1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 assert_spin_locked(&inode->i_lock); 124 WARN_ON_ONCE(inode->i_state & I_FREEING); 125 126 list_move(&inode->i_io_list, head); 127 128 /* dirty_time doesn't count as dirty_io until expiration */ 129 if (head != &wb->b_dirty_time) 130 return wb_io_lists_populated(wb); 131 132 wb_io_lists_depopulated(wb); 133 return false; 134 } 135 136 static void wb_wakeup(struct bdi_writeback *wb) 137 { 138 spin_lock_irq(&wb->work_lock); 139 if (test_bit(WB_registered, &wb->state)) 140 mod_delayed_work(bdi_wq, &wb->dwork, 0); 141 spin_unlock_irq(&wb->work_lock); 142 } 143 144 /* 145 * This function is used when the first inode for this wb is marked dirty. It 146 * wakes-up the corresponding bdi thread which should then take care of the 147 * periodic background write-out of dirty inodes. Since the write-out would 148 * starts only 'dirty_writeback_interval' centisecs from now anyway, we just 149 * set up a timer which wakes the bdi thread up later. 150 * 151 * Note, we wouldn't bother setting up the timer, but this function is on the 152 * fast-path (used by '__mark_inode_dirty()'), so we save few context switches 153 * by delaying the wake-up. 154 * 155 * We have to be careful not to postpone flush work if it is scheduled for 156 * earlier. Thus we use queue_delayed_work(). 157 */ 158 static void wb_wakeup_delayed(struct bdi_writeback *wb) 159 { 160 unsigned long timeout; 161 162 timeout = msecs_to_jiffies(dirty_writeback_interval * 10); 163 spin_lock_irq(&wb->work_lock); 164 if (test_bit(WB_registered, &wb->state)) 165 queue_delayed_work(bdi_wq, &wb->dwork, timeout); 166 spin_unlock_irq(&wb->work_lock); 167 } 168 169 static void finish_writeback_work(struct wb_writeback_work *work) 170 { 171 struct wb_completion *done = work->done; 172 173 if (work->auto_free) 174 kfree(work); 175 if (done) { 176 wait_queue_head_t *waitq = done->waitq; 177 178 /* @done can't be accessed after the following dec */ 179 if (atomic_dec_and_test(&done->cnt)) 180 wake_up_all(waitq); 181 } 182 } 183 184 static void wb_queue_work(struct bdi_writeback *wb, 185 struct wb_writeback_work *work) 186 { 187 trace_writeback_queue(wb, work); 188 189 if (work->done) 190 atomic_inc(&work->done->cnt); 191 192 spin_lock_irq(&wb->work_lock); 193 194 if (test_bit(WB_registered, &wb->state)) { 195 list_add_tail(&work->list, &wb->work_list); 196 mod_delayed_work(bdi_wq, &wb->dwork, 0); 197 } else 198 finish_writeback_work(work); 199 200 spin_unlock_irq(&wb->work_lock); 201 } 202 203 /** 204 * wb_wait_for_completion - wait for completion of bdi_writeback_works 205 * @done: target wb_completion 206 * 207 * Wait for one or more work items issued to @bdi with their ->done field 208 * set to @done, which should have been initialized with 209 * DEFINE_WB_COMPLETION(). This function returns after all such work items 210 * are completed. Work items which are waited upon aren't freed 211 * automatically on completion. 212 */ 213 void wb_wait_for_completion(struct wb_completion *done) 214 { 215 atomic_dec(&done->cnt); /* put down the initial count */ 216 wait_event(*done->waitq, !atomic_read(&done->cnt)); 217 } 218 219 #ifdef CONFIG_CGROUP_WRITEBACK 220 221 /* 222 * Parameters for foreign inode detection, see wbc_detach_inode() to see 223 * how they're used. 224 * 225 * These paramters are inherently heuristical as the detection target 226 * itself is fuzzy. All we want to do is detaching an inode from the 227 * current owner if it's being written to by some other cgroups too much. 228 * 229 * The current cgroup writeback is built on the assumption that multiple 230 * cgroups writing to the same inode concurrently is very rare and a mode 231 * of operation which isn't well supported. As such, the goal is not 232 * taking too long when a different cgroup takes over an inode while 233 * avoiding too aggressive flip-flops from occasional foreign writes. 234 * 235 * We record, very roughly, 2s worth of IO time history and if more than 236 * half of that is foreign, trigger the switch. The recording is quantized 237 * to 16 slots. To avoid tiny writes from swinging the decision too much, 238 * writes smaller than 1/8 of avg size are ignored. 239 */ 240 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 241 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 242 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 243 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 244 245 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 246 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 247 /* each slot's duration is 2s / 16 */ 248 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 249 /* if foreign slots >= 8, switch */ 250 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 251 /* one round can affect upto 5 slots */ 252 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 253 254 /* 255 * Maximum inodes per isw. A specific value has been chosen to make 256 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 257 */ 258 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 259 / sizeof(struct inode *)) 260 261 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 262 static struct workqueue_struct *isw_wq; 263 264 void __inode_attach_wb(struct inode *inode, struct folio *folio) 265 { 266 struct backing_dev_info *bdi = inode_to_bdi(inode); 267 struct bdi_writeback *wb = NULL; 268 269 if (inode_cgwb_enabled(inode)) { 270 struct cgroup_subsys_state *memcg_css; 271 272 if (folio) { 273 memcg_css = mem_cgroup_css_from_folio(folio); 274 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 275 } else { 276 /* must pin memcg_css, see wb_get_create() */ 277 memcg_css = task_get_css(current, memory_cgrp_id); 278 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 279 css_put(memcg_css); 280 } 281 } 282 283 if (!wb) 284 wb = &bdi->wb; 285 286 /* 287 * There may be multiple instances of this function racing to 288 * update the same inode. Use cmpxchg() to tell the winner. 289 */ 290 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 291 wb_put(wb); 292 } 293 EXPORT_SYMBOL_GPL(__inode_attach_wb); 294 295 /** 296 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 297 * @inode: inode of interest with i_lock held 298 * @wb: target bdi_writeback 299 * 300 * Remove the inode from wb's io lists and if necessarily put onto b_attached 301 * list. Only inodes attached to cgwb's are kept on this list. 302 */ 303 static void inode_cgwb_move_to_attached(struct inode *inode, 304 struct bdi_writeback *wb) 305 { 306 assert_spin_locked(&wb->list_lock); 307 assert_spin_locked(&inode->i_lock); 308 WARN_ON_ONCE(inode->i_state & I_FREEING); 309 310 inode->i_state &= ~I_SYNC_QUEUED; 311 if (wb != &wb->bdi->wb) 312 list_move(&inode->i_io_list, &wb->b_attached); 313 else 314 list_del_init(&inode->i_io_list); 315 wb_io_lists_depopulated(wb); 316 } 317 318 /** 319 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 320 * @inode: inode of interest with i_lock held 321 * 322 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 323 * held on entry and is released on return. The returned wb is guaranteed 324 * to stay @inode's associated wb until its list_lock is released. 325 */ 326 static struct bdi_writeback * 327 locked_inode_to_wb_and_lock_list(struct inode *inode) 328 __releases(&inode->i_lock) 329 __acquires(&wb->list_lock) 330 { 331 while (true) { 332 struct bdi_writeback *wb = inode_to_wb(inode); 333 334 /* 335 * inode_to_wb() association is protected by both 336 * @inode->i_lock and @wb->list_lock but list_lock nests 337 * outside i_lock. Drop i_lock and verify that the 338 * association hasn't changed after acquiring list_lock. 339 */ 340 wb_get(wb); 341 spin_unlock(&inode->i_lock); 342 spin_lock(&wb->list_lock); 343 344 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 345 if (likely(wb == inode->i_wb)) { 346 wb_put(wb); /* @inode already has ref */ 347 return wb; 348 } 349 350 spin_unlock(&wb->list_lock); 351 wb_put(wb); 352 cpu_relax(); 353 spin_lock(&inode->i_lock); 354 } 355 } 356 357 /** 358 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 359 * @inode: inode of interest 360 * 361 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 362 * on entry. 363 */ 364 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 365 __acquires(&wb->list_lock) 366 { 367 spin_lock(&inode->i_lock); 368 return locked_inode_to_wb_and_lock_list(inode); 369 } 370 371 struct inode_switch_wbs_context { 372 struct rcu_work work; 373 374 /* 375 * Multiple inodes can be switched at once. The switching procedure 376 * consists of two parts, separated by a RCU grace period. To make 377 * sure that the second part is executed for each inode gone through 378 * the first part, all inode pointers are placed into a NULL-terminated 379 * array embedded into struct inode_switch_wbs_context. Otherwise 380 * an inode could be left in a non-consistent state. 381 */ 382 struct bdi_writeback *new_wb; 383 struct inode *inodes[]; 384 }; 385 386 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 387 { 388 down_write(&bdi->wb_switch_rwsem); 389 } 390 391 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 392 { 393 up_write(&bdi->wb_switch_rwsem); 394 } 395 396 static bool inode_do_switch_wbs(struct inode *inode, 397 struct bdi_writeback *old_wb, 398 struct bdi_writeback *new_wb) 399 { 400 struct address_space *mapping = inode->i_mapping; 401 XA_STATE(xas, &mapping->i_pages, 0); 402 struct folio *folio; 403 bool switched = false; 404 405 spin_lock(&inode->i_lock); 406 xa_lock_irq(&mapping->i_pages); 407 408 /* 409 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 410 * path owns the inode and we shouldn't modify ->i_io_list. 411 */ 412 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 413 goto skip_switch; 414 415 trace_inode_switch_wbs(inode, old_wb, new_wb); 416 417 /* 418 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 419 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to 420 * folios actually under writeback. 