1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 assert_spin_locked(&inode->i_lock); 124 WARN_ON_ONCE(inode->i_state & I_FREEING); 125 126 list_move(&inode->i_io_list, head); 127 128 /* dirty_time doesn't count as dirty_io until expiration */ 129 if (head != &wb->b_dirty_time) 130 return wb_io_lists_populated(wb); 131 132 wb_io_lists_depopulated(wb); 133 return false; 134 } 135 136 static void wb_wakeup(struct bdi_writeback *wb) 137 { 138 spin_lock_irq(&wb->work_lock); 139 if (test_bit(WB_registered, &wb->state)) 140 mod_delayed_work(bdi_wq, &wb->dwork, 0); 141 spin_unlock_irq(&wb->work_lock); 142 } 143 144 static void finish_writeback_work(struct bdi_writeback *wb, 145 struct wb_writeback_work *work) 146 { 147 struct wb_completion *done = work->done; 148 149 if (work->auto_free) 150 kfree(work); 151 if (done) { 152 wait_queue_head_t *waitq = done->waitq; 153 154 /* @done can't be accessed after the following dec */ 155 if (atomic_dec_and_test(&done->cnt)) 156 wake_up_all(waitq); 157 } 158 } 159 160 static void wb_queue_work(struct bdi_writeback *wb, 161 struct wb_writeback_work *work) 162 { 163 trace_writeback_queue(wb, work); 164 165 if (work->done) 166 atomic_inc(&work->done->cnt); 167 168 spin_lock_irq(&wb->work_lock); 169 170 if (test_bit(WB_registered, &wb->state)) { 171 list_add_tail(&work->list, &wb->work_list); 172 mod_delayed_work(bdi_wq, &wb->dwork, 0); 173 } else 174 finish_writeback_work(wb, work); 175 176 spin_unlock_irq(&wb->work_lock); 177 } 178 179 /** 180 * wb_wait_for_completion - wait for completion of bdi_writeback_works 181 * @done: target wb_completion 182 * 183 * Wait for one or more work items issued to @bdi with their ->done field 184 * set to @done, which should have been initialized with 185 * DEFINE_WB_COMPLETION(). This function returns after all such work items 186 * are completed. Work items which are waited upon aren't freed 187 * automatically on completion. 188 */ 189 void wb_wait_for_completion(struct wb_completion *done) 190 { 191 atomic_dec(&done->cnt); /* put down the initial count */ 192 wait_event(*done->waitq, !atomic_read(&done->cnt)); 193 } 194 195 #ifdef CONFIG_CGROUP_WRITEBACK 196 197 /* 198 * Parameters for foreign inode detection, see wbc_detach_inode() to see 199 * how they're used. 200 * 201 * These paramters are inherently heuristical as the detection target 202 * itself is fuzzy. All we want to do is detaching an inode from the 203 * current owner if it's being written to by some other cgroups too much. 204 * 205 * The current cgroup writeback is built on the assumption that multiple 206 * cgroups writing to the same inode concurrently is very rare and a mode 207 * of operation which isn't well supported. As such, the goal is not 208 * taking too long when a different cgroup takes over an inode while 209 * avoiding too aggressive flip-flops from occasional foreign writes. 210 * 211 * We record, very roughly, 2s worth of IO time history and if more than 212 * half of that is foreign, trigger the switch. The recording is quantized 213 * to 16 slots. To avoid tiny writes from swinging the decision too much, 214 * writes smaller than 1/8 of avg size are ignored. 215 */ 216 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 217 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 218 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 219 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 220 221 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 222 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 223 /* each slot's duration is 2s / 16 */ 224 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 225 /* if foreign slots >= 8, switch */ 226 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 227 /* one round can affect upto 5 slots */ 228 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 229 230 /* 231 * Maximum inodes per isw. A specific value has been chosen to make 232 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 233 */ 234 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 235 / sizeof(struct inode *)) 236 237 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 238 static struct workqueue_struct *isw_wq; 239 240 void __inode_attach_wb(struct inode *inode, struct folio *folio) 241 { 242 struct backing_dev_info *bdi = inode_to_bdi(inode); 243 struct bdi_writeback *wb = NULL; 244 245 if (inode_cgwb_enabled(inode)) { 246 struct cgroup_subsys_state *memcg_css; 247 248 if (folio) { 249 memcg_css = mem_cgroup_css_from_folio(folio); 250 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 251 } else { 252 /* must pin memcg_css, see wb_get_create() */ 253 memcg_css = task_get_css(current, memory_cgrp_id); 254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 255 css_put(memcg_css); 256 } 257 } 258 259 if (!wb) 260 wb = &bdi->wb; 261 262 /* 263 * There may be multiple instances of this function racing to 264 * update the same inode. Use cmpxchg() to tell the winner. 265 */ 266 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 267 wb_put(wb); 268 } 269 EXPORT_SYMBOL_GPL(__inode_attach_wb); 270 271 /** 272 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 273 * @inode: inode of interest with i_lock held 274 * @wb: target bdi_writeback 275 * 276 * Remove the inode from wb's io lists and if necessarily put onto b_attached 277 * list. Only inodes attached to cgwb's are kept on this list. 278 */ 279 static void inode_cgwb_move_to_attached(struct inode *inode, 280 struct bdi_writeback *wb) 281 { 282 assert_spin_locked(&wb->list_lock); 283 assert_spin_locked(&inode->i_lock); 284 WARN_ON_ONCE(inode->i_state & I_FREEING); 285 286 inode->i_state &= ~I_SYNC_QUEUED; 287 if (wb != &wb->bdi->wb) 288 list_move(&inode->i_io_list, &wb->b_attached); 289 else 290 list_del_init(&inode->i_io_list); 291 wb_io_lists_depopulated(wb); 292 } 293 294 /** 295 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 296 * @inode: inode of interest with i_lock held 297 * 298 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 299 * held on entry and is released on return. The returned wb is guaranteed 300 * to stay @inode's associated wb until its list_lock is released. 301 */ 302 static struct bdi_writeback * 303 locked_inode_to_wb_and_lock_list(struct inode *inode) 304 __releases(&inode->i_lock) 305 __acquires(&wb->list_lock) 306 { 307 while (true) { 308 struct bdi_writeback *wb = inode_to_wb(inode); 309 310 /* 311 * inode_to_wb() association is protected by both 312 * @inode->i_lock and @wb->list_lock but list_lock nests 313 * outside i_lock. Drop i_lock and verify that the 314 * association hasn't changed after acquiring list_lock. 315 */ 316 wb_get(wb); 317 spin_unlock(&inode->i_lock); 318 spin_lock(&wb->list_lock); 319 320 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 321 if (likely(wb == inode->i_wb)) { 322 wb_put(wb); /* @inode already has ref */ 323 return wb; 324 } 325 326 spin_unlock(&wb->list_lock); 327 wb_put(wb); 328 cpu_relax(); 329 spin_lock(&inode->i_lock); 330 } 331 } 332 333 /** 334 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 335 * @inode: inode of interest 336 * 337 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 338 * on entry. 339 */ 340 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 341 __acquires(&wb->list_lock) 342 { 343 spin_lock(&inode->i_lock); 344 return locked_inode_to_wb_and_lock_list(inode); 345 } 346 347 struct inode_switch_wbs_context { 348 struct rcu_work work; 349 350 /* 351 * Multiple inodes can be switched at once. The switching procedure 352 * consists of two parts, separated by a RCU grace period. To make 353 * sure that the second part is executed for each inode gone through 354 * the first part, all inode pointers are placed into a NULL-terminated 355 * array embedded into struct inode_switch_wbs_context. Otherwise 356 * an inode could be left in a non-consistent state. 357 */ 358 struct bdi_writeback *new_wb; 359 struct inode *inodes[]; 360 }; 361 362 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 363 { 364 down_write(&bdi->wb_switch_rwsem); 365 } 366 367 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 368 { 369 up_write(&bdi->wb_switch_rwsem); 370 } 371 372 static bool inode_do_switch_wbs(struct inode *inode, 373 struct bdi_writeback *old_wb, 374 struct bdi_writeback *new_wb) 375 { 376 struct address_space *mapping = inode->i_mapping; 377 XA_STATE(xas, &mapping->i_pages, 0); 378 struct folio *folio; 379 bool switched = false; 380 381 spin_lock(&inode->i_lock); 382 xa_lock_irq(&mapping->i_pages); 383 384 /* 385 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 386 * path owns the inode and we shouldn't modify ->i_io_list. 387 */ 388 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 389 goto skip_switch; 390 391 trace_inode_switch_wbs(inode, old_wb, new_wb); 392 393 /* 394 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 395 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to 396 * folios actually under writeback. 397 */ 398 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 399 if (folio_test_dirty(folio)) { 400 long nr = folio_nr_pages(folio); 401 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); 402 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); 403 } 404 } 405 406 xas_set(&xas, 0); 407 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 408 long nr = folio_nr_pages(folio); 409 WARN_ON_ONCE(!folio_test_writeback(folio)); 410 wb_stat_mod(old_wb, WB_WRITEBACK, -nr); 411 wb_stat_mod(new_wb, WB_WRITEBACK, nr); 412 } 413 414 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 415 atomic_dec(&old_wb->writeback_inodes); 416 atomic_inc(&new_wb->writeback_inodes); 417 } 418 419 wb_get(new_wb); 420 421 /* 422 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 423 * the specific list @inode was on is ignored and the @inode is put on 424 * ->b_dirty which is always correct including from ->b_dirty_time. 425 * The transfer preserves @inode->dirtied_when ordering. If the @inode 426 * was clean, it means it was on the b_attached list, so move it onto 427 * the b_attached list of @new_wb. 428 */ 429 if (!list_empty(&inode->i_io_list)) { 430 inode->i_wb = new_wb; 431 432 if (inode->i_state & I_DIRTY_ALL) { 433 struct inode *pos; 434 435 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 436 if (time_after_eq(inode->dirtied_when, 437 pos->dirtied_when)) 438 break; 439 inode_io_list_move_locked(inode, new_wb, 440 pos->i_io_list.prev); 441 } else { 442 inode_cgwb_move_to_attached(inode, new_wb); 443 } 444 } else { 445 inode->i_wb = new_wb; 446 } 447 448 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 449 inode->i_wb_frn_winner = 0; 450 inode->i_wb_frn_avg_time = 0; 451 inode->i_wb_frn_history = 0; 452 switched = true; 453 skip_switch: 454 /* 455 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 456 * ensures that the new wb is visible if they see !I_WB_SWITCH. 