1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/freezer.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * 4MB minimal write chunk size 34 */ 35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_work { 41 long nr_pages; 42 struct super_block *sb; 43 unsigned long *older_than_this; 44 enum writeback_sync_modes sync_mode; 45 unsigned int tagged_writepages:1; 46 unsigned int for_kupdate:1; 47 unsigned int range_cyclic:1; 48 unsigned int for_background:1; 49 enum wb_reason reason; /* why was writeback initiated? */ 50 51 struct list_head list; /* pending work list */ 52 struct completion *done; /* set if the caller waits */ 53 }; 54 55 /* 56 * We don't actually have pdflush, but this one is exported though /proc... 57 */ 58 int nr_pdflush_threads; 59 60 /** 61 * writeback_in_progress - determine whether there is writeback in progress 62 * @bdi: the device's backing_dev_info structure. 63 * 64 * Determine whether there is writeback waiting to be handled against a 65 * backing device. 66 */ 67 int writeback_in_progress(struct backing_dev_info *bdi) 68 { 69 return test_bit(BDI_writeback_running, &bdi->state); 70 } 71 72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 73 { 74 struct super_block *sb = inode->i_sb; 75 76 if (strcmp(sb->s_type->name, "bdev") == 0) 77 return inode->i_mapping->backing_dev_info; 78 79 return sb->s_bdi; 80 } 81 82 static inline struct inode *wb_inode(struct list_head *head) 83 { 84 return list_entry(head, struct inode, i_wb_list); 85 } 86 87 /* 88 * Include the creation of the trace points after defining the 89 * wb_writeback_work structure and inline functions so that the definition 90 * remains local to this file. 91 */ 92 #define CREATE_TRACE_POINTS 93 #include <trace/events/writeback.h> 94 95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ 96 static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 97 { 98 if (bdi->wb.task) { 99 wake_up_process(bdi->wb.task); 100 } else { 101 /* 102 * The bdi thread isn't there, wake up the forker thread which 103 * will create and run it. 104 */ 105 wake_up_process(default_backing_dev_info.wb.task); 106 } 107 } 108 109 static void bdi_queue_work(struct backing_dev_info *bdi, 110 struct wb_writeback_work *work) 111 { 112 trace_writeback_queue(bdi, work); 113 114 spin_lock_bh(&bdi->wb_lock); 115 list_add_tail(&work->list, &bdi->work_list); 116 if (!bdi->wb.task) 117 trace_writeback_nothread(bdi, work); 118 bdi_wakeup_flusher(bdi); 119 spin_unlock_bh(&bdi->wb_lock); 120 } 121 122 static void 123 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 124 bool range_cyclic, enum wb_reason reason) 125 { 126 struct wb_writeback_work *work; 127 128 /* 129 * This is WB_SYNC_NONE writeback, so if allocation fails just 130 * wakeup the thread for old dirty data writeback 131 */ 132 work = kzalloc(sizeof(*work), GFP_ATOMIC); 133 if (!work) { 134 if (bdi->wb.task) { 135 trace_writeback_nowork(bdi); 136 wake_up_process(bdi->wb.task); 137 } 138 return; 139 } 140 141 work->sync_mode = WB_SYNC_NONE; 142 work->nr_pages = nr_pages; 143 work->range_cyclic = range_cyclic; 144 work->reason = reason; 145 146 bdi_queue_work(bdi, work); 147 } 148 149 /** 150 * bdi_start_writeback - start writeback 151 * @bdi: the backing device to write from 152 * @nr_pages: the number of pages to write 153 * @reason: reason why some writeback work was initiated 154 * 155 * Description: 156 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 157 * started when this function returns, we make no guarantees on 158 * completion. Caller need not hold sb s_umount semaphore. 159 * 160 */ 161 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 162 enum wb_reason reason) 163 { 164 __bdi_start_writeback(bdi, nr_pages, true, reason); 165 } 166 167 /** 168 * bdi_start_background_writeback - start background writeback 169 * @bdi: the backing device to write from 170 * 171 * Description: 172 * This makes sure WB_SYNC_NONE background writeback happens. When 173 * this function returns, it is only guaranteed that for given BDI 174 * some IO is happening if we are over background dirty threshold. 175 * Caller need not hold sb s_umount semaphore. 176 */ 177 void bdi_start_background_writeback(struct backing_dev_info *bdi) 178 { 179 /* 180 * We just wake up the flusher thread. It will perform background 181 * writeback as soon as there is no other work to do. 182 */ 183 trace_writeback_wake_background(bdi); 184 spin_lock_bh(&bdi->wb_lock); 185 bdi_wakeup_flusher(bdi); 186 spin_unlock_bh(&bdi->wb_lock); 187 } 188 189 /* 190 * Remove the inode from the writeback list it is on. 191 */ 192 void inode_wb_list_del(struct inode *inode) 193 { 194 struct backing_dev_info *bdi = inode_to_bdi(inode); 195 196 spin_lock(&bdi->wb.list_lock); 197 list_del_init(&inode->i_wb_list); 198 spin_unlock(&bdi->wb.list_lock); 199 } 200 201 /* 202 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 203 * furthest end of its superblock's dirty-inode list. 204 * 205 * Before stamping the inode's ->dirtied_when, we check to see whether it is 206 * already the most-recently-dirtied inode on the b_dirty list. If that is 207 * the case then the inode must have been redirtied while it was being written 208 * out and we don't reset its dirtied_when. 209 */ 210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 211 { 212 assert_spin_locked(&wb->list_lock); 213 if (!list_empty(&wb->b_dirty)) { 214 struct inode *tail; 215 216 tail = wb_inode(wb->b_dirty.next); 217 if (time_before(inode->dirtied_when, tail->dirtied_when)) 218 inode->dirtied_when = jiffies; 219 } 220 list_move(&inode->i_wb_list, &wb->b_dirty); 221 } 222 223 /* 224 * requeue inode for re-scanning after bdi->b_io list is exhausted. 