1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/sched.h> 20 #include <linux/fs.h> 21 #include <linux/mm.h> 22 #include <linux/writeback.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/buffer_head.h> 26 #include "internal.h" 27 28 29 /** 30 * writeback_acquire - attempt to get exclusive writeback access to a device 31 * @bdi: the device's backing_dev_info structure 32 * 33 * It is a waste of resources to have more than one pdflush thread blocked on 34 * a single request queue. Exclusion at the request_queue level is obtained 35 * via a flag in the request_queue's backing_dev_info.state. 36 * 37 * Non-request_queue-backed address_spaces will share default_backing_dev_info, 38 * unless they implement their own. Which is somewhat inefficient, as this 39 * may prevent concurrent writeback against multiple devices. 40 */ 41 static int writeback_acquire(struct backing_dev_info *bdi) 42 { 43 return !test_and_set_bit(BDI_pdflush, &bdi->state); 44 } 45 46 /** 47 * writeback_in_progress - determine whether there is writeback in progress 48 * @bdi: the device's backing_dev_info structure. 49 * 50 * Determine whether there is writeback in progress against a backing device. 51 */ 52 int writeback_in_progress(struct backing_dev_info *bdi) 53 { 54 return test_bit(BDI_pdflush, &bdi->state); 55 } 56 57 /** 58 * writeback_release - relinquish exclusive writeback access against a device. 59 * @bdi: the device's backing_dev_info structure 60 */ 61 static void writeback_release(struct backing_dev_info *bdi) 62 { 63 BUG_ON(!writeback_in_progress(bdi)); 64 clear_bit(BDI_pdflush, &bdi->state); 65 } 66 67 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 68 { 69 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 70 struct dentry *dentry; 71 const char *name = "?"; 72 73 dentry = d_find_alias(inode); 74 if (dentry) { 75 spin_lock(&dentry->d_lock); 76 name = (const char *) dentry->d_name.name; 77 } 78 printk(KERN_DEBUG 79 "%s(%d): dirtied inode %lu (%s) on %s\n", 80 current->comm, task_pid_nr(current), inode->i_ino, 81 name, inode->i_sb->s_id); 82 if (dentry) { 83 spin_unlock(&dentry->d_lock); 84 dput(dentry); 85 } 86 } 87 } 88 89 /** 90 * __mark_inode_dirty - internal function 91 * @inode: inode to mark 92 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 93 * Mark an inode as dirty. Callers should use mark_inode_dirty or 94 * mark_inode_dirty_sync. 95 * 96 * Put the inode on the super block's dirty list. 97 * 98 * CAREFUL! We mark it dirty unconditionally, but move it onto the 99 * dirty list only if it is hashed or if it refers to a blockdev. 100 * If it was not hashed, it will never be added to the dirty list 101 * even if it is later hashed, as it will have been marked dirty already. 102 * 103 * In short, make sure you hash any inodes _before_ you start marking 104 * them dirty. 105 * 106 * This function *must* be atomic for the I_DIRTY_PAGES case - 107 * set_page_dirty() is called under spinlock in several places. 108 * 109 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 110 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 111 * the kernel-internal blockdev inode represents the dirtying time of the 112 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 113 * page->mapping->host, so the page-dirtying time is recorded in the internal 114 * blockdev inode. 115 */ 116 void __mark_inode_dirty(struct inode *inode, int flags) 117 { 118 struct super_block *sb = inode->i_sb; 119 120 /* 121 * Don't do this for I_DIRTY_PAGES - that doesn't actually 122 * dirty the inode itself 123 */ 124 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 125 if (sb->s_op->dirty_inode) 126 sb->s_op->dirty_inode(inode); 127 } 128 129 /* 130 * make sure that changes are seen by all cpus before we test i_state 131 * -- mikulas 132 */ 133 smp_mb(); 134 135 /* avoid the locking if we can */ 136 if ((inode->i_state & flags) == flags) 137 return; 138 139 if (unlikely(block_dump)) 140 block_dump___mark_inode_dirty(inode); 141 142 spin_lock(&inode_lock); 143 if ((inode->i_state & flags) != flags) { 144 const int was_dirty = inode->i_state & I_DIRTY; 145 146 inode->i_state |= flags; 147 148 /* 149 * If the inode is being synced, just update its dirty state. 