457 */ 458 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 459 460 xa_unlock_irq(&mapping->i_pages); 461 spin_unlock(&inode->i_lock); 462 463 return switched; 464 } 465 466 static void inode_switch_wbs_work_fn(struct work_struct *work) 467 { 468 struct inode_switch_wbs_context *isw = 469 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 470 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 471 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 472 struct bdi_writeback *new_wb = isw->new_wb; 473 unsigned long nr_switched = 0; 474 struct inode **inodep; 475 476 /* 477 * If @inode switches cgwb membership while sync_inodes_sb() is 478 * being issued, sync_inodes_sb() might miss it. Synchronize. 479 */ 480 down_read(&bdi->wb_switch_rwsem); 481 482 /* 483 * By the time control reaches here, RCU grace period has passed 484 * since I_WB_SWITCH assertion and all wb stat update transactions 485 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 486 * synchronizing against the i_pages lock. 487 * 488 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 489 * gives us exclusion against all wb related operations on @inode 490 * including IO list manipulations and stat updates. 491 */ 492 if (old_wb < new_wb) { 493 spin_lock(&old_wb->list_lock); 494 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 495 } else { 496 spin_lock(&new_wb->list_lock); 497 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 498 } 499 500 for (inodep = isw->inodes; *inodep; inodep++) { 501 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 502 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 503 nr_switched++; 504 } 505 506 spin_unlock(&new_wb->list_lock); 507 spin_unlock(&old_wb->list_lock); 508 509 up_read(&bdi->wb_switch_rwsem); 510 511 if (nr_switched) { 512 wb_wakeup(new_wb); 513 wb_put_many(old_wb, nr_switched); 514 } 515 516 for (inodep = isw->inodes; *inodep; inodep++) 517 iput(*inodep); 518 wb_put(new_wb); 519 kfree(isw); 520 atomic_dec(&isw_nr_in_flight); 521 } 522 523 static bool inode_prepare_wbs_switch(struct inode *inode, 524 struct bdi_writeback *new_wb) 525 { 526 /* 527 * Paired with smp_mb() in cgroup_writeback_umount(). 528 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 529 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 530 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 531 */ 532 smp_mb(); 533 534 if (IS_DAX(inode)) 535 return false; 536 537 /* while holding I_WB_SWITCH, no one else can update the association */ 538 spin_lock(&inode->i_lock); 539 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 540 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 541 inode_to_wb(inode) == new_wb) { 542 spin_unlock(&inode->i_lock); 543 return false; 544 } 545 inode->i_state |= I_WB_SWITCH; 546 __iget(inode); 547 spin_unlock(&inode->i_lock); 548 549 return true; 550 } 551 552 /** 553 * inode_switch_wbs - change the wb association of an inode 554 * @inode: target inode 555 * @new_wb_id: ID of the new wb 556 * 557 * Switch @inode's wb association to the wb identified by @new_wb_id. The 558 * switching is performed asynchronously and may fail silently. 559 */ 560 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 561 { 562 struct backing_dev_info *bdi = inode_to_bdi(inode); 563 struct cgroup_subsys_state *memcg_css; 564 struct inode_switch_wbs_context *isw; 565 566 /* noop if seems to be already in progress */ 567 if (inode->i_state & I_WB_SWITCH) 568 return; 569 570 /* avoid queueing a new switch if too many are already in flight */ 571 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 572 return; 573 574 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); 575 if (!isw) 576 return; 577 578 atomic_inc(&isw_nr_in_flight); 579 580 /* find and pin the new wb */ 581 rcu_read_lock(); 582 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 583 if (memcg_css && !css_tryget(memcg_css)) 584 memcg_css = NULL; 585 rcu_read_unlock(); 586 if (!memcg_css) 587 goto out_free; 588 589 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 590 css_put(memcg_css); 591 if (!isw->new_wb) 592 goto out_free; 593 594 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 595 goto out_free; 596 597 isw->inodes[0] = inode; 598 599 /* 600 * In addition to synchronizing among switchers, I_WB_SWITCH tells 601 * the RCU protected stat update paths to grab the i_page 602 * lock so that stat transfer can synchronize against them. 603 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 604 */ 605 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 606 queue_rcu_work(isw_wq, &isw->work); 607 return; 608 609 out_free: 610 atomic_dec(&isw_nr_in_flight); 611 if (isw->new_wb) 612 wb_put(isw->new_wb); 613 kfree(isw); 614 } 615 616 /** 617 * cleanup_offline_cgwb - detach associated inodes 618 * @wb: target wb 619 * 620 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 621 * to eventually release the dying @wb. Returns %true if not all inodes were 622 * switched and the function has to be restarted. 623 */ 624 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 625 { 626 struct cgroup_subsys_state *memcg_css; 627 struct inode_switch_wbs_context *isw; 628 struct inode *inode; 629 int nr; 630 bool restart = false; 631 632 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), 633 GFP_KERNEL); 634 if (!isw) 635 return restart; 636 637 atomic_inc(&isw_nr_in_flight); 638 639 for (memcg_css = wb->memcg_css->parent; memcg_css; 640 memcg_css = memcg_css->parent) { 641 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 642 if (isw->new_wb) 643 break; 644 } 645 if (unlikely(!isw->new_wb)) 646 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 647 648 nr = 0; 649 spin_lock(&wb->list_lock); 650 list_for_each_entry(inode, &wb->b_attached, i_io_list) { 651 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 652 continue; 653 654 isw->inodes[nr++] = inode; 655 656 if (nr >= WB_MAX_INODES_PER_ISW - 1) { 657 restart = true; 658 break; 659 } 660 } 661 spin_unlock(&wb->list_lock); 662 663 /* no attached inodes? bail out */ 664 if (nr == 0) { 665 atomic_dec(&isw_nr_in_flight); 666 wb_put(isw->new_wb); 667 kfree(isw); 668 return restart; 669 } 670 671 /* 672 * In addition to synchronizing among switchers, I_WB_SWITCH tells 673 * the RCU protected stat update paths to grab the i_page 674 * lock so that stat transfer can synchronize against them. 675 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 676 */ 677 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 678 queue_rcu_work(isw_wq, &isw->work); 679 680 return restart; 681 } 682 683 /** 684 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 685 * @wbc: writeback_control of interest 686 * @inode: target inode 687 * 688 * @inode is locked and about to be written back under the control of @wbc. 689 * Record @inode's writeback context into @wbc and unlock the i_lock. On 690 * writeback completion, wbc_detach_inode() should be called. This is used 691 * to track the cgroup writeback context. 692 */ 693 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 694 struct inode *inode) 695 { 696 if (!inode_cgwb_enabled(inode)) { 697 spin_unlock(&inode->i_lock); 698 return; 699 } 700 701 wbc->wb = inode_to_wb(inode); 702 wbc->inode = inode; 703 704 wbc->wb_id = wbc->wb->memcg_css->id; 705 wbc->wb_lcand_id = inode->i_wb_frn_winner; 706 wbc->wb_tcand_id = 0; 707 wbc->wb_bytes = 0; 708 wbc->wb_lcand_bytes = 0; 709 wbc->wb_tcand_bytes = 0; 710 711 wb_get(wbc->wb); 712 spin_unlock(&inode->i_lock); 713 714 /* 715 * A dying wb indicates that either the blkcg associated with the 716 * memcg changed or the associated memcg is dying. In the first 717 * case, a replacement wb should already be available and we should 718 * refresh the wb immediately. In the second case, trying to 719 * refresh will keep failing. 720 */ 721 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 722 inode_switch_wbs(inode, wbc->wb_id); 723 } 724 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 725 726 /** 727 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 728 * @wbc: writeback_control of the just finished writeback 729 * 730 * To be called after a writeback attempt of an inode finishes and undoes 731 * wbc_attach_and_unlock_inode(). Can be called under any context. 732 * 733 * As concurrent write sharing of an inode is expected to be very rare and 734 * memcg only tracks page ownership on first-use basis severely confining 735 * the usefulness of such sharing, cgroup writeback tracks ownership 736 * per-inode. While the support for concurrent write sharing of an inode 737 * is deemed unnecessary, an inode being written to by different cgroups at 738 * different points in time is a lot more common, and, more importantly, 739 * charging only by first-use can too readily lead to grossly incorrect 740 * behaviors (single foreign page can lead to gigabytes of writeback to be 741 * incorrectly attributed). 742 * 743 * To resolve this issue, cgroup writeback detects the majority dirtier of 744 * an inode and transfers the ownership to it. To avoid unnecessary 745 * oscillation, the detection mechanism keeps track of history and gives 746 * out the switch verdict only if the foreign usage pattern is stable over 747 * a certain amount of time and/or writeback attempts. 748 * 749 * On each writeback attempt, @wbc tries to detect the majority writer 750 * using Boyer-Moore majority vote algorithm. In addition to the byte 751 * count from the majority voting, it also counts the bytes written for the 752 * current wb and the last round's winner wb (max of last round's current 753 * wb, the winner from two rounds ago, and the last round's majority 754 * candidate). Keeping track of the historical winner helps the algorithm 755 * to semi-reliably detect the most active writer even when it's not the 756 * absolute majority. 757 * 758 * Once the winner of the round is determined, whether the winner is 759 * foreign or not and how much IO time the round consumed is recorded in 760 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 761 * over a certain threshold, the switch verdict is given. 