225 */ 226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 227 { 228 assert_spin_locked(&wb->list_lock); 229 list_move(&inode->i_wb_list, &wb->b_more_io); 230 } 231 232 static void inode_sync_complete(struct inode *inode) 233 { 234 /* 235 * Prevent speculative execution through 236 * spin_unlock(&wb->list_lock); 237 */ 238 239 smp_mb(); 240 wake_up_bit(&inode->i_state, __I_SYNC); 241 } 242 243 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 244 { 245 bool ret = time_after(inode->dirtied_when, t); 246 #ifndef CONFIG_64BIT 247 /* 248 * For inodes being constantly redirtied, dirtied_when can get stuck. 249 * It _appears_ to be in the future, but is actually in distant past. 250 * This test is necessary to prevent such wrapped-around relative times 251 * from permanently stopping the whole bdi writeback. 252 */ 253 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 254 #endif 255 return ret; 256 } 257 258 /* 259 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 260 */ 261 static int move_expired_inodes(struct list_head *delaying_queue, 262 struct list_head *dispatch_queue, 263 struct wb_writeback_work *work) 264 { 265 LIST_HEAD(tmp); 266 struct list_head *pos, *node; 267 struct super_block *sb = NULL; 268 struct inode *inode; 269 int do_sb_sort = 0; 270 int moved = 0; 271 272 while (!list_empty(delaying_queue)) { 273 inode = wb_inode(delaying_queue->prev); 274 if (work->older_than_this && 275 inode_dirtied_after(inode, *work->older_than_this)) 276 break; 277 if (sb && sb != inode->i_sb) 278 do_sb_sort = 1; 279 sb = inode->i_sb; 280 list_move(&inode->i_wb_list, &tmp); 281 moved++; 282 } 283 284 /* just one sb in list, splice to dispatch_queue and we're done */ 285 if (!do_sb_sort) { 286 list_splice(&tmp, dispatch_queue); 287 goto out; 288 } 289 290 /* Move inodes from one superblock together */ 291 while (!list_empty(&tmp)) { 292 sb = wb_inode(tmp.prev)->i_sb; 293 list_for_each_prev_safe(pos, node, &tmp) { 294 inode = wb_inode(pos); 295 if (inode->i_sb == sb) 296 list_move(&inode->i_wb_list, dispatch_queue); 297 } 298 } 299 out: 300 return moved; 301 } 302 303 /* 304 * Queue all expired dirty inodes for io, eldest first. 305 * Before 306 * newly dirtied b_dirty b_io b_more_io 307 * =============> gf edc BA 308 * After 309 * newly dirtied b_dirty b_io b_more_io 310 * =============> g fBAedc 311 * | 312 * +--> dequeue for IO 313 */ 314 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 315 { 316 int moved; 317 assert_spin_locked(&wb->list_lock); 318 list_splice_init(&wb->b_more_io, &wb->b_io); 319 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 320 trace_writeback_queue_io(wb, work, moved); 321 } 322 323 static int write_inode(struct inode *inode, struct writeback_control *wbc) 324 { 325 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 326 return inode->i_sb->s_op->write_inode(inode, wbc); 327 return 0; 328 } 329 330 /* 331 * Wait for writeback on an inode to complete. 332 */ 333 static void inode_wait_for_writeback(struct inode *inode, 334 struct bdi_writeback *wb) 335 { 336 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 337 wait_queue_head_t *wqh; 338 339 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 340 while (inode->i_state & I_SYNC) { 341 spin_unlock(&inode->i_lock); 342 spin_unlock(&wb->list_lock); 343 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 344 spin_lock(&wb->list_lock); 345 spin_lock(&inode->i_lock); 346 } 347 } 348 349 /* 350 * Write out an inode's dirty pages. Called under wb->list_lock and 351 * inode->i_lock. Either the caller has an active reference on the inode or 352 * the inode has I_WILL_FREE set. 353 * 354 * If `wait' is set, wait on the writeout. 