
1717 
1718 	/*
1719 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1720 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1721 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1722 	 * inode.
1723 	 *
1724 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1725 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1726 	 * necessary.  This guarantees that either __mark_inode_dirty()
1727 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1728 	 */
1729 	smp_mb();
1730 
1731 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1732 		inode->i_state |= I_DIRTY_PAGES;
1733 	else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1734 		if (!(inode->i_state & I_DIRTY_PAGES)) {
1735 			inode->i_state &= ~I_PINNING_NETFS_WB;
1736 			wbc->unpinned_netfs_wb = true;
1737 			dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1738 		}
1739 	}
1740 
1741 	spin_unlock(&inode->i_lock);
1742 
1743 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1744 	if (dirty & ~I_DIRTY_PAGES) {
1745 		int err = write_inode(inode, wbc);
1746 		if (ret == 0)
1747 			ret = err;
1748 	}
1749 	wbc->unpinned_netfs_wb = false;
1750 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1751 	return ret;
1752 }
1753 
1754 /*
1755  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1756  * the regular batched writeback done by the flusher threads in
1757  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1758  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1759  *
1760  * To prevent the inode from going away, either the caller must have a reference
1761  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1762  */
1763 static int writeback_single_inode(struct inode *inode,
1764 				  struct writeback_control *wbc)
1765 {
1766 	struct bdi_writeback *wb;
1767 	int ret = 0;
1768 
1769 	spin_lock(&inode->i_lock);
1770 	if (!atomic_read(&inode->i_count))
1771 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1772 	else
1773 		WARN_ON(inode->i_state & I_WILL_FREE);
1774 
1775 	if (inode->i_state & I_SYNC) {
1776 		/*
1777 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1778 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1779 		 * must wait for the existing writeback to complete, then do
1780 		 * writeback again if there's anything left.
1781 		 */
1782 		if (wbc->sync_mode != WB_SYNC_ALL)
1783 			goto out;
1784 		inode_wait_for_writeback(inode);
1785 	}
1786 	WARN_ON(inode->i_state & I_SYNC);
1787 	/*
1788 	 * If the inode is already fully clean, then there's nothing to do.
1789 	 *
1790 	 * For data-integrity syncs we also need to check whether any pages are
1791 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1792 	 * there are any such pages, we'll need to wait for them.
1793 	 */
1794 	if (!(inode->i_state & I_DIRTY_ALL) &&
1795 	    (wbc->sync_mode != WB_SYNC_ALL ||
1796 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1797 		goto out;
1798 	inode->i_state |= I_SYNC;
1799 	wbc_attach_and_unlock_inode(wbc, inode);
1800 
1801 	ret = __writeback_single_inode(inode, wbc);
1802 
1803 	wbc_detach_inode(wbc);
1804 
1805 	wb = inode_to_wb_and_lock_list(inode);
1806 	spin_lock(&inode->i_lock);
1807 	/*
1808 	 * If the inode is freeing, its i_io_list shoudn't be updated
1809 	 * as it can be finally deleted at this moment.
1810 	 */
1811 	if (!(inode->i_state & I_FREEING)) {
1812 		/*
1813 		 * If the inode is now fully clean, then it can be safely
1814 		 * removed from its writeback list (if any). Otherwise the
1815 		 * flusher threads are responsible for the writeback lists.
1816 		 */
1817 		if (!(inode->i_state & I_DIRTY_ALL))
1818 			inode_cgwb_move_to_attached(inode, wb);
1819 		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1820 			if ((inode->i_state & I_DIRTY))
1821 				redirty_tail_locked(inode, wb);
1822 			else if (inode->i_state & I_DIRTY_TIME) {
1823 				inode->dirtied_when = jiffies;
1824 				inode_io_list_move_locked(inode,
1825 							  wb,
1826 							  &wb->b_dirty_time);
1827 			}
1828 		}
1829 	}
1830 
1831 	spin_unlock(&wb->list_lock);
1832 	inode_sync_complete(inode);
1833 out:
1834 	spin_unlock(&inode->i_lock);
1835 	return ret;
1836 }
1837 
1838 static long writeback_chunk_size(struct bdi_writeback *wb,
1839 				 struct wb_writeback_work *work)
1840 {
1841 	long pages;
1842 
1843 	/*
1844 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1845 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1846 	 * here avoids calling into writeback_inodes_wb() more than once.
1847 	 *
1848 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1849 	 *
1850 	 *      wb_writeback()
1851 	 *          writeback_sb_inodes()       <== called only once
1852 	 *              write_cache_pages()     <== called once for each inode
1853 	 *                   (quickly) tag currently dirty pages
1854 	 *                   (maybe slowly) sync all tagged pages
1855 	 */
1856 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1857 		pages = LONG_MAX;
1858 	else {
1859 		pages = min(wb->avg_write_bandwidth / 2,
1860 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1861 		pages = min(pages, work->nr_pages);
1862 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1863 				   MIN_WRITEBACK_PAGES);
1864 	}
1865 
1866 	return pages;
1867 }
1868 
1869 /*
1870  * Write a portion of b_io inodes which belong to @sb.
