1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/sched.h> 20 #include <linux/fs.h> 21 #include <linux/mm.h> 22 #include <linux/writeback.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/buffer_head.h> 26 #include "internal.h" 27 28 29 /** 30 * writeback_acquire - attempt to get exclusive writeback access to a device 31 * @bdi: the device's backing_dev_info structure 32 * 33 * It is a waste of resources to have more than one pdflush thread blocked on 34 * a single request queue. Exclusion at the request_queue level is obtained 35 * via a flag in the request_queue's backing_dev_info.state. 36 * 37 * Non-request_queue-backed address_spaces will share default_backing_dev_info, 38 * unless they implement their own. Which is somewhat inefficient, as this 39 * may prevent concurrent writeback against multiple devices. 40 */ 41 static int writeback_acquire(struct backing_dev_info *bdi) 42 { 43 return !test_and_set_bit(BDI_pdflush, &bdi->state); 44 } 45 46 /** 47 * writeback_in_progress - determine whether there is writeback in progress 48 * @bdi: the device's backing_dev_info structure. 49 * 50 * Determine whether there is writeback in progress against a backing device. 51 */ 52 int writeback_in_progress(struct backing_dev_info *bdi) 53 { 54 return test_bit(BDI_pdflush, &bdi->state); 55 } 56 57 /** 58 * writeback_release - relinquish exclusive writeback access against a device. 59 * @bdi: the device's backing_dev_info structure 60 */ 61 static void writeback_release(struct backing_dev_info *bdi) 62 { 63 BUG_ON(!writeback_in_progress(bdi)); 64 clear_bit(BDI_pdflush, &bdi->state); 65 } 66 67 /** 68 * __mark_inode_dirty - internal function 69 * @inode: inode to mark 70 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 71 * Mark an inode as dirty. Callers should use mark_inode_dirty or 72 * mark_inode_dirty_sync. 73 * 74 * Put the inode on the super block's dirty list. 75 * 76 * CAREFUL! We mark it dirty unconditionally, but move it onto the 77 * dirty list only if it is hashed or if it refers to a blockdev. 78 * If it was not hashed, it will never be added to the dirty list 79 * even if it is later hashed, as it will have been marked dirty already. 80 * 81 * In short, make sure you hash any inodes _before_ you start marking 82 * them dirty. 83 * 84 * This function *must* be atomic for the I_DIRTY_PAGES case - 85 * set_page_dirty() is called under spinlock in several places. 86 * 87 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 88 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 89 * the kernel-internal blockdev inode represents the dirtying time of the 90 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 91 * page->mapping->host, so the page-dirtying time is recorded in the internal 92 * blockdev inode. 93 */ 94 void __mark_inode_dirty(struct inode *inode, int flags) 95 { 96 struct super_block *sb = inode->i_sb; 97 98 /* 99 * Don't do this for I_DIRTY_PAGES - that doesn't actually 100 * dirty the inode itself 101 */ 102 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 103 if (sb->s_op->dirty_inode) 104 sb->s_op->dirty_inode(inode); 105 } 106 107 /* 108 * make sure that changes are seen by all cpus before we test i_state 109 * -- mikulas 110 */ 111 smp_mb(); 112 113 /* avoid the locking if we can */ 114 if ((inode->i_state & flags) == flags) 115 return; 116 117 if (unlikely(block_dump)) { 118 struct dentry *dentry = NULL; 119 const char *name = "?"; 120 121 if (!list_empty(&inode->i_dentry)) { 122 dentry = list_entry(inode->i_dentry.next, 123 struct dentry, d_alias); 124 if (dentry && dentry->d_name.name) 125 name = (const char *) dentry->d_name.name; 126 } 127 128 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) 129 printk(KERN_DEBUG 130 "%s(%d): dirtied inode %lu (%s) on %s\n", 131 current->comm, task_pid_nr(current), inode->i_ino, 132 name, inode->i_sb->s_id); 133 } 134 135 spin_lock(&inode_lock); 136 if ((inode->i_state & flags) != flags) { 137 const int was_dirty = inode->i_state & I_DIRTY; 138 139 inode->i_state |= flags; 140 141 /* 142 * If the inode is being synced, just update its dirty state. 