355 * 356 * The whole writeout design is quite complex and fragile. We want to avoid 357 * starvation of particular inodes when others are being redirtied, prevent 358 * livelocks, etc. 359 */ 360 static int 361 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 362 struct writeback_control *wbc) 363 { 364 struct address_space *mapping = inode->i_mapping; 365 long nr_to_write = wbc->nr_to_write; 366 unsigned dirty; 367 int ret; 368 369 assert_spin_locked(&wb->list_lock); 370 assert_spin_locked(&inode->i_lock); 371 372 if (!atomic_read(&inode->i_count)) 373 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 374 else 375 WARN_ON(inode->i_state & I_WILL_FREE); 376 377 if (inode->i_state & I_SYNC) { 378 /* 379 * If this inode is locked for writeback and we are not doing 380 * writeback-for-data-integrity, move it to b_more_io so that 381 * writeback can proceed with the other inodes on s_io. 382 * 383 * We'll have another go at writing back this inode when we 384 * completed a full scan of b_io. 385 */ 386 if (wbc->sync_mode != WB_SYNC_ALL) { 387 requeue_io(inode, wb); 388 trace_writeback_single_inode_requeue(inode, wbc, 389 nr_to_write); 390 return 0; 391 } 392 393 /* 394 * It's a data-integrity sync. We must wait. 395 */ 396 inode_wait_for_writeback(inode, wb); 397 } 398 399 BUG_ON(inode->i_state & I_SYNC); 400 401 /* Set I_SYNC, reset I_DIRTY_PAGES */ 402 inode->i_state |= I_SYNC; 403 inode->i_state &= ~I_DIRTY_PAGES; 404 spin_unlock(&inode->i_lock); 405 spin_unlock(&wb->list_lock); 406 407 ret = do_writepages(mapping, wbc); 408 409 /* 410 * Make sure to wait on the data before writing out the metadata. 411 * This is important for filesystems that modify metadata on data 412 * I/O completion. 413 */ 414 if (wbc->sync_mode == WB_SYNC_ALL) { 415 int err = filemap_fdatawait(mapping); 416 if (ret == 0) 417 ret = err; 418 } 419 420 /* 421 * Some filesystems may redirty the inode during the writeback 422 * due to delalloc, clear dirty metadata flags right before 423 * write_inode() 424 */ 425 spin_lock(&inode->i_lock); 426 dirty = inode->i_state & I_DIRTY; 427 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 428 spin_unlock(&inode->i_lock); 429 /* Don't write the inode if only I_DIRTY_PAGES was set */ 430 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 431 int err = write_inode(inode, wbc); 432 if (ret == 0) 433 ret = err; 434 } 435 436 spin_lock(&wb->list_lock); 437 spin_lock(&inode->i_lock); 438 inode->i_state &= ~I_SYNC; 439 if (!(inode->i_state & I_FREEING)) { 440 /* 441 * Sync livelock prevention. Each inode is tagged and synced in 442 * one shot. If still dirty, it will be redirty_tail()'ed below. 443 * Update the dirty time to prevent enqueue and sync it again. 444 */ 445 if ((inode->i_state & I_DIRTY) && 446 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 447 inode->dirtied_when = jiffies; 448 449 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 450 /* 451 * We didn't write back all the pages. nfs_writepages() 452 * sometimes bales out without doing anything. 453 */ 454 inode->i_state |= I_DIRTY_PAGES; 455 if (wbc->nr_to_write <= 0) { 456 /* 457 * slice used up: queue for next turn 458 */ 459 requeue_io(inode, wb); 460 } else { 461 /* 462 * Writeback blocked by something other than 463 * congestion. Delay the inode for some time to 464 * avoid spinning on the CPU (100% iowait) 465 * retrying writeback of the dirty page/inode 466 * that cannot be performed immediately. 467 */ 468 redirty_tail(inode, wb); 469 } 470 } else if (inode->i_state & I_DIRTY) { 471 /* 472 * Filesystems can dirty the inode during writeback 473 * operations, such as delayed allocation during 474 * submission or metadata updates after data IO 475 * completion. 476 */ 477 redirty_tail(inode, wb); 478 } else { 479 /* 480 * The inode is clean. At this point we either have 481 * a reference to the inode or it's on it's way out. 482 * No need to add it back to the LRU. 483 */ 484 list_del_init(&inode->i_wb_list); 485 } 486 } 487 inode_sync_complete(inode); 488 trace_writeback_single_inode(inode, wbc, nr_to_write); 489 return ret; 490 } 491 492 static long writeback_chunk_size(struct backing_dev_info *bdi, 493 struct wb_writeback_work *work) 494 { 495 long pages; 496 497 /* 498 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 499 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 500 * here avoids calling into writeback_inodes_wb() more than once. 501 * 502 * The intended call sequence for WB_SYNC_ALL writeback is: 503 * 504 * wb_writeback() 505 * writeback_sb_inodes() <== called only once 506 * write_cache_pages() <== called once for each inode 507 * (quickly) tag currently dirty pages 508 * (maybe slowly) sync all tagged pages 509 */ 510 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 511 pages = LONG_MAX; 512 else { 513 pages = min(bdi->avg_write_bandwidth / 2, 514 global_dirty_limit / DIRTY_SCOPE); 515 pages = min(pages, work->nr_pages); 516 pages = round_down(pages + MIN_WRITEBACK_PAGES, 517 MIN_WRITEBACK_PAGES); 518 } 519 520 return pages; 521 } 522 523 /* 524 * Write a portion of b_io inodes which belong to @sb. 525 * 526 * If @only_this_sb is true, then find and write all such 527 * inodes. Otherwise write only ones which go sequentially 528 * in reverse order. 529 * 530 * Return the number of pages and/or inodes written. 