1871  *
1872  * Return the number of pages and/or inodes written.
1873  *
1874  * NOTE! This is called with wb->list_lock held, and will
1875  * unlock and relock that for each inode it ends up doing
1876  * IO for.
1877  */
1878 static long writeback_sb_inodes(struct super_block *sb,
1879 				struct bdi_writeback *wb,
1880 				struct wb_writeback_work *work)
1881 {
1882 	struct writeback_control wbc = {
1883 		.sync_mode		= work->sync_mode,
1884 		.tagged_writepages	= work->tagged_writepages,
1885 		.for_kupdate		= work->for_kupdate,
1886 		.for_background		= work->for_background,
1887 		.for_sync		= work->for_sync,
1888 		.range_cyclic		= work->range_cyclic,
1889 		.range_start		= 0,
1890 		.range_end		= LLONG_MAX,
1891 	};
1892 	unsigned long start_time = jiffies;
1893 	long write_chunk;
1894 	long total_wrote = 0;  /* count both pages and inodes */
1895 	unsigned long dirtied_before = jiffies;
1896 
1897 	if (work->for_kupdate)
1898 		dirtied_before = jiffies -
1899 			msecs_to_jiffies(dirty_expire_interval * 10);
1900 
1901 	while (!list_empty(&wb->b_io)) {
1902 		struct inode *inode = wb_inode(wb->b_io.prev);
1903 		struct bdi_writeback *tmp_wb;
1904 		long wrote;
1905 
1906 		if (inode->i_sb != sb) {
1907 			if (work->sb) {
1908 				/*
1909 				 * We only want to write back data for this
1910 				 * superblock, move all inodes not belonging
1911 				 * to it back onto the dirty list.
1912 				 */
1913 				redirty_tail(inode, wb);
1914 				continue;
1915 			}
1916 
1917 			/*
1918 			 * The inode belongs to a different superblock.
1919 			 * Bounce back to the caller to unpin this and
1920 			 * pin the next superblock.
1921 			 */
1922 			break;
1923 		}
1924 
1925 		/*
1926 		 * Don't bother with new inodes or inodes being freed, first
1927 		 * kind does not need periodic writeout yet, and for the latter
1928 		 * kind writeout is handled by the freer.
1929 		 */
1930 		spin_lock(&inode->i_lock);
1931 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1932 			redirty_tail_locked(inode, wb);
1933 			spin_unlock(&inode->i_lock);
1934 			continue;
1935 		}
1936 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1937 			/*
1938 			 * If this inode is locked for writeback and we are not
1939 			 * doing writeback-for-data-integrity, move it to
1940 			 * b_more_io so that writeback can proceed with the
1941 			 * other inodes on s_io.
1942 			 *
1943 			 * We'll have another go at writing back this inode
1944 			 * when we completed a full scan of b_io.
1945 			 */
1946 			requeue_io(inode, wb);
1947 			spin_unlock(&inode->i_lock);
1948 			trace_writeback_sb_inodes_requeue(inode);
1949 			continue;
1950 		}
1951 		spin_unlock(&wb->list_lock);
1952 
1953 		/*
1954 		 * We already requeued the inode if it had I_SYNC set and we
1955 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1956 		 * WB_SYNC_ALL case.
1957 		 */
1958 		if (inode->i_state & I_SYNC) {
1959 			/* Wait for I_SYNC. This function drops i_lock... */
1960 			inode_sleep_on_writeback(inode);
1961 			/* Inode may be gone, start again */
1962 			spin_lock(&wb->list_lock);
1963 			continue;
1964 		}
1965 		inode->i_state |= I_SYNC;
1966 		wbc_attach_and_unlock_inode(&wbc, inode);
1967 
1968 		write_chunk = writeback_chunk_size(wb, work);
1969 		wbc.nr_to_write = write_chunk;
1970 		wbc.pages_skipped = 0;
1971 
1972 		/*
1973 		 * We use I_SYNC to pin the inode in memory. While it is set
1974 		 * evict_inode() will wait so the inode cannot be freed.
1975 		 */
1976 		__writeback_single_inode(inode, &wbc);
1977 
1978 		wbc_detach_inode(&wbc);
1979 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1980 		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1981 		wrote = wrote < 0 ? 0 : wrote;
1982 		total_wrote += wrote;
1983 
1984 		if (need_resched()) {
1985 			/*
1986 			 * We're trying to balance between building up a nice
1987 			 * long list of IOs to improve our merge rate, and
1988 			 * getting those IOs out quickly for anyone throttling
1989 			 * in balance_dirty_pages().  cond_resched() doesn't
1990 			 * unplug, so get our IOs out the door before we
1991 			 * give up the CPU.
1992 			 */
1993 			blk_flush_plug(current->plug, false);
1994 			cond_resched();
1995 		}
1996 
1997 		/*
1998 		 * Requeue @inode if still dirty.  Be careful as @inode may
1999 		 * have been switched to another wb in the meantime.
