1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 assert_spin_locked(&inode->i_lock); 124 WARN_ON_ONCE(inode->i_state & I_FREEING); 125 126 list_move(&inode->i_io_list, head); 127 128 /* dirty_time doesn't count as dirty_io until expiration */ 129 if (head != &wb->b_dirty_time) 130 return wb_io_lists_populated(wb); 131 132 wb_io_lists_depopulated(wb); 133 return false; 134 } 135 136 static void wb_wakeup(struct bdi_writeback *wb) 137 { 138 spin_lock_irq(&wb->work_lock); 139 if (test_bit(WB_registered, &wb->state)) 140 mod_delayed_work(bdi_wq, &wb->dwork, 0); 141 spin_unlock_irq(&wb->work_lock); 142 } 143 144 /* 145 * This function is used when the first inode for this wb is marked dirty. It 146 * wakes-up the corresponding bdi thread which should then take care of the 147 * periodic background write-out of dirty inodes. Since the write-out would 148 * starts only 'dirty_writeback_interval' centisecs from now anyway, we just 149 * set up a timer which wakes the bdi thread up later. 150 * 151 * Note, we wouldn't bother setting up the timer, but this function is on the 152 * fast-path (used by '__mark_inode_dirty()'), so we save few context switches 153 * by delaying the wake-up. 154 * 155 * We have to be careful not to postpone flush work if it is scheduled for 156 * earlier. Thus we use queue_delayed_work(). 157 */ 158 static void wb_wakeup_delayed(struct bdi_writeback *wb) 159 { 160 unsigned long timeout; 161 162 timeout = msecs_to_jiffies(dirty_writeback_interval * 10); 163 spin_lock_irq(&wb->work_lock); 164 if (test_bit(WB_registered, &wb->state)) 165 queue_delayed_work(bdi_wq, &wb->dwork, timeout); 166 spin_unlock_irq(&wb->work_lock); 167 } 168 169 static void finish_writeback_work(struct bdi_writeback *wb, 170 struct wb_writeback_work *work) 171 { 172 struct wb_completion *done = work->done; 173 174 if (work->auto_free) 175 kfree(work); 176 if (done) { 177 wait_queue_head_t *waitq = done->waitq; 178 179 /* @done can't be accessed after the following dec */ 180 if (atomic_dec_and_test(&done->cnt)) 181 wake_up_all(waitq); 182 } 183 } 184 185 static void wb_queue_work(struct bdi_writeback *wb, 186 struct wb_writeback_work *work) 187 { 188 trace_writeback_queue(wb, work); 189 190 if (work->done) 191 atomic_inc(&work->done->cnt); 192 193 spin_lock_irq(&wb->work_lock); 194 195 if (test_bit(WB_registered, &wb->state)) { 196 list_add_tail(&work->list, &wb->work_list); 197 mod_delayed_work(bdi_wq, &wb->dwork, 0); 198 } else 199 finish_writeback_work(wb, work); 200 201 spin_unlock_irq(&wb->work_lock); 202 } 203 204 /** 205 * wb_wait_for_completion - wait for completion of bdi_writeback_works 206 * @done: target wb_completion 207 * 208 * Wait for one or more work items issued to @bdi with their ->done field 209 * set to @done, which should have been initialized with 210 * DEFINE_WB_COMPLETION(). This function returns after all such work items 211 * are completed. Work items which are waited upon aren't freed 212 * automatically on completion. 213 */ 214 void wb_wait_for_completion(struct wb_completion *done) 215 { 216 atomic_dec(&done->cnt); /* put down the initial count */ 217 wait_event(*done->waitq, !atomic_read(&done->cnt)); 218 } 219 220 #ifdef CONFIG_CGROUP_WRITEBACK 221 222 /* 223 * Parameters for foreign inode detection, see wbc_detach_inode() to see 224 * how they're used. 225 * 226 * These paramters are inherently heuristical as the detection target 227 * itself is fuzzy. All we want to do is detaching an inode from the 228 * current owner if it's being written to by some other cgroups too much. 229 * 230 * The current cgroup writeback is built on the assumption that multiple 231 * cgroups writing to the same inode concurrently is very rare and a mode 232 * of operation which isn't well supported. As such, the goal is not 233 * taking too long when a different cgroup takes over an inode while 234 * avoiding too aggressive flip-flops from occasional foreign writes. 235 * 236 * We record, very roughly, 2s worth of IO time history and if more than 237 * half of that is foreign, trigger the switch. The recording is quantized 238 * to 16 slots. To avoid tiny writes from swinging the decision too much, 239 * writes smaller than 1/8 of avg size are ignored. 240 */ 241 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 242 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 243 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 244 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 245 246 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 247 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 248 /* each slot's duration is 2s / 16 */ 249 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 250 /* if foreign slots >= 8, switch */ 251 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 252 /* one round can affect upto 5 slots */ 253 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 254 255 /* 256 * Maximum inodes per isw. A specific value has been chosen to make 257 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 258 */ 259 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 260 / sizeof(struct inode *)) 261 262 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 263 static struct workqueue_struct *isw_wq; 264 265 void __inode_attach_wb(struct inode *inode, struct folio *folio) 266 { 267 struct backing_dev_info *bdi = inode_to_bdi(inode); 268 struct bdi_writeback *wb = NULL; 269 270 if (inode_cgwb_enabled(inode)) { 271 struct cgroup_subsys_state *memcg_css; 272 273 if (folio) { 274 memcg_css = mem_cgroup_css_from_folio(folio); 275 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 276 } else { 277 /* must pin memcg_css, see wb_get_create() */ 278 memcg_css = task_get_css(current, memory_cgrp_id); 279 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 280 css_put(memcg_css); 281 } 282 } 283 284 if (!wb) 285 wb = &bdi->wb; 286 287 /* 288 * There may be multiple instances of this function racing to 289 * update the same inode. Use cmpxchg() to tell the winner. 290 */ 291 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 292 wb_put(wb); 293 } 294 EXPORT_SYMBOL_GPL(__inode_attach_wb); 295 296 /** 297 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 298 * @inode: inode of interest with i_lock held 299 * @wb: target bdi_writeback 300 * 301 * Remove the inode from wb's io lists and if necessarily put onto b_attached 302 * list. Only inodes attached to cgwb's are kept on this list. 303 */ 304 static void inode_cgwb_move_to_attached(struct inode *inode, 305 struct bdi_writeback *wb) 306 { 307 assert_spin_locked(&wb->list_lock); 308 assert_spin_locked(&inode->i_lock); 309 WARN_ON_ONCE(inode->i_state & I_FREEING); 310 311 inode->i_state &= ~I_SYNC_QUEUED; 312 if (wb != &wb->bdi->wb) 313 list_move(&inode->i_io_list, &wb->b_attached); 314 else 315 list_del_init(&inode->i_io_list); 316 wb_io_lists_depopulated(wb); 317 } 318 319 /** 320 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 321 * @inode: inode of interest with i_lock held 322 * 323 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 324 * held on entry and is released on return. The returned wb is guaranteed 325 * to stay @inode's associated wb until its list_lock is released. 326 */ 327 static struct bdi_writeback * 328 locked_inode_to_wb_and_lock_list(struct inode *inode) 329 __releases(&inode->i_lock) 330 __acquires(&wb->list_lock) 331 { 332 while (true) { 333 struct bdi_writeback *wb = inode_to_wb(inode); 334 335 /* 336 * inode_to_wb() association is protected by both 337 * @inode->i_lock and @wb->list_lock but list_lock nests 338 * outside i_lock. Drop i_lock and verify that the 339 * association hasn't changed after acquiring list_lock. 340 */ 341 wb_get(wb); 342 spin_unlock(&inode->i_lock); 343 spin_lock(&wb->list_lock); 344 345 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 346 if (likely(wb == inode->i_wb)) { 347 wb_put(wb); /* @inode already has ref */ 348 return wb; 349 } 350 351 spin_unlock(&wb->list_lock); 352 wb_put(wb); 353 cpu_relax(); 354 spin_lock(&inode->i_lock); 355 } 356 } 357 358 /** 359 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 360 * @inode: inode of interest 361 * 362 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 363 * on entry. 364 */ 365 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 366 __acquires(&wb->list_lock) 367 { 368 spin_lock(&inode->i_lock); 369 return locked_inode_to_wb_and_lock_list(inode); 370 } 371 372 struct inode_switch_wbs_context { 373 struct rcu_work work; 374 375 /* 376 * Multiple inodes can be switched at once. The switching procedure 377 * consists of two parts, separated by a RCU grace period. To make 378 * sure that the second part is executed for each inode gone through 379 * the first part, all inode pointers are placed into a NULL-terminated 380 * array embedded into struct inode_switch_wbs_context. Otherwise 381 * an inode could be left in a non-consistent state. 382 */ 383 struct bdi_writeback *new_wb; 384 struct inode *inodes[]; 385 }; 386 387 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 388 { 389 down_write(&bdi->wb_switch_rwsem); 390 } 391 392 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 393 { 394 up_write(&bdi->wb_switch_rwsem); 395 } 396 397 static bool inode_do_switch_wbs(struct inode *inode, 398 struct bdi_writeback *old_wb, 399 struct bdi_writeback *new_wb) 400 { 401 struct address_space *mapping = inode->i_mapping; 402 XA_STATE(xas, &mapping->i_pages, 0); 403 struct folio *folio; 404 bool switched = false; 405 406 spin_lock(&inode->i_lock); 407 xa_lock_irq(&mapping->i_pages); 408 409 /* 410 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 411 * path owns the inode and we shouldn't modify ->i_io_list. 412 */ 413 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 414 goto skip_switch; 415 416 trace_inode_switch_wbs(inode, old_wb, new_wb); 417 418 /* 419 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 420 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to 421 * folios actually under writeback. 