531 */ 532 static long writeback_sb_inodes(struct super_block *sb, 533 struct bdi_writeback *wb, 534 struct wb_writeback_work *work) 535 { 536 struct writeback_control wbc = { 537 .sync_mode = work->sync_mode, 538 .tagged_writepages = work->tagged_writepages, 539 .for_kupdate = work->for_kupdate, 540 .for_background = work->for_background, 541 .range_cyclic = work->range_cyclic, 542 .range_start = 0, 543 .range_end = LLONG_MAX, 544 }; 545 unsigned long start_time = jiffies; 546 long write_chunk; 547 long wrote = 0; /* count both pages and inodes */ 548 549 while (!list_empty(&wb->b_io)) { 550 struct inode *inode = wb_inode(wb->b_io.prev); 551 552 if (inode->i_sb != sb) { 553 if (work->sb) { 554 /* 555 * We only want to write back data for this 556 * superblock, move all inodes not belonging 557 * to it back onto the dirty list. 558 */ 559 redirty_tail(inode, wb); 560 continue; 561 } 562 563 /* 564 * The inode belongs to a different superblock. 565 * Bounce back to the caller to unpin this and 566 * pin the next superblock. 567 */ 568 break; 569 } 570 571 /* 572 * Don't bother with new inodes or inodes beeing freed, first 573 * kind does not need peridic writeout yet, and for the latter 574 * kind writeout is handled by the freer. 575 */ 576 spin_lock(&inode->i_lock); 577 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 578 spin_unlock(&inode->i_lock); 579 redirty_tail(inode, wb); 580 continue; 581 } 582 __iget(inode); 583 write_chunk = writeback_chunk_size(wb->bdi, work); 584 wbc.nr_to_write = write_chunk; 585 wbc.pages_skipped = 0; 586 587 writeback_single_inode(inode, wb, &wbc); 588 589 work->nr_pages -= write_chunk - wbc.nr_to_write; 590 wrote += write_chunk - wbc.nr_to_write; 591 if (!(inode->i_state & I_DIRTY)) 592 wrote++; 593 if (wbc.pages_skipped) { 594 /* 595 * writeback is not making progress due to locked 596 * buffers. Skip this inode for now. 597 */ 598 redirty_tail(inode, wb); 599 } 600 spin_unlock(&inode->i_lock); 601 spin_unlock(&wb->list_lock); 602 iput(inode); 603 cond_resched(); 604 spin_lock(&wb->list_lock); 605 /* 606 * bail out to wb_writeback() often enough to check 607 * background threshold and other termination conditions. 608 */ 609 if (wrote) { 610 if (time_is_before_jiffies(start_time + HZ / 10UL)) 611 break; 612 if (work->nr_pages <= 0) 613 break; 614 } 615 } 616 return wrote; 617 } 618 619 static long __writeback_inodes_wb(struct bdi_writeback *wb, 620 struct wb_writeback_work *work) 621 { 622 unsigned long start_time = jiffies; 623 long wrote = 0; 624 625 while (!list_empty(&wb->b_io)) { 626 struct inode *inode = wb_inode(wb->b_io.prev); 627 struct super_block *sb = inode->i_sb; 628 629 if (!grab_super_passive(sb)) { 630 /* 631 * grab_super_passive() may fail consistently due to 632 * s_umount being grabbed by someone else. Don't use 633 * requeue_io() to avoid busy retrying the inode/sb. 634 */ 635 redirty_tail(inode, wb); 636 continue; 637 } 638 wrote += writeback_sb_inodes(sb, wb, work); 639 drop_super(sb); 640 641 /* refer to the same tests at the end of writeback_sb_inodes */ 642 if (wrote) { 643 if (time_is_before_jiffies(start_time + HZ / 10UL)) 644 break; 645 if (work->nr_pages <= 0) 646 break; 647 } 648 } 649 /* Leave any unwritten inodes on b_io */ 650 return wrote; 651 } 652 653 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 654 enum wb_reason reason) 655 { 656 struct wb_writeback_work work = { 657 .nr_pages = nr_pages, 658 .sync_mode = WB_SYNC_NONE, 659 .range_cyclic = 1, 660 .reason = reason, 661 }; 662 663 spin_lock(&wb->list_lock); 664 if (list_empty(&wb->b_io)) 665 queue_io(wb, &work); 666 __writeback_inodes_wb(wb, &work); 667 spin_unlock(&wb->list_lock); 668 669 return nr_pages - work.nr_pages; 670 } 671 672 static bool over_bground_thresh(struct backing_dev_info *bdi) 673 { 674 unsigned long background_thresh, dirty_thresh; 675 676 global_dirty_limits(&background_thresh, &dirty_thresh); 677 678 if (global_page_state(NR_FILE_DIRTY) + 679 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 680 return true; 681 682 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 683 bdi_dirty_limit(bdi, background_thresh)) 684 return true; 685 686 return false; 687 } 688 689 /* 690 * Called under wb->list_lock. If there are multiple wb per bdi, 691 * only the flusher working on the first wb should do it. 692 */ 693 static void wb_update_bandwidth(struct bdi_writeback *wb, 694 unsigned long start_time) 695 { 696 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 697 } 698 699 /* 700 * Explicit flushing or periodic writeback of "old" data. 701 * 702 * Define "old": the first time one of an inode's pages is dirtied, we mark the 703 * dirtying-time in the inode's address_space. So this periodic writeback code 704 * just walks the superblock inode list, writing back any inodes which are 705 * older than a specific point in time. 706 * 707 * Try to run once per dirty_writeback_interval. But if a writeback event 708 * takes longer than a dirty_writeback_interval interval, then leave a 709 * one-second gap. 710 * 711 * older_than_this takes precedence over nr_to_write. So we'll only write back 712 * all dirty pages if they are all attached to "old" mappings. 