421 */ 422 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 423 if (folio_test_dirty(folio)) { 424 long nr = folio_nr_pages(folio); 425 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); 426 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); 427 } 428 } 429 430 xas_set(&xas, 0); 431 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 432 long nr = folio_nr_pages(folio); 433 WARN_ON_ONCE(!folio_test_writeback(folio)); 434 wb_stat_mod(old_wb, WB_WRITEBACK, -nr); 435 wb_stat_mod(new_wb, WB_WRITEBACK, nr); 436 } 437 438 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 439 atomic_dec(&old_wb->writeback_inodes); 440 atomic_inc(&new_wb->writeback_inodes); 441 } 442 443 wb_get(new_wb); 444 445 /* 446 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 447 * the specific list @inode was on is ignored and the @inode is put on 448 * ->b_dirty which is always correct including from ->b_dirty_time. 449 * The transfer preserves @inode->dirtied_when ordering. If the @inode 450 * was clean, it means it was on the b_attached list, so move it onto 451 * the b_attached list of @new_wb. 452 */ 453 if (!list_empty(&inode->i_io_list)) { 454 inode->i_wb = new_wb; 455 456 if (inode->i_state & I_DIRTY_ALL) { 457 struct inode *pos; 458 459 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 460 if (time_after_eq(inode->dirtied_when, 461 pos->dirtied_when)) 462 break; 463 inode_io_list_move_locked(inode, new_wb, 464 pos->i_io_list.prev); 465 } else { 466 inode_cgwb_move_to_attached(inode, new_wb); 467 } 468 } else { 469 inode->i_wb = new_wb; 470 } 471 472 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 473 inode->i_wb_frn_winner = 0; 474 inode->i_wb_frn_avg_time = 0; 475 inode->i_wb_frn_history = 0; 476 switched = true; 477 skip_switch: 478 /* 479 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 480 * ensures that the new wb is visible if they see !I_WB_SWITCH. 481 */ 482 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 483 484 xa_unlock_irq(&mapping->i_pages); 485 spin_unlock(&inode->i_lock); 486 487 return switched; 488 } 489 490 static void inode_switch_wbs_work_fn(struct work_struct *work) 491 { 492 struct inode_switch_wbs_context *isw = 493 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 494 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 495 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 496 struct bdi_writeback *new_wb = isw->new_wb; 497 unsigned long nr_switched = 0; 498 struct inode **inodep; 499 500 /* 501 * If @inode switches cgwb membership while sync_inodes_sb() is 502 * being issued, sync_inodes_sb() might miss it. Synchronize. 503 */ 504 down_read(&bdi->wb_switch_rwsem); 505 506 /* 507 * By the time control reaches here, RCU grace period has passed 508 * since I_WB_SWITCH assertion and all wb stat update transactions 509 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 510 * synchronizing against the i_pages lock. 511 * 512 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 513 * gives us exclusion against all wb related operations on @inode 514 * including IO list manipulations and stat updates. 515 */ 516 if (old_wb < new_wb) { 517 spin_lock(&old_wb->list_lock); 518 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 519 } else { 520 spin_lock(&new_wb->list_lock); 521 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 522 } 523 524 for (inodep = isw->inodes; *inodep; inodep++) { 525 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 526 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 527 nr_switched++; 528 } 529 530 spin_unlock(&new_wb->list_lock); 531 spin_unlock(&old_wb->list_lock); 532 533 up_read(&bdi->wb_switch_rwsem); 534 535 if (nr_switched) { 536 wb_wakeup(new_wb); 537 wb_put_many(old_wb, nr_switched); 538 } 539 540 for (inodep = isw->inodes; *inodep; inodep++) 541 iput(*inodep); 542 wb_put(new_wb); 543 kfree(isw); 544 atomic_dec(&isw_nr_in_flight); 545 } 546 547 static bool inode_prepare_wbs_switch(struct inode *inode, 548 struct bdi_writeback *new_wb) 549 { 550 /* 551 * Paired with smp_mb() in cgroup_writeback_umount(). 552 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 553 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 554 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 555 */ 556 smp_mb(); 557 558 if (IS_DAX(inode)) 559 return false; 560 561 /* while holding I_WB_SWITCH, no one else can update the association */ 562 spin_lock(&inode->i_lock); 563 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 564 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 565 inode_to_wb(inode) == new_wb) { 566 spin_unlock(&inode->i_lock); 567 return false; 568 } 569 inode->i_state |= I_WB_SWITCH; 570 __iget(inode); 571 spin_unlock(&inode->i_lock); 572 573 return true; 574 } 575 576 /** 577 * inode_switch_wbs - change the wb association of an inode 578 * @inode: target inode 579 * @new_wb_id: ID of the new wb 580 * 581 * Switch @inode's wb association to the wb identified by @new_wb_id. The 582 * switching is performed asynchronously and may fail silently. 583 */ 584 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 585 { 586 struct backing_dev_info *bdi = inode_to_bdi(inode); 587 struct cgroup_subsys_state *memcg_css; 588 struct inode_switch_wbs_context *isw; 589 590 /* noop if seems to be already in progress */ 591 if (inode->i_state & I_WB_SWITCH) 592 return; 593 594 /* avoid queueing a new switch if too many are already in flight */ 595 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 596 return; 597 598 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); 599 if (!isw) 600 return; 601 602 atomic_inc(&isw_nr_in_flight); 603 604 /* find and pin the new wb */ 605 rcu_read_lock(); 606 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 607 if (memcg_css && !css_tryget(memcg_css)) 608 memcg_css = NULL; 609 rcu_read_unlock(); 610 if (!memcg_css) 611 goto out_free; 612 613 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 614 css_put(memcg_css); 615 if (!isw->new_wb) 616 goto out_free; 617 618 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 619 goto out_free; 620 621 isw->inodes[0] = inode; 622 623 /* 624 * In addition to synchronizing among switchers, I_WB_SWITCH tells 625 * the RCU protected stat update paths to grab the i_page 626 * lock so that stat transfer can synchronize against them. 627 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 628 */ 629 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 630 queue_rcu_work(isw_wq, &isw->work); 631 return; 632 633 out_free: 634 atomic_dec(&isw_nr_in_flight); 635 if (isw->new_wb) 636 wb_put(isw->new_wb); 637 kfree(isw); 638 } 639 640 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw, 641 struct list_head *list, int *nr) 642 { 643 struct inode *inode; 644 645 list_for_each_entry(inode, list, i_io_list) { 646 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 647 continue; 648 649 isw->inodes[*nr] = inode; 650 (*nr)++; 651 652 if (*nr >= WB_MAX_INODES_PER_ISW - 1) 653 return true; 654 } 655 return false; 656 } 657 658 /** 659 * cleanup_offline_cgwb - detach associated inodes 660 * @wb: target wb 661 * 662 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 663 * to eventually release the dying @wb. Returns %true if not all inodes were 664 * switched and the function has to be restarted. 665 */ 666 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 667 { 668 struct cgroup_subsys_state *memcg_css; 669 struct inode_switch_wbs_context *isw; 670 int nr; 671 bool restart = false; 672 673 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), 674 GFP_KERNEL); 675 if (!isw) 676 return restart; 677 678 atomic_inc(&isw_nr_in_flight); 679 680 for (memcg_css = wb->memcg_css->parent; memcg_css; 681 memcg_css = memcg_css->parent) { 682 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 683 if (isw->new_wb) 684 break; 685 } 686 if (unlikely(!isw->new_wb)) 687 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 688 689 nr = 0; 690 spin_lock(&wb->list_lock); 691 /* 692 * In addition to the inodes that have completed writeback, also switch 693 * cgwbs for those inodes only with dirty timestamps. Otherwise, those 694 * inodes won't be written back for a long time when lazytime is 695 * enabled, and thus pinning the dying cgwbs. It won't break the 696 * bandwidth restrictions, as writeback of inode metadata is not 697 * accounted for. 698 */ 699 restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr); 700 if (!restart) 701 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr); 702 spin_unlock(&wb->list_lock); 703 704 /* no attached inodes? bail out */ 705 if (nr == 0) { 706 atomic_dec(&isw_nr_in_flight); 707 wb_put(isw->new_wb); 708 kfree(isw); 709 return restart; 710 } 711 712 /* 713 * In addition to synchronizing among switchers, I_WB_SWITCH tells 714 * the RCU protected stat update paths to grab the i_page 715 * lock so that stat transfer can synchronize against them. 716 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 717 */ 718 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 719 queue_rcu_work(isw_wq, &isw->work); 720 721 return restart; 722 } 723 724 /** 725 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 726 * @wbc: writeback_control of interest 727 * @inode: target inode 728 * 729 * @inode is locked and about to be written back under the control of @wbc. 730 * Record @inode's writeback context into @wbc and unlock the i_lock. On 731 * writeback completion, wbc_detach_inode() should be called. This is used 732 * to track the cgroup writeback context. 733 */ 734 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 735 struct inode *inode) 736 { 737 if (!inode_cgwb_enabled(inode)) { 738 spin_unlock(&inode->i_lock); 739 return; 740 } 741 742 wbc->wb = inode_to_wb(inode); 743 wbc->inode = inode; 744 745 wbc->wb_id = wbc->wb->memcg_css->id; 746 wbc->wb_lcand_id = inode->i_wb_frn_winner; 747 wbc->wb_tcand_id = 0; 748 wbc->wb_bytes = 0; 749 wbc->wb_lcand_bytes = 0; 750 wbc->wb_tcand_bytes = 0; 751 752 wb_get(wbc->wb); 753 spin_unlock(&inode->i_lock); 754 755 /* 756 * A dying wb indicates that either the blkcg associated with the 757 * memcg changed or the associated memcg is dying. In the first 758 * case, a replacement wb should already be available and we should 759 * refresh the wb immediately. In the second case, trying to 760 * refresh will keep failing. 761 */ 762 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 763 inode_switch_wbs(inode, wbc->wb_id); 764 } 765 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 766 767 /** 768 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 769 * @wbc: writeback_control of the just finished writeback 770 * 771 * To be called after a writeback attempt of an inode finishes and undoes 772 * wbc_attach_and_unlock_inode(). Can be called under any context. 773 * 774 * As concurrent write sharing of an inode is expected to be very rare and 775 * memcg only tracks page ownership on first-use basis severely confining 776 * the usefulness of such sharing, cgroup writeback tracks ownership 777 * per-inode. While the support for concurrent write sharing of an inode 778 * is deemed unnecessary, an inode being written to by different cgroups at 779 * different points in time is a lot more common, and, more importantly, 780 * charging only by first-use can too readily lead to grossly incorrect 781 * behaviors (single foreign page can lead to gigabytes of writeback to be 782 * incorrectly attributed). 