143 * The unlocker will place the inode on the appropriate 144 * superblock list, based upon its state. 145 */ 146 if (inode->i_state & I_SYNC) 147 goto out; 148 149 /* 150 * Only add valid (hashed) inodes to the superblock's 151 * dirty list. Add blockdev inodes as well. 152 */ 153 if (!S_ISBLK(inode->i_mode)) { 154 if (hlist_unhashed(&inode->i_hash)) 155 goto out; 156 } 157 if (inode->i_state & (I_FREEING|I_CLEAR)) 158 goto out; 159 160 /* 161 * If the inode was already on s_dirty/s_io/s_more_io, don't 162 * reposition it (that would break s_dirty time-ordering). 163 */ 164 if (!was_dirty) { 165 inode->dirtied_when = jiffies; 166 list_move(&inode->i_list, &sb->s_dirty); 167 } 168 } 169 out: 170 spin_unlock(&inode_lock); 171 } 172 173 EXPORT_SYMBOL(__mark_inode_dirty); 174 175 static int write_inode(struct inode *inode, int sync) 176 { 177 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 178 return inode->i_sb->s_op->write_inode(inode, sync); 179 return 0; 180 } 181 182 /* 183 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 184 * furthest end of its superblock's dirty-inode list. 185 * 186 * Before stamping the inode's ->dirtied_when, we check to see whether it is 187 * already the most-recently-dirtied inode on the s_dirty list. If that is 188 * the case then the inode must have been redirtied while it was being written 189 * out and we don't reset its dirtied_when. 190 */ 191 static void redirty_tail(struct inode *inode) 192 { 193 struct super_block *sb = inode->i_sb; 194 195 if (!list_empty(&sb->s_dirty)) { 196 struct inode *tail_inode; 197 198 tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list); 199 if (!time_after_eq(inode->dirtied_when, 200 tail_inode->dirtied_when)) 201 inode->dirtied_when = jiffies; 202 } 203 list_move(&inode->i_list, &sb->s_dirty); 204 } 205 206 /* 207 * requeue inode for re-scanning after sb->s_io list is exhausted. 208 */ 209 static void requeue_io(struct inode *inode) 210 { 211 list_move(&inode->i_list, &inode->i_sb->s_more_io); 212 } 213 214 static void inode_sync_complete(struct inode *inode) 215 { 216 /* 217 * Prevent speculative execution through spin_unlock(&inode_lock); 218 */ 219 smp_mb(); 220 wake_up_bit(&inode->i_state, __I_SYNC); 221 } 222 223 /* 224 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 225 */ 226 static void move_expired_inodes(struct list_head *delaying_queue, 227 struct list_head *dispatch_queue, 228 unsigned long *older_than_this) 229 { 230 while (!list_empty(delaying_queue)) { 231 struct inode *inode = list_entry(delaying_queue->prev, 232 struct inode, i_list); 233 if (older_than_this && 234 time_after(inode->dirtied_when, *older_than_this)) 235 break; 236 list_move(&inode->i_list, dispatch_queue); 237 } 238 } 239 240 /* 241 * Queue all expired dirty inodes for io, eldest first. 242 */ 243 static void queue_io(struct super_block *sb, 244 unsigned long *older_than_this) 245 { 246 list_splice_init(&sb->s_more_io, sb->s_io.prev); 247 move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this); 248 } 249 250 int sb_has_dirty_inodes(struct super_block *sb) 251 { 252 return !list_empty(&sb->s_dirty) || 253 !list_empty(&sb->s_io) || 254 !list_empty(&sb->s_more_io); 255 } 256 EXPORT_SYMBOL(sb_has_dirty_inodes); 257 258 /* 259 * Write a single inode's dirty pages and inode data out to disk. 260 * If `wait' is set, wait on the writeout. 261 * 262 * The whole writeout design is quite complex and fragile. We want to avoid 263 * starvation of particular inodes when others are being redirtied, prevent 264 * livelocks, etc. 265 * 266 * Called under inode_lock. 267 */ 268 static int 269 __sync_single_inode(struct inode *inode, struct writeback_control *wbc) 270 { 271 unsigned dirty; 272 struct address_space *mapping = inode->i_mapping; 273 int wait = wbc->sync_mode == WB_SYNC_ALL; 274 int ret; 275 276 BUG_ON(inode->i_state & I_SYNC); 277 278 /* Set I_SYNC, reset I_DIRTY */ 279 dirty = inode->i_state & I_DIRTY; 280 inode->i_state |= I_SYNC; 281 inode->i_state &= ~I_DIRTY; 282 283 spin_unlock(&inode_lock); 284 285 ret = do_writepages(mapping, wbc); 286 287 /* Don't write the inode if only I_DIRTY_PAGES was set */ 288 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 289 int err = write_inode(inode, wait); 290 if (ret == 0) 291 ret = err; 292 } 293 294 if (wait) { 295 int err = filemap_fdatawait(mapping); 296 if (ret == 0) 297 ret = err; 298 } 299 300 spin_lock(&inode_lock); 301 inode->i_state &= ~I_SYNC; 302 if (!