713 */ 714 static long wb_writeback(struct bdi_writeback *wb, 715 struct wb_writeback_work *work) 716 { 717 unsigned long wb_start = jiffies; 718 long nr_pages = work->nr_pages; 719 unsigned long oldest_jif; 720 struct inode *inode; 721 long progress; 722 723 oldest_jif = jiffies; 724 work->older_than_this = &oldest_jif; 725 726 spin_lock(&wb->list_lock); 727 for (;;) { 728 /* 729 * Stop writeback when nr_pages has been consumed 730 */ 731 if (work->nr_pages <= 0) 732 break; 733 734 /* 735 * Background writeout and kupdate-style writeback may 736 * run forever. Stop them if there is other work to do 737 * so that e.g. sync can proceed. They'll be restarted 738 * after the other works are all done. 739 */ 740 if ((work->for_background || work->for_kupdate) && 741 !list_empty(&wb->bdi->work_list)) 742 break; 743 744 /* 745 * For background writeout, stop when we are below the 746 * background dirty threshold 747 */ 748 if (work->for_background && !over_bground_thresh(wb->bdi)) 749 break; 750 751 /* 752 * Kupdate and background works are special and we want to 753 * include all inodes that need writing. Livelock avoidance is 754 * handled by these works yielding to any other work so we are 755 * safe. 756 */ 757 if (work->for_kupdate) { 758 oldest_jif = jiffies - 759 msecs_to_jiffies(dirty_expire_interval * 10); 760 } else if (work->for_background) 761 oldest_jif = jiffies; 762 763 trace_writeback_start(wb->bdi, work); 764 if (list_empty(&wb->b_io)) 765 queue_io(wb, work); 766 if (work->sb) 767 progress = writeback_sb_inodes(work->sb, wb, work); 768 else 769 progress = __writeback_inodes_wb(wb, work); 770 trace_writeback_written(wb->bdi, work); 771 772 wb_update_bandwidth(wb, wb_start); 773 774 /* 775 * Did we write something? Try for more 776 * 777 * Dirty inodes are moved to b_io for writeback in batches. 778 * The completion of the current batch does not necessarily 779 * mean the overall work is done. So we keep looping as long 780 * as made some progress on cleaning pages or inodes. 781 */ 782 if (progress) 783 continue; 784 /* 785 * No more inodes for IO, bail 786 */ 787 if (list_empty(&wb->b_more_io)) 788 break; 789 /* 790 * Nothing written. Wait for some inode to 791 * become available for writeback. Otherwise 792 * we'll just busyloop. 793 */ 794 if (!list_empty(&wb->b_more_io)) { 795 trace_writeback_wait(wb->bdi, work); 796 inode = wb_inode(wb->b_more_io.prev); 797 spin_lock(&inode->i_lock); 798 inode_wait_for_writeback(inode, wb); 799 spin_unlock(&inode->i_lock); 800 } 801 } 802 spin_unlock(&wb->list_lock); 803 804 return nr_pages - work->nr_pages; 805 } 806 807 /* 808 * Return the next wb_writeback_work struct that hasn't been processed yet. 809 */ 810 static struct wb_writeback_work * 811 get_next_work_item(struct backing_dev_info *bdi) 812 { 813 struct wb_writeback_work *work = NULL; 814 815 spin_lock_bh(&bdi->wb_lock); 816 if (!list_empty(&bdi->work_list)) { 817 work = list_entry(bdi->work_list.next, 818 struct wb_writeback_work, list); 819 list_del_init(&work->list); 820 } 821 spin_unlock_bh(&bdi->wb_lock); 822 return work; 823 } 824 825 /* 826 * Add in the number of potentially dirty inodes, because each inode 827 * write can dirty pagecache in the underlying blockdev. 828 */ 829 static unsigned long get_nr_dirty_pages(void) 830 { 831 return global_page_state(NR_FILE_DIRTY) + 832 global_page_state(NR_UNSTABLE_NFS) + 833 get_nr_dirty_inodes(); 834 } 835 836 static long wb_check_background_flush(struct bdi_writeback *wb) 837 { 838 if (over_bground_thresh(wb->bdi)) { 839 840 struct wb_writeback_work work = { 841 .nr_pages = LONG_MAX, 842 .sync_mode = WB_SYNC_NONE, 843 .for_background = 1, 844 .range_cyclic = 1, 845 .reason = WB_REASON_BACKGROUND, 846 }; 847 848 return wb_writeback(wb, &work); 849 } 850 851 return 0; 852 } 853 854 static long wb_check_old_data_flush(struct bdi_writeback *wb) 855 { 856 unsigned long expired; 857 long nr_pages; 858 859 /* 860 * When set to zero, disable periodic writeback 861 */ 862 if (!dirty_writeback_interval) 863 return 0; 864 865 expired = wb->last_old_flush + 866 msecs_to_jiffies(dirty_writeback_interval * 10); 867 if (time_before(jiffies, expired)) 868 return 0; 869 870 wb->last_old_flush = jiffies; 871 nr_pages = get_nr_dirty_pages(); 872 873 if (nr_pages) { 874 struct wb_writeback_work work = { 875 .nr_pages = nr_pages, 876 .sync_mode = WB_SYNC_NONE, 877 .for_kupdate = 1, 878 .range_cyclic = 1, 879 .reason = WB_REASON_PERIODIC, 880 }; 881 882 return wb_writeback(wb, &work); 883 } 884 885 return 0; 886 } 887 888 /* 889 * Retrieve work items and do the writeback they describe 890 */ 891 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 892 { 893 struct backing_dev_info *bdi = wb->bdi; 894 struct wb_writeback_work *work; 895 long wrote = 0; 896 897 set_bit(BDI_writeback_running, &wb->bdi->state); 898 while ((work = get_next_work_item(bdi)) != NULL) { 899 /* 900 * Override sync mode, in case we must wait for completion 901 * because this thread is exiting now. 902 */ 903 if (force_wait) 904 work->sync_mode = WB_SYNC_ALL; 905 906 trace_writeback_exec(bdi, work); 907 908 wrote += wb_writeback(wb, work); 909 910 /* 911 * Notify the caller of completion if this is a synchronous 912 * work item, otherwise just free it. 913 */ 914 if (work->done) 915 complete(work->done); 916 else 917 kfree(work); 918 } 919 920 /* 921 * Check for periodic writeback, kupdated() style 922 */ 923 wrote += wb_check_old_data_flush(wb); 924 wrote += wb_check_background_flush(wb); 925 clear_bit(BDI_writeback_running, &wb->bdi->state); 926 927 return wrote; 928 } 929 930 /* 931 * Handle writeback of dirty data for the device backed by this bdi. Also 932 * wakes up periodically and does kupdated style flushing. 