422 */ 423 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 424 if (folio_test_dirty(folio)) { 425 long nr = folio_nr_pages(folio); 426 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); 427 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); 428 } 429 } 430 431 xas_set(&xas, 0); 432 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 433 long nr = folio_nr_pages(folio); 434 WARN_ON_ONCE(!folio_test_writeback(folio)); 435 wb_stat_mod(old_wb, WB_WRITEBACK, -nr); 436 wb_stat_mod(new_wb, WB_WRITEBACK, nr); 437 } 438 439 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 440 atomic_dec(&old_wb->writeback_inodes); 441 atomic_inc(&new_wb->writeback_inodes); 442 } 443 444 wb_get(new_wb); 445 446 /* 447 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 448 * the specific list @inode was on is ignored and the @inode is put on 449 * ->b_dirty which is always correct including from ->b_dirty_time. 450 * The transfer preserves @inode->dirtied_when ordering. If the @inode 451 * was clean, it means it was on the b_attached list, so move it onto 452 * the b_attached list of @new_wb. 453 */ 454 if (!list_empty(&inode->i_io_list)) { 455 inode->i_wb = new_wb; 456 457 if (inode->i_state & I_DIRTY_ALL) { 458 struct inode *pos; 459 460 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 461 if (time_after_eq(inode->dirtied_when, 462 pos->dirtied_when)) 463 break; 464 inode_io_list_move_locked(inode, new_wb, 465 pos->i_io_list.prev); 466 } else { 467 inode_cgwb_move_to_attached(inode, new_wb); 468 } 469 } else { 470 inode->i_wb = new_wb; 471 } 472 473 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 474 inode->i_wb_frn_winner = 0; 475 inode->i_wb_frn_avg_time = 0; 476 inode->i_wb_frn_history = 0; 477 switched = true; 478 skip_switch: 479 /* 480 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 481 * ensures that the new wb is visible if they see !I_WB_SWITCH. 482 */ 483 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 484 485 xa_unlock_irq(&mapping->i_pages); 486 spin_unlock(&inode->i_lock); 487 488 return switched; 489 } 490 491 static void inode_switch_wbs_work_fn(struct work_struct *work) 492 { 493 struct inode_switch_wbs_context *isw = 494 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 495 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 496 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 497 struct bdi_writeback *new_wb = isw->new_wb; 498 unsigned long nr_switched = 0; 499 struct inode **inodep; 500 501 /* 502 * If @inode switches cgwb membership while sync_inodes_sb() is 503 * being issued, sync_inodes_sb() might miss it. Synchronize. 504 */ 505 down_read(&bdi->wb_switch_rwsem); 506 507 /* 508 * By the time control reaches here, RCU grace period has passed 509 * since I_WB_SWITCH assertion and all wb stat update transactions 510 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 511 * synchronizing against the i_pages lock. 512 * 513 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 514 * gives us exclusion against all wb related operations on @inode 515 * including IO list manipulations and stat updates. 516 */ 517 if (old_wb < new_wb) { 518 spin_lock(&old_wb->list_lock); 519 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 520 } else { 521 spin_lock(&new_wb->list_lock); 522 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 523 } 524 525 for (inodep = isw->inodes; *inodep; inodep++) { 526 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 527 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 528 nr_switched++; 529 } 530 531 spin_unlock(&new_wb->list_lock); 532 spin_unlock(&old_wb->list_lock); 533 534 up_read(&bdi->wb_switch_rwsem); 535 536 if (nr_switched) { 537 wb_wakeup(new_wb); 538 wb_put_many(old_wb, nr_switched); 539 } 540 541 for (inodep = isw->inodes; *inodep; inodep++) 542 iput(*inodep); 543 wb_put(new_wb); 544 kfree(isw); 545 atomic_dec(&isw_nr_in_flight); 546 } 547 548 static bool inode_prepare_wbs_switch(struct inode *inode, 549 struct bdi_writeback *new_wb) 550 { 551 /* 552 * Paired with smp_mb() in cgroup_writeback_umount(). 553 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 554 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 555 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 556 */ 557 smp_mb(); 558 559 if (IS_DAX(inode)) 560 return false; 561 562 /* while holding I_WB_SWITCH, no one else can update the association */ 563 spin_lock(&inode->i_lock); 564 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 565 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 566 inode_to_wb(inode) == new_wb) { 567 spin_unlock(&inode->i_lock); 568 return false; 569 } 570 inode->i_state |= I_WB_SWITCH; 571 __iget(inode); 572 spin_unlock(&inode->i_lock); 573 574 return true; 575 } 576 577 /** 578 * inode_switch_wbs - change the wb association of an inode 579 * @inode: target inode 580 * @new_wb_id: ID of the new wb 581 * 582 * Switch @inode's wb association to the wb identified by @new_wb_id. The 583 * switching is performed asynchronously and may fail silently. 584 */ 585 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 586 { 587 struct backing_dev_info *bdi = inode_to_bdi(inode); 588 struct cgroup_subsys_state *memcg_css; 589 struct inode_switch_wbs_context *isw; 590 591 /* noop if seems to be already in progress */ 592 if (inode->i_state & I_WB_SWITCH) 593 return; 594 595 /* avoid queueing a new switch if too many are already in flight */ 596 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 597 return; 598 599 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); 600 if (!isw) 601 return; 602 603 atomic_inc(&isw_nr_in_flight); 604 605 /* find and pin the new wb */ 606 rcu_read_lock(); 607 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 608 if (memcg_css && !css_tryget(memcg_css)) 609 memcg_css = NULL; 610 rcu_read_unlock(); 611 if (!memcg_css) 612 goto out_free; 613 614 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 615 css_put(memcg_css); 616 if (!isw->new_wb) 617 goto out_free; 618 619 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 620 goto out_free; 621 622 isw->inodes[0] = inode; 623 624 /* 625 * In addition to synchronizing among switchers, I_WB_SWITCH tells 626 * the RCU protected stat update paths to grab the i_page 627 * lock so that stat transfer can synchronize against them. 628 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 629 */ 630 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 631 queue_rcu_work(isw_wq, &isw->work); 632 return; 633 634 out_free: 635 atomic_dec(&isw_nr_in_flight); 636 if (isw->new_wb) 637 wb_put(isw->new_wb); 638 kfree(isw); 639 } 640 641 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw, 642 struct list_head *list, int *nr) 643 { 644 struct inode *inode; 645 646 list_for_each_entry(inode, list, i_io_list) { 647 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 648 continue; 649 650 isw->inodes[*nr] = inode; 651 (*nr)++; 652 653 if (*nr >= WB_MAX_INODES_PER_ISW - 1) 654 return true; 655 } 656 return false; 657 } 658 659 /** 660 * cleanup_offline_cgwb - detach associated inodes 661 * @wb: target wb 662 * 663 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 664 * to eventually release the dying @wb. Returns %true if not all inodes were 665 * switched and the function has to be restarted. 666 */ 667 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 668 { 669 struct cgroup_subsys_state *memcg_css; 670 struct inode_switch_wbs_context *isw; 671 int nr; 672 bool restart = false; 673 674 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), 675 GFP_KERNEL); 676 if (!isw) 677 return restart; 678 679 atomic_inc(&isw_nr_in_flight); 680 681 for (memcg_css = wb->memcg_css->parent; memcg_css; 682 memcg_css = memcg_css->parent) { 683 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 684 if (isw->new_wb) 685 break; 686 } 687 if (unlikely(!isw->new_wb)) 688 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 689 690 nr = 0; 691 spin_lock(&wb->list_lock); 692 /* 693 * In addition to the inodes that have completed writeback, also switch 694 * cgwbs for those inodes only with dirty timestamps. Otherwise, those 695 * inodes won't be written back for a long time when lazytime is 696 * enabled, and thus pinning the dying cgwbs. It won't break the 697 * bandwidth restrictions, as writeback of inode metadata is not 698 * accounted for. 699 */ 700 restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr); 701 if (!restart) 702 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr); 703 spin_unlock(&wb->list_lock); 704 705 /* no attached inodes? bail out */ 706 if (nr == 0) { 707 atomic_dec(&isw_nr_in_flight); 708 wb_put(isw->new_wb); 709 kfree(isw); 710 return restart; 711 } 712 713 /* 714 * In addition to synchronizing among switchers, I_WB_SWITCH tells 715 * the RCU protected stat update paths to grab the i_page 716 * lock so that stat transfer can synchronize against them. 717 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 718 */ 719 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 720 queue_rcu_work(isw_wq, &isw->work); 721 722 return restart; 723 } 724 725 /** 726 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 727 * @wbc: writeback_control of interest 728 * @inode: target inode 729 * 730 * @inode is locked and about to be written back under the control of @wbc. 731 * Record @inode's writeback context into @wbc and unlock the i_lock. On 732 * writeback completion, wbc_detach_inode() should be called. This is used 733 * to track the cgroup writeback context. 734 */ 735 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 736 struct inode *inode) 737 { 738 if (!inode_cgwb_enabled(inode)) { 739 spin_unlock(&inode->i_lock); 740 return; 741 } 742 743 wbc->wb = inode_to_wb(inode); 744 wbc->inode = inode; 745 746 wbc->wb_id = wbc->wb->memcg_css->id; 747 wbc->wb_lcand_id = inode->i_wb_frn_winner; 748 wbc->wb_tcand_id = 0; 749 wbc->wb_bytes = 0; 750 wbc->wb_lcand_bytes = 0; 751 wbc->wb_tcand_bytes = 0; 752 753 wb_get(wbc->wb); 754 spin_unlock(&inode->i_lock); 755 756 /* 757 * A dying wb indicates that either the blkcg associated with the 758 * memcg changed or the associated memcg is dying. In the first 759 * case, a replacement wb should already be available and we should 760 * refresh the wb immediately. In the second case, trying to 761 * refresh will keep failing. 762 */ 763 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 764 inode_switch_wbs(inode, wbc->wb_id); 765 } 766 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 767 768 /** 769 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 770 * @wbc: writeback_control of the just finished writeback 771 * 772 * To be called after a writeback attempt of an inode finishes and undoes 773 * wbc_attach_and_unlock_inode(). Can be called under any context. 774 * 775 * As concurrent write sharing of an inode is expected to be very rare and 776 * memcg only tracks page ownership on first-use basis severely confining 777 * the usefulness of such sharing, cgroup writeback tracks ownership 778 * per-inode. While the support for concurrent write sharing of an inode 779 * is deemed unnecessary, an inode being written to by different cgroups at 780 * different points in time is a lot more common, and, more importantly, 781 * charging only by first-use can too readily lead to grossly incorrect 782 * behaviors (single foreign page can lead to gigabytes of writeback to be 783 * incorrectly attributed). 