(inode->i_state & I_FREEING)) { 303 if (!(inode->i_state & I_DIRTY) && 304 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 305 /* 306 * We didn't write back all the pages. nfs_writepages() 307 * sometimes bales out without doing anything. Redirty 308 * the inode; Move it from s_io onto s_more_io/s_dirty. 309 */ 310 /* 311 * akpm: if the caller was the kupdate function we put 312 * this inode at the head of s_dirty so it gets first 313 * consideration. Otherwise, move it to the tail, for 314 * the reasons described there. I'm not really sure 315 * how much sense this makes. Presumably I had a good 316 * reasons for doing it this way, and I'd rather not 317 * muck with it at present. 318 */ 319 if (wbc->for_kupdate) { 320 /* 321 * For the kupdate function we move the inode 322 * to s_more_io so it will get more writeout as 323 * soon as the queue becomes uncongested. 324 */ 325 inode->i_state |= I_DIRTY_PAGES; 326 if (wbc->nr_to_write <= 0) { 327 /* 328 * slice used up: queue for next turn 329 */ 330 requeue_io(inode); 331 } else { 332 /* 333 * somehow blocked: retry later 334 */ 335 redirty_tail(inode); 336 } 337 } else { 338 /* 339 * Otherwise fully redirty the inode so that 340 * other inodes on this superblock will get some 341 * writeout. Otherwise heavy writing to one 342 * file would indefinitely suspend writeout of 343 * all the other files. 344 */ 345 inode->i_state |= I_DIRTY_PAGES; 346 redirty_tail(inode); 347 } 348 } else if (inode->i_state & I_DIRTY) { 349 /* 350 * Someone redirtied the inode while were writing back 351 * the pages. 352 */ 353 redirty_tail(inode); 354 } else if (atomic_read(&inode->i_count)) { 355 /* 356 * The inode is clean, inuse 357 */ 358 list_move(&inode->i_list, &inode_in_use); 359 } else { 360 /* 361 * The inode is clean, unused 362 */ 363 list_move(&inode->i_list, &inode_unused); 364 } 365 } 366 inode_sync_complete(inode); 367 return ret; 368 } 369 370 /* 371 * Write out an inode's dirty pages. Called under inode_lock. Either the 372 * caller has ref on the inode (either via __iget or via syscall against an fd) 373 * or the inode has I_WILL_FREE set (via generic_forget_inode) 374 */ 375 static int 376 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 377 { 378 wait_queue_head_t *wqh; 379 380 if (!atomic_read(&inode->i_count)) 381 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 382 else 383 WARN_ON(inode->i_state & I_WILL_FREE); 384 385 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_SYNC)) { 386 /* 387 * We're skipping this inode because it's locked, and we're not 388 * doing writeback-for-data-integrity. Move it to s_more_io so 389 * that writeback can proceed with the other inodes on s_io. 390 * We'll have another go at writing back this inode when we 391 * completed a full scan of s_io. 392 */ 393 requeue_io(inode); 394 return 0; 395 } 396 397 /* 398 * It's a data-integrity sync. We must wait. 399 */ 400 if (inode->i_state & I_SYNC) { 401 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 402 403 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 404 do { 405 spin_unlock(&inode_lock); 406 __wait_on_bit(wqh, &wq, inode_wait, 407 TASK_UNINTERRUPTIBLE); 408 spin_lock(&inode_lock); 409 } while (inode->i_state & I_SYNC); 410 } 411 return __sync_single_inode(inode, wbc); 412 } 413 414 /* 415 * Write out a superblock's list of dirty inodes. A wait will be performed 416 * upon no inodes, all inodes or the final one, depending upon sync_mode. 417 * 418 * If older_than_this is non-NULL, then only write out inodes which 419 * had their first dirtying at a time earlier than *older_than_this. 420 * 421 * If we're a pdlfush thread, then implement pdflush collision avoidance 422 * against the entire list. 423 * 424 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 425 * This function assumes that the blockdev superblock's inodes are backed by 426 * a variety of queues, so all inodes are searched. For other superblocks, 427 * assume that all inodes are backed by the same queue. 