783 * 784 * To resolve this issue, cgroup writeback detects the majority dirtier of 785 * an inode and transfers the ownership to it. To avoid unnecessary 786 * oscillation, the detection mechanism keeps track of history and gives 787 * out the switch verdict only if the foreign usage pattern is stable over 788 * a certain amount of time and/or writeback attempts. 789 * 790 * On each writeback attempt, @wbc tries to detect the majority writer 791 * using Boyer-Moore majority vote algorithm. In addition to the byte 792 * count from the majority voting, it also counts the bytes written for the 793 * current wb and the last round's winner wb (max of last round's current 794 * wb, the winner from two rounds ago, and the last round's majority 795 * candidate). Keeping track of the historical winner helps the algorithm 796 * to semi-reliably detect the most active writer even when it's not the 797 * absolute majority. 798 * 799 * Once the winner of the round is determined, whether the winner is 800 * foreign or not and how much IO time the round consumed is recorded in 801 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 802 * over a certain threshold, the switch verdict is given. 803 */ 804 void wbc_detach_inode(struct writeback_control *wbc) 805 { 806 struct bdi_writeback *wb = wbc->wb; 807 struct inode *inode = wbc->inode; 808 unsigned long avg_time, max_bytes, max_time; 809 u16 history; 810 int max_id; 811 812 if (!wb) 813 return; 814 815 history = inode->i_wb_frn_history; 816 avg_time = inode->i_wb_frn_avg_time; 817 818 /* pick the winner of this round */ 819 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 820 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 821 max_id = wbc->wb_id; 822 max_bytes = wbc->wb_bytes; 823 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 824 max_id = wbc->wb_lcand_id; 825 max_bytes = wbc->wb_lcand_bytes; 826 } else { 827 max_id = wbc->wb_tcand_id; 828 max_bytes = wbc->wb_tcand_bytes; 829 } 830 831 /* 832 * Calculate the amount of IO time the winner consumed and fold it 833 * into the running average kept per inode. If the consumed IO 834 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 835 * deciding whether to switch or not. This is to prevent one-off 836 * small dirtiers from skewing the verdict. 837 */ 838 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 839 wb->avg_write_bandwidth); 840 if (avg_time) 841 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 842 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 843 else 844 avg_time = max_time; /* immediate catch up on first run */ 845 846 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 847 int slots; 848 849 /* 850 * The switch verdict is reached if foreign wb's consume 851 * more than a certain proportion of IO time in a 852 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 853 * history mask where each bit represents one sixteenth of 854 * the period. Determine the number of slots to shift into 855 * history from @max_time. 856 */ 857 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 858 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 859 history <<= slots; 860 if (wbc->wb_id != max_id) 861 history |= (1U << slots) - 1; 862 863 if (history) 864 trace_inode_foreign_history(inode, wbc, history); 865 866 /* 867 * Switch if the current wb isn't the consistent winner. 868 * If there are multiple closely competing dirtiers, the 869 * inode may switch across them repeatedly over time, which 870 * is okay. The main goal is avoiding keeping an inode on 871 * the wrong wb for an extended period of time. 872 */ 873 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS) 874 inode_switch_wbs(inode, max_id); 875 } 876 877 /* 878 * Multiple instances of this function may race to update the 879 * following fields but we don't mind occassional inaccuracies. 880 */ 881 inode->i_wb_frn_winner = max_id; 882 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 883 inode->i_wb_frn_history = history; 884 885 wb_put(wbc->wb); 886 wbc->wb = NULL; 887 } 888 EXPORT_SYMBOL_GPL(wbc_detach_inode); 889 890 /** 891 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 892 * @wbc: writeback_control of the writeback in progress 893 * @page: page being written out 894 * @bytes: number of bytes being written out 895 * 896 * @bytes from @page are about to written out during the writeback 897 * controlled by @wbc. Keep the book for foreign inode detection. See 898 * wbc_detach_inode(). 899 */ 900 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 901 size_t bytes) 902 { 903 struct folio *folio; 904 struct cgroup_subsys_state *css; 905 int id; 906 907 /* 908 * pageout() path doesn't attach @wbc to the inode being written 909 * out. This is intentional as we don't want the function to block 910 * behind a slow cgroup. Ultimately, we want pageout() to kick off 911 * regular writeback instead of writing things out itself. 912 */ 913 if (!wbc->wb || wbc->no_cgroup_owner) 914 return; 915 916 folio = page_folio(page); 917 css = mem_cgroup_css_from_folio(folio); 918 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 919 if (!(css->flags & CSS_ONLINE)) 920 return; 921 922 id = css->id; 923 924 if (id == wbc->wb_id) { 925 wbc->wb_bytes += bytes; 926 return; 927 } 928 929 if (id == wbc->wb_lcand_id) 930 wbc->wb_lcand_bytes += bytes; 931 932 /* Boyer-Moore majority vote algorithm */ 933 if (!wbc->wb_tcand_bytes) 934 wbc->wb_tcand_id = id; 935 if (id == wbc->wb_tcand_id) 936 wbc->wb_tcand_bytes += bytes; 937 else 938 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 939 } 940 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 941 942 /** 943 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 944 * @wb: target bdi_writeback to split @nr_pages to 945 * @nr_pages: number of pages to write for the whole bdi 946 * 947 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 948 * relation to the total write bandwidth of all wb's w/ dirty inodes on 949 * @wb->bdi. 950 */ 951 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 952 { 953 unsigned long this_bw = wb->avg_write_bandwidth; 954 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 955 956 if (nr_pages == LONG_MAX) 957 return LONG_MAX; 958 959 /* 960 * This may be called on clean wb's and proportional distribution 961 * may not make sense, just use the original @nr_pages in those 962 * cases. In general, we wanna err on the side of writing more. 963 */ 964 if (!tot_bw || this_bw >= tot_bw) 965 return nr_pages; 966 else 967 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 968 } 969 970 /** 971 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 972 * @bdi: target backing_dev_info 973 * @base_work: wb_writeback_work to issue 974 * @skip_if_busy: skip wb's which already have writeback in progress 975 * 976 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 977 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 978 * distributed to the busy wbs according to each wb's proportion in the 979 * total active write bandwidth of @bdi. 980 */ 981 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 982 struct wb_writeback_work *base_work, 983 bool skip_if_busy) 984 { 985 struct bdi_writeback *last_wb = NULL; 986 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 987 struct bdi_writeback, bdi_node); 988 989 might_sleep(); 990 restart: 991 rcu_read_lock(); 992 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 993 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 994 struct wb_writeback_work fallback_work; 995 struct wb_writeback_work *work; 996 long nr_pages; 997 998 if (last_wb) { 999 wb_put(last_wb); 1000 last_wb = NULL; 1001 } 1002 1003 /* SYNC_ALL writes out I_DIRTY_TIME too */ 1004 if (!wb_has_dirty_io(wb) && 1005 (base_work->sync_mode == WB_SYNC_NONE || 1006 list_empty(&wb->b_dirty_time))) 1007 continue; 1008 if (skip_if_busy && writeback_in_progress(wb)) 1009 continue; 1010 1011 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 1012 1013 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1014 if (work) { 1015 *work = *base_work; 1016 work->nr_pages = nr_pages; 1017 work->auto_free = 1; 1018 wb_queue_work(wb, work); 1019 continue; 1020 } 1021 1022 /* 1023 * If wb_tryget fails, the wb has been shutdown, skip it. 1024 * 1025 * Pin @wb so that it stays on @bdi->wb_list. This allows 1026 * continuing iteration from @wb after dropping and 1027 * regrabbing rcu read lock. 1028 */ 1029 if (!wb_tryget(wb)) 1030 continue; 1031 1032 /* alloc failed, execute synchronously using on-stack fallback */ 1033 work = &fallback_work; 1034 *work = *base_work; 1035 work->nr_pages = nr_pages; 1036 work->auto_free = 0; 1037 work->done = &fallback_work_done; 1038 1039 wb_queue_work(wb, work); 1040 last_wb = wb; 1041 1042 rcu_read_unlock(); 1043 wb_wait_for_completion(&fallback_work_done); 1044 goto restart; 1045 } 1046 rcu_read_unlock(); 1047 1048 if (last_wb) 1049 wb_put(last_wb); 1050 } 1051 1052 /** 1053 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1054 * @bdi_id: target bdi id 1055 * @memcg_id: target memcg css id 1056 * @reason: reason why some writeback work initiated 1057 * @done: target wb_completion 1058 * 1059 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1060 * with the specified parameters. 1061 */ 1062 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, 1063 enum wb_reason reason, struct wb_completion *done) 1064 { 1065 struct backing_dev_info *bdi; 1066 struct cgroup_subsys_state *memcg_css; 1067 struct bdi_writeback *wb; 1068 struct wb_writeback_work *work; 1069 unsigned long dirty; 1070 int ret; 1071 1072 /* lookup bdi and memcg */ 1073 bdi = bdi_get_by_id(bdi_id); 1074 if (!bdi) 1075 return -ENOENT; 1076 1077 rcu_read_lock(); 1078 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1079 if (memcg_css && !css_tryget(memcg_css)) 1080 memcg_css = NULL; 1081 rcu_read_unlock(); 1082 if (!memcg_css) { 1083 ret = -ENOENT; 1084 goto out_bdi_put; 1085 } 1086 1087 /* 1088 * And find the associated wb. If the wb isn't there already 1089 * there's nothing to flush, don't create one. 1090 */ 1091 wb = wb_get_lookup(bdi, memcg_css); 1092 if (!wb) { 1093 ret = -ENOENT; 1094 goto out_css_put; 1095 } 1096 1097 /* 1098 * The caller is attempting to write out most of 1099 * the currently dirty pages. Let's take the current dirty page 1100 * count and inflate it by 25% which should be large enough to 1101 * flush out most dirty pages while avoiding getting livelocked by 1102 * concurrent dirtiers. 