784 * 785 * To resolve this issue, cgroup writeback detects the majority dirtier of 786 * an inode and transfers the ownership to it. To avoid unnecessary 787 * oscillation, the detection mechanism keeps track of history and gives 788 * out the switch verdict only if the foreign usage pattern is stable over 789 * a certain amount of time and/or writeback attempts. 790 * 791 * On each writeback attempt, @wbc tries to detect the majority writer 792 * using Boyer-Moore majority vote algorithm. In addition to the byte 793 * count from the majority voting, it also counts the bytes written for the 794 * current wb and the last round's winner wb (max of last round's current 795 * wb, the winner from two rounds ago, and the last round's majority 796 * candidate). Keeping track of the historical winner helps the algorithm 797 * to semi-reliably detect the most active writer even when it's not the 798 * absolute majority. 799 * 800 * Once the winner of the round is determined, whether the winner is 801 * foreign or not and how much IO time the round consumed is recorded in 802 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 803 * over a certain threshold, the switch verdict is given. 804 */ 805 void wbc_detach_inode(struct writeback_control *wbc) 806 { 807 struct bdi_writeback *wb = wbc->wb; 808 struct inode *inode = wbc->inode; 809 unsigned long avg_time, max_bytes, max_time; 810 u16 history; 811 int max_id; 812 813 if (!wb) 814 return; 815 816 history = inode->i_wb_frn_history; 817 avg_time = inode->i_wb_frn_avg_time; 818 819 /* pick the winner of this round */ 820 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 821 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 822 max_id = wbc->wb_id; 823 max_bytes = wbc->wb_bytes; 824 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 825 max_id = wbc->wb_lcand_id; 826 max_bytes = wbc->wb_lcand_bytes; 827 } else { 828 max_id = wbc->wb_tcand_id; 829 max_bytes = wbc->wb_tcand_bytes; 830 } 831 832 /* 833 * Calculate the amount of IO time the winner consumed and fold it 834 * into the running average kept per inode. If the consumed IO 835 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 836 * deciding whether to switch or not. This is to prevent one-off 837 * small dirtiers from skewing the verdict. 838 */ 839 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 840 wb->avg_write_bandwidth); 841 if (avg_time) 842 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 843 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 844 else 845 avg_time = max_time; /* immediate catch up on first run */ 846 847 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 848 int slots; 849 850 /* 851 * The switch verdict is reached if foreign wb's consume 852 * more than a certain proportion of IO time in a 853 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 854 * history mask where each bit represents one sixteenth of 855 * the period. Determine the number of slots to shift into 856 * history from @max_time. 857 */ 858 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 859 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 860 history <<= slots; 861 if (wbc->wb_id != max_id) 862 history |= (1U << slots) - 1; 863 864 if (history) 865 trace_inode_foreign_history(inode, wbc, history); 866 867 /* 868 * Switch if the current wb isn't the consistent winner. 869 * If there are multiple closely competing dirtiers, the 870 * inode may switch across them repeatedly over time, which 871 * is okay. The main goal is avoiding keeping an inode on 872 * the wrong wb for an extended period of time. 873 */ 874 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS) 875 inode_switch_wbs(inode, max_id); 876 } 877 878 /* 879 * Multiple instances of this function may race to update the 880 * following fields but we don't mind occassional inaccuracies. 881 */ 882 inode->i_wb_frn_winner = max_id; 883 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 884 inode->i_wb_frn_history = history; 885 886 wb_put(wbc->wb); 887 wbc->wb = NULL; 888 } 889 EXPORT_SYMBOL_GPL(wbc_detach_inode); 890 891 /** 892 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 893 * @wbc: writeback_control of the writeback in progress 894 * @page: page being written out 895 * @bytes: number of bytes being written out 896 * 897 * @bytes from @page are about to written out during the writeback 898 * controlled by @wbc. Keep the book for foreign inode detection. See 899 * wbc_detach_inode(). 900 */ 901 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 902 size_t bytes) 903 { 904 struct folio *folio; 905 struct cgroup_subsys_state *css; 906 int id; 907 908 /* 909 * pageout() path doesn't attach @wbc to the inode being written 910 * out. This is intentional as we don't want the function to block 911 * behind a slow cgroup. Ultimately, we want pageout() to kick off 912 * regular writeback instead of writing things out itself. 913 */ 914 if (!wbc->wb || wbc->no_cgroup_owner) 915 return; 916 917 folio = page_folio(page); 918 css = mem_cgroup_css_from_folio(folio); 919 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 920 if (!(css->flags & CSS_ONLINE)) 921 return; 922 923 id = css->id; 924 925 if (id == wbc->wb_id) { 926 wbc->wb_bytes += bytes; 927 return; 928 } 929 930 if (id == wbc->wb_lcand_id) 931 wbc->wb_lcand_bytes += bytes; 932 933 /* Boyer-Moore majority vote algorithm */ 934 if (!wbc->wb_tcand_bytes) 935 wbc->wb_tcand_id = id; 936 if (id == wbc->wb_tcand_id) 937 wbc->wb_tcand_bytes += bytes; 938 else 939 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 940 } 941 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 942 943 /** 944 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 945 * @wb: target bdi_writeback to split @nr_pages to 946 * @nr_pages: number of pages to write for the whole bdi 947 * 948 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 949 * relation to the total write bandwidth of all wb's w/ dirty inodes on 950 * @wb->bdi. 951 */ 952 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 953 { 954 unsigned long this_bw = wb->avg_write_bandwidth; 955 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 956 957 if (nr_pages == LONG_MAX) 958 return LONG_MAX; 959 960 /* 961 * This may be called on clean wb's and proportional distribution 962 * may not make sense, just use the original @nr_pages in those 963 * cases. In general, we wanna err on the side of writing more. 964 */ 965 if (!tot_bw || this_bw >= tot_bw) 966 return nr_pages; 967 else 968 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 969 } 970 971 /** 972 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 973 * @bdi: target backing_dev_info 974 * @base_work: wb_writeback_work to issue 975 * @skip_if_busy: skip wb's which already have writeback in progress 976 * 977 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 978 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 979 * distributed to the busy wbs according to each wb's proportion in the 980 * total active write bandwidth of @bdi. 981 */ 982 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 983 struct wb_writeback_work *base_work, 984 bool skip_if_busy) 985 { 986 struct bdi_writeback *last_wb = NULL; 987 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 988 struct bdi_writeback, bdi_node); 989 990 might_sleep(); 991 restart: 992 rcu_read_lock(); 993 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 994 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 995 struct wb_writeback_work fallback_work; 996 struct wb_writeback_work *work; 997 long nr_pages; 998 999 if (last_wb) { 1000 wb_put(last_wb); 1001 last_wb = NULL; 1002 } 1003 1004 /* SYNC_ALL writes out I_DIRTY_TIME too */ 1005 if (!wb_has_dirty_io(wb) && 1006 (base_work->sync_mode == WB_SYNC_NONE || 1007 list_empty(&wb->b_dirty_time))) 1008 continue; 1009 if (skip_if_busy && writeback_in_progress(wb)) 1010 continue; 1011 1012 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 1013 1014 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1015 if (work) { 1016 *work = *base_work; 1017 work->nr_pages = nr_pages; 1018 work->auto_free = 1; 1019 wb_queue_work(wb, work); 1020 continue; 1021 } 1022 1023 /* 1024 * If wb_tryget fails, the wb has been shutdown, skip it. 1025 * 1026 * Pin @wb so that it stays on @bdi->wb_list. This allows 1027 * continuing iteration from @wb after dropping and 1028 * regrabbing rcu read lock. 1029 */ 1030 if (!wb_tryget(wb)) 1031 continue; 1032 1033 /* alloc failed, execute synchronously using on-stack fallback */ 1034 work = &fallback_work; 1035 *work = *base_work; 1036 work->nr_pages = nr_pages; 1037 work->auto_free = 0; 1038 work->done = &fallback_work_done; 1039 1040 wb_queue_work(wb, work); 1041 last_wb = wb; 1042 1043 rcu_read_unlock(); 1044 wb_wait_for_completion(&fallback_work_done); 1045 goto restart; 1046 } 1047 rcu_read_unlock(); 1048 1049 if (last_wb) 1050 wb_put(last_wb); 1051 } 1052 1053 /** 1054 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1055 * @bdi_id: target bdi id 1056 * @memcg_id: target memcg css id 1057 * @reason: reason why some writeback work initiated 1058 * @done: target wb_completion 1059 * 1060 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1061 * with the specified parameters. 1062 */ 1063 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, 1064 enum wb_reason reason, struct wb_completion *done) 1065 { 1066 struct backing_dev_info *bdi; 1067 struct cgroup_subsys_state *memcg_css; 1068 struct bdi_writeback *wb; 1069 struct wb_writeback_work *work; 1070 unsigned long dirty; 1071 int ret; 1072 1073 /* lookup bdi and memcg */ 1074 bdi = bdi_get_by_id(bdi_id); 1075 if (!bdi) 1076 return -ENOENT; 1077 1078 rcu_read_lock(); 1079 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1080 if (memcg_css && !css_tryget(memcg_css)) 1081 memcg_css = NULL; 1082 rcu_read_unlock(); 1083 if (!memcg_css) { 1084 ret = -ENOENT; 1085 goto out_bdi_put; 1086 } 1087 1088 /* 1089 * And find the associated wb. If the wb isn't there already 1090 * there's nothing to flush, don't create one. 1091 */ 1092 wb = wb_get_lookup(bdi, memcg_css); 1093 if (!wb) { 1094 ret = -ENOENT; 1095 goto out_css_put; 1096 } 1097 1098 /* 1099 * The caller is attempting to write out most of 1100 * the currently dirty pages. Let's take the current dirty page 1101 * count and inflate it by 25% which should be large enough to 1102 * flush out most dirty pages while avoiding getting livelocked by 1103 * concurrent dirtiers. 