150 * The unlocker will place the inode on the appropriate 151 * superblock list, based upon its state. 152 */ 153 if (inode->i_state & I_SYNC) 154 goto out; 155 156 /* 157 * Only add valid (hashed) inodes to the superblock's 158 * dirty list. Add blockdev inodes as well. 159 */ 160 if (!S_ISBLK(inode->i_mode)) { 161 if (hlist_unhashed(&inode->i_hash)) 162 goto out; 163 } 164 if (inode->i_state & (I_FREEING|I_CLEAR)) 165 goto out; 166 167 /* 168 * If the inode was already on s_dirty/s_io/s_more_io, don't 169 * reposition it (that would break s_dirty time-ordering). 170 */ 171 if (!was_dirty) { 172 inode->dirtied_when = jiffies; 173 list_move(&inode->i_list, &sb->s_dirty); 174 } 175 } 176 out: 177 spin_unlock(&inode_lock); 178 } 179 180 EXPORT_SYMBOL(__mark_inode_dirty); 181 182 static int write_inode(struct inode *inode, int sync) 183 { 184 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 185 return inode->i_sb->s_op->write_inode(inode, sync); 186 return 0; 187 } 188 189 /* 190 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 191 * furthest end of its superblock's dirty-inode list. 192 * 193 * Before stamping the inode's ->dirtied_when, we check to see whether it is 194 * already the most-recently-dirtied inode on the s_dirty list. If that is 195 * the case then the inode must have been redirtied while it was being written 196 * out and we don't reset its dirtied_when. 197 */ 198 static void redirty_tail(struct inode *inode) 199 { 200 struct super_block *sb = inode->i_sb; 201 202 if (!list_empty(&sb->s_dirty)) { 203 struct inode *tail_inode; 204 205 tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list); 206 if (time_before(inode->dirtied_when, 207 tail_inode->dirtied_when)) 208 inode->dirtied_when = jiffies; 209 } 210 list_move(&inode->i_list, &sb->s_dirty); 211 } 212 213 /* 214 * requeue inode for re-scanning after sb->s_io list is exhausted. 215 */ 216 static void requeue_io(struct inode *inode) 217 { 218 list_move(&inode->i_list, &inode->i_sb->s_more_io); 219 } 220 221 static void inode_sync_complete(struct inode *inode) 222 { 223 /* 224 * Prevent speculative execution through spin_unlock(&inode_lock); 225 */ 226 smp_mb(); 227 wake_up_bit(&inode->i_state, __I_SYNC); 228 } 229 230 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 231 { 232 bool ret = time_after(inode->dirtied_when, t); 233 #ifndef CONFIG_64BIT 234 /* 235 * For inodes being constantly redirtied, dirtied_when can get stuck. 236 * It _appears_ to be in the future, but is actually in distant past. 237 * This test is necessary to prevent such wrapped-around relative times 238 * from permanently stopping the whole pdflush writeback. 239 */ 240 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 241 #endif 242 return ret; 243 } 244 245 /* 246 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 247 */ 248 static void move_expired_inodes(struct list_head *delaying_queue, 249 struct list_head *dispatch_queue, 250 unsigned long *older_than_this) 251 { 252 while (!list_empty(delaying_queue)) { 253 struct inode *inode = list_entry(delaying_queue->prev, 254 struct inode, i_list); 255 if (older_than_this && 256 inode_dirtied_after(inode, *older_than_this)) 257 break; 258 list_move(&inode->i_list, dispatch_queue); 259 } 260 } 261 262 /* 263 * Queue all expired dirty inodes for io, eldest first. 264 */ 265 static void queue_io(struct super_block *sb, 266 unsigned long *older_than_this) 267 { 268 list_splice_init(&sb->s_more_io, sb->s_io.prev); 269 move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this); 270 } 271 272 int sb_has_dirty_inodes(struct super_block *sb) 273 { 274 return !list_empty(&sb->s_dirty) || 275 !list_empty(&sb->s_io) || 276 !list_empty(&sb->s_more_io); 277 } 278 EXPORT_SYMBOL(sb_has_dirty_inodes); 279 280 /* 281 * Wait for writeback on an inode to complete. 