933 */ 934 int bdi_writeback_thread(void *data) 935 { 936 struct bdi_writeback *wb = data; 937 struct backing_dev_info *bdi = wb->bdi; 938 long pages_written; 939 940 current->flags |= PF_SWAPWRITE; 941 set_freezable(); 942 wb->last_active = jiffies; 943 944 /* 945 * Our parent may run at a different priority, just set us to normal 946 */ 947 set_user_nice(current, 0); 948 949 trace_writeback_thread_start(bdi); 950 951 while (!kthread_freezable_should_stop(NULL)) { 952 /* 953 * Remove own delayed wake-up timer, since we are already awake 954 * and we'll take care of the preriodic write-back. 955 */ 956 del_timer(&wb->wakeup_timer); 957 958 pages_written = wb_do_writeback(wb, 0); 959 960 trace_writeback_pages_written(pages_written); 961 962 if (pages_written) 963 wb->last_active = jiffies; 964 965 set_current_state(TASK_INTERRUPTIBLE); 966 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 967 __set_current_state(TASK_RUNNING); 968 continue; 969 } 970 971 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 972 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 973 else { 974 /* 975 * We have nothing to do, so can go sleep without any 976 * timeout and save power. When a work is queued or 977 * something is made dirty - we will be woken up. 978 */ 979 schedule(); 980 } 981 } 982 983 /* Flush any work that raced with us exiting */ 984 if (!list_empty(&bdi->work_list)) 985 wb_do_writeback(wb, 1); 986 987 trace_writeback_thread_stop(bdi); 988 return 0; 989 } 990 991 992 /* 993 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 994 * the whole world. 995 */ 996 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 997 { 998 struct backing_dev_info *bdi; 999 1000 if (!nr_pages) { 1001 nr_pages = global_page_state(NR_FILE_DIRTY) + 1002 global_page_state(NR_UNSTABLE_NFS); 1003 } 1004 1005 rcu_read_lock(); 1006 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1007 if (!bdi_has_dirty_io(bdi)) 1008 continue; 1009 __bdi_start_writeback(bdi, nr_pages, false, reason); 1010 } 1011 rcu_read_unlock(); 1012 } 1013 1014 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1015 { 1016 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1017 struct dentry *dentry; 1018 const char *name = "?"; 1019 1020 dentry = d_find_alias(inode); 1021 if (dentry) { 1022 spin_lock(&dentry->d_lock); 1023 name = (const char *) dentry->d_name.name; 1024 } 1025 printk(KERN_DEBUG 1026 "%s(%d): dirtied inode %lu (%s) on %s\n", 1027 current->comm, task_pid_nr(current), inode->i_ino, 1028 name, inode->i_sb->s_id); 1029 if (dentry) { 1030 spin_unlock(&dentry->d_lock); 1031 dput(dentry); 1032 } 1033 } 1034 } 1035 1036 /** 1037 * __mark_inode_dirty - internal function 1038 * @inode: inode to mark 1039 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1040 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1041 * mark_inode_dirty_sync. 1042 * 1043 * Put the inode on the super block's dirty list. 1044 * 1045 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1046 * dirty list only if it is hashed or if it refers to a blockdev. 1047 * If it was not hashed, it will never be added to the dirty list 1048 * even if it is later hashed, as it will have been marked dirty already. 1049 * 1050 * In short, make sure you hash any inodes _before_ you start marking 1051 * them dirty. 1052 * 1053 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1054 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1055 * the kernel-internal blockdev inode represents the dirtying time of the 1056 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1057 * page->mapping->host, so the page-dirtying time is recorded in the internal 1058 * blockdev inode. 1059 */ 1060 void __mark_inode_dirty(struct inode *inode, int flags) 1061 { 1062 struct super_block *sb = inode->i_sb; 1063 struct backing_dev_info *bdi = NULL; 1064 1065 /* 1066 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1067 * dirty the inode itself 1068 */ 1069 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1070 if (sb->s_op->dirty_inode) 1071 sb->s_op->dirty_inode(inode, flags); 1072 } 1073 1074 /* 1075 * make sure that changes are seen by all cpus before we test i_state 1076 * -- mikulas 1077 */ 1078 smp_mb(); 1079 1080 /* avoid the locking if we can */ 1081 if ((inode->i_state & flags) == flags) 1082 return; 1083 1084 if (unlikely(block_dump)) 1085 block_dump___mark_inode_dirty(inode); 1086 1087 spin_lock(&inode->i_lock); 1088 if ((inode->i_state & flags) != flags) { 1089 const int was_dirty = inode->i_state & I_DIRTY; 1090 1091 inode->i_state |= flags; 1092 1093 /* 1094 * If the inode is being synced, just update its dirty state. 