1104 * 1105 * BTW the memcg stats are flushed periodically and this is best-effort 1106 * estimation, so some potential error is ok. 1107 */ 1108 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); 1109 dirty = dirty * 10 / 8; 1110 1111 /* issue the writeback work */ 1112 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1113 if (work) { 1114 work->nr_pages = dirty; 1115 work->sync_mode = WB_SYNC_NONE; 1116 work->range_cyclic = 1; 1117 work->reason = reason; 1118 work->done = done; 1119 work->auto_free = 1; 1120 wb_queue_work(wb, work); 1121 ret = 0; 1122 } else { 1123 ret = -ENOMEM; 1124 } 1125 1126 wb_put(wb); 1127 out_css_put: 1128 css_put(memcg_css); 1129 out_bdi_put: 1130 bdi_put(bdi); 1131 return ret; 1132 } 1133 1134 /** 1135 * cgroup_writeback_umount - flush inode wb switches for umount 1136 * 1137 * This function is called when a super_block is about to be destroyed and 1138 * flushes in-flight inode wb switches. An inode wb switch goes through 1139 * RCU and then workqueue, so the two need to be flushed in order to ensure 1140 * that all previously scheduled switches are finished. As wb switches are 1141 * rare occurrences and synchronize_rcu() can take a while, perform 1142 * flushing iff wb switches are in flight. 1143 */ 1144 void cgroup_writeback_umount(void) 1145 { 1146 /* 1147 * SB_ACTIVE should be reliably cleared before checking 1148 * isw_nr_in_flight, see generic_shutdown_super(). 1149 */ 1150 smp_mb(); 1151 1152 if (atomic_read(&isw_nr_in_flight)) { 1153 /* 1154 * Use rcu_barrier() to wait for all pending callbacks to 1155 * ensure that all in-flight wb switches are in the workqueue. 1156 */ 1157 rcu_barrier(); 1158 flush_workqueue(isw_wq); 1159 } 1160 } 1161 1162 static int __init cgroup_writeback_init(void) 1163 { 1164 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1165 if (!isw_wq) 1166 return -ENOMEM; 1167 return 0; 1168 } 1169 fs_initcall(cgroup_writeback_init); 1170 1171 #else /* CONFIG_CGROUP_WRITEBACK */ 1172 1173 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1174 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1175 1176 static void inode_cgwb_move_to_attached(struct inode *inode, 1177 struct bdi_writeback *wb) 1178 { 1179 assert_spin_locked(&wb->list_lock); 1180 assert_spin_locked(&inode->i_lock); 1181 WARN_ON_ONCE(inode->i_state & I_FREEING); 1182 1183 inode->i_state &= ~I_SYNC_QUEUED; 1184 list_del_init(&inode->i_io_list); 1185 wb_io_lists_depopulated(wb); 1186 } 1187 1188 static struct bdi_writeback * 1189 locked_inode_to_wb_and_lock_list(struct inode *inode) 1190 __releases(&inode->i_lock) 1191 __acquires(&wb->list_lock) 1192 { 1193 struct bdi_writeback *wb = inode_to_wb(inode); 1194 1195 spin_unlock(&inode->i_lock); 1196 spin_lock(&wb->list_lock); 1197 return wb; 1198 } 1199 1200 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1201 __acquires(&wb->list_lock) 1202 { 1203 struct bdi_writeback *wb = inode_to_wb(inode); 1204 1205 spin_lock(&wb->list_lock); 1206 return wb; 1207 } 1208 1209 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1210 { 1211 return nr_pages; 1212 } 1213 1214 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1215 struct wb_writeback_work *base_work, 1216 bool skip_if_busy) 1217 { 1218 might_sleep(); 1219 1220 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1221 base_work->auto_free = 0; 1222 wb_queue_work(&bdi->wb, base_work); 1223 } 1224 } 1225 1226 #endif /* CONFIG_CGROUP_WRITEBACK */ 1227 1228 /* 1229 * Add in the number of potentially dirty inodes, because each inode 1230 * write can dirty pagecache in the underlying blockdev. 1231 */ 1232 static unsigned long get_nr_dirty_pages(void) 1233 { 1234 return global_node_page_state(NR_FILE_DIRTY) + 1235 get_nr_dirty_inodes(); 1236 } 1237 1238 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1239 { 1240 if (!wb_has_dirty_io(wb)) 1241 return; 1242 1243 /* 1244 * All callers of this function want to start writeback of all 1245 * dirty pages. Places like vmscan can call this at a very 1246 * high frequency, causing pointless allocations of tons of 1247 * work items and keeping the flusher threads busy retrieving 1248 * that work. Ensure that we only allow one of them pending and 1249 * inflight at the time. 1250 */ 1251 if (test_bit(WB_start_all, &wb->state) || 1252 test_and_set_bit(WB_start_all, &wb->state)) 1253 return; 1254 1255 wb->start_all_reason = reason; 1256 wb_wakeup(wb); 1257 } 1258 1259 /** 1260 * wb_start_background_writeback - start background writeback 1261 * @wb: bdi_writback to write from 1262 * 1263 * Description: 1264 * This makes sure WB_SYNC_NONE background writeback happens. When 1265 * this function returns, it is only guaranteed that for given wb 1266 * some IO is happening if we are over background dirty threshold. 1267 * Caller need not hold sb s_umount semaphore. 1268 */ 1269 void wb_start_background_writeback(struct bdi_writeback *wb) 1270 { 1271 /* 1272 * We just wake up the flusher thread. It will perform background 1273 * writeback as soon as there is no other work to do. 1274 */ 1275 trace_writeback_wake_background(wb); 1276 wb_wakeup(wb); 1277 } 1278 1279 /* 1280 * Remove the inode from the writeback list it is on. 1281 */ 1282 void inode_io_list_del(struct inode *inode) 1283 { 1284 struct bdi_writeback *wb; 1285 1286 wb = inode_to_wb_and_lock_list(inode); 1287 spin_lock(&inode->i_lock); 1288 1289 inode->i_state &= ~I_SYNC_QUEUED; 1290 list_del_init(&inode->i_io_list); 1291 wb_io_lists_depopulated(wb); 1292 1293 spin_unlock(&inode->i_lock); 1294 spin_unlock(&wb->list_lock); 1295 } 1296 EXPORT_SYMBOL(inode_io_list_del); 1297 1298 /* 1299 * mark an inode as under writeback on the sb 1300 */ 1301 void sb_mark_inode_writeback(struct inode *inode) 1302 { 1303 struct super_block *sb = inode->i_sb; 1304 unsigned long flags; 1305 1306 if (list_empty(&inode->i_wb_list)) { 1307 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1308 if (list_empty(&inode->i_wb_list)) { 1309 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1310 trace_sb_mark_inode_writeback(inode); 1311 } 1312 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1313 } 1314 } 1315 1316 /* 1317 * clear an inode as under writeback on the sb 1318 */ 1319 void sb_clear_inode_writeback(struct inode *inode) 1320 { 1321 struct super_block *sb = inode->i_sb; 1322 unsigned long flags; 1323 1324 if (!list_empty(&inode->i_wb_list)) { 1325 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1326 if (!list_empty(&inode->i_wb_list)) { 1327 list_del_init(&inode->i_wb_list); 1328 trace_sb_clear_inode_writeback(inode); 1329 } 1330 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1331 } 1332 } 1333 1334 /* 1335 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1336 * furthest end of its superblock's dirty-inode list. 1337 * 1338 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1339 * already the most-recently-dirtied inode on the b_dirty list. If that is 1340 * the case then the inode must have been redirtied while it was being written 1341 * out and we don't reset its dirtied_when. 1342 */ 1343 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1344 { 1345 assert_spin_locked(&inode->i_lock); 1346 1347 inode->i_state &= ~I_SYNC_QUEUED; 1348 /* 1349 * When the inode is being freed just don't bother with dirty list 1350 * tracking. Flush worker will ignore this inode anyway and it will 1351 * trigger assertions in inode_io_list_move_locked(). 1352 */ 1353 if (inode->i_state & I_FREEING) { 1354 list_del_init(&inode->i_io_list); 1355 wb_io_lists_depopulated(wb); 1356 return; 1357 } 1358 if (!list_empty(&wb->b_dirty)) { 1359 struct inode *tail; 1360 1361 tail = wb_inode(wb->b_dirty.next); 1362 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1363 inode->dirtied_when = jiffies; 1364 } 1365 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1366 } 1367 1368 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1369 { 1370 spin_lock(&inode->i_lock); 1371 redirty_tail_locked(inode, wb); 1372 spin_unlock(&inode->i_lock); 1373 } 1374 1375 /* 1376 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1377 */ 1378 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1379 { 1380 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1381 } 1382 1383 static void inode_sync_complete(struct inode *inode) 1384 { 1385 inode->i_state &= ~I_SYNC; 1386 /* If inode is clean an unused, put it into LRU now... */ 1387 inode_add_lru(inode); 1388 /* Waiters must see I_SYNC cleared before being woken up */ 1389 smp_mb(); 1390 wake_up_bit(&inode->i_state, __I_SYNC); 1391 } 1392 1393 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1394 { 1395 bool ret = time_after(inode->dirtied_when, t); 1396 #ifndef CONFIG_64BIT 1397 /* 1398 * For inodes being constantly redirtied, dirtied_when can get stuck. 1399 * It _appears_ to be in the future, but is actually in distant past. 1400 * This test is necessary to prevent such wrapped-around relative times 1401 * from permanently stopping the whole bdi writeback. 1402 */ 1403 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1404 #endif 1405 return ret; 1406 } 1407 1408 /* 1409 * Move expired (dirtied before dirtied_before) dirty inodes from 1410 * @delaying_queue to @dispatch_queue. 1411 */ 1412 static int move_expired_inodes(struct list_head *delaying_queue, 1413 struct list_head *dispatch_queue, 1414 unsigned long dirtied_before) 1415 { 1416 LIST_HEAD(tmp); 1417 struct list_head *pos, *node; 1418 struct super_block *sb = NULL; 1419 struct inode *inode; 1420 int do_sb_sort = 0; 1421 int moved = 0; 1422 1423 while (!list_empty(delaying_queue)) { 1424 inode = wb_inode(delaying_queue->prev); 1425 if (inode_dirtied_after(inode, dirtied_before)) 1426 break; 1427 spin_lock(&inode->i_lock); 1428 list_move(&inode->i_io_list, &tmp); 1429 moved++; 1430 inode->i_state |= I_SYNC_QUEUED; 1431 spin_unlock(&inode->i_lock); 1432 if (sb_is_blkdev_sb(inode->i_sb)) 1433 continue; 1434 if (sb && sb != inode->i_sb) 1435 do_sb_sort = 1; 1436 sb = inode->i_sb; 1437 } 1438 1439 /* just one sb in list, splice to dispatch_queue and we're done */ 1440 if (!do_sb_sort) { 1441 list_splice(&tmp, dispatch_queue); 1442 goto out; 1443 } 1444 1445 /* 1446 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', 1447 * we don't take inode->i_lock here because it is just a pointless overhead. 1448 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is 1449 * fully under our control. 1450 */ 1451 while (!list_empty(&tmp)) { 1452 sb = wb_inode(tmp.prev)->i_sb; 1453 list_for_each_prev_safe(pos, node, &tmp) { 1454 inode = wb_inode(pos); 1455 if (inode->i_sb == sb) 1456 list_move(&inode->i_io_list, dispatch_queue); 1457 } 1458 } 1459 out: 1460 return moved; 1461 } 1462 1463 /* 1464 * Queue all expired dirty inodes for io, eldest first. 