428 * 429 * FIXME: this linear search could get expensive with many fileystems. But 430 * how to fix? We need to go from an address_space to all inodes which share 431 * a queue with that address_space. (Easy: have a global "dirty superblocks" 432 * list). 433 * 434 * The inodes to be written are parked on sb->s_io. They are moved back onto 435 * sb->s_dirty as they are selected for writing. This way, none can be missed 436 * on the writer throttling path, and we get decent balancing between many 437 * throttled threads: we don't want them all piling up on inode_sync_wait. 438 */ 439 void generic_sync_sb_inodes(struct super_block *sb, 440 struct writeback_control *wbc) 441 { 442 const unsigned long start = jiffies; /* livelock avoidance */ 443 int sync = wbc->sync_mode == WB_SYNC_ALL; 444 445 spin_lock(&inode_lock); 446 if (!wbc->for_kupdate || list_empty(&sb->s_io)) 447 queue_io(sb, wbc->older_than_this); 448 449 while (!list_empty(&sb->s_io)) { 450 struct inode *inode = list_entry(sb->s_io.prev, 451 struct inode, i_list); 452 struct address_space *mapping = inode->i_mapping; 453 struct backing_dev_info *bdi = mapping->backing_dev_info; 454 long pages_skipped; 455 456 if (!bdi_cap_writeback_dirty(bdi)) { 457 redirty_tail(inode); 458 if (sb_is_blkdev_sb(sb)) { 459 /* 460 * Dirty memory-backed blockdev: the ramdisk 461 * driver does this. Skip just this inode 462 */ 463 continue; 464 } 465 /* 466 * Dirty memory-backed inode against a filesystem other 467 * than the kernel-internal bdev filesystem. Skip the 468 * entire superblock. 469 */ 470 break; 471 } 472 473 if (wbc->nonblocking && bdi_write_congested(bdi)) { 474 wbc->encountered_congestion = 1; 475 if (!sb_is_blkdev_sb(sb)) 476 break; /* Skip a congested fs */ 477 requeue_io(inode); 478 continue; /* Skip a congested blockdev */ 479 } 480 481 if (wbc->bdi && bdi != wbc->bdi) { 482 if (!sb_is_blkdev_sb(sb)) 483 break; /* fs has the wrong queue */ 484 requeue_io(inode); 485 continue; /* blockdev has wrong queue */ 486 } 487 488 /* Was this inode dirtied after sync_sb_inodes was called? */ 489 if (time_after(inode->dirtied_when, start)) 490 break; 491 492 /* Is another pdflush already flushing this queue? */ 493 if (current_is_pdflush() && !writeback_acquire(bdi)) 494 break; 495 496 BUG_ON(inode->i_state & I_FREEING); 497 __iget(inode); 498 pages_skipped = wbc->pages_skipped; 499 __writeback_single_inode(inode, wbc); 500 if (current_is_pdflush()) 501 writeback_release(bdi); 502 if (wbc->pages_skipped != pages_skipped) { 503 /* 504 * writeback is not making progress due to locked 505 * buffers. Skip this inode for now. 506 */ 507 redirty_tail(inode); 508 } 509 spin_unlock(&inode_lock); 510 iput(inode); 511 cond_resched(); 512 spin_lock(&inode_lock); 513 if (wbc->nr_to_write <= 0) { 514 wbc->more_io = 1; 515 break; 516 } 517 if (!list_empty(&sb->s_more_io)) 518 wbc->more_io = 1; 519 } 520 521 if (sync) { 522 struct inode *inode, *old_inode = NULL; 523 524 /* 525 * Data integrity sync. Must wait for all pages under writeback, 526 * because there may have been pages dirtied before our sync 527 * call, but which had writeout started before we write it out. 528 * In which case, the inode may not be on the dirty list, but 529 * we still have to wait for that writeout. 530 */ 531 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 532 struct address_space *mapping; 533 534 if (inode->i_state & (I_FREEING|I_WILL_FREE)) 535 continue; 536 mapping = inode->i_mapping; 537 if (mapping->nrpages == 0) 538 continue; 539 __iget(inode); 540 spin_unlock(&inode_lock); 541 /* 542 * We hold a reference to 'inode' so it couldn't have 543 * been removed from s_inodes list while we dropped the 544 * inode_lock. We cannot iput the inode now as we can 545 * be holding the last reference and we cannot iput it 546 * under inode_lock. So we keep the reference and iput 547 * it later. 