282 */ 283 static void inode_wait_for_writeback(struct inode *inode) 284 { 285 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 286 wait_queue_head_t *wqh; 287 288 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 289 do { 290 spin_unlock(&inode_lock); 291 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 292 spin_lock(&inode_lock); 293 } while (inode->i_state & I_SYNC); 294 } 295 296 /* 297 * Write out an inode's dirty pages. Called under inode_lock. Either the 298 * caller has ref on the inode (either via __iget or via syscall against an fd) 299 * or the inode has I_WILL_FREE set (via generic_forget_inode) 300 * 301 * If `wait' is set, wait on the writeout. 302 * 303 * The whole writeout design is quite complex and fragile. We want to avoid 304 * starvation of particular inodes when others are being redirtied, prevent 305 * livelocks, etc. 306 * 307 * Called under inode_lock. 308 */ 309 static int 310 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 311 { 312 struct address_space *mapping = inode->i_mapping; 313 int wait = wbc->sync_mode == WB_SYNC_ALL; 314 unsigned dirty; 315 int ret; 316 317 if (!atomic_read(&inode->i_count)) 318 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 319 else 320 WARN_ON(inode->i_state & I_WILL_FREE); 321 322 if (inode->i_state & I_SYNC) { 323 /* 324 * If this inode is locked for writeback and we are not doing 325 * writeback-for-data-integrity, move it to s_more_io so that 326 * writeback can proceed with the other inodes on s_io. 327 * 328 * We'll have another go at writing back this inode when we 329 * completed a full scan of s_io. 330 */ 331 if (!wait) { 332 requeue_io(inode); 333 return 0; 334 } 335 336 /* 337 * It's a data-integrity sync. We must wait. 338 */ 339 inode_wait_for_writeback(inode); 340 } 341 342 BUG_ON(inode->i_state & I_SYNC); 343 344 /* Set I_SYNC, reset I_DIRTY */ 345 dirty = inode->i_state & I_DIRTY; 346 inode->i_state |= I_SYNC; 347 inode->i_state &= ~I_DIRTY; 348 349 spin_unlock(&inode_lock); 350 351 ret = do_writepages(mapping, wbc); 352 353 /* Don't write the inode if only I_DIRTY_PAGES was set */ 354 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 355 int err = write_inode(inode, wait); 356 if (ret == 0) 357 ret = err; 358 } 359 360 if (wait) { 361 int err = filemap_fdatawait(mapping); 362 if (ret == 0) 363 ret = err; 364 } 365 366 spin_lock(&inode_lock); 367 inode->i_state &= ~I_SYNC; 368 if (!(inode->i_state & (I_FREEING | I_CLEAR))) { 369 if (!(inode->i_state & I_DIRTY) && 370 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 371 /* 372 * We didn't write back all the pages. nfs_writepages() 373 * sometimes bales out without doing anything. Redirty 374 * the inode; Move it from s_io onto s_more_io/s_dirty. 375 */ 376 /* 377 * akpm: if the caller was the kupdate function we put 378 * this inode at the head of s_dirty so it gets first 379 * consideration. Otherwise, move it to the tail, for 380 * the reasons described there. I'm not really sure 381 * how much sense this makes. Presumably I had a good 382 * reasons for doing it this way, and I'd rather not 383 * muck with it at present. 384 */ 385 if (wbc->for_kupdate) { 386 /* 387 * For the kupdate function we move the inode 388 * to s_more_io so it will get more writeout as 389 * soon as the queue becomes uncongested. 390 */ 391 inode->i_state |= I_DIRTY_PAGES; 392 if (wbc->nr_to_write <= 0) { 393 /* 394 * slice used up: queue for next turn 395 */ 396 requeue_io(inode); 397 } else { 398 /* 399 * somehow blocked: retry later 400 */ 401 redirty_tail(inode); 402 } 403 } else { 404 /* 405 * Otherwise fully redirty the inode so that 406 * other inodes on this superblock will get some 407 * writeout. Otherwise heavy writing to one 408 * file would indefinitely suspend writeout of 409 * all the other files. 