1465 * Before 1466 * newly dirtied b_dirty b_io b_more_io 1467 * =============> gf edc BA 1468 * After 1469 * newly dirtied b_dirty b_io b_more_io 1470 * =============> g fBAedc 1471 * | 1472 * +--> dequeue for IO 1473 */ 1474 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1475 unsigned long dirtied_before) 1476 { 1477 int moved; 1478 unsigned long time_expire_jif = dirtied_before; 1479 1480 assert_spin_locked(&wb->list_lock); 1481 list_splice_init(&wb->b_more_io, &wb->b_io); 1482 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1483 if (!work->for_sync) 1484 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1485 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1486 time_expire_jif); 1487 if (moved) 1488 wb_io_lists_populated(wb); 1489 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1490 } 1491 1492 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1493 { 1494 int ret; 1495 1496 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1497 trace_writeback_write_inode_start(inode, wbc); 1498 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1499 trace_writeback_write_inode(inode, wbc); 1500 return ret; 1501 } 1502 return 0; 1503 } 1504 1505 /* 1506 * Wait for writeback on an inode to complete. Called with i_lock held. 1507 * Caller must make sure inode cannot go away when we drop i_lock. 1508 */ 1509 static void __inode_wait_for_writeback(struct inode *inode) 1510 __releases(inode->i_lock) 1511 __acquires(inode->i_lock) 1512 { 1513 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1514 wait_queue_head_t *wqh; 1515 1516 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1517 while (inode->i_state & I_SYNC) { 1518 spin_unlock(&inode->i_lock); 1519 __wait_on_bit(wqh, &wq, bit_wait, 1520 TASK_UNINTERRUPTIBLE); 1521 spin_lock(&inode->i_lock); 1522 } 1523 } 1524 1525 /* 1526 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1527 */ 1528 void inode_wait_for_writeback(struct inode *inode) 1529 { 1530 spin_lock(&inode->i_lock); 1531 __inode_wait_for_writeback(inode); 1532 spin_unlock(&inode->i_lock); 1533 } 1534 1535 /* 1536 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1537 * held and drops it. It is aimed for callers not holding any inode reference 1538 * so once i_lock is dropped, inode can go away. 1539 */ 1540 static void inode_sleep_on_writeback(struct inode *inode) 1541 __releases(inode->i_lock) 1542 { 1543 DEFINE_WAIT(wait); 1544 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1545 int sleep; 1546 1547 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1548 sleep = inode->i_state & I_SYNC; 1549 spin_unlock(&inode->i_lock); 1550 if (sleep) 1551 schedule(); 1552 finish_wait(wqh, &wait); 1553 } 1554 1555 /* 1556 * Find proper writeback list for the inode depending on its current state and 1557 * possibly also change of its state while we were doing writeback. Here we 1558 * handle things such as livelock prevention or fairness of writeback among 1559 * inodes. This function can be called only by flusher thread - noone else 1560 * processes all inodes in writeback lists and requeueing inodes behind flusher 1561 * thread's back can have unexpected consequences. 1562 */ 1563 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1564 struct writeback_control *wbc) 1565 { 1566 if (inode->i_state & I_FREEING) 1567 return; 1568 1569 /* 1570 * Sync livelock prevention. Each inode is tagged and synced in one 1571 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1572 * the dirty time to prevent enqueue and sync it again. 1573 */ 1574 if ((inode->i_state & I_DIRTY) && 1575 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1576 inode->dirtied_when = jiffies; 1577 1578 if (wbc->pages_skipped) { 1579 /* 1580 * Writeback is not making progress due to locked buffers. 1581 * Skip this inode for now. Although having skipped pages 1582 * is odd for clean inodes, it can happen for some 1583 * filesystems so handle that gracefully. 1584 */ 1585 if (inode->i_state & I_DIRTY_ALL) 1586 redirty_tail_locked(inode, wb); 1587 else 1588 inode_cgwb_move_to_attached(inode, wb); 1589 return; 1590 } 1591 1592 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1593 /* 1594 * We didn't write back all the pages. nfs_writepages() 1595 * sometimes bales out without doing anything. 1596 */ 1597 if (wbc->nr_to_write <= 0) { 1598 /* Slice used up. Queue for next turn. */ 1599 requeue_io(inode, wb); 1600 } else { 1601 /* 1602 * Writeback blocked by something other than 1603 * congestion. Delay the inode for some time to 1604 * avoid spinning on the CPU (100% iowait) 1605 * retrying writeback of the dirty page/inode 1606 * that cannot be performed immediately. 1607 */ 1608 redirty_tail_locked(inode, wb); 1609 } 1610 } else if (inode->i_state & I_DIRTY) { 1611 /* 1612 * Filesystems can dirty the inode during writeback operations, 1613 * such as delayed allocation during submission or metadata 1614 * updates after data IO completion. 1615 */ 1616 redirty_tail_locked(inode, wb); 1617 } else if (inode->i_state & I_DIRTY_TIME) { 1618 inode->dirtied_when = jiffies; 1619 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1620 inode->i_state &= ~I_SYNC_QUEUED; 1621 } else { 1622 /* The inode is clean. Remove from writeback lists. */ 1623 inode_cgwb_move_to_attached(inode, wb); 1624 } 1625 } 1626 1627 /* 1628 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1629 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1630 * 1631 * This doesn't remove the inode from the writeback list it is on, except 1632 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1633 * expiration. The caller is otherwise responsible for writeback list handling. 1634 * 1635 * The caller is also responsible for setting the I_SYNC flag beforehand and 1636 * calling inode_sync_complete() to clear it afterwards. 1637 */ 1638 static int 1639 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1640 { 1641 struct address_space *mapping = inode->i_mapping; 1642 long nr_to_write = wbc->nr_to_write; 1643 unsigned dirty; 1644 int ret; 1645 1646 WARN_ON(!(inode->i_state & I_SYNC)); 1647 1648 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1649 1650 ret = do_writepages(mapping, wbc); 1651 1652 /* 1653 * Make sure to wait on the data before writing out the metadata. 1654 * This is important for filesystems that modify metadata on data 1655 * I/O completion. We don't do it for sync(2) writeback because it has a 1656 * separate, external IO completion path and ->sync_fs for guaranteeing 1657 * inode metadata is written back correctly. 1658 */ 1659 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1660 int err = filemap_fdatawait(mapping); 1661 if (ret == 0) 1662 ret = err; 1663 } 1664 1665 /* 1666 * If the inode has dirty timestamps and we need to write them, call 1667 * mark_inode_dirty_sync() to notify the filesystem about it and to 1668 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1669 */ 1670 if ((inode->i_state & I_DIRTY_TIME) && 1671 (wbc->sync_mode == WB_SYNC_ALL || 1672 time_after(jiffies, inode->dirtied_time_when + 1673 dirtytime_expire_interval * HZ))) { 1674 trace_writeback_lazytime(inode); 1675 mark_inode_dirty_sync(inode); 1676 } 1677 1678 /* 1679 * Get and clear the dirty flags from i_state. This needs to be done 1680 * after calling writepages because some filesystems may redirty the 1681 * inode during writepages due to delalloc. It also needs to be done 1682 * after handling timestamp expiration, as that may dirty the inode too. 1683 */ 1684 spin_lock(&inode->i_lock); 1685 dirty = inode->i_state & I_DIRTY; 1686 inode->i_state &= ~dirty; 1687 1688 /* 1689 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1690 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1691 * either they see the I_DIRTY bits cleared or we see the dirtied 1692 * inode. 1693 * 1694 * I_DIRTY_PAGES is always cleared together above even if @mapping 1695 * still has dirty pages. The flag is reinstated after smp_mb() if 1696 * necessary. This guarantees that either __mark_inode_dirty() 1697 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1698 */ 1699 smp_mb(); 1700 1701 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1702 inode->i_state |= I_DIRTY_PAGES; 1703 else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) { 1704 if (!(inode->i_state & I_DIRTY_PAGES)) { 1705 inode->i_state &= ~I_PINNING_NETFS_WB; 1706 wbc->unpinned_netfs_wb = true; 1707 dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */ 1708 } 1709 } 1710 1711 spin_unlock(&inode->i_lock); 1712 1713 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1714 if (dirty & ~I_DIRTY_PAGES) { 1715 int err = write_inode(inode, wbc); 1716 if (ret == 0) 1717 ret = err; 1718 } 1719 wbc->unpinned_netfs_wb = false; 1720 trace_writeback_single_inode(inode, wbc, nr_to_write); 1721 return ret; 1722 } 1723 1724 /* 1725 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1726 * the regular batched writeback done by the flusher threads in 1727 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1728 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1729 * 1730 * To prevent the inode from going away, either the caller must have a reference 1731 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1732 */ 1733 static int writeback_single_inode(struct inode *inode, 1734 struct writeback_control *wbc) 1735 { 1736 struct bdi_writeback *wb; 1737 int ret = 0; 1738 1739 spin_lock(&inode->i_lock); 1740 if (!atomic_read(&inode->i_count)) 1741 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1742 else 1743 WARN_ON(inode->i_state & I_WILL_FREE); 1744 1745 if (inode->i_state & I_SYNC) { 1746 /* 1747 * Writeback is already running on the inode. For WB_SYNC_NONE, 1748 * that's enough and we can just return. For WB_SYNC_ALL, we 1749 * must wait for the existing writeback to complete, then do 1750 * writeback again if there's anything left. 1751 */ 1752 if (wbc->sync_mode != WB_SYNC_ALL) 1753 goto out; 1754 __inode_wait_for_writeback(inode); 1755 } 1756 WARN_ON(inode->i_state & I_SYNC); 1757 /* 1758 * If the inode is already fully clean, then there's nothing to do. 1759 * 1760 * For data-integrity syncs we also need to check whether any pages are 1761 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1762 * there are any such pages, we'll need to wait for them. 1763 */ 1764 if (!(inode->i_state & I_DIRTY_ALL) && 1765 (wbc->sync_mode != WB_SYNC_ALL || 1766 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1767 goto out; 1768 inode->i_state |= I_SYNC; 1769 wbc_attach_and_unlock_inode(wbc, inode); 1770 1771 ret = __writeback_single_inode(inode, wbc); 1772 1773 wbc_detach_inode(wbc); 1774 1775 wb = inode_to_wb_and_lock_list(inode); 1776 spin_lock(&inode->i_lock); 1777 /* 1778 * If the inode is freeing, its i_io_list shoudn't be updated 1779 * as it can be finally deleted at this moment. 1780 */ 1781 if (!