548 */ 549 iput(old_inode); 550 old_inode = inode; 551 552 filemap_fdatawait(mapping); 553 554 cond_resched(); 555 556 spin_lock(&inode_lock); 557 } 558 spin_unlock(&inode_lock); 559 iput(old_inode); 560 } else 561 spin_unlock(&inode_lock); 562 563 return; /* Leave any unwritten inodes on s_io */ 564 } 565 EXPORT_SYMBOL_GPL(generic_sync_sb_inodes); 566 567 static void sync_sb_inodes(struct super_block *sb, 568 struct writeback_control *wbc) 569 { 570 generic_sync_sb_inodes(sb, wbc); 571 } 572 573 /* 574 * Start writeback of dirty pagecache data against all unlocked inodes. 575 * 576 * Note: 577 * We don't need to grab a reference to superblock here. If it has non-empty 578 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed 579 * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all 580 * empty. Since __sync_single_inode() regains inode_lock before it finally moves 581 * inode from superblock lists we are OK. 582 * 583 * If `older_than_this' is non-zero then only flush inodes which have a 584 * flushtime older than *older_than_this. 585 * 586 * If `bdi' is non-zero then we will scan the first inode against each 587 * superblock until we find the matching ones. One group will be the dirty 588 * inodes against a filesystem. Then when we hit the dummy blockdev superblock, 589 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not 590 * super-efficient but we're about to do a ton of I/O... 591 */ 592 void 593 writeback_inodes(struct writeback_control *wbc) 594 { 595 struct super_block *sb; 596 597 might_sleep(); 598 spin_lock(&sb_lock); 599 restart: 600 list_for_each_entry_reverse(sb, &super_blocks, s_list) { 601 if (sb_has_dirty_inodes(sb)) { 602 /* we're making our own get_super here */ 603 sb->s_count++; 604 spin_unlock(&sb_lock); 605 /* 606 * If we can't get the readlock, there's no sense in 607 * waiting around, most of the time the FS is going to 608 * be unmounted by the time it is released. 609 */ 610 if (down_read_trylock(&sb->s_umount)) { 611 if (sb->s_root) 612 sync_sb_inodes(sb, wbc); 613 up_read(&sb->s_umount); 614 } 615 spin_lock(&sb_lock); 616 if (__put_super_and_need_restart(sb)) 617 goto restart; 618 } 619 if (wbc->nr_to_write <= 0) 620 break; 621 } 622 spin_unlock(&sb_lock); 623 } 624 625 /* 626 * writeback and wait upon the filesystem's dirty inodes. The caller will 627 * do this in two passes - one to write, and one to wait. 628 * 629 * A finite limit is set on the number of pages which will be written. 630 * To prevent infinite livelock of sys_sync(). 631 * 632 * We add in the number of potentially dirty inodes, because each inode write 633 * can dirty pagecache in the underlying blockdev. 634 */ 635 void sync_inodes_sb(struct super_block *sb, int wait) 636 { 637 struct writeback_control wbc = { 638 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 639 .range_start = 0, 640 .range_end = LLONG_MAX, 641 }; 642 643 if (!wait) { 644 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 645 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 646 647 wbc.nr_to_write = nr_dirty + nr_unstable + 648 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 649 } else 650 wbc.nr_to_write = LONG_MAX; /* doesn't actually matter */ 651 652 sync_sb_inodes(sb, &wbc); 653 } 654 655 /** 656 * sync_inodes - writes all inodes to disk 657 * @wait: wait for completion 658 * 659 * sync_inodes() goes through each super block's dirty inode list, writes the 660 * inodes out, waits on the writeout and puts the inodes back on the normal 661 * list. 662 * 663 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle 664 * part of the sync functions is that the blockdev "superblock" is processed 665 * last. This is because the write_inode() function of a typical fs will 666 * perform no I/O, but will mark buffers in the blockdev mapping as dirty. 