410 */ 411 inode->i_state |= I_DIRTY_PAGES; 412 redirty_tail(inode); 413 } 414 } else if (inode->i_state & I_DIRTY) { 415 /* 416 * Someone redirtied the inode while were writing back 417 * the pages. 418 */ 419 redirty_tail(inode); 420 } else if (atomic_read(&inode->i_count)) { 421 /* 422 * The inode is clean, inuse 423 */ 424 list_move(&inode->i_list, &inode_in_use); 425 } else { 426 /* 427 * The inode is clean, unused 428 */ 429 list_move(&inode->i_list, &inode_unused); 430 } 431 } 432 inode_sync_complete(inode); 433 return ret; 434 } 435 436 /* 437 * Write out a superblock's list of dirty inodes. A wait will be performed 438 * upon no inodes, all inodes or the final one, depending upon sync_mode. 439 * 440 * If older_than_this is non-NULL, then only write out inodes which 441 * had their first dirtying at a time earlier than *older_than_this. 442 * 443 * If we're a pdflush thread, then implement pdflush collision avoidance 444 * against the entire list. 445 * 446 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 447 * This function assumes that the blockdev superblock's inodes are backed by 448 * a variety of queues, so all inodes are searched. For other superblocks, 449 * assume that all inodes are backed by the same queue. 450 * 451 * FIXME: this linear search could get expensive with many fileystems. But 452 * how to fix? We need to go from an address_space to all inodes which share 453 * a queue with that address_space. (Easy: have a global "dirty superblocks" 454 * list). 455 * 456 * The inodes to be written are parked on sb->s_io. They are moved back onto 457 * sb->s_dirty as they are selected for writing. This way, none can be missed 458 * on the writer throttling path, and we get decent balancing between many 459 * throttled threads: we don't want them all piling up on inode_sync_wait. 460 */ 461 void generic_sync_sb_inodes(struct super_block *sb, 462 struct writeback_control *wbc) 463 { 464 const unsigned long start = jiffies; /* livelock avoidance */ 465 int sync = wbc->sync_mode == WB_SYNC_ALL; 466 467 spin_lock(&inode_lock); 468 if (!wbc->for_kupdate || list_empty(&sb->s_io)) 469 queue_io(sb, wbc->older_than_this); 470 471 while (!list_empty(&sb->s_io)) { 472 struct inode *inode = list_entry(sb->s_io.prev, 473 struct inode, i_list); 474 struct address_space *mapping = inode->i_mapping; 475 struct backing_dev_info *bdi = mapping->backing_dev_info; 476 long pages_skipped; 477 478 if (!bdi_cap_writeback_dirty(bdi)) { 479 redirty_tail(inode); 480 if (sb_is_blkdev_sb(sb)) { 481 /* 482 * Dirty memory-backed blockdev: the ramdisk 483 * driver does this. Skip just this inode 484 */ 485 continue; 486 } 487 /* 488 * Dirty memory-backed inode against a filesystem other 489 * than the kernel-internal bdev filesystem. Skip the 490 * entire superblock. 491 */ 492 break; 493 } 494 495 if (inode->i_state & (I_NEW | I_WILL_FREE)) { 496 requeue_io(inode); 497 continue; 498 } 499 500 if (wbc->nonblocking && bdi_write_congested(bdi)) { 501 wbc->encountered_congestion = 1; 502 if (!sb_is_blkdev_sb(sb)) 503 break; /* Skip a congested fs */ 504 requeue_io(inode); 505 continue; /* Skip a congested blockdev */ 506 } 507 508 if (wbc->bdi && bdi != wbc->bdi) { 509 if (!sb_is_blkdev_sb(sb)) 510 break; /* fs has the wrong queue */ 511 requeue_io(inode); 512 continue; /* blockdev has wrong queue */ 513 } 514 515 /* 516 * Was this inode dirtied after sync_sb_inodes was called? 517 * This keeps sync from extra jobs and livelock. 