762 */ 763 void wbc_detach_inode(struct writeback_control *wbc) 764 { 765 struct bdi_writeback *wb = wbc->wb; 766 struct inode *inode = wbc->inode; 767 unsigned long avg_time, max_bytes, max_time; 768 u16 history; 769 int max_id; 770 771 if (!wb) 772 return; 773 774 history = inode->i_wb_frn_history; 775 avg_time = inode->i_wb_frn_avg_time; 776 777 /* pick the winner of this round */ 778 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 779 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 780 max_id = wbc->wb_id; 781 max_bytes = wbc->wb_bytes; 782 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 783 max_id = wbc->wb_lcand_id; 784 max_bytes = wbc->wb_lcand_bytes; 785 } else { 786 max_id = wbc->wb_tcand_id; 787 max_bytes = wbc->wb_tcand_bytes; 788 } 789 790 /* 791 * Calculate the amount of IO time the winner consumed and fold it 792 * into the running average kept per inode. If the consumed IO 793 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 794 * deciding whether to switch or not. This is to prevent one-off 795 * small dirtiers from skewing the verdict. 796 */ 797 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 798 wb->avg_write_bandwidth); 799 if (avg_time) 800 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 801 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 802 else 803 avg_time = max_time; /* immediate catch up on first run */ 804 805 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 806 int slots; 807 808 /* 809 * The switch verdict is reached if foreign wb's consume 810 * more than a certain proportion of IO time in a 811 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 812 * history mask where each bit represents one sixteenth of 813 * the period. Determine the number of slots to shift into 814 * history from @max_time. 815 */ 816 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 817 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 818 history <<= slots; 819 if (wbc->wb_id != max_id) 820 history |= (1U << slots) - 1; 821 822 if (history) 823 trace_inode_foreign_history(inode, wbc, history); 824 825 /* 826 * Switch if the current wb isn't the consistent winner. 827 * If there are multiple closely competing dirtiers, the 828 * inode may switch across them repeatedly over time, which 829 * is okay. The main goal is avoiding keeping an inode on 830 * the wrong wb for an extended period of time. 831 */ 832 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS) 833 inode_switch_wbs(inode, max_id); 834 } 835 836 /* 837 * Multiple instances of this function may race to update the 838 * following fields but we don't mind occassional inaccuracies. 839 */ 840 inode->i_wb_frn_winner = max_id; 841 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 842 inode->i_wb_frn_history = history; 843 844 wb_put(wbc->wb); 845 wbc->wb = NULL; 846 } 847 EXPORT_SYMBOL_GPL(wbc_detach_inode); 848 849 /** 850 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 851 * @wbc: writeback_control of the writeback in progress 852 * @page: page being written out 853 * @bytes: number of bytes being written out 854 * 855 * @bytes from @page are about to written out during the writeback 856 * controlled by @wbc. Keep the book for foreign inode detection. See 857 * wbc_detach_inode(). 858 */ 859 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 860 size_t bytes) 861 { 862 struct folio *folio; 863 struct cgroup_subsys_state *css; 864 int id; 865 866 /* 867 * pageout() path doesn't attach @wbc to the inode being written 868 * out. This is intentional as we don't want the function to block 869 * behind a slow cgroup. Ultimately, we want pageout() to kick off 870 * regular writeback instead of writing things out itself. 871 */ 872 if (!wbc->wb || wbc->no_cgroup_owner) 873 return; 874 875 folio = page_folio(page); 876 css = mem_cgroup_css_from_folio(folio); 877 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 878 if (!(css->flags & CSS_ONLINE)) 879 return; 880 881 id = css->id; 882 883 if (id == wbc->wb_id) { 884 wbc->wb_bytes += bytes; 885 return; 886 } 887 888 if (id == wbc->wb_lcand_id) 889 wbc->wb_lcand_bytes += bytes; 890 891 /* Boyer-Moore majority vote algorithm */ 892 if (!wbc->wb_tcand_bytes) 893 wbc->wb_tcand_id = id; 894 if (id == wbc->wb_tcand_id) 895 wbc->wb_tcand_bytes += bytes; 896 else 897 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 898 } 899 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 900 901 /** 902 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 903 * @wb: target bdi_writeback to split @nr_pages to 904 * @nr_pages: number of pages to write for the whole bdi 905 * 906 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 907 * relation to the total write bandwidth of all wb's w/ dirty inodes on 908 * @wb->bdi. 909 */ 910 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 911 { 912 unsigned long this_bw = wb->avg_write_bandwidth; 913 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 914 915 if (nr_pages == LONG_MAX) 916 return LONG_MAX; 917 918 /* 919 * This may be called on clean wb's and proportional distribution 920 * may not make sense, just use the original @nr_pages in those 921 * cases. In general, we wanna err on the side of writing more. 922 */ 923 if (!tot_bw || this_bw >= tot_bw) 924 return nr_pages; 925 else 926 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 927 } 928 929 /** 930 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 931 * @bdi: target backing_dev_info 932 * @base_work: wb_writeback_work to issue 933 * @skip_if_busy: skip wb's which already have writeback in progress 934 * 935 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 936 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 937 * distributed to the busy wbs according to each wb's proportion in the 938 * total active write bandwidth of @bdi. 939 */ 940 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 941 struct wb_writeback_work *base_work, 942 bool skip_if_busy) 943 { 944 struct bdi_writeback *last_wb = NULL; 945 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 946 struct bdi_writeback, bdi_node); 947 948 might_sleep(); 949 restart: 950 rcu_read_lock(); 951 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 952 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 953 struct wb_writeback_work fallback_work; 954 struct wb_writeback_work *work; 955 long nr_pages; 956 957 if (last_wb) { 958 wb_put(last_wb); 959 last_wb = NULL; 960 } 961 962 /* SYNC_ALL writes out I_DIRTY_TIME too */ 963 if (!wb_has_dirty_io(wb) && 964 (base_work->sync_mode == WB_SYNC_NONE || 965 list_empty(&wb->b_dirty_time))) 966 continue; 967 if (skip_if_busy && writeback_in_progress(wb)) 968 continue; 969 970 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 971 972 work = kmalloc(sizeof(*work), GFP_ATOMIC); 973 if (work) { 974 *work = *base_work; 975 work->nr_pages = nr_pages; 976 work->auto_free = 1; 977 wb_queue_work(wb, work); 978 continue; 979 } 980 981 /* 982 * If wb_tryget fails, the wb has been shutdown, skip it. 983 * 984 * Pin @wb so that it stays on @bdi->wb_list. This allows 985 * continuing iteration from @wb after dropping and 986 * regrabbing rcu read lock. 987 */ 988 if (!wb_tryget(wb)) 989 continue; 990 991 /* alloc failed, execute synchronously using on-stack fallback */ 992 work = &fallback_work; 993 *work = *base_work; 994 work->nr_pages = nr_pages; 995 work->auto_free = 0; 996 work->done = &fallback_work_done; 997 998 wb_queue_work(wb, work); 999 last_wb = wb; 1000 1001 rcu_read_unlock(); 1002 wb_wait_for_completion(&fallback_work_done); 1003 goto restart; 1004 } 1005 rcu_read_unlock(); 1006 1007 if (last_wb) 1008 wb_put(last_wb); 1009 } 1010 1011 /** 1012 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1013 * @bdi_id: target bdi id 1014 * @memcg_id: target memcg css id 1015 * @reason: reason why some writeback work initiated 1016 * @done: target wb_completion 1017 * 1018 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1019 * with the specified parameters. 1020 */ 1021 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, 1022 enum wb_reason reason, struct wb_completion *done) 1023 { 1024 struct backing_dev_info *bdi; 1025 struct cgroup_subsys_state *memcg_css; 1026 struct bdi_writeback *wb; 1027 struct wb_writeback_work *work; 1028 unsigned long dirty; 1029 int ret; 1030 1031 /* lookup bdi and memcg */ 1032 bdi = bdi_get_by_id(bdi_id); 1033 if (!bdi) 1034 return -ENOENT; 1035 1036 rcu_read_lock(); 1037 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1038 if (memcg_css && !css_tryget(memcg_css)) 1039 memcg_css = NULL; 1040 rcu_read_unlock(); 1041 if (!memcg_css) { 1042 ret = -ENOENT; 1043 goto out_bdi_put; 1044 } 1045 1046 /* 1047 * And find the associated wb. If the wb isn't there already 1048 * there's nothing to flush, don't create one. 1049 */ 1050 wb = wb_get_lookup(bdi, memcg_css); 1051 if (!wb) { 1052 ret = -ENOENT; 1053 goto out_css_put; 1054 } 1055 1056 /* 1057 * The caller is attempting to write out most of 1058 * the currently dirty pages. Let's take the current dirty page 1059 * count and inflate it by 25% which should be large enough to 1060 * flush out most dirty pages while avoiding getting livelocked by 1061 * concurrent dirtiers. 1062 * 1063 * BTW the memcg stats are flushed periodically and this is best-effort 1064 * estimation, so some potential error is ok. 1065 */ 1066 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); 1067 dirty = dirty * 10 / 8; 1068 1069 /* issue the writeback work */ 1070 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1071 if (work) { 1072 work->nr_pages = dirty; 1073 work->sync_mode = WB_SYNC_NONE; 1074 work->range_cyclic = 1; 1075 work->reason = reason; 1076 work->done = done; 1077 work->auto_free = 1; 1078 wb_queue_work(wb, work); 1079 ret = 0; 1080 } else { 1081 ret = -ENOMEM; 1082 } 1083 1084 wb_put(wb); 1085 out_css_put: 1086 css_put(memcg_css); 1087 out_bdi_put: 1088 bdi_put(bdi); 1089 return ret; 1090 } 1091 1092 /** 1093 * cgroup_writeback_umount - flush inode wb switches for umount 1094 * 1095 * This function is called when a super_block is about to be destroyed and 1096 * flushes in-flight inode wb switches. An inode wb switch goes through 1097 * RCU and then workqueue, so the two need to be flushed in order to ensure 1098 * that all previously scheduled switches are finished. As wb switches are 1099 * rare occurrences and synchronize_rcu() can take a while, perform 1100 * flushing iff wb switches are in flight. 