1095 * The unlocker will place the inode on the appropriate 1096 * superblock list, based upon its state. 1097 */ 1098 if (inode->i_state & I_SYNC) 1099 goto out_unlock_inode; 1100 1101 /* 1102 * Only add valid (hashed) inodes to the superblock's 1103 * dirty list. Add blockdev inodes as well. 1104 */ 1105 if (!S_ISBLK(inode->i_mode)) { 1106 if (inode_unhashed(inode)) 1107 goto out_unlock_inode; 1108 } 1109 if (inode->i_state & I_FREEING) 1110 goto out_unlock_inode; 1111 1112 /* 1113 * If the inode was already on b_dirty/b_io/b_more_io, don't 1114 * reposition it (that would break b_dirty time-ordering). 1115 */ 1116 if (!was_dirty) { 1117 bool wakeup_bdi = false; 1118 bdi = inode_to_bdi(inode); 1119 1120 if (bdi_cap_writeback_dirty(bdi)) { 1121 WARN(!test_bit(BDI_registered, &bdi->state), 1122 "bdi-%s not registered\n", bdi->name); 1123 1124 /* 1125 * If this is the first dirty inode for this 1126 * bdi, we have to wake-up the corresponding 1127 * bdi thread to make sure background 1128 * write-back happens later. 1129 */ 1130 if (!wb_has_dirty_io(&bdi->wb)) 1131 wakeup_bdi = true; 1132 } 1133 1134 spin_unlock(&inode->i_lock); 1135 spin_lock(&bdi->wb.list_lock); 1136 inode->dirtied_when = jiffies; 1137 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1138 spin_unlock(&bdi->wb.list_lock); 1139 1140 if (wakeup_bdi) 1141 bdi_wakeup_thread_delayed(bdi); 1142 return; 1143 } 1144 } 1145 out_unlock_inode: 1146 spin_unlock(&inode->i_lock); 1147 1148 } 1149 EXPORT_SYMBOL(__mark_inode_dirty); 1150 1151 /* 1152 * Write out a superblock's list of dirty inodes. A wait will be performed 1153 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1154 * 1155 * If older_than_this is non-NULL, then only write out inodes which 1156 * had their first dirtying at a time earlier than *older_than_this. 1157 * 1158 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1159 * This function assumes that the blockdev superblock's inodes are backed by 1160 * a variety of queues, so all inodes are searched. For other superblocks, 1161 * assume that all inodes are backed by the same queue. 1162 * 1163 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1164 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1165 * on the writer throttling path, and we get decent balancing between many 1166 * throttled threads: we don't want them all piling up on inode_sync_wait. 1167 */ 1168 static void wait_sb_inodes(struct super_block *sb) 1169 { 1170 struct inode *inode, *old_inode = NULL; 1171 1172 /* 1173 * We need to be protected against the filesystem going from 1174 * r/o to r/w or vice versa. 1175 */ 1176 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1177 1178 spin_lock(&inode_sb_list_lock); 1179 1180 /* 1181 * Data integrity sync. Must wait for all pages under writeback, 1182 * because there may have been pages dirtied before our sync 1183 * call, but which had writeout started before we write it out. 1184 * In which case, the inode may not be on the dirty list, but 1185 * we still have to wait for that writeout. 1186 */ 1187 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1188 struct address_space *mapping = inode->i_mapping; 1189 1190 spin_lock(&inode->i_lock); 1191 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1192 (mapping->nrpages == 0)) { 1193 spin_unlock(&inode->i_lock); 1194 continue; 1195 } 1196 __iget(inode); 1197 spin_unlock(&inode->i_lock); 1198 spin_unlock(&inode_sb_list_lock); 1199 1200 /* 1201 * We hold a reference to 'inode' so it couldn't have been 1202 * removed from s_inodes list while we dropped the 1203 * inode_sb_list_lock. We cannot iput the inode now as we can 1204 * be holding the last reference and we cannot iput it under 1205 * inode_sb_list_lock. So we keep the reference and iput it 1206 * later. 1207 */ 1208 iput(old_inode); 1209 old_inode = inode; 1210 1211 filemap_fdatawait(mapping); 1212 1213 cond_resched(); 1214 1215 spin_lock(&inode_sb_list_lock); 1216 } 1217 spin_unlock(&inode_sb_list_lock); 1218 iput(old_inode); 1219 } 1220 1221 /** 1222 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1223 * @sb: the superblock 1224 * @nr: the number of pages to write 1225 * @reason: reason why some writeback work initiated 1226 * 1227 * Start writeback on some inodes on this super_block. No guarantees are made 1228 * on how many (if any) will be written, and this function does not wait 1229 * for IO completion of submitted IO. 1230 */ 1231 void writeback_inodes_sb_nr(struct super_block *sb, 1232 unsigned long nr, 1233 enum wb_reason reason) 1234 { 1235 DECLARE_COMPLETION_ONSTACK(done); 1236 struct wb_writeback_work work = { 1237 .sb = sb, 1238 .sync_mode = WB_SYNC_NONE, 1239 .tagged_writepages = 1, 1240 .done = &done, 1241 .nr_pages = nr, 1242 .reason = reason, 1243 }; 1244 1245 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1246 bdi_queue_work(sb->s_bdi, &work); 1247 wait_for_completion(&done); 1248 } 1249 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1250 1251 /** 1252 * writeback_inodes_sb - writeback dirty inodes from given super_block 1253 * @sb: the superblock 1254 * @reason: reason why some writeback work was initiated 1255 * 1256 * Start writeback on some inodes on this super_block. No guarantees are made 1257 * on how many (if any) will be written, and this function does not wait 1258 * for IO completion of submitted IO. 1259 */ 1260 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1261 { 1262 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1263 } 1264 EXPORT_SYMBOL(writeback_inodes_sb); 1265 1266 /** 1267 * writeback_inodes_sb_if_idle - start writeback if none underway 1268 * @sb: the superblock 1269 * @reason: reason why some writeback work was initiated 1270 * 1271 * Invoke writeback_inodes_sb if no writeback is currently underway. 