1103 * 1104 * BTW the memcg stats are flushed periodically and this is best-effort 1105 * estimation, so some potential error is ok. 1106 */ 1107 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); 1108 dirty = dirty * 10 / 8; 1109 1110 /* issue the writeback work */ 1111 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1112 if (work) { 1113 work->nr_pages = dirty; 1114 work->sync_mode = WB_SYNC_NONE; 1115 work->range_cyclic = 1; 1116 work->reason = reason; 1117 work->done = done; 1118 work->auto_free = 1; 1119 wb_queue_work(wb, work); 1120 ret = 0; 1121 } else { 1122 ret = -ENOMEM; 1123 } 1124 1125 wb_put(wb); 1126 out_css_put: 1127 css_put(memcg_css); 1128 out_bdi_put: 1129 bdi_put(bdi); 1130 return ret; 1131 } 1132 1133 /** 1134 * cgroup_writeback_umount - flush inode wb switches for umount 1135 * @sb: target super_block 1136 * 1137 * This function is called when a super_block is about to be destroyed and 1138 * flushes in-flight inode wb switches. An inode wb switch goes through 1139 * RCU and then workqueue, so the two need to be flushed in order to ensure 1140 * that all previously scheduled switches are finished. As wb switches are 1141 * rare occurrences and synchronize_rcu() can take a while, perform 1142 * flushing iff wb switches are in flight. 1143 */ 1144 void cgroup_writeback_umount(struct super_block *sb) 1145 { 1146 1147 if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK)) 1148 return; 1149 1150 /* 1151 * SB_ACTIVE should be reliably cleared before checking 1152 * isw_nr_in_flight, see generic_shutdown_super(). 1153 */ 1154 smp_mb(); 1155 1156 if (atomic_read(&isw_nr_in_flight)) { 1157 /* 1158 * Use rcu_barrier() to wait for all pending callbacks to 1159 * ensure that all in-flight wb switches are in the workqueue. 1160 */ 1161 rcu_barrier(); 1162 flush_workqueue(isw_wq); 1163 } 1164 } 1165 1166 static int __init cgroup_writeback_init(void) 1167 { 1168 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1169 if (!isw_wq) 1170 return -ENOMEM; 1171 return 0; 1172 } 1173 fs_initcall(cgroup_writeback_init); 1174 1175 #else /* CONFIG_CGROUP_WRITEBACK */ 1176 1177 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1178 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1179 1180 static void inode_cgwb_move_to_attached(struct inode *inode, 1181 struct bdi_writeback *wb) 1182 { 1183 assert_spin_locked(&wb->list_lock); 1184 assert_spin_locked(&inode->i_lock); 1185 WARN_ON_ONCE(inode->i_state & I_FREEING); 1186 1187 inode->i_state &= ~I_SYNC_QUEUED; 1188 list_del_init(&inode->i_io_list); 1189 wb_io_lists_depopulated(wb); 1190 } 1191 1192 static struct bdi_writeback * 1193 locked_inode_to_wb_and_lock_list(struct inode *inode) 1194 __releases(&inode->i_lock) 1195 __acquires(&wb->list_lock) 1196 { 1197 struct bdi_writeback *wb = inode_to_wb(inode); 1198 1199 spin_unlock(&inode->i_lock); 1200 spin_lock(&wb->list_lock); 1201 return wb; 1202 } 1203 1204 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1205 __acquires(&wb->list_lock) 1206 { 1207 struct bdi_writeback *wb = inode_to_wb(inode); 1208 1209 spin_lock(&wb->list_lock); 1210 return wb; 1211 } 1212 1213 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1214 { 1215 return nr_pages; 1216 } 1217 1218 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1219 struct wb_writeback_work *base_work, 1220 bool skip_if_busy) 1221 { 1222 might_sleep(); 1223 1224 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1225 base_work->auto_free = 0; 1226 wb_queue_work(&bdi->wb, base_work); 1227 } 1228 } 1229 1230 #endif /* CONFIG_CGROUP_WRITEBACK */ 1231 1232 /* 1233 * Add in the number of potentially dirty inodes, because each inode 1234 * write can dirty pagecache in the underlying blockdev. 1235 */ 1236 static unsigned long get_nr_dirty_pages(void) 1237 { 1238 return global_node_page_state(NR_FILE_DIRTY) + 1239 get_nr_dirty_inodes(); 1240 } 1241 1242 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1243 { 1244 if (!wb_has_dirty_io(wb)) 1245 return; 1246 1247 /* 1248 * All callers of this function want to start writeback of all 1249 * dirty pages. Places like vmscan can call this at a very 1250 * high frequency, causing pointless allocations of tons of 1251 * work items and keeping the flusher threads busy retrieving 1252 * that work. Ensure that we only allow one of them pending and 1253 * inflight at the time. 1254 */ 1255 if (test_bit(WB_start_all, &wb->state) || 1256 test_and_set_bit(WB_start_all, &wb->state)) 1257 return; 1258 1259 wb->start_all_reason = reason; 1260 wb_wakeup(wb); 1261 } 1262 1263 /** 1264 * wb_start_background_writeback - start background writeback 1265 * @wb: bdi_writback to write from 1266 * 1267 * Description: 1268 * This makes sure WB_SYNC_NONE background writeback happens. When 1269 * this function returns, it is only guaranteed that for given wb 1270 * some IO is happening if we are over background dirty threshold. 1271 * Caller need not hold sb s_umount semaphore. 1272 */ 1273 void wb_start_background_writeback(struct bdi_writeback *wb) 1274 { 1275 /* 1276 * We just wake up the flusher thread. It will perform background 1277 * writeback as soon as there is no other work to do. 1278 */ 1279 trace_writeback_wake_background(wb); 1280 wb_wakeup(wb); 1281 } 1282 1283 /* 1284 * Remove the inode from the writeback list it is on. 1285 */ 1286 void inode_io_list_del(struct inode *inode) 1287 { 1288 struct bdi_writeback *wb; 1289 1290 wb = inode_to_wb_and_lock_list(inode); 1291 spin_lock(&inode->i_lock); 1292 1293 inode->i_state &= ~I_SYNC_QUEUED; 1294 list_del_init(&inode->i_io_list); 1295 wb_io_lists_depopulated(wb); 1296 1297 spin_unlock(&inode->i_lock); 1298 spin_unlock(&wb->list_lock); 1299 } 1300 EXPORT_SYMBOL(inode_io_list_del); 1301 1302 /* 1303 * mark an inode as under writeback on the sb 1304 */ 1305 void sb_mark_inode_writeback(struct inode *inode) 1306 { 1307 struct super_block *sb = inode->i_sb; 1308 unsigned long flags; 1309 1310 if (list_empty(&inode->i_wb_list)) { 1311 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1312 if (list_empty(&inode->i_wb_list)) { 1313 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1314 trace_sb_mark_inode_writeback(inode); 1315 } 1316 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1317 } 1318 } 1319 1320 /* 1321 * clear an inode as under writeback on the sb 1322 */ 1323 void sb_clear_inode_writeback(struct inode *inode) 1324 { 1325 struct super_block *sb = inode->i_sb; 1326 unsigned long flags; 1327 1328 if (!list_empty(&inode->i_wb_list)) { 1329 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1330 if (!list_empty(&inode->i_wb_list)) { 1331 list_del_init(&inode->i_wb_list); 1332 trace_sb_clear_inode_writeback(inode); 1333 } 1334 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1335 } 1336 } 1337 1338 /* 1339 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1340 * furthest end of its superblock's dirty-inode list. 1341 * 1342 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1343 * already the most-recently-dirtied inode on the b_dirty list. If that is 1344 * the case then the inode must have been redirtied while it was being written 1345 * out and we don't reset its dirtied_when. 1346 */ 1347 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1348 { 1349 assert_spin_locked(&inode->i_lock); 1350 1351 inode->i_state &= ~I_SYNC_QUEUED; 1352 /* 1353 * When the inode is being freed just don't bother with dirty list 1354 * tracking. Flush worker will ignore this inode anyway and it will 1355 * trigger assertions in inode_io_list_move_locked(). 1356 */ 1357 if (inode->i_state & I_FREEING) { 1358 list_del_init(&inode->i_io_list); 1359 wb_io_lists_depopulated(wb); 1360 return; 1361 } 1362 if (!list_empty(&wb->b_dirty)) { 1363 struct inode *tail; 1364 1365 tail = wb_inode(wb->b_dirty.next); 1366 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1367 inode->dirtied_when = jiffies; 1368 } 1369 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1370 } 1371 1372 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1373 { 1374 spin_lock(&inode->i_lock); 1375 redirty_tail_locked(inode, wb); 1376 spin_unlock(&inode->i_lock); 1377 } 1378 1379 /* 1380 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1381 */ 1382 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1383 { 1384 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1385 } 1386 1387 static void inode_sync_complete(struct inode *inode) 1388 { 1389 assert_spin_locked(&inode->i_lock); 1390 1391 inode->i_state &= ~I_SYNC; 1392 /* If inode is clean an unused, put it into LRU now... */ 1393 inode_add_lru(inode); 1394 /* Called with inode->i_lock which ensures memory ordering. */ 1395 inode_wake_up_bit(inode, __I_SYNC); 1396 } 1397 1398 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1399 { 1400 bool ret = time_after(inode->dirtied_when, t); 1401 #ifndef CONFIG_64BIT 1402 /* 1403 * For inodes being constantly redirtied, dirtied_when can get stuck. 1404 * It _appears_ to be in the future, but is actually in distant past. 1405 * This test is necessary to prevent such wrapped-around relative times 1406 * from permanently stopping the whole bdi writeback. 1407 */ 1408 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1409 #endif 1410 return ret; 1411 } 1412 1413 /* 1414 * Move expired (dirtied before dirtied_before) dirty inodes from 1415 * @delaying_queue to @dispatch_queue. 1416 */ 1417 static int move_expired_inodes(struct list_head *delaying_queue, 1418 struct list_head *dispatch_queue, 1419 unsigned long dirtied_before) 1420 { 1421 LIST_HEAD(tmp); 1422 struct list_head *pos, *node; 1423 struct super_block *sb = NULL; 1424 struct inode *inode; 1425 int do_sb_sort = 0; 1426 int moved = 0; 1427 1428 while (!list_empty(delaying_queue)) { 1429 inode = wb_inode(delaying_queue->prev); 1430 if (inode_dirtied_after(inode, dirtied_before)) 1431 break; 1432 spin_lock(&inode->i_lock); 1433 list_move(&inode->i_io_list, &tmp); 1434 moved++; 1435 inode->i_state |= I_SYNC_QUEUED; 1436 spin_unlock(&inode->i_lock); 1437 if (sb_is_blkdev_sb(inode->i_sb)) 1438 continue; 1439 if (sb && sb != inode->i_sb) 1440 do_sb_sort = 1; 1441 sb = inode->i_sb; 1442 } 1443 1444 /* just one sb in list, splice to dispatch_queue and we're done */ 1445 if (!do_sb_sort) { 1446 list_splice(&tmp, dispatch_queue); 1447 goto out; 1448 } 1449 1450 /* 1451 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', 1452 * we don't take inode->i_lock here because it is just a pointless overhead. 1453 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is 1454 * fully under our control. 1455 */ 1456 while (!list_empty(&tmp)) { 1457 sb = wb_inode(tmp.prev)->i_sb; 1458 list_for_each_prev_safe(pos, node, &tmp) { 1459 inode = wb_inode(pos); 1460 if (inode->i_sb == sb) 1461 list_move(&inode->i_io_list, dispatch_queue); 1462 } 1463 } 1464 out: 1465 return moved; 1466 } 1467 1468 /* 1469 * Queue all expired dirty inodes for io, eldest first. 