1101 */ 1102 void cgroup_writeback_umount(void) 1103 { 1104 /* 1105 * SB_ACTIVE should be reliably cleared before checking 1106 * isw_nr_in_flight, see generic_shutdown_super(). 1107 */ 1108 smp_mb(); 1109 1110 if (atomic_read(&isw_nr_in_flight)) { 1111 /* 1112 * Use rcu_barrier() to wait for all pending callbacks to 1113 * ensure that all in-flight wb switches are in the workqueue. 1114 */ 1115 rcu_barrier(); 1116 flush_workqueue(isw_wq); 1117 } 1118 } 1119 1120 static int __init cgroup_writeback_init(void) 1121 { 1122 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1123 if (!isw_wq) 1124 return -ENOMEM; 1125 return 0; 1126 } 1127 fs_initcall(cgroup_writeback_init); 1128 1129 #else /* CONFIG_CGROUP_WRITEBACK */ 1130 1131 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1132 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1133 1134 static void inode_cgwb_move_to_attached(struct inode *inode, 1135 struct bdi_writeback *wb) 1136 { 1137 assert_spin_locked(&wb->list_lock); 1138 assert_spin_locked(&inode->i_lock); 1139 WARN_ON_ONCE(inode->i_state & I_FREEING); 1140 1141 inode->i_state &= ~I_SYNC_QUEUED; 1142 list_del_init(&inode->i_io_list); 1143 wb_io_lists_depopulated(wb); 1144 } 1145 1146 static struct bdi_writeback * 1147 locked_inode_to_wb_and_lock_list(struct inode *inode) 1148 __releases(&inode->i_lock) 1149 __acquires(&wb->list_lock) 1150 { 1151 struct bdi_writeback *wb = inode_to_wb(inode); 1152 1153 spin_unlock(&inode->i_lock); 1154 spin_lock(&wb->list_lock); 1155 return wb; 1156 } 1157 1158 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1159 __acquires(&wb->list_lock) 1160 { 1161 struct bdi_writeback *wb = inode_to_wb(inode); 1162 1163 spin_lock(&wb->list_lock); 1164 return wb; 1165 } 1166 1167 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1168 { 1169 return nr_pages; 1170 } 1171 1172 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1173 struct wb_writeback_work *base_work, 1174 bool skip_if_busy) 1175 { 1176 might_sleep(); 1177 1178 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1179 base_work->auto_free = 0; 1180 wb_queue_work(&bdi->wb, base_work); 1181 } 1182 } 1183 1184 #endif /* CONFIG_CGROUP_WRITEBACK */ 1185 1186 /* 1187 * Add in the number of potentially dirty inodes, because each inode 1188 * write can dirty pagecache in the underlying blockdev. 1189 */ 1190 static unsigned long get_nr_dirty_pages(void) 1191 { 1192 return global_node_page_state(NR_FILE_DIRTY) + 1193 get_nr_dirty_inodes(); 1194 } 1195 1196 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1197 { 1198 if (!wb_has_dirty_io(wb)) 1199 return; 1200 1201 /* 1202 * All callers of this function want to start writeback of all 1203 * dirty pages. Places like vmscan can call this at a very 1204 * high frequency, causing pointless allocations of tons of 1205 * work items and keeping the flusher threads busy retrieving 1206 * that work. Ensure that we only allow one of them pending and 1207 * inflight at the time. 1208 */ 1209 if (test_bit(WB_start_all, &wb->state) || 1210 test_and_set_bit(WB_start_all, &wb->state)) 1211 return; 1212 1213 wb->start_all_reason = reason; 1214 wb_wakeup(wb); 1215 } 1216 1217 /** 1218 * wb_start_background_writeback - start background writeback 1219 * @wb: bdi_writback to write from 1220 * 1221 * Description: 1222 * This makes sure WB_SYNC_NONE background writeback happens. When 1223 * this function returns, it is only guaranteed that for given wb 1224 * some IO is happening if we are over background dirty threshold. 1225 * Caller need not hold sb s_umount semaphore. 1226 */ 1227 void wb_start_background_writeback(struct bdi_writeback *wb) 1228 { 1229 /* 1230 * We just wake up the flusher thread. It will perform background 1231 * writeback as soon as there is no other work to do. 1232 */ 1233 trace_writeback_wake_background(wb); 1234 wb_wakeup(wb); 1235 } 1236 1237 /* 1238 * Remove the inode from the writeback list it is on. 1239 */ 1240 void inode_io_list_del(struct inode *inode) 1241 { 1242 struct bdi_writeback *wb; 1243 1244 wb = inode_to_wb_and_lock_list(inode); 1245 spin_lock(&inode->i_lock); 1246 1247 inode->i_state &= ~I_SYNC_QUEUED; 1248 list_del_init(&inode->i_io_list); 1249 wb_io_lists_depopulated(wb); 1250 1251 spin_unlock(&inode->i_lock); 1252 spin_unlock(&wb->list_lock); 1253 } 1254 EXPORT_SYMBOL(inode_io_list_del); 1255 1256 /* 1257 * mark an inode as under writeback on the sb 1258 */ 1259 void sb_mark_inode_writeback(struct inode *inode) 1260 { 1261 struct super_block *sb = inode->i_sb; 1262 unsigned long flags; 1263 1264 if (list_empty(&inode->i_wb_list)) { 1265 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1266 if (list_empty(&inode->i_wb_list)) { 1267 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1268 trace_sb_mark_inode_writeback(inode); 1269 } 1270 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1271 } 1272 } 1273 1274 /* 1275 * clear an inode as under writeback on the sb 1276 */ 1277 void sb_clear_inode_writeback(struct inode *inode) 1278 { 1279 struct super_block *sb = inode->i_sb; 1280 unsigned long flags; 1281 1282 if (!list_empty(&inode->i_wb_list)) { 1283 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1284 if (!list_empty(&inode->i_wb_list)) { 1285 list_del_init(&inode->i_wb_list); 1286 trace_sb_clear_inode_writeback(inode); 1287 } 1288 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1289 } 1290 } 1291 1292 /* 1293 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1294 * furthest end of its superblock's dirty-inode list. 1295 * 1296 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1297 * already the most-recently-dirtied inode on the b_dirty list. If that is 1298 * the case then the inode must have been redirtied while it was being written 1299 * out and we don't reset its dirtied_when. 1300 */ 1301 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1302 { 1303 assert_spin_locked(&inode->i_lock); 1304 1305 inode->i_state &= ~I_SYNC_QUEUED; 1306 /* 1307 * When the inode is being freed just don't bother with dirty list 1308 * tracking. Flush worker will ignore this inode anyway and it will 1309 * trigger assertions in inode_io_list_move_locked(). 1310 */ 1311 if (inode->i_state & I_FREEING) { 1312 list_del_init(&inode->i_io_list); 1313 wb_io_lists_depopulated(wb); 1314 return; 1315 } 1316 if (!list_empty(&wb->b_dirty)) { 1317 struct inode *tail; 1318 1319 tail = wb_inode(wb->b_dirty.next); 1320 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1321 inode->dirtied_when = jiffies; 1322 } 1323 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1324 } 1325 1326 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1327 { 1328 spin_lock(&inode->i_lock); 1329 redirty_tail_locked(inode, wb); 1330 spin_unlock(&inode->i_lock); 1331 } 1332 1333 /* 1334 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1335 */ 1336 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1337 { 1338 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1339 } 1340 1341 static void inode_sync_complete(struct inode *inode) 1342 { 1343 inode->i_state &= ~I_SYNC; 1344 /* If inode is clean an unused, put it into LRU now... */ 1345 inode_add_lru(inode); 1346 /* Waiters must see I_SYNC cleared before being woken up */ 1347 smp_mb(); 1348 wake_up_bit(&inode->i_state, __I_SYNC); 1349 } 1350 1351 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1352 { 1353 bool ret = time_after(inode->dirtied_when, t); 1354 #ifndef CONFIG_64BIT 1355 /* 1356 * For inodes being constantly redirtied, dirtied_when can get stuck. 1357 * It _appears_ to be in the future, but is actually in distant past. 1358 * This test is necessary to prevent such wrapped-around relative times 1359 * from permanently stopping the whole bdi writeback. 1360 */ 1361 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1362 #endif 1363 return ret; 1364 } 1365 1366 /* 1367 * Move expired (dirtied before dirtied_before) dirty inodes from 1368 * @delaying_queue to @dispatch_queue. 1369 */ 1370 static int move_expired_inodes(struct list_head *delaying_queue, 1371 struct list_head *dispatch_queue, 1372 unsigned long dirtied_before) 1373 { 1374 LIST_HEAD(tmp); 1375 struct list_head *pos, *node; 1376 struct super_block *sb = NULL; 1377 struct inode *inode; 1378 int do_sb_sort = 0; 1379 int moved = 0; 1380 1381 while (!list_empty(delaying_queue)) { 1382 inode = wb_inode(delaying_queue->prev); 1383 if (inode_dirtied_after(inode, dirtied_before)) 1384 break; 1385 spin_lock(&inode->i_lock); 1386 list_move(&inode->i_io_list, &tmp); 1387 moved++; 1388 inode->i_state |= I_SYNC_QUEUED; 1389 spin_unlock(&inode->i_lock); 1390 if (sb_is_blkdev_sb(inode->i_sb)) 1391 continue; 1392 if (sb && sb != inode->i_sb) 1393 do_sb_sort = 1; 1394 sb = inode->i_sb; 1395 } 1396 1397 /* just one sb in list, splice to dispatch_queue and we're done */ 1398 if (!do_sb_sort) { 1399 list_splice(&tmp, dispatch_queue); 1400 goto out; 1401 } 1402 1403 /* 1404 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', 1405 * we don't take inode->i_lock here because it is just a pointless overhead. 1406 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is 1407 * fully under our control. 1408 */ 1409 while (!list_empty(&tmp)) { 1410 sb = wb_inode(tmp.prev)->i_sb; 1411 list_for_each_prev_safe(pos, node, &tmp) { 1412 inode = wb_inode(pos); 1413 if (inode->i_sb == sb) 1414 list_move(&inode->i_io_list, dispatch_queue); 1415 } 1416 } 1417 out: 1418 return moved; 1419 } 1420 1421 /* 1422 * Queue all expired dirty inodes for io, eldest first. 