1272 * Returns 1 if writeback was started, 0 if not. 1273 */ 1274 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason) 1275 { 1276 if (!writeback_in_progress(sb->s_bdi)) { 1277 down_read(&sb->s_umount); 1278 writeback_inodes_sb(sb, reason); 1279 up_read(&sb->s_umount); 1280 return 1; 1281 } else 1282 return 0; 1283 } 1284 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1285 1286 /** 1287 * writeback_inodes_sb_if_idle - start writeback if none underway 1288 * @sb: the superblock 1289 * @nr: the number of pages to write 1290 * @reason: reason why some writeback work was initiated 1291 * 1292 * Invoke writeback_inodes_sb if no writeback is currently underway. 1293 * Returns 1 if writeback was started, 0 if not. 1294 */ 1295 int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1296 unsigned long nr, 1297 enum wb_reason reason) 1298 { 1299 if (!writeback_in_progress(sb->s_bdi)) { 1300 down_read(&sb->s_umount); 1301 writeback_inodes_sb_nr(sb, nr, reason); 1302 up_read(&sb->s_umount); 1303 return 1; 1304 } else 1305 return 0; 1306 } 1307 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1308 1309 /** 1310 * sync_inodes_sb - sync sb inode pages 1311 * @sb: the superblock 1312 * 1313 * This function writes and waits on any dirty inode belonging to this 1314 * super_block. 1315 */ 1316 void sync_inodes_sb(struct super_block *sb) 1317 { 1318 DECLARE_COMPLETION_ONSTACK(done); 1319 struct wb_writeback_work work = { 1320 .sb = sb, 1321 .sync_mode = WB_SYNC_ALL, 1322 .nr_pages = LONG_MAX, 1323 .range_cyclic = 0, 1324 .done = &done, 1325 .reason = WB_REASON_SYNC, 1326 }; 1327 1328 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1329 1330 bdi_queue_work(sb->s_bdi, &work); 1331 wait_for_completion(&done); 1332 1333 wait_sb_inodes(sb); 1334 } 1335 EXPORT_SYMBOL(sync_inodes_sb); 1336 1337 /** 1338 * write_inode_now - write an inode to disk 1339 * @inode: inode to write to disk 1340 * @sync: whether the write should be synchronous or not 1341 * 1342 * This function commits an inode to disk immediately if it is dirty. This is 1343 * primarily needed by knfsd. 1344 * 1345 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1346 */ 1347 int write_inode_now(struct inode *inode, int sync) 1348 { 1349 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1350 int ret; 1351 struct writeback_control wbc = { 1352 .nr_to_write = LONG_MAX, 1353 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1354 .range_start = 0, 1355 .range_end = LLONG_MAX, 1356 }; 1357 1358 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1359 wbc.nr_to_write = 0; 1360 1361 might_sleep(); 1362 spin_lock(&wb->list_lock); 1363 spin_lock(&inode->i_lock); 1364 ret = writeback_single_inode(inode, wb, &wbc); 1365 spin_unlock(&inode->i_lock); 1366 spin_unlock(&wb->list_lock); 1367 if (sync) 1368 inode_sync_wait(inode); 1369 return ret; 1370 } 1371 EXPORT_SYMBOL(write_inode_now); 1372 1373 /** 1374 * sync_inode - write an inode and its pages to disk. 1375 * @inode: the inode to sync 1376 * @wbc: controls the writeback mode 1377 * 1378 * sync_inode() will write an inode and its pages to disk. It will also 1379 * correctly update the inode on its superblock's dirty inode lists and will 1380 * update inode->i_state. 1381 * 1382 * The caller must have a ref on the inode. 1383 */ 1384 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1385 { 1386 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1387 int ret; 1388 1389 spin_lock(&wb->list_lock); 1390 spin_lock(&inode->i_lock); 1391 ret = writeback_single_inode(inode, wb, wbc); 1392 spin_unlock(&inode->i_lock); 1393 spin_unlock(&wb->list_lock); 1394 return ret; 1395 } 1396 EXPORT_SYMBOL(sync_inode); 1397 1398 /** 1399 * sync_inode_metadata - write an inode to disk 1400 * @inode: the inode to sync 1401 * @wait: wait for I/O to complete. 1402 * 1403 * Write an inode to disk and adjust its dirty state after completion. 1404 * 1405 * Note: only writes the actual inode, no associated data or other metadata. 1406 */ 1407 int sync_inode_metadata(struct inode *inode, int wait) 1408 { 1409 struct writeback_control wbc = { 1410 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1411 .nr_to_write = 0, /* metadata-only */ 1412 }; 1413 1414 return sync_inode(inode, &wbc); 1415 } 1416 EXPORT_SYMBOL(sync_inode_metadata); 1417