(inode->i_state & I_FREEING)) { 1782 /* 1783 * If the inode is now fully clean, then it can be safely 1784 * removed from its writeback list (if any). Otherwise the 1785 * flusher threads are responsible for the writeback lists. 1786 */ 1787 if (!(inode->i_state & I_DIRTY_ALL)) 1788 inode_cgwb_move_to_attached(inode, wb); 1789 else if (!(inode->i_state & I_SYNC_QUEUED)) { 1790 if ((inode->i_state & I_DIRTY)) 1791 redirty_tail_locked(inode, wb); 1792 else if (inode->i_state & I_DIRTY_TIME) { 1793 inode->dirtied_when = jiffies; 1794 inode_io_list_move_locked(inode, 1795 wb, 1796 &wb->b_dirty_time); 1797 } 1798 } 1799 } 1800 1801 spin_unlock(&wb->list_lock); 1802 inode_sync_complete(inode); 1803 out: 1804 spin_unlock(&inode->i_lock); 1805 return ret; 1806 } 1807 1808 static long writeback_chunk_size(struct bdi_writeback *wb, 1809 struct wb_writeback_work *work) 1810 { 1811 long pages; 1812 1813 /* 1814 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1815 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1816 * here avoids calling into writeback_inodes_wb() more than once. 1817 * 1818 * The intended call sequence for WB_SYNC_ALL writeback is: 1819 * 1820 * wb_writeback() 1821 * writeback_sb_inodes() <== called only once 1822 * write_cache_pages() <== called once for each inode 1823 * (quickly) tag currently dirty pages 1824 * (maybe slowly) sync all tagged pages 1825 */ 1826 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1827 pages = LONG_MAX; 1828 else { 1829 pages = min(wb->avg_write_bandwidth / 2, 1830 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1831 pages = min(pages, work->nr_pages); 1832 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1833 MIN_WRITEBACK_PAGES); 1834 } 1835 1836 return pages; 1837 } 1838 1839 /* 1840 * Write a portion of b_io inodes which belong to @sb. 1841 * 1842 * Return the number of pages and/or inodes written. 1843 * 1844 * NOTE! This is called with wb->list_lock held, and will 1845 * unlock and relock that for each inode it ends up doing 1846 * IO for. 1847 */ 1848 static long writeback_sb_inodes(struct super_block *sb, 1849 struct bdi_writeback *wb, 1850 struct wb_writeback_work *work) 1851 { 1852 struct writeback_control wbc = { 1853 .sync_mode = work->sync_mode, 1854 .tagged_writepages = work->tagged_writepages, 1855 .for_kupdate = work->for_kupdate, 1856 .for_background = work->for_background, 1857 .for_sync = work->for_sync, 1858 .range_cyclic = work->range_cyclic, 1859 .range_start = 0, 1860 .range_end = LLONG_MAX, 1861 }; 1862 unsigned long start_time = jiffies; 1863 long write_chunk; 1864 long total_wrote = 0; /* count both pages and inodes */ 1865 1866 while (!list_empty(&wb->b_io)) { 1867 struct inode *inode = wb_inode(wb->b_io.prev); 1868 struct bdi_writeback *tmp_wb; 1869 long wrote; 1870 1871 if (inode->i_sb != sb) { 1872 if (work->sb) { 1873 /* 1874 * We only want to write back data for this 1875 * superblock, move all inodes not belonging 1876 * to it back onto the dirty list. 1877 */ 1878 redirty_tail(inode, wb); 1879 continue; 1880 } 1881 1882 /* 1883 * The inode belongs to a different superblock. 1884 * Bounce back to the caller to unpin this and 1885 * pin the next superblock. 1886 */ 1887 break; 1888 } 1889 1890 /* 1891 * Don't bother with new inodes or inodes being freed, first 1892 * kind does not need periodic writeout yet, and for the latter 1893 * kind writeout is handled by the freer. 1894 */ 1895 spin_lock(&inode->i_lock); 1896 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1897 redirty_tail_locked(inode, wb); 1898 spin_unlock(&inode->i_lock); 1899 continue; 1900 } 1901 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1902 /* 1903 * If this inode is locked for writeback and we are not 1904 * doing writeback-for-data-integrity, move it to 1905 * b_more_io so that writeback can proceed with the 1906 * other inodes on s_io. 1907 * 1908 * We'll have another go at writing back this inode 1909 * when we completed a full scan of b_io. 1910 */ 1911 requeue_io(inode, wb); 1912 spin_unlock(&inode->i_lock); 1913 trace_writeback_sb_inodes_requeue(inode); 1914 continue; 1915 } 1916 spin_unlock(&wb->list_lock); 1917 1918 /* 1919 * We already requeued the inode if it had I_SYNC set and we 1920 * are doing WB_SYNC_NONE writeback. So this catches only the 1921 * WB_SYNC_ALL case. 1922 */ 1923 if (inode->i_state & I_SYNC) { 1924 /* Wait for I_SYNC. This function drops i_lock... */ 1925 inode_sleep_on_writeback(inode); 1926 /* Inode may be gone, start again */ 1927 spin_lock(&wb->list_lock); 1928 continue; 1929 } 1930 inode->i_state |= I_SYNC; 1931 wbc_attach_and_unlock_inode(&wbc, inode); 1932 1933 write_chunk = writeback_chunk_size(wb, work); 1934 wbc.nr_to_write = write_chunk; 1935 wbc.pages_skipped = 0; 1936 1937 /* 1938 * We use I_SYNC to pin the inode in memory. While it is set 1939 * evict_inode() will wait so the inode cannot be freed. 1940 */ 1941 __writeback_single_inode(inode, &wbc); 1942 1943 wbc_detach_inode(&wbc); 1944 work->nr_pages -= write_chunk - wbc.nr_to_write; 1945 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; 1946 wrote = wrote < 0 ? 0 : wrote; 1947 total_wrote += wrote; 1948 1949 if (need_resched()) { 1950 /* 1951 * We're trying to balance between building up a nice 1952 * long list of IOs to improve our merge rate, and 1953 * getting those IOs out quickly for anyone throttling 1954 * in balance_dirty_pages(). cond_resched() doesn't 1955 * unplug, so get our IOs out the door before we 1956 * give up the CPU. 1957 */ 1958 blk_flush_plug(current->plug, false); 1959 cond_resched(); 1960 } 1961 1962 /* 1963 * Requeue @inode if still dirty. Be careful as @inode may 1964 * have been switched to another wb in the meantime. 1965 */ 1966 tmp_wb = inode_to_wb_and_lock_list(inode); 1967 spin_lock(&inode->i_lock); 1968 if (!(inode->i_state & I_DIRTY_ALL)) 1969 total_wrote++; 1970 requeue_inode(inode, tmp_wb, &wbc); 1971 inode_sync_complete(inode); 1972 spin_unlock(&inode->i_lock); 1973 1974 if (unlikely(tmp_wb != wb)) { 1975 spin_unlock(&tmp_wb->list_lock); 1976 spin_lock(&wb->list_lock); 1977 } 1978 1979 /* 1980 * bail out to wb_writeback() often enough to check 1981 * background threshold and other termination conditions. 1982 */ 1983 if (total_wrote) { 1984 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1985 break; 1986 if (work->nr_pages <= 0) 1987 break; 1988 } 1989 } 1990 return total_wrote; 1991 } 1992 1993 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1994 struct wb_writeback_work *work) 1995 { 1996 unsigned long start_time = jiffies; 1997 long wrote = 0; 1998 1999 while (!list_empty(&wb->b_io)) { 2000 struct inode *inode = wb_inode(wb->b_io.prev); 2001 struct super_block *sb = inode->i_sb; 2002 2003 if (!super_trylock_shared(sb)) { 2004 /* 2005 * super_trylock_shared() may fail consistently due to 2006 * s_umount being grabbed by someone else. Don't use 2007 * requeue_io() to avoid busy retrying the inode/sb. 2008 */ 2009 redirty_tail(inode, wb); 2010 continue; 2011 } 2012 wrote += writeback_sb_inodes(sb, wb, work); 2013 up_read(&sb->s_umount); 2014 2015 /* refer to the same tests at the end of writeback_sb_inodes */ 2016 if (wrote) { 2017 if (time_is_before_jiffies(start_time + HZ / 10UL)) 2018 break; 2019 if (work->nr_pages <= 0) 2020 break; 2021 } 2022 } 2023 /* Leave any unwritten inodes on b_io */ 2024 return wrote; 2025 } 2026 2027 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 2028 enum wb_reason reason) 2029 { 2030 struct wb_writeback_work work = { 2031 .nr_pages = nr_pages, 2032 .sync_mode = WB_SYNC_NONE, 2033 .range_cyclic = 1, 2034 .reason = reason, 2035 }; 2036 struct blk_plug plug; 2037 2038 blk_start_plug(&plug); 2039 spin_lock(&wb->list_lock); 2040 if (list_empty(&wb->b_io)) 2041 queue_io(wb, &work, jiffies); 2042 __writeback_inodes_wb(wb, &work); 2043 spin_unlock(&wb->list_lock); 2044 blk_finish_plug(&plug); 2045 2046 return nr_pages - work.nr_pages; 2047 } 2048 2049 /* 2050 * Explicit flushing or periodic writeback of "old" data. 2051 * 2052 * Define "old": the first time one of an inode's pages is dirtied, we mark the 2053 * dirtying-time in the inode's address_space. So this periodic writeback code 2054 * just walks the superblock inode list, writing back any inodes which are 2055 * older than a specific point in time. 2056 * 2057 * Try to run once per dirty_writeback_interval. But if a writeback event 2058 * takes longer than a dirty_writeback_interval interval, then leave a 2059 * one-second gap. 2060 * 2061 * dirtied_before takes precedence over nr_to_write. So we'll only write back 2062 * all dirty pages if they are all attached to "old" mappings. 2063 */ 2064 static long wb_writeback(struct bdi_writeback *wb, 2065 struct wb_writeback_work *work) 2066 { 2067 long nr_pages = work->nr_pages; 2068 unsigned long dirtied_before = jiffies; 2069 struct inode *inode; 2070 long progress; 2071 struct blk_plug plug; 2072 2073 blk_start_plug(&plug); 2074 for (;;) { 2075 /* 2076 * Stop writeback when nr_pages has been consumed 2077 */ 2078 if (work->nr_pages <= 0) 2079 break; 2080 2081 /* 2082 * Background writeout and kupdate-style writeback may 2083 * run forever. Stop them if there is other work to do 2084 * so that e.g. sync can proceed. They'll be restarted 2085 * after the other works are all done. 2086 */ 2087 if ((work->for_background || work->for_kupdate) && 2088 !list_empty(&wb->work_list)) 2089 break; 2090 2091 /* 2092 * For background writeout, stop when we are below the 2093 * background dirty threshold 2094 */ 2095 if (work->for_background && !wb_over_bg_thresh(wb)) 2096 break; 2097 2098 2099 spin_lock(&wb->list_lock); 2100 2101 /* 2102 * Kupdate and background works are special and we want to 2103 * include all inodes that need writing. Livelock avoidance is 2104 * handled by these works yielding to any other work so we are 2105 * safe. 2106 */ 2107 if (work->for_kupdate) { 2108 dirtied_before = jiffies - 2109 msecs_to_jiffies(dirty_expire_interval * 10); 2110 } else if (work->for_background) 2111 dirtied_before = jiffies; 2112 2113 trace_writeback_start(wb, work); 2114 if (list_empty(&wb->b_io)) 2115 queue_io(wb, work, dirtied_before); 2116 if (work->sb) 2117 progress = writeback_sb_inodes(work->sb, wb, work); 2118 else 2119 progress = __writeback_inodes_wb(wb, work); 2120 trace_writeback_written(wb, work); 2121 2122 /* 2123 * Did we write something? Try for more 2124 * 2125 * Dirty inodes are moved to b_io for writeback in batches. 2126 * The completion of the current batch does not necessarily 2127 * mean the overall work is done. So we keep looping as long 2128 * as made some progress on cleaning pages or inodes. 