1423 * Before 1424 * newly dirtied b_dirty b_io b_more_io 1425 * =============> gf edc BA 1426 * After 1427 * newly dirtied b_dirty b_io b_more_io 1428 * =============> g fBAedc 1429 * | 1430 * +--> dequeue for IO 1431 */ 1432 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1433 unsigned long dirtied_before) 1434 { 1435 int moved; 1436 unsigned long time_expire_jif = dirtied_before; 1437 1438 assert_spin_locked(&wb->list_lock); 1439 list_splice_init(&wb->b_more_io, &wb->b_io); 1440 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1441 if (!work->for_sync) 1442 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1443 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1444 time_expire_jif); 1445 if (moved) 1446 wb_io_lists_populated(wb); 1447 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1448 } 1449 1450 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1451 { 1452 int ret; 1453 1454 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1455 trace_writeback_write_inode_start(inode, wbc); 1456 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1457 trace_writeback_write_inode(inode, wbc); 1458 return ret; 1459 } 1460 return 0; 1461 } 1462 1463 /* 1464 * Wait for writeback on an inode to complete. Called with i_lock held. 1465 * Caller must make sure inode cannot go away when we drop i_lock. 1466 */ 1467 static void __inode_wait_for_writeback(struct inode *inode) 1468 __releases(inode->i_lock) 1469 __acquires(inode->i_lock) 1470 { 1471 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1472 wait_queue_head_t *wqh; 1473 1474 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1475 while (inode->i_state & I_SYNC) { 1476 spin_unlock(&inode->i_lock); 1477 __wait_on_bit(wqh, &wq, bit_wait, 1478 TASK_UNINTERRUPTIBLE); 1479 spin_lock(&inode->i_lock); 1480 } 1481 } 1482 1483 /* 1484 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1485 */ 1486 void inode_wait_for_writeback(struct inode *inode) 1487 { 1488 spin_lock(&inode->i_lock); 1489 __inode_wait_for_writeback(inode); 1490 spin_unlock(&inode->i_lock); 1491 } 1492 1493 /* 1494 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1495 * held and drops it. It is aimed for callers not holding any inode reference 1496 * so once i_lock is dropped, inode can go away. 1497 */ 1498 static void inode_sleep_on_writeback(struct inode *inode) 1499 __releases(inode->i_lock) 1500 { 1501 DEFINE_WAIT(wait); 1502 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1503 int sleep; 1504 1505 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1506 sleep = inode->i_state & I_SYNC; 1507 spin_unlock(&inode->i_lock); 1508 if (sleep) 1509 schedule(); 1510 finish_wait(wqh, &wait); 1511 } 1512 1513 /* 1514 * Find proper writeback list for the inode depending on its current state and 1515 * possibly also change of its state while we were doing writeback. Here we 1516 * handle things such as livelock prevention or fairness of writeback among 1517 * inodes. This function can be called only by flusher thread - noone else 1518 * processes all inodes in writeback lists and requeueing inodes behind flusher 1519 * thread's back can have unexpected consequences. 1520 */ 1521 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1522 struct writeback_control *wbc) 1523 { 1524 if (inode->i_state & I_FREEING) 1525 return; 1526 1527 /* 1528 * Sync livelock prevention. Each inode is tagged and synced in one 1529 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1530 * the dirty time to prevent enqueue and sync it again. 1531 */ 1532 if ((inode->i_state & I_DIRTY) && 1533 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1534 inode->dirtied_when = jiffies; 1535 1536 if (wbc->pages_skipped) { 1537 /* 1538 * writeback is not making progress due to locked 1539 * buffers. Skip this inode for now. 1540 */ 1541 redirty_tail_locked(inode, wb); 1542 return; 1543 } 1544 1545 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1546 /* 1547 * We didn't write back all the pages. nfs_writepages() 1548 * sometimes bales out without doing anything. 1549 */ 1550 if (wbc->nr_to_write <= 0) { 1551 /* Slice used up. Queue for next turn. */ 1552 requeue_io(inode, wb); 1553 } else { 1554 /* 1555 * Writeback blocked by something other than 1556 * congestion. Delay the inode for some time to 1557 * avoid spinning on the CPU (100% iowait) 1558 * retrying writeback of the dirty page/inode 1559 * that cannot be performed immediately. 1560 */ 1561 redirty_tail_locked(inode, wb); 1562 } 1563 } else if (inode->i_state & I_DIRTY) { 1564 /* 1565 * Filesystems can dirty the inode during writeback operations, 1566 * such as delayed allocation during submission or metadata 1567 * updates after data IO completion. 1568 */ 1569 redirty_tail_locked(inode, wb); 1570 } else if (inode->i_state & I_DIRTY_TIME) { 1571 inode->dirtied_when = jiffies; 1572 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1573 inode->i_state &= ~I_SYNC_QUEUED; 1574 } else { 1575 /* The inode is clean. Remove from writeback lists. */ 1576 inode_cgwb_move_to_attached(inode, wb); 1577 } 1578 } 1579 1580 /* 1581 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1582 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1583 * 1584 * This doesn't remove the inode from the writeback list it is on, except 1585 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1586 * expiration. The caller is otherwise responsible for writeback list handling. 1587 * 1588 * The caller is also responsible for setting the I_SYNC flag beforehand and 1589 * calling inode_sync_complete() to clear it afterwards. 1590 */ 1591 static int 1592 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1593 { 1594 struct address_space *mapping = inode->i_mapping; 1595 long nr_to_write = wbc->nr_to_write; 1596 unsigned dirty; 1597 int ret; 1598 1599 WARN_ON(!(inode->i_state & I_SYNC)); 1600 1601 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1602 1603 ret = do_writepages(mapping, wbc); 1604 1605 /* 1606 * Make sure to wait on the data before writing out the metadata. 1607 * This is important for filesystems that modify metadata on data 1608 * I/O completion. We don't do it for sync(2) writeback because it has a 1609 * separate, external IO completion path and ->sync_fs for guaranteeing 1610 * inode metadata is written back correctly. 1611 */ 1612 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1613 int err = filemap_fdatawait(mapping); 1614 if (ret == 0) 1615 ret = err; 1616 } 1617 1618 /* 1619 * If the inode has dirty timestamps and we need to write them, call 1620 * mark_inode_dirty_sync() to notify the filesystem about it and to 1621 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1622 */ 1623 if ((inode->i_state & I_DIRTY_TIME) && 1624 (wbc->sync_mode == WB_SYNC_ALL || 1625 time_after(jiffies, inode->dirtied_time_when + 1626 dirtytime_expire_interval * HZ))) { 1627 trace_writeback_lazytime(inode); 1628 mark_inode_dirty_sync(inode); 1629 } 1630 1631 /* 1632 * Get and clear the dirty flags from i_state. This needs to be done 1633 * after calling writepages because some filesystems may redirty the 1634 * inode during writepages due to delalloc. It also needs to be done 1635 * after handling timestamp expiration, as that may dirty the inode too. 1636 */ 1637 spin_lock(&inode->i_lock); 1638 dirty = inode->i_state & I_DIRTY; 1639 inode->i_state &= ~dirty; 1640 1641 /* 1642 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1643 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1644 * either they see the I_DIRTY bits cleared or we see the dirtied 1645 * inode. 1646 * 1647 * I_DIRTY_PAGES is always cleared together above even if @mapping 1648 * still has dirty pages. The flag is reinstated after smp_mb() if 1649 * necessary. This guarantees that either __mark_inode_dirty() 1650 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1651 */ 1652 smp_mb(); 1653 1654 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1655 inode->i_state |= I_DIRTY_PAGES; 1656 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) { 1657 if (!(inode->i_state & I_DIRTY_PAGES)) { 1658 inode->i_state &= ~I_PINNING_FSCACHE_WB; 1659 wbc->unpinned_fscache_wb = true; 1660 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */ 1661 } 1662 } 1663 1664 spin_unlock(&inode->i_lock); 1665 1666 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1667 if (dirty & ~I_DIRTY_PAGES) { 1668 int err = write_inode(inode, wbc); 1669 if (ret == 0) 1670 ret = err; 1671 } 1672 wbc->unpinned_fscache_wb = false; 1673 trace_writeback_single_inode(inode, wbc, nr_to_write); 1674 return ret; 1675 } 1676 1677 /* 1678 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1679 * the regular batched writeback done by the flusher threads in 1680 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1681 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1682 * 1683 * To prevent the inode from going away, either the caller must have a reference 1684 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1685 */ 1686 static int writeback_single_inode(struct inode *inode, 1687 struct writeback_control *wbc) 1688 { 1689 struct bdi_writeback *wb; 1690 int ret = 0; 1691 1692 spin_lock(&inode->i_lock); 1693 if (!atomic_read(&inode->i_count)) 1694 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1695 else 1696 WARN_ON(inode->i_state & I_WILL_FREE); 1697 1698 if (inode->i_state & I_SYNC) { 1699 /* 1700 * Writeback is already running on the inode. For WB_SYNC_NONE, 1701 * that's enough and we can just return. For WB_SYNC_ALL, we 1702 * must wait for the existing writeback to complete, then do 1703 * writeback again if there's anything left. 1704 */ 1705 if (wbc->sync_mode != WB_SYNC_ALL) 1706 goto out; 1707 __inode_wait_for_writeback(inode); 1708 } 1709 WARN_ON(inode->i_state & I_SYNC); 1710 /* 1711 * If the inode is already fully clean, then there's nothing to do. 1712 * 1713 * For data-integrity syncs we also need to check whether any pages are 1714 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1715 * there are any such pages, we'll need to wait for them. 1716 */ 1717 if (!(inode->i_state & I_DIRTY_ALL) && 1718 (wbc->sync_mode != WB_SYNC_ALL || 1719 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1720 goto out; 1721 inode->i_state |= I_SYNC; 1722 wbc_attach_and_unlock_inode(wbc, inode); 1723 1724 ret = __writeback_single_inode(inode, wbc); 1725 1726 wbc_detach_inode(wbc); 1727 1728 wb = inode_to_wb_and_lock_list(inode); 1729 spin_lock(&inode->i_lock); 1730 /* 1731 * If the inode is freeing, its i_io_list shoudn't be updated 1732 * as it can be finally deleted at this moment. 1733 */ 1734 if (!(inode->i_state & I_FREEING)) { 1735 /* 1736 * If the inode is now fully clean, then it can be safely 1737 * removed from its writeback list (if any). Otherwise the 1738 * flusher threads are responsible for the writeback lists. 1739 */ 1740 if (!(inode->i_state & I_DIRTY_ALL)) 1741 inode_cgwb_move_to_attached(inode, wb); 1742 else if (!