518 */ 519 if (inode_dirtied_after(inode, start)) 520 break; 521 522 /* Is another pdflush already flushing this queue? */ 523 if (current_is_pdflush() && !writeback_acquire(bdi)) 524 break; 525 526 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR)); 527 __iget(inode); 528 pages_skipped = wbc->pages_skipped; 529 writeback_single_inode(inode, wbc); 530 if (current_is_pdflush()) 531 writeback_release(bdi); 532 if (wbc->pages_skipped != pages_skipped) { 533 /* 534 * writeback is not making progress due to locked 535 * buffers. Skip this inode for now. 536 */ 537 redirty_tail(inode); 538 } 539 spin_unlock(&inode_lock); 540 iput(inode); 541 cond_resched(); 542 spin_lock(&inode_lock); 543 if (wbc->nr_to_write <= 0) { 544 wbc->more_io = 1; 545 break; 546 } 547 if (!list_empty(&sb->s_more_io)) 548 wbc->more_io = 1; 549 } 550 551 if (sync) { 552 struct inode *inode, *old_inode = NULL; 553 554 /* 555 * Data integrity sync. Must wait for all pages under writeback, 556 * because there may have been pages dirtied before our sync 557 * call, but which had writeout started before we write it out. 558 * In which case, the inode may not be on the dirty list, but 559 * we still have to wait for that writeout. 560 */ 561 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 562 struct address_space *mapping; 563 564 if (inode->i_state & 565 (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW)) 566 continue; 567 mapping = inode->i_mapping; 568 if (mapping->nrpages == 0) 569 continue; 570 __iget(inode); 571 spin_unlock(&inode_lock); 572 /* 573 * We hold a reference to 'inode' so it couldn't have 574 * been removed from s_inodes list while we dropped the 575 * inode_lock. We cannot iput the inode now as we can 576 * be holding the last reference and we cannot iput it 577 * under inode_lock. So we keep the reference and iput 578 * it later. 579 */ 580 iput(old_inode); 581 old_inode = inode; 582 583 filemap_fdatawait(mapping); 584 585 cond_resched(); 586 587 spin_lock(&inode_lock); 588 } 589 spin_unlock(&inode_lock); 590 iput(old_inode); 591 } else 592 spin_unlock(&inode_lock); 593 594 return; /* Leave any unwritten inodes on s_io */ 595 } 596 EXPORT_SYMBOL_GPL(generic_sync_sb_inodes); 597 598 static void sync_sb_inodes(struct super_block *sb, 599 struct writeback_control *wbc) 600 { 601 generic_sync_sb_inodes(sb, wbc); 602 } 603 604 /* 605 * Start writeback of dirty pagecache data against all unlocked inodes. 606 * 607 * Note: 608 * We don't need to grab a reference to superblock here. If it has non-empty 609 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed 610 * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all 611 * empty. Since __sync_single_inode() regains inode_lock before it finally moves 612 * inode from superblock lists we are OK. 613 * 614 * If `older_than_this' is non-zero then only flush inodes which have a 615 * flushtime older than *older_than_this. 616 * 617 * If `bdi' is non-zero then we will scan the first inode against each 618 * superblock until we find the matching ones. One group will be the dirty 619 * inodes against a filesystem. Then when we hit the dummy blockdev superblock, 620 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not 621 * super-efficient but we're about to do a ton of I/O... 622 */ 623 void 624 writeback_inodes(struct writeback_control *wbc) 625 { 626 struct super_block *sb; 627 628 might_sleep(); 629 spin_lock(&sb_lock); 630 restart: 631 list_for_each_entry_reverse(sb, &super_blocks, s_list) { 632 if (sb_has_dirty_inodes(sb)) { 633 /* we're making our own get_super here */ 634 sb->s_count++; 635 spin_unlock(&sb_lock); 636 /* 637 * If we can't get the readlock, there's no sense in 638 * waiting around, most of the time the FS is going to 639 * be unmounted by the time it is released. 640 */ 641 if (down_read_trylock(&sb->s_umount)) { 642 if (sb->s_root) 643 sync_sb_inodes(sb, wbc); 644 up_read(&sb->s_umount); 645 } 646 spin_lock(&sb_lock); 647 if (__put_super_and_need_restart(sb)) 648 goto restart; 649 } 650 if (wbc->nr_to_write <= 0) 651 break; 652 } 653 spin_unlock(&sb_lock); 654 } 655 656 /* 657 * writeback and wait upon the filesystem's dirty inodes. The caller will 658 * do this in two passes - one to write, and one to wait. 659 * 660 * A finite limit is set on the number of pages which will be written. 