2000 		 */
2001 		tmp_wb = inode_to_wb_and_lock_list(inode);
2002 		spin_lock(&inode->i_lock);
2003 		if (!(inode->i_state & I_DIRTY_ALL))
2004 			total_wrote++;
2005 		requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
2006 		inode_sync_complete(inode);
2007 		spin_unlock(&inode->i_lock);
2008 
2009 		if (unlikely(tmp_wb != wb)) {
2010 			spin_unlock(&tmp_wb->list_lock);
2011 			spin_lock(&wb->list_lock);
2012 		}
2013 
2014 		/*
2015 		 * bail out to wb_writeback() often enough to check
2016 		 * background threshold and other termination conditions.
2017 		 */
2018 		if (total_wrote) {
2019 			if (time_is_before_jiffies(start_time + HZ / 10UL))
2020 				break;
2021 			if (work->nr_pages <= 0)
2022 				break;
2023 		}
2024 	}
2025 	return total_wrote;
2026 }
2027 
2028 static long __writeback_inodes_wb(struct bdi_writeback *wb,
2029 				  struct wb_writeback_work *work)
2030 {
2031 	unsigned long start_time = jiffies;
2032 	long wrote = 0;
2033 
2034 	while (!list_empty(&wb->b_io)) {
2035 		struct inode *inode = wb_inode(wb->b_io.prev);
2036 		struct super_block *sb = inode->i_sb;
2037 
2038 		if (!super_trylock_shared(sb)) {
2039 			/*
2040 			 * super_trylock_shared() may fail consistently due to
2041 			 * s_umount being grabbed by someone else. Don't use
2042 			 * requeue_io() to avoid busy retrying the inode/sb.
2043 			 */
2044 			redirty_tail(inode, wb);
2045 			continue;
2046 		}
2047 		wrote += writeback_sb_inodes(sb, wb, work);
2048 		up_read(&sb->s_umount);
2049 
2050 		/* refer to the same tests at the end of writeback_sb_inodes */
2051 		if (wrote) {
2052 			if (time_is_before_jiffies(start_time + HZ / 10UL))
2053 				break;
2054 			if (work->nr_pages <= 0)
2055 				break;
2056 		}
2057 	}
2058 	/* Leave any unwritten inodes on b_io */
2059 	return wrote;
2060 }
2061 
2062 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2063 				enum wb_reason reason)
2064 {
2065 	struct wb_writeback_work work = {
2066 		.nr_pages	= nr_pages,
2067 		.sync_mode	= WB_SYNC_NONE,
2068 		.range_cyclic	= 1,
2069 		.reason		= reason,
2070 	};
2071 	struct blk_plug plug;
2072 
2073 	blk_start_plug(&plug);
2074 	spin_lock(&wb->list_lock);
2075 	if (list_empty(&wb->b_io))
2076 		queue_io(wb, &work, jiffies);
2077 	__writeback_inodes_wb(wb, &work);
2078 	spin_unlock(&wb->list_lock);
2079 	blk_finish_plug(&plug);
2080 
2081 	return nr_pages - work.nr_pages;
2082 }
2083 
2084 /*
2085  * Explicit flushing or periodic writeback of "old" data.
2086  *
2087  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2088  * dirtying-time in the inode's address_space.  So this periodic writeback code
2089  * just walks the superblock inode list, writing back any inodes which are
2090  * older than a specific point in time.
2091  *
2092  * Try to run once per dirty_writeback_interval.  But if a writeback event
2093  * takes longer than a dirty_writeback_interval interval, then leave a
2094  * one-second gap.
2095  *
2096  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2097  * all dirty pages if they are all attached to "old" mappings.
2098  */
2099 static long wb_writeback(struct bdi_writeback *wb,
2100 			 struct wb_writeback_work *work)
2101 {
2102 	long nr_pages = work->nr_pages;
2103 	unsigned long dirtied_before = jiffies;
2104 	struct inode *inode;
2105 	long progress;
2106 	struct blk_plug plug;
2107 	bool queued = false;
2108 
2109 	blk_start_plug(&plug);
2110 	for (;;) {
2111 		/*
2112 		 * Stop writeback when nr_pages has been consumed
2113 		 */
2114 		if (work->nr_pages <= 0)
2115 			break;
2116 
2117 		/*
2118 		 * Background writeout and kupdate-style writeback may
2119 		 * run forever. Stop them if there is other work to do
2120 		 * so that e.g. sync can proceed. They'll be restarted
2121 		 * after the other works are all done.