667 * What we want to do is to perform all that dirtying first, and then write 668 * back all those inode blocks via the blockdev mapping in one sweep. So the 669 * additional (somewhat redundant) sync_blockdev() calls here are to make 670 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with 671 * outstanding dirty inodes, the writeback goes block-at-a-time within the 672 * filesystem's write_inode(). This is extremely slow. 673 */ 674 static void __sync_inodes(int wait) 675 { 676 struct super_block *sb; 677 678 spin_lock(&sb_lock); 679 restart: 680 list_for_each_entry(sb, &super_blocks, s_list) { 681 sb->s_count++; 682 spin_unlock(&sb_lock); 683 down_read(&sb->s_umount); 684 if (sb->s_root) { 685 sync_inodes_sb(sb, wait); 686 sync_blockdev(sb->s_bdev); 687 } 688 up_read(&sb->s_umount); 689 spin_lock(&sb_lock); 690 if (__put_super_and_need_restart(sb)) 691 goto restart; 692 } 693 spin_unlock(&sb_lock); 694 } 695 696 void sync_inodes(int wait) 697 { 698 __sync_inodes(0); 699 700 if (wait) 701 __sync_inodes(1); 702 } 703 704 /** 705 * write_inode_now - write an inode to disk 706 * @inode: inode to write to disk 707 * @sync: whether the write should be synchronous or not 708 * 709 * This function commits an inode to disk immediately if it is dirty. This is 710 * primarily needed by knfsd. 711 * 712 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 713 */ 714 int write_inode_now(struct inode *inode, int sync) 715 { 716 int ret; 717 struct writeback_control wbc = { 718 .nr_to_write = LONG_MAX, 719 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 720 .range_start = 0, 721 .range_end = LLONG_MAX, 722 }; 723 724 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 725 wbc.nr_to_write = 0; 726 727 might_sleep(); 728 spin_lock(&inode_lock); 729 ret = __writeback_single_inode(inode, &wbc); 730 spin_unlock(&inode_lock); 731 if (sync) 732 inode_sync_wait(inode); 733 return ret; 734 } 735 EXPORT_SYMBOL(write_inode_now); 736 737 /** 738 * sync_inode - write an inode and its pages to disk. 739 * @inode: the inode to sync 740 * @wbc: controls the writeback mode 741 * 742 * sync_inode() will write an inode and its pages to disk. It will also 743 * correctly update the inode on its superblock's dirty inode lists and will 744 * update inode->i_state. 745 * 746 * The caller must have a ref on the inode. 747 */ 748 int sync_inode(struct inode *inode, struct writeback_control *wbc) 749 { 750 int ret; 751 752 spin_lock(&inode_lock); 753 ret = __writeback_single_inode(inode, wbc); 754 spin_unlock(&inode_lock); 755 return ret; 756 } 757 EXPORT_SYMBOL(sync_inode); 758 759 /** 760 * generic_osync_inode - flush all dirty data for a given inode to disk 761 * @inode: inode to write 762 * @mapping: the address_space that should be flushed 763 * @what: what to write and wait upon 764 * 765 * This can be called by file_write functions for files which have the 766 * O_SYNC flag set, to flush dirty writes to disk. 767 * 768 * @what is a bitmask, specifying which part of the inode's data should be 769 * written and waited upon. 770 * 771 * OSYNC_DATA: i_mapping's dirty data 772 * OSYNC_METADATA: the buffers at i_mapping->private_list 773 * OSYNC_INODE: the inode itself 774 */ 775 776 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what) 777 { 778 int err = 0; 779 int need_write_inode_now = 0; 780 int err2; 781 782 if (what & OSYNC_DATA) 783 err = filemap_fdatawrite(mapping); 784 if (what & (OSYNC_METADATA|OSYNC_DATA)) { 785 err2 = sync_mapping_buffers(mapping); 786 if (!err) 787 err = err2; 788 } 789 if (what & OSYNC_DATA) { 790 err2 = filemap_fdatawait(mapping); 791 if (!err) 792 err = err2; 793 } 794 795 spin_lock(&inode_lock); 796 if ((inode->i_state & I_DIRTY) && 797 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC))) 798 need_write_inode_now = 1; 799 spin_unlock(&inode_lock); 800 801 if (need_write_inode_now) { 802 err2 = write_inode_now(inode, 1); 803 if (!err) 804 err = err2; 805 } 806 else 807 inode_sync_wait(inode); 808 809 return err; 810 } 811 EXPORT_SYMBOL(generic_osync_inode); 812