661 * To prevent infinite livelock of sys_sync(). 662 * 663 * We add in the number of potentially dirty inodes, because each inode write 664 * can dirty pagecache in the underlying blockdev. 665 */ 666 void sync_inodes_sb(struct super_block *sb, int wait) 667 { 668 struct writeback_control wbc = { 669 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 670 .range_start = 0, 671 .range_end = LLONG_MAX, 672 }; 673 674 if (!wait) { 675 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 676 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 677 678 wbc.nr_to_write = nr_dirty + nr_unstable + 679 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 680 } else 681 wbc.nr_to_write = LONG_MAX; /* doesn't actually matter */ 682 683 sync_sb_inodes(sb, &wbc); 684 } 685 686 /** 687 * write_inode_now - write an inode to disk 688 * @inode: inode to write to disk 689 * @sync: whether the write should be synchronous or not 690 * 691 * This function commits an inode to disk immediately if it is dirty. This is 692 * primarily needed by knfsd. 693 * 694 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 695 */ 696 int write_inode_now(struct inode *inode, int sync) 697 { 698 int ret; 699 struct writeback_control wbc = { 700 .nr_to_write = LONG_MAX, 701 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 702 .range_start = 0, 703 .range_end = LLONG_MAX, 704 }; 705 706 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 707 wbc.nr_to_write = 0; 708 709 might_sleep(); 710 spin_lock(&inode_lock); 711 ret = writeback_single_inode(inode, &wbc); 712 spin_unlock(&inode_lock); 713 if (sync) 714 inode_sync_wait(inode); 715 return ret; 716 } 717 EXPORT_SYMBOL(write_inode_now); 718 719 /** 720 * sync_inode - write an inode and its pages to disk. 721 * @inode: the inode to sync 722 * @wbc: controls the writeback mode 723 * 724 * sync_inode() will write an inode and its pages to disk. It will also 725 * correctly update the inode on its superblock's dirty inode lists and will 726 * update inode->i_state. 727 * 728 * The caller must have a ref on the inode. 729 */ 730 int sync_inode(struct inode *inode, struct writeback_control *wbc) 731 { 732 int ret; 733 734 spin_lock(&inode_lock); 735 ret = writeback_single_inode(inode, wbc); 736 spin_unlock(&inode_lock); 737 return ret; 738 } 739 EXPORT_SYMBOL(sync_inode); 740 741 /** 742 * generic_osync_inode - flush all dirty data for a given inode to disk 743 * @inode: inode to write 744 * @mapping: the address_space that should be flushed 745 * @what: what to write and wait upon 746 * 747 * This can be called by file_write functions for files which have the 748 * O_SYNC flag set, to flush dirty writes to disk. 749 * 750 * @what is a bitmask, specifying which part of the inode's data should be 751 * written and waited upon. 752 * 753 * OSYNC_DATA: i_mapping's dirty data 754 * OSYNC_METADATA: the buffers at i_mapping->private_list 755 * OSYNC_INODE: the inode itself 756 */ 757 758 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what) 759 { 760 int err = 0; 761 int need_write_inode_now = 0; 762 int err2; 763 764 if (what & OSYNC_DATA) 765 err = filemap_fdatawrite(mapping); 766 if (what & (OSYNC_METADATA|OSYNC_DATA)) { 767 err2 = sync_mapping_buffers(mapping); 768 if (!err) 769 err = err2; 770 } 771 if (what & OSYNC_DATA) { 772 err2 = filemap_fdatawait(mapping); 773 if (!err) 774 err = err2; 775 } 776 777 spin_lock(&inode_lock); 778 if ((inode->i_state & I_DIRTY) && 779 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC))) 780 need_write_inode_now = 1; 781 spin_unlock(&inode_lock); 782 783 if (need_write_inode_now) { 784 err2 = write_inode_now(inode, 1); 785 if (!err) 786 err = err2; 787 } 788 else 789 inode_sync_wait(inode); 790 791 return err; 792 } 793 EXPORT_SYMBOL(generic_osync_inode); 794