2122 		 */
2123 		if ((work->for_background || work->for_kupdate) &&
2124 		    !list_empty(&wb->work_list))
2125 			break;
2126 
2127 		/*
2128 		 * For background writeout, stop when we are below the
2129 		 * background dirty threshold
2130 		 */
2131 		if (work->for_background && !wb_over_bg_thresh(wb))
2132 			break;
2133 
2134 
2135 		spin_lock(&wb->list_lock);
2136 
2137 		trace_writeback_start(wb, work);
2138 		if (list_empty(&wb->b_io)) {
2139 			/*
2140 			 * Kupdate and background works are special and we want
2141 			 * to include all inodes that need writing. Livelock
2142 			 * avoidance is handled by these works yielding to any
2143 			 * other work so we are safe.
2144 			 */
2145 			if (work->for_kupdate) {
2146 				dirtied_before = jiffies -
2147 					msecs_to_jiffies(dirty_expire_interval *
2148 							 10);
2149 			} else if (work->for_background)
2150 				dirtied_before = jiffies;
2151 
2152 			queue_io(wb, work, dirtied_before);
2153 			queued = true;
2154 		}
2155 		if (work->sb)
2156 			progress = writeback_sb_inodes(work->sb, wb, work);
2157 		else
2158 			progress = __writeback_inodes_wb(wb, work);
2159 		trace_writeback_written(wb, work);
2160 
2161 		/*
2162 		 * Did we write something? Try for more
2163 		 *
2164 		 * Dirty inodes are moved to b_io for writeback in batches.
2165 		 * The completion of the current batch does not necessarily
2166 		 * mean the overall work is done. So we keep looping as long
2167 		 * as made some progress on cleaning pages or inodes.
2168 		 */
2169 		if (progress || !queued) {
2170 			spin_unlock(&wb->list_lock);
2171 			continue;
2172 		}
2173 
2174 		/*
2175 		 * No more inodes for IO, bail
2176 		 */
2177 		if (list_empty(&wb->b_more_io)) {
2178 			spin_unlock(&wb->list_lock);
2179 			break;
2180 		}
2181 
2182 		/*
2183 		 * Nothing written. Wait for some inode to
2184 		 * become available for writeback. Otherwise
2185 		 * we'll just busyloop.
2186 		 */
2187 		trace_writeback_wait(wb, work);
2188 		inode = wb_inode(wb->b_more_io.prev);
2189 		spin_lock(&inode->i_lock);
2190 		spin_unlock(&wb->list_lock);
2191 		/* This function drops i_lock... */
2192 		inode_sleep_on_writeback(inode);
2193 	}
2194 	blk_finish_plug(&plug);
2195 
2196 	return nr_pages - work->nr_pages;
2197 }
2198 
2199 /*
2200  * Return the next wb_writeback_work struct that hasn't been processed yet.
2201  */
2202 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2203 {
2204 	struct wb_writeback_work *work = NULL;
2205 
2206 	spin_lock_irq(&wb->work_lock);
2207 	if (!list_empty(&wb->work_list)) {
2208 		work = list_entry(wb->work_list.next,
2209 				  struct wb_writeback_work, list);
2210 		list_del_init(&work->list);
2211 	}
2212 	spin_unlock_irq(&wb->work_lock);
2213 	return work;
2214 }
2215 
2216 static long wb_check_background_flush(struct bdi_writeback *wb)
2217 {
2218 	if (wb_over_bg_thresh(wb)) {
2219 
2220 		struct wb_writeback_work work = {
2221 			.nr_pages	= LONG_MAX,
2222 			.sync_mode	= WB_SYNC_NONE,
2223 			.for_background	= 1,
2224 			.range_cyclic	= 1,
2225 			.reason		= WB_REASON_BACKGROUND,
2226 		};
2227 
2228 		return wb_writeback(wb, &work);
2229 	}
2230 
2231 	return 0;
2232 }
2233 
2234 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2235 {
2236 	unsigned long expired;
2237 	long nr_pages;
2238 
2239 	/*
2240 	 * When set to zero, disable periodic writeback
2241 	 */
2242 	if (!dirty_writeback_interval)
2243 		return 0;
2244 
2245 	expired = wb->last_old_flush +
2246 			msecs_to_jiffies(dirty_writeback_interval * 10);
2247 	if (time_before(jiffies, expired))
2248 		return 0;
2249 
2250 	wb->last_old_flush = jiffies;
2251 	nr_pages = get_nr_dirty_pages();
2252 
2253 	if (nr_pages) {
2254 		struct wb_writeback_work work = {
2255 			.nr_pages	= nr_pages,
2256 			.sync_mode	= WB_SYNC_NONE,
2257 			.for_kupdate	= 1,
2258 			.range_cyclic	= 1,
2259 			.reason		= WB_REASON_PERIODIC,
2260 		};
2261 
2262 		return wb_writeback(wb, &work);
2263 	}
2264 
2265 	return 0;
2266 }
2267 
2268 static long wb_check_start_all(struct bdi_writeback *wb)
2269 {
2270 	long nr_pages;
2271 
2272 	if (!test_bit(WB_start_all, &wb->state))
2273 		return 0;
2274 
2275 	nr_pages = get_nr_dirty_pages();
2276 	if (nr_pages) {
2277 		struct wb_writeback_work work = {
2278 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2279 			.sync_mode	= WB_SYNC_NONE,