2129 */ 2130 if (progress) { 2131 spin_unlock(&wb->list_lock); 2132 continue; 2133 } 2134 2135 /* 2136 * No more inodes for IO, bail 2137 */ 2138 if (list_empty(&wb->b_more_io)) { 2139 spin_unlock(&wb->list_lock); 2140 break; 2141 } 2142 2143 /* 2144 * Nothing written. Wait for some inode to 2145 * become available for writeback. Otherwise 2146 * we'll just busyloop. 2147 */ 2148 trace_writeback_wait(wb, work); 2149 inode = wb_inode(wb->b_more_io.prev); 2150 spin_lock(&inode->i_lock); 2151 spin_unlock(&wb->list_lock); 2152 /* This function drops i_lock... */ 2153 inode_sleep_on_writeback(inode); 2154 } 2155 blk_finish_plug(&plug); 2156 2157 return nr_pages - work->nr_pages; 2158 } 2159 2160 /* 2161 * Return the next wb_writeback_work struct that hasn't been processed yet. 2162 */ 2163 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2164 { 2165 struct wb_writeback_work *work = NULL; 2166 2167 spin_lock_irq(&wb->work_lock); 2168 if (!list_empty(&wb->work_list)) { 2169 work = list_entry(wb->work_list.next, 2170 struct wb_writeback_work, list); 2171 list_del_init(&work->list); 2172 } 2173 spin_unlock_irq(&wb->work_lock); 2174 return work; 2175 } 2176 2177 static long wb_check_background_flush(struct bdi_writeback *wb) 2178 { 2179 if (wb_over_bg_thresh(wb)) { 2180 2181 struct wb_writeback_work work = { 2182 .nr_pages = LONG_MAX, 2183 .sync_mode = WB_SYNC_NONE, 2184 .for_background = 1, 2185 .range_cyclic = 1, 2186 .reason = WB_REASON_BACKGROUND, 2187 }; 2188 2189 return wb_writeback(wb, &work); 2190 } 2191 2192 return 0; 2193 } 2194 2195 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2196 { 2197 unsigned long expired; 2198 long nr_pages; 2199 2200 /* 2201 * When set to zero, disable periodic writeback 2202 */ 2203 if (!dirty_writeback_interval) 2204 return 0; 2205 2206 expired = wb->last_old_flush + 2207 msecs_to_jiffies(dirty_writeback_interval * 10); 2208 if (time_before(jiffies, expired)) 2209 return 0; 2210 2211 wb->last_old_flush = jiffies; 2212 nr_pages = get_nr_dirty_pages(); 2213 2214 if (nr_pages) { 2215 struct wb_writeback_work work = { 2216 .nr_pages = nr_pages, 2217 .sync_mode = WB_SYNC_NONE, 2218 .for_kupdate = 1, 2219 .range_cyclic = 1, 2220 .reason = WB_REASON_PERIODIC, 2221 }; 2222 2223 return wb_writeback(wb, &work); 2224 } 2225 2226 return 0; 2227 } 2228 2229 static long wb_check_start_all(struct bdi_writeback *wb) 2230 { 2231 long nr_pages; 2232 2233 if (!test_bit(WB_start_all, &wb->state)) 2234 return 0; 2235 2236 nr_pages = get_nr_dirty_pages(); 2237 if (nr_pages) { 2238 struct wb_writeback_work work = { 2239 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2240 .sync_mode = WB_SYNC_NONE, 2241 .range_cyclic = 1, 2242 .reason = wb->start_all_reason, 2243 }; 2244 2245 nr_pages = wb_writeback(wb, &work); 2246 } 2247 2248 clear_bit(WB_start_all, &wb->state); 2249 return nr_pages; 2250 } 2251 2252 2253 /* 2254 * Retrieve work items and do the writeback they describe 2255 */ 2256 static long wb_do_writeback(struct bdi_writeback *wb) 2257 { 2258 struct wb_writeback_work *work; 2259 long wrote = 0; 2260 2261 set_bit(WB_writeback_running, &wb->state); 2262 while ((work = get_next_work_item(wb)) != NULL) { 2263 trace_writeback_exec(wb, work); 2264 wrote += wb_writeback(wb, work); 2265 finish_writeback_work(wb, work); 2266 } 2267 2268 /* 2269 * Check for a flush-everything request 2270 */ 2271 wrote += wb_check_start_all(wb); 2272 2273 /* 2274 * Check for periodic writeback, kupdated() style 2275 */ 2276 wrote += wb_check_old_data_flush(wb); 2277 wrote += wb_check_background_flush(wb); 2278 clear_bit(WB_writeback_running, &wb->state); 2279 2280 return wrote; 2281 } 2282 2283 /* 2284 * Handle writeback of dirty data for the device backed by this bdi. Also 2285 * reschedules periodically and does kupdated style flushing. 2286 */ 2287 void wb_workfn(struct work_struct *work) 2288 { 2289 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2290 struct bdi_writeback, dwork); 2291 long pages_written; 2292 2293 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2294 2295 if (likely(!current_is_workqueue_rescuer() || 2296 !test_bit(WB_registered, &wb->state))) { 2297 /* 2298 * The normal path. Keep writing back @wb until its 2299 * work_list is empty. Note that this path is also taken 2300 * if @wb is shutting down even when we're running off the 2301 * rescuer as work_list needs to be drained. 2302 */ 2303 do { 2304 pages_written = wb_do_writeback(wb); 2305 trace_writeback_pages_written(pages_written); 2306 } while (!list_empty(&wb->work_list)); 2307 } else { 2308 /* 2309 * bdi_wq can't get enough workers and we're running off 2310 * the emergency worker. Don't hog it. Hopefully, 1024 is 2311 * enough for efficient IO. 2312 */ 2313 pages_written = writeback_inodes_wb(wb, 1024, 2314 WB_REASON_FORKER_THREAD); 2315 trace_writeback_pages_written(pages_written); 2316 } 2317 2318 if (!list_empty(&wb->work_list)) 2319 wb_wakeup(wb); 2320 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2321 wb_wakeup_delayed(wb); 2322 } 2323 2324 /* 2325 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2326 * write back the whole world. 2327 */ 2328 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2329 enum wb_reason reason) 2330 { 2331 struct bdi_writeback *wb; 2332 2333 if (!bdi_has_dirty_io(bdi)) 2334 return; 2335 2336 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2337 wb_start_writeback(wb, reason); 2338 } 2339 2340 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2341 enum wb_reason reason) 2342 { 2343 rcu_read_lock(); 2344 __wakeup_flusher_threads_bdi(bdi, reason); 2345 rcu_read_unlock(); 2346 } 2347 2348 /* 2349 * Wakeup the flusher threads to start writeback of all currently dirty pages 2350 */ 2351 void wakeup_flusher_threads(enum wb_reason reason) 2352 { 2353 struct backing_dev_info *bdi; 2354 2355 /* 2356 * If we are expecting writeback progress we must submit plugged IO. 2357 */ 2358 blk_flush_plug(current->plug, true); 2359 2360 rcu_read_lock(); 2361 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2362 __wakeup_flusher_threads_bdi(bdi, reason); 2363 rcu_read_unlock(); 2364 } 2365 2366 /* 2367 * Wake up bdi's periodically to make sure dirtytime inodes gets 2368 * written back periodically. We deliberately do *not* check the 2369 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2370 * kernel to be constantly waking up once there are any dirtytime 2371 * inodes on the system. So instead we define a separate delayed work 2372 * function which gets called much more rarely. (By default, only 2373 * once every 12 hours.) 2374 * 2375 * If there is any other write activity going on in the file system, 2376 * this function won't be necessary. But if the only thing that has 2377 * happened on the file system is a dirtytime inode caused by an atime 2378 * update, we need this infrastructure below to make sure that inode 2379 * eventually gets pushed out to disk. 2380 */ 2381 static void wakeup_dirtytime_writeback(struct work_struct *w); 2382 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2383 2384 static void wakeup_dirtytime_writeback(struct work_struct *w) 2385 { 2386 struct backing_dev_info *bdi; 2387 2388 rcu_read_lock(); 2389 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2390 struct bdi_writeback *wb; 2391 2392 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2393 if (!list_empty(&wb->b_dirty_time)) 2394 wb_wakeup(wb); 2395 } 2396 rcu_read_unlock(); 2397 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2398 } 2399 2400 static int __init start_dirtytime_writeback(void) 2401 { 2402 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2403 return 0; 2404 } 2405 __initcall(start_dirtytime_writeback); 2406 2407 int dirtytime_interval_handler(struct ctl_table *table, int write, 2408 void *buffer, size_t *lenp, loff_t *ppos) 2409 { 2410 int ret; 2411 2412 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2413 if (ret == 0 && write) 2414 mod_delayed_work(system_wq, &dirtytime_work, 0); 2415 return ret; 2416 } 2417 2418 /** 2419 * __mark_inode_dirty - internal function to mark an inode dirty 2420 * 2421 * @inode: inode to mark 2422 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2423 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2424 * with I_DIRTY_PAGES. 2425 * 2426 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2427 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2428 * 2429 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2430 * instead of calling this directly. 2431 * 2432 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2433 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2434 * even if they are later hashed, as they will have been marked dirty already. 2435 * 2436 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2437 * 2438 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2439 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2440 * the kernel-internal blockdev inode represents the dirtying time of the 2441 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2442 * page->mapping->host, so the page-dirtying time is recorded in the internal 2443 * blockdev inode. 2444 */ 2445 void __mark_inode_dirty(struct inode *inode, int flags) 2446 { 2447 struct super_block *sb = inode->i_sb; 2448 int dirtytime = 0; 2449 struct bdi_writeback *wb = NULL; 2450 2451 trace_writeback_mark_inode_dirty(inode, flags); 2452 2453 if (flags & I_DIRTY_INODE) { 2454 /* 2455 * Inode timestamp update will piggback on this dirtying. 2456 * We tell ->dirty_inode callback that timestamps need to 2457 * be updated by setting I_DIRTY_TIME in flags. 2458 */ 2459 if (inode->i_state & I_DIRTY_TIME) { 2460 spin_lock(&inode->i_lock); 2461 if (inode->i_state & I_DIRTY_TIME) { 2462 inode->i_state &= ~I_DIRTY_TIME; 2463 flags |= I_DIRTY_TIME; 2464 } 2465 spin_unlock(&inode->i_lock); 2466 } 2467 2468 /* 2469 * Notify the filesystem about the inode being dirtied, so that 2470 * (if needed) it can update on-disk fields and journal the 2471 * inode. This is only needed when the inode itself is being 2472 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2473 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2474 */ 2475 trace_writeback_dirty_inode_start(inode, flags); 2476 if (sb->s_op->dirty_inode) 2477 sb->s_op->dirty_inode(inode, 2478 flags & (I_DIRTY_INODE | I_DIRTY_TIME)); 2479 trace_writeback_dirty_inode(inode, flags); 2480 2481 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2482 flags &= ~I_DIRTY_TIME; 2483 } else { 2484 /* 2485 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2486 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2487 * in one call to __mark_inode_dirty().) 2488 */ 2489 dirtytime = flags & I_DIRTY_TIME; 2490 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2491 } 2492 2493 /* 2494 * Paired with smp_mb() in __writeback_single_inode() for the 2495 * following lockless i_state test. See there for details. 