1470 * Before 1471 * newly dirtied b_dirty b_io b_more_io 1472 * =============> gf edc BA 1473 * After 1474 * newly dirtied b_dirty b_io b_more_io 1475 * =============> g fBAedc 1476 * | 1477 * +--> dequeue for IO 1478 */ 1479 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1480 unsigned long dirtied_before) 1481 { 1482 int moved; 1483 unsigned long time_expire_jif = dirtied_before; 1484 1485 assert_spin_locked(&wb->list_lock); 1486 list_splice_init(&wb->b_more_io, &wb->b_io); 1487 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1488 if (!work->for_sync) 1489 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1490 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1491 time_expire_jif); 1492 if (moved) 1493 wb_io_lists_populated(wb); 1494 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1495 } 1496 1497 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1498 { 1499 int ret; 1500 1501 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1502 trace_writeback_write_inode_start(inode, wbc); 1503 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1504 trace_writeback_write_inode(inode, wbc); 1505 return ret; 1506 } 1507 return 0; 1508 } 1509 1510 /* 1511 * Wait for writeback on an inode to complete. Called with i_lock held. 1512 * Caller must make sure inode cannot go away when we drop i_lock. 1513 */ 1514 void inode_wait_for_writeback(struct inode *inode) 1515 { 1516 struct wait_bit_queue_entry wqe; 1517 struct wait_queue_head *wq_head; 1518 1519 assert_spin_locked(&inode->i_lock); 1520 1521 if (!(inode->i_state & I_SYNC)) 1522 return; 1523 1524 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC); 1525 for (;;) { 1526 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 1527 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */ 1528 if (!(inode->i_state & I_SYNC)) 1529 break; 1530 spin_unlock(&inode->i_lock); 1531 schedule(); 1532 spin_lock(&inode->i_lock); 1533 } 1534 finish_wait(wq_head, &wqe.wq_entry); 1535 } 1536 1537 /* 1538 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1539 * held and drops it. It is aimed for callers not holding any inode reference 1540 * so once i_lock is dropped, inode can go away. 1541 */ 1542 static void inode_sleep_on_writeback(struct inode *inode) 1543 __releases(inode->i_lock) 1544 { 1545 struct wait_bit_queue_entry wqe; 1546 struct wait_queue_head *wq_head; 1547 bool sleep; 1548 1549 assert_spin_locked(&inode->i_lock); 1550 1551 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC); 1552 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 1553 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */ 1554 sleep = !!(inode->i_state & I_SYNC); 1555 spin_unlock(&inode->i_lock); 1556 if (sleep) 1557 schedule(); 1558 finish_wait(wq_head, &wqe.wq_entry); 1559 } 1560 1561 /* 1562 * Find proper writeback list for the inode depending on its current state and 1563 * possibly also change of its state while we were doing writeback. Here we 1564 * handle things such as livelock prevention or fairness of writeback among 1565 * inodes. This function can be called only by flusher thread - noone else 1566 * processes all inodes in writeback lists and requeueing inodes behind flusher 1567 * thread's back can have unexpected consequences. 1568 */ 1569 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1570 struct writeback_control *wbc, 1571 unsigned long dirtied_before) 1572 { 1573 if (inode->i_state & I_FREEING) 1574 return; 1575 1576 /* 1577 * Sync livelock prevention. Each inode is tagged and synced in one 1578 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1579 * the dirty time to prevent enqueue and sync it again. 1580 */ 1581 if ((inode->i_state & I_DIRTY) && 1582 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1583 inode->dirtied_when = jiffies; 1584 1585 if (wbc->pages_skipped) { 1586 /* 1587 * Writeback is not making progress due to locked buffers. 1588 * Skip this inode for now. Although having skipped pages 1589 * is odd for clean inodes, it can happen for some 1590 * filesystems so handle that gracefully. 1591 */ 1592 if (inode->i_state & I_DIRTY_ALL) 1593 redirty_tail_locked(inode, wb); 1594 else 1595 inode_cgwb_move_to_attached(inode, wb); 1596 return; 1597 } 1598 1599 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1600 /* 1601 * We didn't write back all the pages. nfs_writepages() 1602 * sometimes bales out without doing anything. 1603 */ 1604 if (wbc->nr_to_write <= 0 && 1605 !inode_dirtied_after(inode, dirtied_before)) { 1606 /* Slice used up. Queue for next turn. */ 1607 requeue_io(inode, wb); 1608 } else { 1609 /* 1610 * Writeback blocked by something other than 1611 * congestion. Delay the inode for some time to 1612 * avoid spinning on the CPU (100% iowait) 1613 * retrying writeback of the dirty page/inode 1614 * that cannot be performed immediately. 1615 */ 1616 redirty_tail_locked(inode, wb); 1617 } 1618 } else if (inode->i_state & I_DIRTY) { 1619 /* 1620 * Filesystems can dirty the inode during writeback operations, 1621 * such as delayed allocation during submission or metadata 1622 * updates after data IO completion. 1623 */ 1624 redirty_tail_locked(inode, wb); 1625 } else if (inode->i_state & I_DIRTY_TIME) { 1626 inode->dirtied_when = jiffies; 1627 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1628 inode->i_state &= ~I_SYNC_QUEUED; 1629 } else { 1630 /* The inode is clean. Remove from writeback lists. */ 1631 inode_cgwb_move_to_attached(inode, wb); 1632 } 1633 } 1634 1635 /* 1636 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1637 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1638 * 1639 * This doesn't remove the inode from the writeback list it is on, except 1640 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1641 * expiration. The caller is otherwise responsible for writeback list handling. 1642 * 1643 * The caller is also responsible for setting the I_SYNC flag beforehand and 1644 * calling inode_sync_complete() to clear it afterwards. 1645 */ 1646 static int 1647 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1648 { 1649 struct address_space *mapping = inode->i_mapping; 1650 long nr_to_write = wbc->nr_to_write; 1651 unsigned dirty; 1652 int ret; 1653 1654 WARN_ON(!(inode->i_state & I_SYNC)); 1655 1656 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1657 1658 ret = do_writepages(mapping, wbc); 1659 1660 /* 1661 * Make sure to wait on the data before writing out the metadata. 1662 * This is important for filesystems that modify metadata on data 1663 * I/O completion. We don't do it for sync(2) writeback because it has a 1664 * separate, external IO completion path and ->sync_fs for guaranteeing 1665 * inode metadata is written back correctly. 1666 */ 1667 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1668 int err = filemap_fdatawait(mapping); 1669 if (ret == 0) 1670 ret = err; 1671 } 1672 1673 /* 1674 * If the inode has dirty timestamps and we need to write them, call 1675 * mark_inode_dirty_sync() to notify the filesystem about it and to 1676 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1677 */ 1678 if ((inode->i_state & I_DIRTY_TIME) && 1679 (wbc->sync_mode == WB_SYNC_ALL || 1680 time_after(jiffies, inode->dirtied_time_when + 1681 dirtytime_expire_interval * HZ))) { 1682 trace_writeback_lazytime(inode); 1683 mark_inode_dirty_sync(inode); 1684 } 1685 1686 /* 1687 * Get and clear the dirty flags from i_state. This needs to be done 1688 * after calling writepages because some filesystems may redirty the 1689 * inode during writepages due to delalloc. It also needs to be done 1690 * after handling timestamp expiration, as that may dirty the inode too. 1691 */ 1692 spin_lock(&inode->i_lock); 1693 dirty = inode->i_state & I_DIRTY; 1694 inode->i_state &= ~dirty; 1695 1696 /* 1697 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1698 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1699 * either they see the I_DIRTY bits cleared or we see the dirtied 1700 * inode. 1701 * 1702 * I_DIRTY_PAGES is always cleared together above even if @mapping 1703 * still has dirty pages. The flag is reinstated after smp_mb() if 1704 * necessary. This guarantees that either __mark_inode_dirty() 1705 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1706 */ 1707 smp_mb(); 1708 1709 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1710 inode->i_state |= I_DIRTY_PAGES; 1711 else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) { 1712 if (!(inode->i_state & I_DIRTY_PAGES)) { 1713 inode->i_state &= ~I_PINNING_NETFS_WB; 1714 wbc->unpinned_netfs_wb = true; 1715 dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */ 1716 } 1717 } 1718 1719 spin_unlock(&inode->i_lock); 1720 1721 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1722 if (dirty & ~I_DIRTY_PAGES) { 1723 int err = write_inode(inode, wbc); 1724 if (ret == 0) 1725 ret = err; 1726 } 1727 wbc->unpinned_netfs_wb = false; 1728 trace_writeback_single_inode(inode, wbc, nr_to_write); 1729 return ret; 1730 } 1731 1732 /* 1733 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1734 * the regular batched writeback done by the flusher threads in 1735 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1736 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1737 * 1738 * To prevent the inode from going away, either the caller must have a reference 1739 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1740 */ 1741 static int writeback_single_inode(struct inode *inode, 1742 struct writeback_control *wbc) 1743 { 1744 struct bdi_writeback *wb; 1745 int ret = 0; 1746 1747 spin_lock(&inode->i_lock); 1748 if (!atomic_read(&inode->i_count)) 1749 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1750 else 1751 WARN_ON(inode->i_state & I_WILL_FREE); 1752 1753 if (inode->i_state & I_SYNC) { 1754 /* 1755 * Writeback is already running on the inode. For WB_SYNC_NONE, 1756 * that's enough and we can just return. For WB_SYNC_ALL, we 1757 * must wait for the existing writeback to complete, then do 1758 * writeback again if there's anything left. 1759 */ 1760 if (wbc->sync_mode != WB_SYNC_ALL) 1761 goto out; 1762 inode_wait_for_writeback(inode); 1763 } 1764 WARN_ON(inode->i_state & I_SYNC); 1765 /* 1766 * If the inode is already fully clean, then there's nothing to do. 1767 * 1768 * For data-integrity syncs we also need to check whether any pages are 1769 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1770 * there are any such pages, we'll need to wait for them. 1771 */ 1772 if (!(inode->i_state & I_DIRTY_ALL) && 1773 (wbc->sync_mode != WB_SYNC_ALL || 1774 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1775 goto out; 1776 inode->i_state |= I_SYNC; 1777 wbc_attach_and_unlock_inode(wbc, inode); 1778 1779 ret = __writeback_single_inode(inode, wbc); 1780 1781 wbc_detach_inode(wbc); 1782 1783 wb = inode_to_wb_and_lock_list(inode); 1784 spin_lock(&inode->i_lock); 1785 /* 1786 * If the inode is freeing, its i_io_list shoudn't be updated 1787 * as it can be finally deleted at this moment. 1788 */ 1789 if (!