2280 			.range_cyclic	= 1,
2281 			.reason		= wb->start_all_reason,
2282 		};
2283 
2284 		nr_pages = wb_writeback(wb, &work);
2285 	}
2286 
2287 	clear_bit(WB_start_all, &wb->state);
2288 	return nr_pages;
2289 }
2290 
2291 
2292 /*
2293  * Retrieve work items and do the writeback they describe
2294  */
2295 static long wb_do_writeback(struct bdi_writeback *wb)
2296 {
2297 	struct wb_writeback_work *work;
2298 	long wrote = 0;
2299 
2300 	set_bit(WB_writeback_running, &wb->state);
2301 	while ((work = get_next_work_item(wb)) != NULL) {
2302 		trace_writeback_exec(wb, work);
2303 		wrote += wb_writeback(wb, work);
2304 		finish_writeback_work(work);
2305 	}
2306 
2307 	/*
2308 	 * Check for a flush-everything request
2309 	 */
2310 	wrote += wb_check_start_all(wb);
2311 
2312 	/*
2313 	 * Check for periodic writeback, kupdated() style
2314 	 */
2315 	wrote += wb_check_old_data_flush(wb);
2316 	wrote += wb_check_background_flush(wb);
2317 	clear_bit(WB_writeback_running, &wb->state);
2318 
2319 	return wrote;
2320 }
2321 
2322 /*
2323  * Handle writeback of dirty data for the device backed by this bdi. Also
2324  * reschedules periodically and does kupdated style flushing.
2325  */
2326 void wb_workfn(struct work_struct *work)
2327 {
2328 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2329 						struct bdi_writeback, dwork);
2330 	long pages_written;
2331 
2332 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2333 
2334 	if (likely(!current_is_workqueue_rescuer() ||
2335 		   !test_bit(WB_registered, &wb->state))) {
2336 		/*
2337 		 * The normal path.  Keep writing back @wb until its
2338 		 * work_list is empty.  Note that this path is also taken
2339 		 * if @wb is shutting down even when we're running off the
2340 		 * rescuer as work_list needs to be drained.
2341 		 */
2342 		do {
2343 			pages_written = wb_do_writeback(wb);
2344 			trace_writeback_pages_written(pages_written);
2345 		} while (!list_empty(&wb->work_list));
2346 	} else {
2347 		/*
2348 		 * bdi_wq can't get enough workers and we're running off
2349 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2350 		 * enough for efficient IO.
2351 		 */
2352 		pages_written = writeback_inodes_wb(wb, 1024,
2353 						    WB_REASON_FORKER_THREAD);
2354 		trace_writeback_pages_written(pages_written);
2355 	}
2356 
2357 	if (!list_empty(&wb->work_list))
2358 		wb_wakeup(wb);
2359 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2360 		wb_wakeup_delayed(wb);
2361 }
2362 
2363 /*
2364  * Start writeback of all dirty pages on this bdi.
2365  */
2366 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2367 					 enum wb_reason reason)
2368 {
2369 	struct bdi_writeback *wb;
2370 
2371 	if (!bdi_has_dirty_io(bdi))
2372 		return;
2373 
2374 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2375 		wb_start_writeback(wb, reason);
2376 }
2377 
2378 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2379 				enum wb_reason reason)
2380 {
2381 	rcu_read_lock();
2382 	__wakeup_flusher_threads_bdi(bdi, reason);
2383 	rcu_read_unlock();
2384 }
2385 
2386 /*
2387  * Wakeup the flusher threads to start writeback of all currently dirty pages
2388  */
2389 void wakeup_flusher_threads(enum wb_reason reason)
2390 {
2391 	struct backing_dev_info *bdi;
2392 
2393 	/*
2394 	 * If we are expecting writeback progress we must submit plugged IO.
2395 	 */
2396 	blk_flush_plug(current->plug, true);
2397 
2398 	rcu_read_lock();
2399 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2400 		__wakeup_flusher_threads_bdi(bdi, reason);
2401 	rcu_read_unlock();
2402 }
2403 
2404 /*
2405  * Wake up bdi's periodically to make sure dirtytime inodes gets
2406  * written back periodically.  We deliberately do *not* check the
2407  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2408  * kernel to be constantly waking up once there are any dirtytime
2409  * inodes on the system.  So instead we define a separate delayed work
2410  * function which gets called much more rarely.  (By default, only
2411  * once every 12 hours.)
2412  *
2413  * If there is any other write activity going on in the file system,
2414  * this function won't be necessary.  But if the only thing that has
2415  * happened on the file system is a dirtytime inode caused by an atime
2416  * update, we need this infrastructure below to make sure that inode
2417  * eventually gets pushed out to disk.