(inode->i_state & I_SYNC_QUEUED)) { 1743 if ((inode->i_state & I_DIRTY)) 1744 redirty_tail_locked(inode, wb); 1745 else if (inode->i_state & I_DIRTY_TIME) { 1746 inode->dirtied_when = jiffies; 1747 inode_io_list_move_locked(inode, 1748 wb, 1749 &wb->b_dirty_time); 1750 } 1751 } 1752 } 1753 1754 spin_unlock(&wb->list_lock); 1755 inode_sync_complete(inode); 1756 out: 1757 spin_unlock(&inode->i_lock); 1758 return ret; 1759 } 1760 1761 static long writeback_chunk_size(struct bdi_writeback *wb, 1762 struct wb_writeback_work *work) 1763 { 1764 long pages; 1765 1766 /* 1767 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1768 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1769 * here avoids calling into writeback_inodes_wb() more than once. 1770 * 1771 * The intended call sequence for WB_SYNC_ALL writeback is: 1772 * 1773 * wb_writeback() 1774 * writeback_sb_inodes() <== called only once 1775 * write_cache_pages() <== called once for each inode 1776 * (quickly) tag currently dirty pages 1777 * (maybe slowly) sync all tagged pages 1778 */ 1779 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1780 pages = LONG_MAX; 1781 else { 1782 pages = min(wb->avg_write_bandwidth / 2, 1783 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1784 pages = min(pages, work->nr_pages); 1785 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1786 MIN_WRITEBACK_PAGES); 1787 } 1788 1789 return pages; 1790 } 1791 1792 /* 1793 * Write a portion of b_io inodes which belong to @sb. 1794 * 1795 * Return the number of pages and/or inodes written. 1796 * 1797 * NOTE! This is called with wb->list_lock held, and will 1798 * unlock and relock that for each inode it ends up doing 1799 * IO for. 1800 */ 1801 static long writeback_sb_inodes(struct super_block *sb, 1802 struct bdi_writeback *wb, 1803 struct wb_writeback_work *work) 1804 { 1805 struct writeback_control wbc = { 1806 .sync_mode = work->sync_mode, 1807 .tagged_writepages = work->tagged_writepages, 1808 .for_kupdate = work->for_kupdate, 1809 .for_background = work->for_background, 1810 .for_sync = work->for_sync, 1811 .range_cyclic = work->range_cyclic, 1812 .range_start = 0, 1813 .range_end = LLONG_MAX, 1814 }; 1815 unsigned long start_time = jiffies; 1816 long write_chunk; 1817 long total_wrote = 0; /* count both pages and inodes */ 1818 1819 while (!list_empty(&wb->b_io)) { 1820 struct inode *inode = wb_inode(wb->b_io.prev); 1821 struct bdi_writeback *tmp_wb; 1822 long wrote; 1823 1824 if (inode->i_sb != sb) { 1825 if (work->sb) { 1826 /* 1827 * We only want to write back data for this 1828 * superblock, move all inodes not belonging 1829 * to it back onto the dirty list. 1830 */ 1831 redirty_tail(inode, wb); 1832 continue; 1833 } 1834 1835 /* 1836 * The inode belongs to a different superblock. 1837 * Bounce back to the caller to unpin this and 1838 * pin the next superblock. 1839 */ 1840 break; 1841 } 1842 1843 /* 1844 * Don't bother with new inodes or inodes being freed, first 1845 * kind does not need periodic writeout yet, and for the latter 1846 * kind writeout is handled by the freer. 1847 */ 1848 spin_lock(&inode->i_lock); 1849 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1850 redirty_tail_locked(inode, wb); 1851 spin_unlock(&inode->i_lock); 1852 continue; 1853 } 1854 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1855 /* 1856 * If this inode is locked for writeback and we are not 1857 * doing writeback-for-data-integrity, move it to 1858 * b_more_io so that writeback can proceed with the 1859 * other inodes on s_io. 1860 * 1861 * We'll have another go at writing back this inode 1862 * when we completed a full scan of b_io. 1863 */ 1864 requeue_io(inode, wb); 1865 spin_unlock(&inode->i_lock); 1866 trace_writeback_sb_inodes_requeue(inode); 1867 continue; 1868 } 1869 spin_unlock(&wb->list_lock); 1870 1871 /* 1872 * We already requeued the inode if it had I_SYNC set and we 1873 * are doing WB_SYNC_NONE writeback. So this catches only the 1874 * WB_SYNC_ALL case. 1875 */ 1876 if (inode->i_state & I_SYNC) { 1877 /* Wait for I_SYNC. This function drops i_lock... */ 1878 inode_sleep_on_writeback(inode); 1879 /* Inode may be gone, start again */ 1880 spin_lock(&wb->list_lock); 1881 continue; 1882 } 1883 inode->i_state |= I_SYNC; 1884 wbc_attach_and_unlock_inode(&wbc, inode); 1885 1886 write_chunk = writeback_chunk_size(wb, work); 1887 wbc.nr_to_write = write_chunk; 1888 wbc.pages_skipped = 0; 1889 1890 /* 1891 * We use I_SYNC to pin the inode in memory. While it is set 1892 * evict_inode() will wait so the inode cannot be freed. 1893 */ 1894 __writeback_single_inode(inode, &wbc); 1895 1896 wbc_detach_inode(&wbc); 1897 work->nr_pages -= write_chunk - wbc.nr_to_write; 1898 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; 1899 wrote = wrote < 0 ? 0 : wrote; 1900 total_wrote += wrote; 1901 1902 if (need_resched()) { 1903 /* 1904 * We're trying to balance between building up a nice 1905 * long list of IOs to improve our merge rate, and 1906 * getting those IOs out quickly for anyone throttling 1907 * in balance_dirty_pages(). cond_resched() doesn't 1908 * unplug, so get our IOs out the door before we 1909 * give up the CPU. 1910 */ 1911 blk_flush_plug(current->plug, false); 1912 cond_resched(); 1913 } 1914 1915 /* 1916 * Requeue @inode if still dirty. Be careful as @inode may 1917 * have been switched to another wb in the meantime. 1918 */ 1919 tmp_wb = inode_to_wb_and_lock_list(inode); 1920 spin_lock(&inode->i_lock); 1921 if (!(inode->i_state & I_DIRTY_ALL)) 1922 total_wrote++; 1923 requeue_inode(inode, tmp_wb, &wbc); 1924 inode_sync_complete(inode); 1925 spin_unlock(&inode->i_lock); 1926 1927 if (unlikely(tmp_wb != wb)) { 1928 spin_unlock(&tmp_wb->list_lock); 1929 spin_lock(&wb->list_lock); 1930 } 1931 1932 /* 1933 * bail out to wb_writeback() often enough to check 1934 * background threshold and other termination conditions. 1935 */ 1936 if (total_wrote) { 1937 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1938 break; 1939 if (work->nr_pages <= 0) 1940 break; 1941 } 1942 } 1943 return total_wrote; 1944 } 1945 1946 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1947 struct wb_writeback_work *work) 1948 { 1949 unsigned long start_time = jiffies; 1950 long wrote = 0; 1951 1952 while (!list_empty(&wb->b_io)) { 1953 struct inode *inode = wb_inode(wb->b_io.prev); 1954 struct super_block *sb = inode->i_sb; 1955 1956 if (!super_trylock_shared(sb)) { 1957 /* 1958 * super_trylock_shared() may fail consistently due to 1959 * s_umount being grabbed by someone else. Don't use 1960 * requeue_io() to avoid busy retrying the inode/sb. 1961 */ 1962 redirty_tail(inode, wb); 1963 continue; 1964 } 1965 wrote += writeback_sb_inodes(sb, wb, work); 1966 up_read(&sb->s_umount); 1967 1968 /* refer to the same tests at the end of writeback_sb_inodes */ 1969 if (wrote) { 1970 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1971 break; 1972 if (work->nr_pages <= 0) 1973 break; 1974 } 1975 } 1976 /* Leave any unwritten inodes on b_io */ 1977 return wrote; 1978 } 1979 1980 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1981 enum wb_reason reason) 1982 { 1983 struct wb_writeback_work work = { 1984 .nr_pages = nr_pages, 1985 .sync_mode = WB_SYNC_NONE, 1986 .range_cyclic = 1, 1987 .reason = reason, 1988 }; 1989 struct blk_plug plug; 1990 1991 blk_start_plug(&plug); 1992 spin_lock(&wb->list_lock); 1993 if (list_empty(&wb->b_io)) 1994 queue_io(wb, &work, jiffies); 1995 __writeback_inodes_wb(wb, &work); 1996 spin_unlock(&wb->list_lock); 1997 blk_finish_plug(&plug); 1998 1999 return nr_pages - work.nr_pages; 2000 } 2001 2002 /* 2003 * Explicit flushing or periodic writeback of "old" data. 2004 * 2005 * Define "old": the first time one of an inode's pages is dirtied, we mark the 2006 * dirtying-time in the inode's address_space. So this periodic writeback code 2007 * just walks the superblock inode list, writing back any inodes which are 2008 * older than a specific point in time. 2009 * 2010 * Try to run once per dirty_writeback_interval. But if a writeback event 2011 * takes longer than a dirty_writeback_interval interval, then leave a 2012 * one-second gap. 2013 * 2014 * dirtied_before takes precedence over nr_to_write. So we'll only write back 2015 * all dirty pages if they are all attached to "old" mappings. 2016 */ 2017 static long wb_writeback(struct bdi_writeback *wb, 2018 struct wb_writeback_work *work) 2019 { 2020 long nr_pages = work->nr_pages; 2021 unsigned long dirtied_before = jiffies; 2022 struct inode *inode; 2023 long progress; 2024 struct blk_plug plug; 2025 2026 blk_start_plug(&plug); 2027 for (;;) { 2028 /* 2029 * Stop writeback when nr_pages has been consumed 2030 */ 2031 if (work->nr_pages <= 0) 2032 break; 2033 2034 /* 2035 * Background writeout and kupdate-style writeback may 2036 * run forever. Stop them if there is other work to do 2037 * so that e.g. sync can proceed. They'll be restarted 2038 * after the other works are all done. 2039 */ 2040 if ((work->for_background || work->for_kupdate) && 2041 !list_empty(&wb->work_list)) 2042 break; 2043 2044 /* 2045 * For background writeout, stop when we are below the 2046 * background dirty threshold 2047 */ 2048 if (work->for_background && !wb_over_bg_thresh(wb)) 2049 break; 2050 2051 2052 spin_lock(&wb->list_lock); 2053 2054 /* 2055 * Kupdate and background works are special and we want to 2056 * include all inodes that need writing. Livelock avoidance is 2057 * handled by these works yielding to any other work so we are 2058 * safe. 2059 */ 2060 if (work->for_kupdate) { 2061 dirtied_before = jiffies - 2062 msecs_to_jiffies(dirty_expire_interval * 10); 2063 } else if (work->for_background) 2064 dirtied_before = jiffies; 2065 2066 trace_writeback_start(wb, work); 2067 if (list_empty(&wb->b_io)) 2068 queue_io(wb, work, dirtied_before); 2069 if (work->sb) 2070 progress = writeback_sb_inodes(work->sb, wb, work); 2071 else 2072 progress = __writeback_inodes_wb(wb, work); 2073 trace_writeback_written(wb, work); 2074 2075 /* 2076 * Did we write something? Try for more 2077 * 2078 * Dirty inodes are moved to b_io for writeback in batches. 2079 * The completion of the current batch does not necessarily 2080 * mean the overall work is done. So we keep looping as long 2081 * as made some progress on cleaning pages or inodes. 2082 */ 2083 if (progress) { 2084 spin_unlock(&wb->list_lock); 2085 continue; 2086 } 2087 2088 /* 2089 * No more inodes for IO, bail 2090 */ 2091 if (list_empty(&wb->b_more_io)) { 2092 spin_unlock(&wb->list_lock); 2093 break; 2094 } 2095 2096 /* 2097 * Nothing written. Wait for some inode to 2098 * become available for writeback. Otherwise 2099 * we'll just busyloop. 