(inode->i_state & I_FREEING)) { 1790 /* 1791 * If the inode is now fully clean, then it can be safely 1792 * removed from its writeback list (if any). Otherwise the 1793 * flusher threads are responsible for the writeback lists. 1794 */ 1795 if (!(inode->i_state & I_DIRTY_ALL)) 1796 inode_cgwb_move_to_attached(inode, wb); 1797 else if (!(inode->i_state & I_SYNC_QUEUED)) { 1798 if ((inode->i_state & I_DIRTY)) 1799 redirty_tail_locked(inode, wb); 1800 else if (inode->i_state & I_DIRTY_TIME) { 1801 inode->dirtied_when = jiffies; 1802 inode_io_list_move_locked(inode, 1803 wb, 1804 &wb->b_dirty_time); 1805 } 1806 } 1807 } 1808 1809 spin_unlock(&wb->list_lock); 1810 inode_sync_complete(inode); 1811 out: 1812 spin_unlock(&inode->i_lock); 1813 return ret; 1814 } 1815 1816 static long writeback_chunk_size(struct bdi_writeback *wb, 1817 struct wb_writeback_work *work) 1818 { 1819 long pages; 1820 1821 /* 1822 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1823 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1824 * here avoids calling into writeback_inodes_wb() more than once. 1825 * 1826 * The intended call sequence for WB_SYNC_ALL writeback is: 1827 * 1828 * wb_writeback() 1829 * writeback_sb_inodes() <== called only once 1830 * write_cache_pages() <== called once for each inode 1831 * (quickly) tag currently dirty pages 1832 * (maybe slowly) sync all tagged pages 1833 */ 1834 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1835 pages = LONG_MAX; 1836 else { 1837 pages = min(wb->avg_write_bandwidth / 2, 1838 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1839 pages = min(pages, work->nr_pages); 1840 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1841 MIN_WRITEBACK_PAGES); 1842 } 1843 1844 return pages; 1845 } 1846 1847 /* 1848 * Write a portion of b_io inodes which belong to @sb. 1849 * 1850 * Return the number of pages and/or inodes written. 1851 * 1852 * NOTE! This is called with wb->list_lock held, and will 1853 * unlock and relock that for each inode it ends up doing 1854 * IO for. 1855 */ 1856 static long writeback_sb_inodes(struct super_block *sb, 1857 struct bdi_writeback *wb, 1858 struct wb_writeback_work *work) 1859 { 1860 struct writeback_control wbc = { 1861 .sync_mode = work->sync_mode, 1862 .tagged_writepages = work->tagged_writepages, 1863 .for_kupdate = work->for_kupdate, 1864 .for_background = work->for_background, 1865 .for_sync = work->for_sync, 1866 .range_cyclic = work->range_cyclic, 1867 .range_start = 0, 1868 .range_end = LLONG_MAX, 1869 }; 1870 unsigned long start_time = jiffies; 1871 long write_chunk; 1872 long total_wrote = 0; /* count both pages and inodes */ 1873 unsigned long dirtied_before = jiffies; 1874 1875 if (work->for_kupdate) 1876 dirtied_before = jiffies - 1877 msecs_to_jiffies(dirty_expire_interval * 10); 1878 1879 while (!list_empty(&wb->b_io)) { 1880 struct inode *inode = wb_inode(wb->b_io.prev); 1881 struct bdi_writeback *tmp_wb; 1882 long wrote; 1883 1884 if (inode->i_sb != sb) { 1885 if (work->sb) { 1886 /* 1887 * We only want to write back data for this 1888 * superblock, move all inodes not belonging 1889 * to it back onto the dirty list. 1890 */ 1891 redirty_tail(inode, wb); 1892 continue; 1893 } 1894 1895 /* 1896 * The inode belongs to a different superblock. 1897 * Bounce back to the caller to unpin this and 1898 * pin the next superblock. 1899 */ 1900 break; 1901 } 1902 1903 /* 1904 * Don't bother with new inodes or inodes being freed, first 1905 * kind does not need periodic writeout yet, and for the latter 1906 * kind writeout is handled by the freer. 1907 */ 1908 spin_lock(&inode->i_lock); 1909 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1910 redirty_tail_locked(inode, wb); 1911 spin_unlock(&inode->i_lock); 1912 continue; 1913 } 1914 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1915 /* 1916 * If this inode is locked for writeback and we are not 1917 * doing writeback-for-data-integrity, move it to 1918 * b_more_io so that writeback can proceed with the 1919 * other inodes on s_io. 1920 * 1921 * We'll have another go at writing back this inode 1922 * when we completed a full scan of b_io. 1923 */ 1924 requeue_io(inode, wb); 1925 spin_unlock(&inode->i_lock); 1926 trace_writeback_sb_inodes_requeue(inode); 1927 continue; 1928 } 1929 spin_unlock(&wb->list_lock); 1930 1931 /* 1932 * We already requeued the inode if it had I_SYNC set and we 1933 * are doing WB_SYNC_NONE writeback. So this catches only the 1934 * WB_SYNC_ALL case. 1935 */ 1936 if (inode->i_state & I_SYNC) { 1937 /* Wait for I_SYNC. This function drops i_lock... */ 1938 inode_sleep_on_writeback(inode); 1939 /* Inode may be gone, start again */ 1940 spin_lock(&wb->list_lock); 1941 continue; 1942 } 1943 inode->i_state |= I_SYNC; 1944 wbc_attach_and_unlock_inode(&wbc, inode); 1945 1946 write_chunk = writeback_chunk_size(wb, work); 1947 wbc.nr_to_write = write_chunk; 1948 wbc.pages_skipped = 0; 1949 1950 /* 1951 * We use I_SYNC to pin the inode in memory. While it is set 1952 * evict_inode() will wait so the inode cannot be freed. 1953 */ 1954 __writeback_single_inode(inode, &wbc); 1955 1956 wbc_detach_inode(&wbc); 1957 work->nr_pages -= write_chunk - wbc.nr_to_write; 1958 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; 1959 wrote = wrote < 0 ? 0 : wrote; 1960 total_wrote += wrote; 1961 1962 if (need_resched()) { 1963 /* 1964 * We're trying to balance between building up a nice 1965 * long list of IOs to improve our merge rate, and 1966 * getting those IOs out quickly for anyone throttling 1967 * in balance_dirty_pages(). cond_resched() doesn't 1968 * unplug, so get our IOs out the door before we 1969 * give up the CPU. 1970 */ 1971 blk_flush_plug(current->plug, false); 1972 cond_resched(); 1973 } 1974 1975 /* 1976 * Requeue @inode if still dirty. Be careful as @inode may 1977 * have been switched to another wb in the meantime. 1978 */ 1979 tmp_wb = inode_to_wb_and_lock_list(inode); 1980 spin_lock(&inode->i_lock); 1981 if (!(inode->i_state & I_DIRTY_ALL)) 1982 total_wrote++; 1983 requeue_inode(inode, tmp_wb, &wbc, dirtied_before); 1984 inode_sync_complete(inode); 1985 spin_unlock(&inode->i_lock); 1986 1987 if (unlikely(tmp_wb != wb)) { 1988 spin_unlock(&tmp_wb->list_lock); 1989 spin_lock(&wb->list_lock); 1990 } 1991 1992 /* 1993 * bail out to wb_writeback() often enough to check 1994 * background threshold and other termination conditions. 1995 */ 1996 if (total_wrote) { 1997 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1998 break; 1999 if (work->nr_pages <= 0) 2000 break; 2001 } 2002 } 2003 return total_wrote; 2004 } 2005 2006 static long __writeback_inodes_wb(struct bdi_writeback *wb, 2007 struct wb_writeback_work *work) 2008 { 2009 unsigned long start_time = jiffies; 2010 long wrote = 0; 2011 2012 while (!list_empty(&wb->b_io)) { 2013 struct inode *inode = wb_inode(wb->b_io.prev); 2014 struct super_block *sb = inode->i_sb; 2015 2016 if (!super_trylock_shared(sb)) { 2017 /* 2018 * super_trylock_shared() may fail consistently due to 2019 * s_umount being grabbed by someone else. Don't use 2020 * requeue_io() to avoid busy retrying the inode/sb. 2021 */ 2022 redirty_tail(inode, wb); 2023 continue; 2024 } 2025 wrote += writeback_sb_inodes(sb, wb, work); 2026 up_read(&sb->s_umount); 2027 2028 /* refer to the same tests at the end of writeback_sb_inodes */ 2029 if (wrote) { 2030 if (time_is_before_jiffies(start_time + HZ / 10UL)) 2031 break; 2032 if (work->nr_pages <= 0) 2033 break; 2034 } 2035 } 2036 /* Leave any unwritten inodes on b_io */ 2037 return wrote; 2038 } 2039 2040 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 2041 enum wb_reason reason) 2042 { 2043 struct wb_writeback_work work = { 2044 .nr_pages = nr_pages, 2045 .sync_mode = WB_SYNC_NONE, 2046 .range_cyclic = 1, 2047 .reason = reason, 2048 }; 2049 struct blk_plug plug; 2050 2051 blk_start_plug(&plug); 2052 spin_lock(&wb->list_lock); 2053 if (list_empty(&wb->b_io)) 2054 queue_io(wb, &work, jiffies); 2055 __writeback_inodes_wb(wb, &work); 2056 spin_unlock(&wb->list_lock); 2057 blk_finish_plug(&plug); 2058 2059 return nr_pages - work.nr_pages; 2060 } 2061 2062 /* 2063 * Explicit flushing or periodic writeback of "old" data. 2064 * 2065 * Define "old": the first time one of an inode's pages is dirtied, we mark the 2066 * dirtying-time in the inode's address_space. So this periodic writeback code 2067 * just walks the superblock inode list, writing back any inodes which are 2068 * older than a specific point in time. 2069 * 2070 * Try to run once per dirty_writeback_interval. But if a writeback event 2071 * takes longer than a dirty_writeback_interval interval, then leave a 2072 * one-second gap. 2073 * 2074 * dirtied_before takes precedence over nr_to_write. So we'll only write back 2075 * all dirty pages if they are all attached to "old" mappings. 2076 */ 2077 static long wb_writeback(struct bdi_writeback *wb, 2078 struct wb_writeback_work *work) 2079 { 2080 long nr_pages = work->nr_pages; 2081 unsigned long dirtied_before = jiffies; 2082 struct inode *inode; 2083 long progress; 2084 struct blk_plug plug; 2085 bool queued = false; 2086 2087 blk_start_plug(&plug); 2088 for (;;) { 2089 /* 2090 * Stop writeback when nr_pages has been consumed 2091 */ 2092 if (work->nr_pages <= 0) 2093 break; 2094 2095 /* 2096 * Background writeout and kupdate-style writeback may 2097 * run forever. Stop them if there is other work to do 2098 * so that e.g. sync can proceed. They'll be restarted 2099 * after the other works are all done. 2100 */ 2101 if ((work->for_background || work->for_kupdate) && 2102 !list_empty(&wb->work_list)) 2103 break; 2104 2105 /* 2106 * For background writeout, stop when we are below the 2107 * background dirty threshold 2108 */ 2109 if (work->for_background && !wb_over_bg_thresh(wb)) 2110 break; 2111 2112 2113 spin_lock(&wb->list_lock); 2114 2115 trace_writeback_start(wb, work); 2116 if (list_empty(&wb->b_io)) { 2117 /* 2118 * Kupdate and background works are special and we want 2119 * to include all inodes that need writing. Livelock 2120 * avoidance is handled by these works yielding to any 2121 * other work so we are safe. 2122 */ 2123 if (work->for_kupdate) { 2124 dirtied_before = jiffies - 2125 msecs_to_jiffies(dirty_expire_interval * 2126 10); 2127 } else if (work->for_background) 2128 dirtied_before = jiffies; 2129 2130 queue_io(wb, work, dirtied_before); 2131 queued = true; 2132 } 2133 if (work->sb) 2134 progress = writeback_sb_inodes(work->sb, wb, work); 2135 else 2136 progress = __writeback_inodes_wb(wb, work); 2137 trace_writeback_written(wb, work); 2138 2139 /* 2140 * Did we write something? Try for more 2141 * 2142 * Dirty inodes are moved to b_io for writeback in batches. 2143 * The completion of the current batch does not necessarily 2144 * mean the overall work is done. So we keep looping as long 2145 * as made some progress on cleaning pages or inodes. 