2418  */
2419 static void wakeup_dirtytime_writeback(struct work_struct *w);
2420 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2421 
2422 static void wakeup_dirtytime_writeback(struct work_struct *w)
2423 {
2424 	struct backing_dev_info *bdi;
2425 
2426 	rcu_read_lock();
2427 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2428 		struct bdi_writeback *wb;
2429 
2430 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2431 			if (!list_empty(&wb->b_dirty_time))
2432 				wb_wakeup(wb);
2433 	}
2434 	rcu_read_unlock();
2435 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2436 }
2437 
2438 static int __init start_dirtytime_writeback(void)
2439 {
2440 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2441 	return 0;
2442 }
2443 __initcall(start_dirtytime_writeback);
2444 
2445 int dirtytime_interval_handler(const struct ctl_table *table, int write,
2446 			       void *buffer, size_t *lenp, loff_t *ppos)
2447 {
2448 	int ret;
2449 
2450 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2451 	if (ret == 0 && write)
2452 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2453 	return ret;
2454 }
2455 
2456 /**
2457  * __mark_inode_dirty -	internal function to mark an inode dirty
2458  *
2459  * @inode: inode to mark
2460  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2461  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2462  *	   with I_DIRTY_PAGES.
2463  *
2464  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2465  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2466  *
2467  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2468  * instead of calling this directly.
2469  *
2470  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2471  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2472  * even if they are later hashed, as they will have been marked dirty already.
2473  *
2474  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2475  *
2476  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2477  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2478  * the kernel-internal blockdev inode represents the dirtying time of the
2479  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2480  * page->mapping->host, so the page-dirtying time is recorded in the internal
2481  * blockdev inode.
2482  */
2483 void __mark_inode_dirty(struct inode *inode, int flags)
2484 {
2485 	struct super_block *sb = inode->i_sb;
2486 	int dirtytime = 0;
2487 	struct bdi_writeback *wb = NULL;
2488 
2489 	trace_writeback_mark_inode_dirty(inode, flags);
2490 
2491 	if (flags & I_DIRTY_INODE) {
2492 		/*
2493 		 * Inode timestamp update will piggback on this dirtying.
2494 		 * We tell ->dirty_inode callback that timestamps need to
2495 		 * be updated by setting I_DIRTY_TIME in flags.
2496 		 */
2497 		if (inode->i_state & I_DIRTY_TIME) {
2498 			spin_lock(&inode->i_lock);
2499 			if (inode->i_state & I_DIRTY_TIME) {
2500 				inode->i_state &= ~I_DIRTY_TIME;
2501 				flags |= I_DIRTY_TIME;
2502 			}
2503 			spin_unlock(&inode->i_lock);
2504 		}
2505 
2506 		/*
2507 		 * Notify the filesystem about the inode being dirtied, so that
2508 		 * (if needed) it can update on-disk fields and journal the
2509 		 * inode.  This is only needed when the inode itself is being
2510 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2511 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2512 		 */
2513 		trace_writeback_dirty_inode_start(inode, flags);
2514 		if (sb->s_op->dirty_inode)
2515 			sb->s_op->dirty_inode(inode,
2516 				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2517 		trace_writeback_dirty_inode(inode, flags);
2518 
2519 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2520 		flags &= ~I_DIRTY_TIME;
2521 	} else {
2522 		/*
2523 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2524 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2525 		 * in one call to __mark_inode_dirty().)
2526 		 */
2527 		dirtytime = flags & I_DIRTY_TIME;
2528 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2529 	}
2530 
2531 	/*
2532 	 * Paired with smp_mb() in __writeback_single_inode() for the
2533 	 * following lockless i_state test.  See there for details.
2534 	 */
2535 	smp_mb();
2536 
2537 	if ((inode->i_state & flags) == flags)
2538 		return;
2539 
2540 	spin_lock(&inode->i_lock);
2541 	if ((inode->i_state & flags) != flags) {
2542 		const int was_dirty = inode->i_state & I_DIRTY;
2543 
2544 		inode_attach_wb(inode, NULL);
2545 
2546 		inode->i_state |= flags;
2547 
2548 		/*
2549 		 * Grab inode's wb early because it requires dropping i_lock and we
2550 		 * need to make sure following checks happen atomically with dirty
2551 		 * list handling so that we don't move inodes under flush worker's
2552 		 * hands.
2553 		 */
2554 		if (!was_dirty) {
2555 			wb = locked_inode_to_wb_and_lock_list(inode);
2556 			spin_lock(&inode->i_lock);
2557 		}
2558 
2559 		/*
2560 		 * If the inode is queued for writeback by flush worker, just
2561 		 * update its dirty state. Once the flush worker is done with
2562 		 * the inode it will place it on the appropriate superblock
2563 		 * list, based upon its state.
2564 		 */
2565 		if (inode->i_state & I_SYNC_QUEUED)
2566 			goto out_unlock;
2567 
2568 		/*
2569 		 * Only add valid (hashed) inodes to the superblock's
2570 		 * dirty list.  Add blockdev inodes as well.