2100 */ 2101 trace_writeback_wait(wb, work); 2102 inode = wb_inode(wb->b_more_io.prev); 2103 spin_lock(&inode->i_lock); 2104 spin_unlock(&wb->list_lock); 2105 /* This function drops i_lock... */ 2106 inode_sleep_on_writeback(inode); 2107 } 2108 blk_finish_plug(&plug); 2109 2110 return nr_pages - work->nr_pages; 2111 } 2112 2113 /* 2114 * Return the next wb_writeback_work struct that hasn't been processed yet. 2115 */ 2116 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2117 { 2118 struct wb_writeback_work *work = NULL; 2119 2120 spin_lock_irq(&wb->work_lock); 2121 if (!list_empty(&wb->work_list)) { 2122 work = list_entry(wb->work_list.next, 2123 struct wb_writeback_work, list); 2124 list_del_init(&work->list); 2125 } 2126 spin_unlock_irq(&wb->work_lock); 2127 return work; 2128 } 2129 2130 static long wb_check_background_flush(struct bdi_writeback *wb) 2131 { 2132 if (wb_over_bg_thresh(wb)) { 2133 2134 struct wb_writeback_work work = { 2135 .nr_pages = LONG_MAX, 2136 .sync_mode = WB_SYNC_NONE, 2137 .for_background = 1, 2138 .range_cyclic = 1, 2139 .reason = WB_REASON_BACKGROUND, 2140 }; 2141 2142 return wb_writeback(wb, &work); 2143 } 2144 2145 return 0; 2146 } 2147 2148 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2149 { 2150 unsigned long expired; 2151 long nr_pages; 2152 2153 /* 2154 * When set to zero, disable periodic writeback 2155 */ 2156 if (!dirty_writeback_interval) 2157 return 0; 2158 2159 expired = wb->last_old_flush + 2160 msecs_to_jiffies(dirty_writeback_interval * 10); 2161 if (time_before(jiffies, expired)) 2162 return 0; 2163 2164 wb->last_old_flush = jiffies; 2165 nr_pages = get_nr_dirty_pages(); 2166 2167 if (nr_pages) { 2168 struct wb_writeback_work work = { 2169 .nr_pages = nr_pages, 2170 .sync_mode = WB_SYNC_NONE, 2171 .for_kupdate = 1, 2172 .range_cyclic = 1, 2173 .reason = WB_REASON_PERIODIC, 2174 }; 2175 2176 return wb_writeback(wb, &work); 2177 } 2178 2179 return 0; 2180 } 2181 2182 static long wb_check_start_all(struct bdi_writeback *wb) 2183 { 2184 long nr_pages; 2185 2186 if (!test_bit(WB_start_all, &wb->state)) 2187 return 0; 2188 2189 nr_pages = get_nr_dirty_pages(); 2190 if (nr_pages) { 2191 struct wb_writeback_work work = { 2192 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2193 .sync_mode = WB_SYNC_NONE, 2194 .range_cyclic = 1, 2195 .reason = wb->start_all_reason, 2196 }; 2197 2198 nr_pages = wb_writeback(wb, &work); 2199 } 2200 2201 clear_bit(WB_start_all, &wb->state); 2202 return nr_pages; 2203 } 2204 2205 2206 /* 2207 * Retrieve work items and do the writeback they describe 2208 */ 2209 static long wb_do_writeback(struct bdi_writeback *wb) 2210 { 2211 struct wb_writeback_work *work; 2212 long wrote = 0; 2213 2214 set_bit(WB_writeback_running, &wb->state); 2215 while ((work = get_next_work_item(wb)) != NULL) { 2216 trace_writeback_exec(wb, work); 2217 wrote += wb_writeback(wb, work); 2218 finish_writeback_work(wb, work); 2219 } 2220 2221 /* 2222 * Check for a flush-everything request 2223 */ 2224 wrote += wb_check_start_all(wb); 2225 2226 /* 2227 * Check for periodic writeback, kupdated() style 2228 */ 2229 wrote += wb_check_old_data_flush(wb); 2230 wrote += wb_check_background_flush(wb); 2231 clear_bit(WB_writeback_running, &wb->state); 2232 2233 return wrote; 2234 } 2235 2236 /* 2237 * Handle writeback of dirty data for the device backed by this bdi. Also 2238 * reschedules periodically and does kupdated style flushing. 2239 */ 2240 void wb_workfn(struct work_struct *work) 2241 { 2242 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2243 struct bdi_writeback, dwork); 2244 long pages_written; 2245 2246 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2247 2248 if (likely(!current_is_workqueue_rescuer() || 2249 !test_bit(WB_registered, &wb->state))) { 2250 /* 2251 * The normal path. Keep writing back @wb until its 2252 * work_list is empty. Note that this path is also taken 2253 * if @wb is shutting down even when we're running off the 2254 * rescuer as work_list needs to be drained. 2255 */ 2256 do { 2257 pages_written = wb_do_writeback(wb); 2258 trace_writeback_pages_written(pages_written); 2259 } while (!list_empty(&wb->work_list)); 2260 } else { 2261 /* 2262 * bdi_wq can't get enough workers and we're running off 2263 * the emergency worker. Don't hog it. Hopefully, 1024 is 2264 * enough for efficient IO. 2265 */ 2266 pages_written = writeback_inodes_wb(wb, 1024, 2267 WB_REASON_FORKER_THREAD); 2268 trace_writeback_pages_written(pages_written); 2269 } 2270 2271 if (!list_empty(&wb->work_list)) 2272 wb_wakeup(wb); 2273 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2274 wb_wakeup_delayed(wb); 2275 } 2276 2277 /* 2278 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2279 * write back the whole world. 2280 */ 2281 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2282 enum wb_reason reason) 2283 { 2284 struct bdi_writeback *wb; 2285 2286 if (!bdi_has_dirty_io(bdi)) 2287 return; 2288 2289 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2290 wb_start_writeback(wb, reason); 2291 } 2292 2293 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2294 enum wb_reason reason) 2295 { 2296 rcu_read_lock(); 2297 __wakeup_flusher_threads_bdi(bdi, reason); 2298 rcu_read_unlock(); 2299 } 2300 2301 /* 2302 * Wakeup the flusher threads to start writeback of all currently dirty pages 2303 */ 2304 void wakeup_flusher_threads(enum wb_reason reason) 2305 { 2306 struct backing_dev_info *bdi; 2307 2308 /* 2309 * If we are expecting writeback progress we must submit plugged IO. 2310 */ 2311 blk_flush_plug(current->plug, true); 2312 2313 rcu_read_lock(); 2314 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2315 __wakeup_flusher_threads_bdi(bdi, reason); 2316 rcu_read_unlock(); 2317 } 2318 2319 /* 2320 * Wake up bdi's periodically to make sure dirtytime inodes gets 2321 * written back periodically. We deliberately do *not* check the 2322 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2323 * kernel to be constantly waking up once there are any dirtytime 2324 * inodes on the system. So instead we define a separate delayed work 2325 * function which gets called much more rarely. (By default, only 2326 * once every 12 hours.) 2327 * 2328 * If there is any other write activity going on in the file system, 2329 * this function won't be necessary. But if the only thing that has 2330 * happened on the file system is a dirtytime inode caused by an atime 2331 * update, we need this infrastructure below to make sure that inode 2332 * eventually gets pushed out to disk. 2333 */ 2334 static void wakeup_dirtytime_writeback(struct work_struct *w); 2335 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2336 2337 static void wakeup_dirtytime_writeback(struct work_struct *w) 2338 { 2339 struct backing_dev_info *bdi; 2340 2341 rcu_read_lock(); 2342 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2343 struct bdi_writeback *wb; 2344 2345 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2346 if (!list_empty(&wb->b_dirty_time)) 2347 wb_wakeup(wb); 2348 } 2349 rcu_read_unlock(); 2350 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2351 } 2352 2353 static int __init start_dirtytime_writeback(void) 2354 { 2355 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2356 return 0; 2357 } 2358 __initcall(start_dirtytime_writeback); 2359 2360 int dirtytime_interval_handler(struct ctl_table *table, int write, 2361 void *buffer, size_t *lenp, loff_t *ppos) 2362 { 2363 int ret; 2364 2365 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2366 if (ret == 0 && write) 2367 mod_delayed_work(system_wq, &dirtytime_work, 0); 2368 return ret; 2369 } 2370 2371 /** 2372 * __mark_inode_dirty - internal function to mark an inode dirty 2373 * 2374 * @inode: inode to mark 2375 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2376 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2377 * with I_DIRTY_PAGES. 2378 * 2379 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2380 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2381 * 2382 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2383 * instead of calling this directly. 2384 * 2385 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2386 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2387 * even if they are later hashed, as they will have been marked dirty already. 2388 * 2389 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2390 * 2391 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2392 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2393 * the kernel-internal blockdev inode represents the dirtying time of the 2394 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2395 * page->mapping->host, so the page-dirtying time is recorded in the internal 2396 * blockdev inode. 2397 */ 2398 void __mark_inode_dirty(struct inode *inode, int flags) 2399 { 2400 struct super_block *sb = inode->i_sb; 2401 int dirtytime = 0; 2402 struct bdi_writeback *wb = NULL; 2403 2404 trace_writeback_mark_inode_dirty(inode, flags); 2405 2406 if (flags & I_DIRTY_INODE) { 2407 /* 2408 * Inode timestamp update will piggback on this dirtying. 2409 * We tell ->dirty_inode callback that timestamps need to 2410 * be updated by setting I_DIRTY_TIME in flags. 2411 */ 2412 if (inode->i_state & I_DIRTY_TIME) { 2413 spin_lock(&inode->i_lock); 2414 if (inode->i_state & I_DIRTY_TIME) { 2415 inode->i_state &= ~I_DIRTY_TIME; 2416 flags |= I_DIRTY_TIME; 2417 } 2418 spin_unlock(&inode->i_lock); 2419 } 2420 2421 /* 2422 * Notify the filesystem about the inode being dirtied, so that 2423 * (if needed) it can update on-disk fields and journal the 2424 * inode. This is only needed when the inode itself is being 2425 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2426 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2427 */ 2428 trace_writeback_dirty_inode_start(inode, flags); 2429 if (sb->s_op->dirty_inode) 2430 sb->s_op->dirty_inode(inode, 2431 flags & (I_DIRTY_INODE | I_DIRTY_TIME)); 2432 trace_writeback_dirty_inode(inode, flags); 2433 2434 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2435 flags &= ~I_DIRTY_TIME; 2436 } else { 2437 /* 2438 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2439 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2440 * in one call to __mark_inode_dirty().) 2441 */ 2442 dirtytime = flags & I_DIRTY_TIME; 2443 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2444 } 2445 2446 /* 2447 * Paired with smp_mb() in __writeback_single_inode() for the 2448 * following lockless i_state test. See there for details. 