2146 */ 2147 if (progress || !queued) { 2148 spin_unlock(&wb->list_lock); 2149 continue; 2150 } 2151 2152 /* 2153 * No more inodes for IO, bail 2154 */ 2155 if (list_empty(&wb->b_more_io)) { 2156 spin_unlock(&wb->list_lock); 2157 break; 2158 } 2159 2160 /* 2161 * Nothing written. Wait for some inode to 2162 * become available for writeback. Otherwise 2163 * we'll just busyloop. 2164 */ 2165 trace_writeback_wait(wb, work); 2166 inode = wb_inode(wb->b_more_io.prev); 2167 spin_lock(&inode->i_lock); 2168 spin_unlock(&wb->list_lock); 2169 /* This function drops i_lock... */ 2170 inode_sleep_on_writeback(inode); 2171 } 2172 blk_finish_plug(&plug); 2173 2174 return nr_pages - work->nr_pages; 2175 } 2176 2177 /* 2178 * Return the next wb_writeback_work struct that hasn't been processed yet. 2179 */ 2180 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2181 { 2182 struct wb_writeback_work *work = NULL; 2183 2184 spin_lock_irq(&wb->work_lock); 2185 if (!list_empty(&wb->work_list)) { 2186 work = list_entry(wb->work_list.next, 2187 struct wb_writeback_work, list); 2188 list_del_init(&work->list); 2189 } 2190 spin_unlock_irq(&wb->work_lock); 2191 return work; 2192 } 2193 2194 static long wb_check_background_flush(struct bdi_writeback *wb) 2195 { 2196 if (wb_over_bg_thresh(wb)) { 2197 2198 struct wb_writeback_work work = { 2199 .nr_pages = LONG_MAX, 2200 .sync_mode = WB_SYNC_NONE, 2201 .for_background = 1, 2202 .range_cyclic = 1, 2203 .reason = WB_REASON_BACKGROUND, 2204 }; 2205 2206 return wb_writeback(wb, &work); 2207 } 2208 2209 return 0; 2210 } 2211 2212 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2213 { 2214 unsigned long expired; 2215 long nr_pages; 2216 2217 /* 2218 * When set to zero, disable periodic writeback 2219 */ 2220 if (!dirty_writeback_interval) 2221 return 0; 2222 2223 expired = wb->last_old_flush + 2224 msecs_to_jiffies(dirty_writeback_interval * 10); 2225 if (time_before(jiffies, expired)) 2226 return 0; 2227 2228 wb->last_old_flush = jiffies; 2229 nr_pages = get_nr_dirty_pages(); 2230 2231 if (nr_pages) { 2232 struct wb_writeback_work work = { 2233 .nr_pages = nr_pages, 2234 .sync_mode = WB_SYNC_NONE, 2235 .for_kupdate = 1, 2236 .range_cyclic = 1, 2237 .reason = WB_REASON_PERIODIC, 2238 }; 2239 2240 return wb_writeback(wb, &work); 2241 } 2242 2243 return 0; 2244 } 2245 2246 static long wb_check_start_all(struct bdi_writeback *wb) 2247 { 2248 long nr_pages; 2249 2250 if (!test_bit(WB_start_all, &wb->state)) 2251 return 0; 2252 2253 nr_pages = get_nr_dirty_pages(); 2254 if (nr_pages) { 2255 struct wb_writeback_work work = { 2256 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2257 .sync_mode = WB_SYNC_NONE, 2258 .range_cyclic = 1, 2259 .reason = wb->start_all_reason, 2260 }; 2261 2262 nr_pages = wb_writeback(wb, &work); 2263 } 2264 2265 clear_bit(WB_start_all, &wb->state); 2266 return nr_pages; 2267 } 2268 2269 2270 /* 2271 * Retrieve work items and do the writeback they describe 2272 */ 2273 static long wb_do_writeback(struct bdi_writeback *wb) 2274 { 2275 struct wb_writeback_work *work; 2276 long wrote = 0; 2277 2278 set_bit(WB_writeback_running, &wb->state); 2279 while ((work = get_next_work_item(wb)) != NULL) { 2280 trace_writeback_exec(wb, work); 2281 wrote += wb_writeback(wb, work); 2282 finish_writeback_work(work); 2283 } 2284 2285 /* 2286 * Check for a flush-everything request 2287 */ 2288 wrote += wb_check_start_all(wb); 2289 2290 /* 2291 * Check for periodic writeback, kupdated() style 2292 */ 2293 wrote += wb_check_old_data_flush(wb); 2294 wrote += wb_check_background_flush(wb); 2295 clear_bit(WB_writeback_running, &wb->state); 2296 2297 return wrote; 2298 } 2299 2300 /* 2301 * Handle writeback of dirty data for the device backed by this bdi. Also 2302 * reschedules periodically and does kupdated style flushing. 2303 */ 2304 void wb_workfn(struct work_struct *work) 2305 { 2306 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2307 struct bdi_writeback, dwork); 2308 long pages_written; 2309 2310 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2311 2312 if (likely(!current_is_workqueue_rescuer() || 2313 !test_bit(WB_registered, &wb->state))) { 2314 /* 2315 * The normal path. Keep writing back @wb until its 2316 * work_list is empty. Note that this path is also taken 2317 * if @wb is shutting down even when we're running off the 2318 * rescuer as work_list needs to be drained. 2319 */ 2320 do { 2321 pages_written = wb_do_writeback(wb); 2322 trace_writeback_pages_written(pages_written); 2323 } while (!list_empty(&wb->work_list)); 2324 } else { 2325 /* 2326 * bdi_wq can't get enough workers and we're running off 2327 * the emergency worker. Don't hog it. Hopefully, 1024 is 2328 * enough for efficient IO. 2329 */ 2330 pages_written = writeback_inodes_wb(wb, 1024, 2331 WB_REASON_FORKER_THREAD); 2332 trace_writeback_pages_written(pages_written); 2333 } 2334 2335 if (!list_empty(&wb->work_list)) 2336 wb_wakeup(wb); 2337 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2338 wb_wakeup_delayed(wb); 2339 } 2340 2341 /* 2342 * Start writeback of all dirty pages on this bdi. 2343 */ 2344 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2345 enum wb_reason reason) 2346 { 2347 struct bdi_writeback *wb; 2348 2349 if (!bdi_has_dirty_io(bdi)) 2350 return; 2351 2352 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2353 wb_start_writeback(wb, reason); 2354 } 2355 2356 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2357 enum wb_reason reason) 2358 { 2359 rcu_read_lock(); 2360 __wakeup_flusher_threads_bdi(bdi, reason); 2361 rcu_read_unlock(); 2362 } 2363 2364 /* 2365 * Wakeup the flusher threads to start writeback of all currently dirty pages 2366 */ 2367 void wakeup_flusher_threads(enum wb_reason reason) 2368 { 2369 struct backing_dev_info *bdi; 2370 2371 /* 2372 * If we are expecting writeback progress we must submit plugged IO. 2373 */ 2374 blk_flush_plug(current->plug, true); 2375 2376 rcu_read_lock(); 2377 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2378 __wakeup_flusher_threads_bdi(bdi, reason); 2379 rcu_read_unlock(); 2380 } 2381 2382 /* 2383 * Wake up bdi's periodically to make sure dirtytime inodes gets 2384 * written back periodically. We deliberately do *not* check the 2385 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2386 * kernel to be constantly waking up once there are any dirtytime 2387 * inodes on the system. So instead we define a separate delayed work 2388 * function which gets called much more rarely. (By default, only 2389 * once every 12 hours.) 2390 * 2391 * If there is any other write activity going on in the file system, 2392 * this function won't be necessary. But if the only thing that has 2393 * happened on the file system is a dirtytime inode caused by an atime 2394 * update, we need this infrastructure below to make sure that inode 2395 * eventually gets pushed out to disk. 2396 */ 2397 static void wakeup_dirtytime_writeback(struct work_struct *w); 2398 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2399 2400 static void wakeup_dirtytime_writeback(struct work_struct *w) 2401 { 2402 struct backing_dev_info *bdi; 2403 2404 rcu_read_lock(); 2405 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2406 struct bdi_writeback *wb; 2407 2408 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2409 if (!list_empty(&wb->b_dirty_time)) 2410 wb_wakeup(wb); 2411 } 2412 rcu_read_unlock(); 2413 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2414 } 2415 2416 static int __init start_dirtytime_writeback(void) 2417 { 2418 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2419 return 0; 2420 } 2421 __initcall(start_dirtytime_writeback); 2422 2423 int dirtytime_interval_handler(const struct ctl_table *table, int write, 2424 void *buffer, size_t *lenp, loff_t *ppos) 2425 { 2426 int ret; 2427 2428 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2429 if (ret == 0 && write) 2430 mod_delayed_work(system_wq, &dirtytime_work, 0); 2431 return ret; 2432 } 2433 2434 /** 2435 * __mark_inode_dirty - internal function to mark an inode dirty 2436 * 2437 * @inode: inode to mark 2438 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2439 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2440 * with I_DIRTY_PAGES. 2441 * 2442 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2443 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2444 * 2445 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2446 * instead of calling this directly. 2447 * 2448 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2449 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2450 * even if they are later hashed, as they will have been marked dirty already. 2451 * 2452 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2453 * 2454 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2455 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2456 * the kernel-internal blockdev inode represents the dirtying time of the 2457 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2458 * page->mapping->host, so the page-dirtying time is recorded in the internal 2459 * blockdev inode. 2460 */ 2461 void __mark_inode_dirty(struct inode *inode, int flags) 2462 { 2463 struct super_block *sb = inode->i_sb; 2464 int dirtytime = 0; 2465 struct bdi_writeback *wb = NULL; 2466 2467 trace_writeback_mark_inode_dirty(inode, flags); 2468 2469 if (flags & I_DIRTY_INODE) { 2470 /* 2471 * Inode timestamp update will piggback on this dirtying. 2472 * We tell ->dirty_inode callback that timestamps need to 2473 * be updated by setting I_DIRTY_TIME in flags. 2474 */ 2475 if (inode->i_state & I_DIRTY_TIME) { 2476 spin_lock(&inode->i_lock); 2477 if (inode->i_state & I_DIRTY_TIME) { 2478 inode->i_state &= ~I_DIRTY_TIME; 2479 flags |= I_DIRTY_TIME; 2480 } 2481 spin_unlock(&inode->i_lock); 2482 } 2483 2484 /* 2485 * Notify the filesystem about the inode being dirtied, so that 2486 * (if needed) it can update on-disk fields and journal the 2487 * inode. This is only needed when the inode itself is being 2488 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2489 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2490 */ 2491 trace_writeback_dirty_inode_start(inode, flags); 2492 if (sb->s_op->dirty_inode) 2493 sb->s_op->dirty_inode(inode, 2494 flags & (I_DIRTY_INODE | I_DIRTY_TIME)); 2495 trace_writeback_dirty_inode(inode, flags); 2496 2497 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2498 flags &= ~I_DIRTY_TIME; 2499 } else { 2500 /* 2501 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2502 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2503 * in one call to __mark_inode_dirty().) 