2571 		 */
2572 		if (!S_ISBLK(inode->i_mode)) {
2573 			if (inode_unhashed(inode))
2574 				goto out_unlock;
2575 		}
2576 		if (inode->i_state & I_FREEING)
2577 			goto out_unlock;
2578 
2579 		/*
2580 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2581 		 * reposition it (that would break b_dirty time-ordering).
2582 		 */
2583 		if (!was_dirty) {
2584 			struct list_head *dirty_list;
2585 			bool wakeup_bdi = false;
2586 
2587 			inode->dirtied_when = jiffies;
2588 			if (dirtytime)
2589 				inode->dirtied_time_when = jiffies;
2590 
2591 			if (inode->i_state & I_DIRTY)
2592 				dirty_list = &wb->b_dirty;
2593 			else
2594 				dirty_list = &wb->b_dirty_time;
2595 
2596 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2597 							       dirty_list);
2598 
2599 			spin_unlock(&wb->list_lock);
2600 			spin_unlock(&inode->i_lock);
2601 			trace_writeback_dirty_inode_enqueue(inode);
2602 
2603 			/*
2604 			 * If this is the first dirty inode for this bdi,
2605 			 * we have to wake-up the corresponding bdi thread
2606 			 * to make sure background write-back happens
2607 			 * later.
2608 			 */
2609 			if (wakeup_bdi &&
2610 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2611 				wb_wakeup_delayed(wb);
2612 			return;
2613 		}
2614 	}
2615 out_unlock:
2616 	if (wb)
2617 		spin_unlock(&wb->list_lock);
2618 	spin_unlock(&inode->i_lock);
2619 }
2620 EXPORT_SYMBOL(__mark_inode_dirty);
2621 
2622 /*
2623  * The @s_sync_lock is used to serialise concurrent sync operations
2624  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2625  * Concurrent callers will block on the s_sync_lock rather than doing contending
2626  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2627  * has been issued up to the time this function is enter is guaranteed to be
2628  * completed by the time we have gained the lock and waited for all IO that is
2629  * in progress regardless of the order callers are granted the lock.
2630  */
2631 static void wait_sb_inodes(struct super_block *sb)
2632 {
2633 	LIST_HEAD(sync_list);
2634 
2635 	/*
2636 	 * We need to be protected against the filesystem going from
2637 	 * r/o to r/w or vice versa.
2638 	 */
2639 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2640 
2641 	mutex_lock(&sb->s_sync_lock);
2642 
2643 	/*
2644 	 * Splice the writeback list onto a temporary list to avoid waiting on
2645 	 * inodes that have started writeback after this point.
2646 	 *
2647 	 * Use rcu_read_lock() to keep the inodes around until we have a
2648 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2649 	 * the local list because inodes can be dropped from either by writeback
2650 	 * completion.
2651 	 */
2652 	rcu_read_lock();
2653 	spin_lock_irq(&sb->s_inode_wblist_lock);
2654 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2655 
2656 	/*
2657 	 * Data integrity sync. Must wait for all pages under writeback, because
2658 	 * there may have been pages dirtied before our sync call, but which had
2659 	 * writeout started before we write it out.  In which case, the inode
2660 	 * may not be on the dirty list, but we still have to wait for that
2661 	 * writeout.
2662 	 */
2663 	while (!list_empty(&sync_list)) {
2664 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2665 						       i_wb_list);
2666 		struct address_space *mapping = inode->i_mapping;
2667 
2668 		/*
2669 		 * Move each inode back to the wb list before we drop the lock
2670 		 * to preserve consistency between i_wb_list and the mapping
2671 		 * writeback tag. Writeback completion is responsible to remove
2672 		 * the inode from either list once the writeback tag is cleared.
2673 		 */
2674 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2675 
2676 		/*
2677 		 * The mapping can appear untagged while still on-list since we
2678 		 * do not have the mapping lock. Skip it here, wb completion
2679 		 * will remove it.
2680 		 */
2681 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2682 			continue;
2683 
2684 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2685 
2686 		spin_lock(&inode->i_lock);
2687 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2688 			spin_unlock(&inode->i_lock);
2689 
2690 			spin_lock_irq(&sb->s_inode_wblist_lock);
2691 			continue;
2692 		}
2693 		__iget(inode);
2694 		spin_unlock(&inode->i_lock);
2695 		rcu_read_unlock();
2696 
2697 		/*
2698 		 * We keep the error status of individual mapping so that
2699 		 * applications can catch the writeback error using fsync(2).
2700 		 * See filemap_fdatawait_keep_errors() for details.