2449 */ 2450 smp_mb(); 2451 2452 if ((inode->i_state & flags) == flags) 2453 return; 2454 2455 spin_lock(&inode->i_lock); 2456 if ((inode->i_state & flags) != flags) { 2457 const int was_dirty = inode->i_state & I_DIRTY; 2458 2459 inode_attach_wb(inode, NULL); 2460 2461 inode->i_state |= flags; 2462 2463 /* 2464 * Grab inode's wb early because it requires dropping i_lock and we 2465 * need to make sure following checks happen atomically with dirty 2466 * list handling so that we don't move inodes under flush worker's 2467 * hands. 2468 */ 2469 if (!was_dirty) { 2470 wb = locked_inode_to_wb_and_lock_list(inode); 2471 spin_lock(&inode->i_lock); 2472 } 2473 2474 /* 2475 * If the inode is queued for writeback by flush worker, just 2476 * update its dirty state. Once the flush worker is done with 2477 * the inode it will place it on the appropriate superblock 2478 * list, based upon its state. 2479 */ 2480 if (inode->i_state & I_SYNC_QUEUED) 2481 goto out_unlock; 2482 2483 /* 2484 * Only add valid (hashed) inodes to the superblock's 2485 * dirty list. Add blockdev inodes as well. 2486 */ 2487 if (!S_ISBLK(inode->i_mode)) { 2488 if (inode_unhashed(inode)) 2489 goto out_unlock; 2490 } 2491 if (inode->i_state & I_FREEING) 2492 goto out_unlock; 2493 2494 /* 2495 * If the inode was already on b_dirty/b_io/b_more_io, don't 2496 * reposition it (that would break b_dirty time-ordering). 2497 */ 2498 if (!was_dirty) { 2499 struct list_head *dirty_list; 2500 bool wakeup_bdi = false; 2501 2502 inode->dirtied_when = jiffies; 2503 if (dirtytime) 2504 inode->dirtied_time_when = jiffies; 2505 2506 if (inode->i_state & I_DIRTY) 2507 dirty_list = &wb->b_dirty; 2508 else 2509 dirty_list = &wb->b_dirty_time; 2510 2511 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2512 dirty_list); 2513 2514 spin_unlock(&wb->list_lock); 2515 spin_unlock(&inode->i_lock); 2516 trace_writeback_dirty_inode_enqueue(inode); 2517 2518 /* 2519 * If this is the first dirty inode for this bdi, 2520 * we have to wake-up the corresponding bdi thread 2521 * to make sure background write-back happens 2522 * later. 2523 */ 2524 if (wakeup_bdi && 2525 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2526 wb_wakeup_delayed(wb); 2527 return; 2528 } 2529 } 2530 out_unlock: 2531 if (wb) 2532 spin_unlock(&wb->list_lock); 2533 spin_unlock(&inode->i_lock); 2534 } 2535 EXPORT_SYMBOL(__mark_inode_dirty); 2536 2537 /* 2538 * The @s_sync_lock is used to serialise concurrent sync operations 2539 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2540 * Concurrent callers will block on the s_sync_lock rather than doing contending 2541 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2542 * has been issued up to the time this function is enter is guaranteed to be 2543 * completed by the time we have gained the lock and waited for all IO that is 2544 * in progress regardless of the order callers are granted the lock. 2545 */ 2546 static void wait_sb_inodes(struct super_block *sb) 2547 { 2548 LIST_HEAD(sync_list); 2549 2550 /* 2551 * We need to be protected against the filesystem going from 2552 * r/o to r/w or vice versa. 2553 */ 2554 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2555 2556 mutex_lock(&sb->s_sync_lock); 2557 2558 /* 2559 * Splice the writeback list onto a temporary list to avoid waiting on 2560 * inodes that have started writeback after this point. 2561 * 2562 * Use rcu_read_lock() to keep the inodes around until we have a 2563 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2564 * the local list because inodes can be dropped from either by writeback 2565 * completion. 2566 */ 2567 rcu_read_lock(); 2568 spin_lock_irq(&sb->s_inode_wblist_lock); 2569 list_splice_init(&sb->s_inodes_wb, &sync_list); 2570 2571 /* 2572 * Data integrity sync. Must wait for all pages under writeback, because 2573 * there may have been pages dirtied before our sync call, but which had 2574 * writeout started before we write it out. In which case, the inode 2575 * may not be on the dirty list, but we still have to wait for that 2576 * writeout. 2577 */ 2578 while (!list_empty(&sync_list)) { 2579 struct inode *inode = list_first_entry(&sync_list, struct inode, 2580 i_wb_list); 2581 struct address_space *mapping = inode->i_mapping; 2582 2583 /* 2584 * Move each inode back to the wb list before we drop the lock 2585 * to preserve consistency between i_wb_list and the mapping 2586 * writeback tag. Writeback completion is responsible to remove 2587 * the inode from either list once the writeback tag is cleared. 2588 */ 2589 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2590 2591 /* 2592 * The mapping can appear untagged while still on-list since we 2593 * do not have the mapping lock. Skip it here, wb completion 2594 * will remove it. 2595 */ 2596 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2597 continue; 2598 2599 spin_unlock_irq(&sb->s_inode_wblist_lock); 2600 2601 spin_lock(&inode->i_lock); 2602 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2603 spin_unlock(&inode->i_lock); 2604 2605 spin_lock_irq(&sb->s_inode_wblist_lock); 2606 continue; 2607 } 2608 __iget(inode); 2609 spin_unlock(&inode->i_lock); 2610 rcu_read_unlock(); 2611 2612 /* 2613 * We keep the error status of individual mapping so that 2614 * applications can catch the writeback error using fsync(2). 2615 * See filemap_fdatawait_keep_errors() for details. 2616 */ 2617 filemap_fdatawait_keep_errors(mapping); 2618 2619 cond_resched(); 2620 2621 iput(inode); 2622 2623 rcu_read_lock(); 2624 spin_lock_irq(&sb->s_inode_wblist_lock); 2625 } 2626 spin_unlock_irq(&sb->s_inode_wblist_lock); 2627 rcu_read_unlock(); 2628 mutex_unlock(&sb->s_sync_lock); 2629 } 2630 2631 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2632 enum wb_reason reason, bool skip_if_busy) 2633 { 2634 struct backing_dev_info *bdi = sb->s_bdi; 2635 DEFINE_WB_COMPLETION(done, bdi); 2636 struct wb_writeback_work work = { 2637 .sb = sb, 2638 .sync_mode = WB_SYNC_NONE, 2639 .tagged_writepages = 1, 2640 .done = &done, 2641 .nr_pages = nr, 2642 .reason = reason, 2643 }; 2644 2645 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2646 return; 2647 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2648 2649 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2650 wb_wait_for_completion(&done); 2651 } 2652 2653 /** 2654 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2655 * @sb: the superblock 2656 * @nr: the number of pages to write 2657 * @reason: reason why some writeback work initiated 2658 * 2659 * Start writeback on some inodes on this super_block. No guarantees are made 2660 * on how many (if any) will be written, and this function does not wait 2661 * for IO completion of submitted IO. 2662 */ 2663 void writeback_inodes_sb_nr(struct super_block *sb, 2664 unsigned long nr, 2665 enum wb_reason reason) 2666 { 2667 __writeback_inodes_sb_nr(sb, nr, reason, false); 2668 } 2669 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2670 2671 /** 2672 * writeback_inodes_sb - writeback dirty inodes from given super_block 2673 * @sb: the superblock 2674 * @reason: reason why some writeback work was initiated 2675 * 2676 * Start writeback on some inodes on this super_block. No guarantees are made 2677 * on how many (if any) will be written, and this function does not wait 2678 * for IO completion of submitted IO. 2679 */ 2680 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2681 { 2682 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2683 } 2684 EXPORT_SYMBOL(writeback_inodes_sb); 2685 2686 /** 2687 * try_to_writeback_inodes_sb - try to start writeback if none underway 2688 * @sb: the superblock 2689 * @reason: reason why some writeback work was initiated 2690 * 2691 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2692 */ 2693 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2694 { 2695 if (!down_read_trylock(&sb->s_umount)) 2696 return; 2697 2698 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2699 up_read(&sb->s_umount); 2700 } 2701 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2702 2703 /** 2704 * sync_inodes_sb - sync sb inode pages 2705 * @sb: the superblock 2706 * 2707 * This function writes and waits on any dirty inode belonging to this 2708 * super_block. 2709 */ 2710 void sync_inodes_sb(struct super_block *sb) 2711 { 2712 struct backing_dev_info *bdi = sb->s_bdi; 2713 DEFINE_WB_COMPLETION(done, bdi); 2714 struct wb_writeback_work work = { 2715 .sb = sb, 2716 .sync_mode = WB_SYNC_ALL, 2717 .nr_pages = LONG_MAX, 2718 .range_cyclic = 0, 2719 .done = &done, 2720 .reason = WB_REASON_SYNC, 2721 .for_sync = 1, 2722 }; 2723 2724 /* 2725 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2726 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2727 * bdi_has_dirty() need to be written out too. 2728 */ 2729 if (bdi == &noop_backing_dev_info) 2730 return; 2731 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2732 2733 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2734 bdi_down_write_wb_switch_rwsem(bdi); 2735 bdi_split_work_to_wbs(bdi, &work, false); 2736 wb_wait_for_completion(&done); 2737 bdi_up_write_wb_switch_rwsem(bdi); 2738 2739 wait_sb_inodes(sb); 2740 } 2741 EXPORT_SYMBOL(sync_inodes_sb); 2742 2743 /** 2744 * write_inode_now - write an inode to disk 2745 * @inode: inode to write to disk 2746 * @sync: whether the write should be synchronous or not 2747 * 2748 * This function commits an inode to disk immediately if it is dirty. This is 2749 * primarily needed by knfsd. 2750 * 2751 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2752 */ 2753 int write_inode_now(struct inode *inode, int sync) 2754 { 2755 struct writeback_control wbc = { 2756 .nr_to_write = LONG_MAX, 2757 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2758 .range_start = 0, 2759 .range_end = LLONG_MAX, 2760 }; 2761 2762 if (!mapping_can_writeback(inode->i_mapping)) 2763 wbc.nr_to_write = 0; 2764 2765 might_sleep(); 2766 return writeback_single_inode(inode, &wbc); 2767 } 2768 EXPORT_SYMBOL(write_inode_now); 2769 2770 /** 2771 * sync_inode_metadata - write an inode to disk 2772 * @inode: the inode to sync 2773 * @wait: wait for I/O to complete. 2774 * 2775 * Write an inode to disk and adjust its dirty state after completion. 2776 * 2777 * Note: only writes the actual inode, no associated data or other metadata. 2778 */ 2779 int sync_inode_metadata(struct inode *inode, int wait) 2780 { 2781 struct writeback_control wbc = { 2782 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2783 .nr_to_write = 0, /* metadata-only */ 2784 }; 2785 2786 return writeback_single_inode(inode, &wbc); 2787 } 2788 EXPORT_SYMBOL(sync_inode_metadata); 2789