2496 */ 2497 smp_mb(); 2498 2499 if ((inode->i_state & flags) == flags) 2500 return; 2501 2502 spin_lock(&inode->i_lock); 2503 if ((inode->i_state & flags) != flags) { 2504 const int was_dirty = inode->i_state & I_DIRTY; 2505 2506 inode_attach_wb(inode, NULL); 2507 2508 inode->i_state |= flags; 2509 2510 /* 2511 * Grab inode's wb early because it requires dropping i_lock and we 2512 * need to make sure following checks happen atomically with dirty 2513 * list handling so that we don't move inodes under flush worker's 2514 * hands. 2515 */ 2516 if (!was_dirty) { 2517 wb = locked_inode_to_wb_and_lock_list(inode); 2518 spin_lock(&inode->i_lock); 2519 } 2520 2521 /* 2522 * If the inode is queued for writeback by flush worker, just 2523 * update its dirty state. Once the flush worker is done with 2524 * the inode it will place it on the appropriate superblock 2525 * list, based upon its state. 2526 */ 2527 if (inode->i_state & I_SYNC_QUEUED) 2528 goto out_unlock; 2529 2530 /* 2531 * Only add valid (hashed) inodes to the superblock's 2532 * dirty list. Add blockdev inodes as well. 2533 */ 2534 if (!S_ISBLK(inode->i_mode)) { 2535 if (inode_unhashed(inode)) 2536 goto out_unlock; 2537 } 2538 if (inode->i_state & I_FREEING) 2539 goto out_unlock; 2540 2541 /* 2542 * If the inode was already on b_dirty/b_io/b_more_io, don't 2543 * reposition it (that would break b_dirty time-ordering). 2544 */ 2545 if (!was_dirty) { 2546 struct list_head *dirty_list; 2547 bool wakeup_bdi = false; 2548 2549 inode->dirtied_when = jiffies; 2550 if (dirtytime) 2551 inode->dirtied_time_when = jiffies; 2552 2553 if (inode->i_state & I_DIRTY) 2554 dirty_list = &wb->b_dirty; 2555 else 2556 dirty_list = &wb->b_dirty_time; 2557 2558 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2559 dirty_list); 2560 2561 spin_unlock(&wb->list_lock); 2562 spin_unlock(&inode->i_lock); 2563 trace_writeback_dirty_inode_enqueue(inode); 2564 2565 /* 2566 * If this is the first dirty inode for this bdi, 2567 * we have to wake-up the corresponding bdi thread 2568 * to make sure background write-back happens 2569 * later. 2570 */ 2571 if (wakeup_bdi && 2572 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2573 wb_wakeup_delayed(wb); 2574 return; 2575 } 2576 } 2577 out_unlock: 2578 if (wb) 2579 spin_unlock(&wb->list_lock); 2580 spin_unlock(&inode->i_lock); 2581 } 2582 EXPORT_SYMBOL(__mark_inode_dirty); 2583 2584 /* 2585 * The @s_sync_lock is used to serialise concurrent sync operations 2586 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2587 * Concurrent callers will block on the s_sync_lock rather than doing contending 2588 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2589 * has been issued up to the time this function is enter is guaranteed to be 2590 * completed by the time we have gained the lock and waited for all IO that is 2591 * in progress regardless of the order callers are granted the lock. 2592 */ 2593 static void wait_sb_inodes(struct super_block *sb) 2594 { 2595 LIST_HEAD(sync_list); 2596 2597 /* 2598 * We need to be protected against the filesystem going from 2599 * r/o to r/w or vice versa. 2600 */ 2601 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2602 2603 mutex_lock(&sb->s_sync_lock); 2604 2605 /* 2606 * Splice the writeback list onto a temporary list to avoid waiting on 2607 * inodes that have started writeback after this point. 2608 * 2609 * Use rcu_read_lock() to keep the inodes around until we have a 2610 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2611 * the local list because inodes can be dropped from either by writeback 2612 * completion. 2613 */ 2614 rcu_read_lock(); 2615 spin_lock_irq(&sb->s_inode_wblist_lock); 2616 list_splice_init(&sb->s_inodes_wb, &sync_list); 2617 2618 /* 2619 * Data integrity sync. Must wait for all pages under writeback, because 2620 * there may have been pages dirtied before our sync call, but which had 2621 * writeout started before we write it out. In which case, the inode 2622 * may not be on the dirty list, but we still have to wait for that 2623 * writeout. 2624 */ 2625 while (!list_empty(&sync_list)) { 2626 struct inode *inode = list_first_entry(&sync_list, struct inode, 2627 i_wb_list); 2628 struct address_space *mapping = inode->i_mapping; 2629 2630 /* 2631 * Move each inode back to the wb list before we drop the lock 2632 * to preserve consistency between i_wb_list and the mapping 2633 * writeback tag. Writeback completion is responsible to remove 2634 * the inode from either list once the writeback tag is cleared. 2635 */ 2636 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2637 2638 /* 2639 * The mapping can appear untagged while still on-list since we 2640 * do not have the mapping lock. Skip it here, wb completion 2641 * will remove it. 2642 */ 2643 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2644 continue; 2645 2646 spin_unlock_irq(&sb->s_inode_wblist_lock); 2647 2648 spin_lock(&inode->i_lock); 2649 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2650 spin_unlock(&inode->i_lock); 2651 2652 spin_lock_irq(&sb->s_inode_wblist_lock); 2653 continue; 2654 } 2655 __iget(inode); 2656 spin_unlock(&inode->i_lock); 2657 rcu_read_unlock(); 2658 2659 /* 2660 * We keep the error status of individual mapping so that 2661 * applications can catch the writeback error using fsync(2). 2662 * See filemap_fdatawait_keep_errors() for details. 2663 */ 2664 filemap_fdatawait_keep_errors(mapping); 2665 2666 cond_resched(); 2667 2668 iput(inode); 2669 2670 rcu_read_lock(); 2671 spin_lock_irq(&sb->s_inode_wblist_lock); 2672 } 2673 spin_unlock_irq(&sb->s_inode_wblist_lock); 2674 rcu_read_unlock(); 2675 mutex_unlock(&sb->s_sync_lock); 2676 } 2677 2678 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2679 enum wb_reason reason, bool skip_if_busy) 2680 { 2681 struct backing_dev_info *bdi = sb->s_bdi; 2682 DEFINE_WB_COMPLETION(done, bdi); 2683 struct wb_writeback_work work = { 2684 .sb = sb, 2685 .sync_mode = WB_SYNC_NONE, 2686 .tagged_writepages = 1, 2687 .done = &done, 2688 .nr_pages = nr, 2689 .reason = reason, 2690 }; 2691 2692 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2693 return; 2694 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2695 2696 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2697 wb_wait_for_completion(&done); 2698 } 2699 2700 /** 2701 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2702 * @sb: the superblock 2703 * @nr: the number of pages to write 2704 * @reason: reason why some writeback work initiated 2705 * 2706 * Start writeback on some inodes on this super_block. No guarantees are made 2707 * on how many (if any) will be written, and this function does not wait 2708 * for IO completion of submitted IO. 2709 */ 2710 void writeback_inodes_sb_nr(struct super_block *sb, 2711 unsigned long nr, 2712 enum wb_reason reason) 2713 { 2714 __writeback_inodes_sb_nr(sb, nr, reason, false); 2715 } 2716 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2717 2718 /** 2719 * writeback_inodes_sb - writeback dirty inodes from given super_block 2720 * @sb: the superblock 2721 * @reason: reason why some writeback work was initiated 2722 * 2723 * Start writeback on some inodes on this super_block. No guarantees are made 2724 * on how many (if any) will be written, and this function does not wait 2725 * for IO completion of submitted IO. 2726 */ 2727 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2728 { 2729 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2730 } 2731 EXPORT_SYMBOL(writeback_inodes_sb); 2732 2733 /** 2734 * try_to_writeback_inodes_sb - try to start writeback if none underway 2735 * @sb: the superblock 2736 * @reason: reason why some writeback work was initiated 2737 * 2738 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2739 */ 2740 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2741 { 2742 if (!down_read_trylock(&sb->s_umount)) 2743 return; 2744 2745 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2746 up_read(&sb->s_umount); 2747 } 2748 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2749 2750 /** 2751 * sync_inodes_sb - sync sb inode pages 2752 * @sb: the superblock 2753 * 2754 * This function writes and waits on any dirty inode belonging to this 2755 * super_block. 2756 */ 2757 void sync_inodes_sb(struct super_block *sb) 2758 { 2759 struct backing_dev_info *bdi = sb->s_bdi; 2760 DEFINE_WB_COMPLETION(done, bdi); 2761 struct wb_writeback_work work = { 2762 .sb = sb, 2763 .sync_mode = WB_SYNC_ALL, 2764 .nr_pages = LONG_MAX, 2765 .range_cyclic = 0, 2766 .done = &done, 2767 .reason = WB_REASON_SYNC, 2768 .for_sync = 1, 2769 }; 2770 2771 /* 2772 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2773 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2774 * bdi_has_dirty() need to be written out too. 2775 */ 2776 if (bdi == &noop_backing_dev_info) 2777 return; 2778 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2779 2780 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2781 bdi_down_write_wb_switch_rwsem(bdi); 2782 bdi_split_work_to_wbs(bdi, &work, false); 2783 wb_wait_for_completion(&done); 2784 bdi_up_write_wb_switch_rwsem(bdi); 2785 2786 wait_sb_inodes(sb); 2787 } 2788 EXPORT_SYMBOL(sync_inodes_sb); 2789 2790 /** 2791 * write_inode_now - write an inode to disk 2792 * @inode: inode to write to disk 2793 * @sync: whether the write should be synchronous or not 2794 * 2795 * This function commits an inode to disk immediately if it is dirty. This is 2796 * primarily needed by knfsd. 2797 * 2798 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2799 */ 2800 int write_inode_now(struct inode *inode, int sync) 2801 { 2802 struct writeback_control wbc = { 2803 .nr_to_write = LONG_MAX, 2804 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2805 .range_start = 0, 2806 .range_end = LLONG_MAX, 2807 }; 2808 2809 if (!mapping_can_writeback(inode->i_mapping)) 2810 wbc.nr_to_write = 0; 2811 2812 might_sleep(); 2813 return writeback_single_inode(inode, &wbc); 2814 } 2815 EXPORT_SYMBOL(write_inode_now); 2816 2817 /** 2818 * sync_inode_metadata - write an inode to disk 2819 * @inode: the inode to sync 2820 * @wait: wait for I/O to complete. 2821 * 2822 * Write an inode to disk and adjust its dirty state after completion. 2823 * 2824 * Note: only writes the actual inode, no associated data or other metadata. 2825 */ 2826 int sync_inode_metadata(struct inode *inode, int wait) 2827 { 2828 struct writeback_control wbc = { 2829 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2830 .nr_to_write = 0, /* metadata-only */ 2831 }; 2832 2833 return writeback_single_inode(inode, &wbc); 2834 } 2835 EXPORT_SYMBOL(sync_inode_metadata); 2836