2701 		 */
2702 		filemap_fdatawait_keep_errors(mapping);
2703 
2704 		cond_resched();
2705 
2706 		iput(inode);
2707 
2708 		rcu_read_lock();
2709 		spin_lock_irq(&sb->s_inode_wblist_lock);
2710 	}
2711 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2712 	rcu_read_unlock();
2713 	mutex_unlock(&sb->s_sync_lock);
2714 }
2715 
2716 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2717 				     enum wb_reason reason, bool skip_if_busy)
2718 {
2719 	struct backing_dev_info *bdi = sb->s_bdi;
2720 	DEFINE_WB_COMPLETION(done, bdi);
2721 	struct wb_writeback_work work = {
2722 		.sb			= sb,
2723 		.sync_mode		= WB_SYNC_NONE,
2724 		.tagged_writepages	= 1,
2725 		.done			= &done,
2726 		.nr_pages		= nr,
2727 		.reason			= reason,
2728 	};
2729 
2730 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2731 		return;
2732 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2733 
2734 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2735 	wb_wait_for_completion(&done);
2736 }
2737 
2738 /**
2739  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2740  * @sb: the superblock
2741  * @nr: the number of pages to write
2742  * @reason: reason why some writeback work initiated
2743  *
2744  * Start writeback on some inodes on this super_block. No guarantees are made
2745  * on how many (if any) will be written, and this function does not wait
2746  * for IO completion of submitted IO.
2747  */
2748 void writeback_inodes_sb_nr(struct super_block *sb,
2749 			    unsigned long nr,
2750 			    enum wb_reason reason)
2751 {
2752 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2753 }
2754 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2755 
2756 /**
2757  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2758  * @sb: the superblock
2759  * @reason: reason why some writeback work was initiated
2760  *
2761  * Start writeback on some inodes on this super_block. No guarantees are made
2762  * on how many (if any) will be written, and this function does not wait
2763  * for IO completion of submitted IO.
2764  */
2765 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2766 {
2767 	writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2768 }
2769 EXPORT_SYMBOL(writeback_inodes_sb);
2770 
2771 /**
2772  * try_to_writeback_inodes_sb - try to start writeback if none underway
2773  * @sb: the superblock
2774  * @reason: reason why some writeback work was initiated
2775  *
2776  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2777  */
2778 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2779 {
2780 	if (!down_read_trylock(&sb->s_umount))
2781 		return;
2782 
2783 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2784 	up_read(&sb->s_umount);
2785 }
2786 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2787 
2788 /**
2789  * sync_inodes_sb	-	sync sb inode pages
2790  * @sb: the superblock
2791  *
2792  * This function writes and waits on any dirty inode belonging to this
2793  * super_block.
2794  */
2795 void sync_inodes_sb(struct super_block *sb)
2796 {
2797 	struct backing_dev_info *bdi = sb->s_bdi;
2798 	DEFINE_WB_COMPLETION(done, bdi);
2799 	struct wb_writeback_work work = {
2800 		.sb		= sb,
2801 		.sync_mode	= WB_SYNC_ALL,
2802 		.nr_pages	= LONG_MAX,
2803 		.range_cyclic	= 0,
2804 		.done		= &done,
2805 		.reason		= WB_REASON_SYNC,
2806 		.for_sync	= 1,
2807 	};
2808 
2809 	/*
2810 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2811 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2812 	 * bdi_has_dirty() need to be written out too.
2813 	 */
2814 	if (bdi == &noop_backing_dev_info)
2815 		return;
2816 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2817 
2818 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2819 	bdi_down_write_wb_switch_rwsem(bdi);
2820 	bdi_split_work_to_wbs(bdi, &work, false);
2821 	wb_wait_for_completion(&done);
2822 	bdi_up_write_wb_switch_rwsem(bdi);
2823 
2824 	wait_sb_inodes(sb);
2825 }
2826 EXPORT_SYMBOL(sync_inodes_sb);
2827 
2828 /**
2829  * write_inode_now	-	write an inode to disk
2830  * @inode: inode to write to disk
2831  * @sync: whether the write should be synchronous or not
2832  *
2833  * This function commits an inode to disk immediately if it is dirty. This is
2834  * primarily needed by knfsd.
2835  *
2836  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2837  */
2838 int write_inode_now(struct inode *inode, int sync)
2839 {
2840 	struct writeback_control wbc = {
2841 		.nr_to_write = LONG_MAX,
2842 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2843 		.range_start = 0,
2844 		.range_end = LLONG_MAX,
2845 	};
2846 
2847 	if (!mapping_can_writeback(inode->i_mapping))
2848 		wbc.nr_to_write = 0;
2849 
2850 	might_sleep();
2851 	return writeback_single_inode(inode, &wbc);
2852 }
2853 EXPORT_SYMBOL(write_inode_now);
2854 
2855 /**
2856  * sync_inode_metadata - write an inode to disk
2857  * @inode: the inode to sync
2858  * @wait: wait for I/O to complete.
2859  *
2860  * Write an inode to disk and adjust its dirty state after completion.
2861  *
2862  * Note: only writes the actual inode, no associated data or other metadata.
2863  */
2864 int sync_inode_metadata(struct inode *inode, int wait)
2865 {
2866 	struct writeback_control wbc = {
2867 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2868 		.nr_to_write = 0, /* metadata-only */
2869 	};
2870 
2871 	return writeback_single_inode(inode, &wbc);
2872 }
2873 EXPORT_SYMBOL(sync_inode_metadata);
2874