2504 */ 2505 dirtytime = flags & I_DIRTY_TIME; 2506 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2507 } 2508 2509 /* 2510 * Paired with smp_mb() in __writeback_single_inode() for the 2511 * following lockless i_state test. See there for details. 2512 */ 2513 smp_mb(); 2514 2515 if ((inode->i_state & flags) == flags) 2516 return; 2517 2518 spin_lock(&inode->i_lock); 2519 if ((inode->i_state & flags) != flags) { 2520 const int was_dirty = inode->i_state & I_DIRTY; 2521 2522 inode_attach_wb(inode, NULL); 2523 2524 inode->i_state |= flags; 2525 2526 /* 2527 * Grab inode's wb early because it requires dropping i_lock and we 2528 * need to make sure following checks happen atomically with dirty 2529 * list handling so that we don't move inodes under flush worker's 2530 * hands. 2531 */ 2532 if (!was_dirty) { 2533 wb = locked_inode_to_wb_and_lock_list(inode); 2534 spin_lock(&inode->i_lock); 2535 } 2536 2537 /* 2538 * If the inode is queued for writeback by flush worker, just 2539 * update its dirty state. Once the flush worker is done with 2540 * the inode it will place it on the appropriate superblock 2541 * list, based upon its state. 2542 */ 2543 if (inode->i_state & I_SYNC_QUEUED) 2544 goto out_unlock; 2545 2546 /* 2547 * Only add valid (hashed) inodes to the superblock's 2548 * dirty list. Add blockdev inodes as well. 2549 */ 2550 if (!S_ISBLK(inode->i_mode)) { 2551 if (inode_unhashed(inode)) 2552 goto out_unlock; 2553 } 2554 if (inode->i_state & I_FREEING) 2555 goto out_unlock; 2556 2557 /* 2558 * If the inode was already on b_dirty/b_io/b_more_io, don't 2559 * reposition it (that would break b_dirty time-ordering). 2560 */ 2561 if (!was_dirty) { 2562 struct list_head *dirty_list; 2563 bool wakeup_bdi = false; 2564 2565 inode->dirtied_when = jiffies; 2566 if (dirtytime) 2567 inode->dirtied_time_when = jiffies; 2568 2569 if (inode->i_state & I_DIRTY) 2570 dirty_list = &wb->b_dirty; 2571 else 2572 dirty_list = &wb->b_dirty_time; 2573 2574 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2575 dirty_list); 2576 2577 spin_unlock(&wb->list_lock); 2578 spin_unlock(&inode->i_lock); 2579 trace_writeback_dirty_inode_enqueue(inode); 2580 2581 /* 2582 * If this is the first dirty inode for this bdi, 2583 * we have to wake-up the corresponding bdi thread 2584 * to make sure background write-back happens 2585 * later. 2586 */ 2587 if (wakeup_bdi && 2588 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2589 wb_wakeup_delayed(wb); 2590 return; 2591 } 2592 } 2593 out_unlock: 2594 if (wb) 2595 spin_unlock(&wb->list_lock); 2596 spin_unlock(&inode->i_lock); 2597 } 2598 EXPORT_SYMBOL(__mark_inode_dirty); 2599 2600 /* 2601 * The @s_sync_lock is used to serialise concurrent sync operations 2602 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2603 * Concurrent callers will block on the s_sync_lock rather than doing contending 2604 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2605 * has been issued up to the time this function is enter is guaranteed to be 2606 * completed by the time we have gained the lock and waited for all IO that is 2607 * in progress regardless of the order callers are granted the lock. 2608 */ 2609 static void wait_sb_inodes(struct super_block *sb) 2610 { 2611 LIST_HEAD(sync_list); 2612 2613 /* 2614 * We need to be protected against the filesystem going from 2615 * r/o to r/w or vice versa. 2616 */ 2617 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2618 2619 mutex_lock(&sb->s_sync_lock); 2620 2621 /* 2622 * Splice the writeback list onto a temporary list to avoid waiting on 2623 * inodes that have started writeback after this point. 2624 * 2625 * Use rcu_read_lock() to keep the inodes around until we have a 2626 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2627 * the local list because inodes can be dropped from either by writeback 2628 * completion. 2629 */ 2630 rcu_read_lock(); 2631 spin_lock_irq(&sb->s_inode_wblist_lock); 2632 list_splice_init(&sb->s_inodes_wb, &sync_list); 2633 2634 /* 2635 * Data integrity sync. Must wait for all pages under writeback, because 2636 * there may have been pages dirtied before our sync call, but which had 2637 * writeout started before we write it out. In which case, the inode 2638 * may not be on the dirty list, but we still have to wait for that 2639 * writeout. 2640 */ 2641 while (!list_empty(&sync_list)) { 2642 struct inode *inode = list_first_entry(&sync_list, struct inode, 2643 i_wb_list); 2644 struct address_space *mapping = inode->i_mapping; 2645 2646 /* 2647 * Move each inode back to the wb list before we drop the lock 2648 * to preserve consistency between i_wb_list and the mapping 2649 * writeback tag. Writeback completion is responsible to remove 2650 * the inode from either list once the writeback tag is cleared. 2651 */ 2652 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2653 2654 /* 2655 * The mapping can appear untagged while still on-list since we 2656 * do not have the mapping lock. Skip it here, wb completion 2657 * will remove it. 2658 */ 2659 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2660 continue; 2661 2662 spin_unlock_irq(&sb->s_inode_wblist_lock); 2663 2664 spin_lock(&inode->i_lock); 2665 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2666 spin_unlock(&inode->i_lock); 2667 2668 spin_lock_irq(&sb->s_inode_wblist_lock); 2669 continue; 2670 } 2671 __iget(inode); 2672 spin_unlock(&inode->i_lock); 2673 rcu_read_unlock(); 2674 2675 /* 2676 * We keep the error status of individual mapping so that 2677 * applications can catch the writeback error using fsync(2). 2678 * See filemap_fdatawait_keep_errors() for details. 2679 */ 2680 filemap_fdatawait_keep_errors(mapping); 2681 2682 cond_resched(); 2683 2684 iput(inode); 2685 2686 rcu_read_lock(); 2687 spin_lock_irq(&sb->s_inode_wblist_lock); 2688 } 2689 spin_unlock_irq(&sb->s_inode_wblist_lock); 2690 rcu_read_unlock(); 2691 mutex_unlock(&sb->s_sync_lock); 2692 } 2693 2694 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2695 enum wb_reason reason, bool skip_if_busy) 2696 { 2697 struct backing_dev_info *bdi = sb->s_bdi; 2698 DEFINE_WB_COMPLETION(done, bdi); 2699 struct wb_writeback_work work = { 2700 .sb = sb, 2701 .sync_mode = WB_SYNC_NONE, 2702 .tagged_writepages = 1, 2703 .done = &done, 2704 .nr_pages = nr, 2705 .reason = reason, 2706 }; 2707 2708 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2709 return; 2710 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2711 2712 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2713 wb_wait_for_completion(&done); 2714 } 2715 2716 /** 2717 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2718 * @sb: the superblock 2719 * @nr: the number of pages to write 2720 * @reason: reason why some writeback work initiated 2721 * 2722 * Start writeback on some inodes on this super_block. No guarantees are made 2723 * on how many (if any) will be written, and this function does not wait 2724 * for IO completion of submitted IO. 2725 */ 2726 void writeback_inodes_sb_nr(struct super_block *sb, 2727 unsigned long nr, 2728 enum wb_reason reason) 2729 { 2730 __writeback_inodes_sb_nr(sb, nr, reason, false); 2731 } 2732 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2733 2734 /** 2735 * writeback_inodes_sb - writeback dirty inodes from given super_block 2736 * @sb: the superblock 2737 * @reason: reason why some writeback work was initiated 2738 * 2739 * Start writeback on some inodes on this super_block. No guarantees are made 2740 * on how many (if any) will be written, and this function does not wait 2741 * for IO completion of submitted IO. 2742 */ 2743 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2744 { 2745 writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2746 } 2747 EXPORT_SYMBOL(writeback_inodes_sb); 2748 2749 /** 2750 * try_to_writeback_inodes_sb - try to start writeback if none underway 2751 * @sb: the superblock 2752 * @reason: reason why some writeback work was initiated 2753 * 2754 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2755 */ 2756 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2757 { 2758 if (!down_read_trylock(&sb->s_umount)) 2759 return; 2760 2761 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2762 up_read(&sb->s_umount); 2763 } 2764 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2765 2766 /** 2767 * sync_inodes_sb - sync sb inode pages 2768 * @sb: the superblock 2769 * 2770 * This function writes and waits on any dirty inode belonging to this 2771 * super_block. 2772 */ 2773 void sync_inodes_sb(struct super_block *sb) 2774 { 2775 struct backing_dev_info *bdi = sb->s_bdi; 2776 DEFINE_WB_COMPLETION(done, bdi); 2777 struct wb_writeback_work work = { 2778 .sb = sb, 2779 .sync_mode = WB_SYNC_ALL, 2780 .nr_pages = LONG_MAX, 2781 .range_cyclic = 0, 2782 .done = &done, 2783 .reason = WB_REASON_SYNC, 2784 .for_sync = 1, 2785 }; 2786 2787 /* 2788 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2789 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2790 * bdi_has_dirty() need to be written out too. 2791 */ 2792 if (bdi == &noop_backing_dev_info) 2793 return; 2794 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2795 2796 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2797 bdi_down_write_wb_switch_rwsem(bdi); 2798 bdi_split_work_to_wbs(bdi, &work, false); 2799 wb_wait_for_completion(&done); 2800 bdi_up_write_wb_switch_rwsem(bdi); 2801 2802 wait_sb_inodes(sb); 2803 } 2804 EXPORT_SYMBOL(sync_inodes_sb); 2805 2806 /** 2807 * write_inode_now - write an inode to disk 2808 * @inode: inode to write to disk 2809 * @sync: whether the write should be synchronous or not 2810 * 2811 * This function commits an inode to disk immediately if it is dirty. This is 2812 * primarily needed by knfsd. 2813 * 2814 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2815 */ 2816 int write_inode_now(struct inode *inode, int sync) 2817 { 2818 struct writeback_control wbc = { 2819 .nr_to_write = LONG_MAX, 2820 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2821 .range_start = 0, 2822 .range_end = LLONG_MAX, 2823 }; 2824 2825 if (!mapping_can_writeback(inode->i_mapping)) 2826 wbc.nr_to_write = 0; 2827 2828 might_sleep(); 2829 return writeback_single_inode(inode, &wbc); 2830 } 2831 EXPORT_SYMBOL(write_inode_now); 2832 2833 /** 2834 * sync_inode_metadata - write an inode to disk 2835 * @inode: the inode to sync 2836 * @wait: wait for I/O to complete. 2837 * 2838 * Write an inode to disk and adjust its dirty state after completion. 2839 * 2840 * Note: only writes the actual inode, no associated data or other metadata. 2841 */ 2842 int sync_inode_metadata(struct inode *inode, int wait) 2843 { 2844 struct writeback_control wbc = { 2845 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2846 .nr_to_write = 0, /* metadata-only */ 2847 }; 2848 2849 return writeback_single_inode(inode, &wbc); 2850 } 2851 EXPORT_SYMBOL(sync_inode_metadata); 2852