xref: /linux/fs/fs-writeback.c (revision 55d0969c451159cff86949b38c39171cab962069)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 	assert_spin_locked(&inode->i_lock);
124 	WARN_ON_ONCE(inode->i_state & I_FREEING);
125 
126 	list_move(&inode->i_io_list, head);
127 
128 	/* dirty_time doesn't count as dirty_io until expiration */
129 	if (head != &wb->b_dirty_time)
130 		return wb_io_lists_populated(wb);
131 
132 	wb_io_lists_depopulated(wb);
133 	return false;
134 }
135 
136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138 	spin_lock_irq(&wb->work_lock);
139 	if (test_bit(WB_registered, &wb->state))
140 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 	spin_unlock_irq(&wb->work_lock);
142 }
143 
144 /*
145  * This function is used when the first inode for this wb is marked dirty. It
146  * wakes-up the corresponding bdi thread which should then take care of the
147  * periodic background write-out of dirty inodes. Since the write-out would
148  * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149  * set up a timer which wakes the bdi thread up later.
150  *
151  * Note, we wouldn't bother setting up the timer, but this function is on the
152  * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153  * by delaying the wake-up.
154  *
155  * We have to be careful not to postpone flush work if it is scheduled for
156  * earlier. Thus we use queue_delayed_work().
157  */
158 static void wb_wakeup_delayed(struct bdi_writeback *wb)
159 {
160 	unsigned long timeout;
161 
162 	timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163 	spin_lock_irq(&wb->work_lock);
164 	if (test_bit(WB_registered, &wb->state))
165 		queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166 	spin_unlock_irq(&wb->work_lock);
167 }
168 
169 static void finish_writeback_work(struct wb_writeback_work *work)
170 {
171 	struct wb_completion *done = work->done;
172 
173 	if (work->auto_free)
174 		kfree(work);
175 	if (done) {
176 		wait_queue_head_t *waitq = done->waitq;
177 
178 		/* @done can't be accessed after the following dec */
179 		if (atomic_dec_and_test(&done->cnt))
180 			wake_up_all(waitq);
181 	}
182 }
183 
184 static void wb_queue_work(struct bdi_writeback *wb,
185 			  struct wb_writeback_work *work)
186 {
187 	trace_writeback_queue(wb, work);
188 
189 	if (work->done)
190 		atomic_inc(&work->done->cnt);
191 
192 	spin_lock_irq(&wb->work_lock);
193 
194 	if (test_bit(WB_registered, &wb->state)) {
195 		list_add_tail(&work->list, &wb->work_list);
196 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
197 	} else
198 		finish_writeback_work(work);
199 
200 	spin_unlock_irq(&wb->work_lock);
201 }
202 
203 /**
204  * wb_wait_for_completion - wait for completion of bdi_writeback_works
205  * @done: target wb_completion
206  *
207  * Wait for one or more work items issued to @bdi with their ->done field
208  * set to @done, which should have been initialized with
209  * DEFINE_WB_COMPLETION().  This function returns after all such work items
210  * are completed.  Work items which are waited upon aren't freed
211  * automatically on completion.
212  */
213 void wb_wait_for_completion(struct wb_completion *done)
214 {
215 	atomic_dec(&done->cnt);		/* put down the initial count */
216 	wait_event(*done->waitq, !atomic_read(&done->cnt));
217 }
218 
219 #ifdef CONFIG_CGROUP_WRITEBACK
220 
221 /*
222  * Parameters for foreign inode detection, see wbc_detach_inode() to see
223  * how they're used.
224  *
225  * These paramters are inherently heuristical as the detection target
226  * itself is fuzzy.  All we want to do is detaching an inode from the
227  * current owner if it's being written to by some other cgroups too much.
228  *
229  * The current cgroup writeback is built on the assumption that multiple
230  * cgroups writing to the same inode concurrently is very rare and a mode
231  * of operation which isn't well supported.  As such, the goal is not
232  * taking too long when a different cgroup takes over an inode while
233  * avoiding too aggressive flip-flops from occasional foreign writes.
234  *
235  * We record, very roughly, 2s worth of IO time history and if more than
236  * half of that is foreign, trigger the switch.  The recording is quantized
237  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
238  * writes smaller than 1/8 of avg size are ignored.
239  */
240 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
241 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
242 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
243 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
244 
245 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
246 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
247 					/* each slot's duration is 2s / 16 */
248 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
249 					/* if foreign slots >= 8, switch */
250 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
251 					/* one round can affect upto 5 slots */
252 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
253 
254 /*
255  * Maximum inodes per isw.  A specific value has been chosen to make
256  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
257  */
258 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
259                                 / sizeof(struct inode *))
260 
261 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
262 static struct workqueue_struct *isw_wq;
263 
264 void __inode_attach_wb(struct inode *inode, struct folio *folio)
265 {
266 	struct backing_dev_info *bdi = inode_to_bdi(inode);
267 	struct bdi_writeback *wb = NULL;
268 
269 	if (inode_cgwb_enabled(inode)) {
270 		struct cgroup_subsys_state *memcg_css;
271 
272 		if (folio) {
273 			memcg_css = mem_cgroup_css_from_folio(folio);
274 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
275 		} else {
276 			/* must pin memcg_css, see wb_get_create() */
277 			memcg_css = task_get_css(current, memory_cgrp_id);
278 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
279 			css_put(memcg_css);
280 		}
281 	}
282 
283 	if (!wb)
284 		wb = &bdi->wb;
285 
286 	/*
287 	 * There may be multiple instances of this function racing to
288 	 * update the same inode.  Use cmpxchg() to tell the winner.
289 	 */
290 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
291 		wb_put(wb);
292 }
293 EXPORT_SYMBOL_GPL(__inode_attach_wb);
294 
295 /**
296  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
297  * @inode: inode of interest with i_lock held
298  * @wb: target bdi_writeback
299  *
300  * Remove the inode from wb's io lists and if necessarily put onto b_attached
301  * list.  Only inodes attached to cgwb's are kept on this list.
302  */
303 static void inode_cgwb_move_to_attached(struct inode *inode,
304 					struct bdi_writeback *wb)
305 {
306 	assert_spin_locked(&wb->list_lock);
307 	assert_spin_locked(&inode->i_lock);
308 	WARN_ON_ONCE(inode->i_state & I_FREEING);
309 
310 	inode->i_state &= ~I_SYNC_QUEUED;
311 	if (wb != &wb->bdi->wb)
312 		list_move(&inode->i_io_list, &wb->b_attached);
313 	else
314 		list_del_init(&inode->i_io_list);
315 	wb_io_lists_depopulated(wb);
316 }
317 
318 /**
319  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
320  * @inode: inode of interest with i_lock held
321  *
322  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
323  * held on entry and is released on return.  The returned wb is guaranteed
324  * to stay @inode's associated wb until its list_lock is released.
325  */
326 static struct bdi_writeback *
327 locked_inode_to_wb_and_lock_list(struct inode *inode)
328 	__releases(&inode->i_lock)
329 	__acquires(&wb->list_lock)
330 {
331 	while (true) {
332 		struct bdi_writeback *wb = inode_to_wb(inode);
333 
334 		/*
335 		 * inode_to_wb() association is protected by both
336 		 * @inode->i_lock and @wb->list_lock but list_lock nests
337 		 * outside i_lock.  Drop i_lock and verify that the
338 		 * association hasn't changed after acquiring list_lock.
339 		 */
340 		wb_get(wb);
341 		spin_unlock(&inode->i_lock);
342 		spin_lock(&wb->list_lock);
343 
344 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
345 		if (likely(wb == inode->i_wb)) {
346 			wb_put(wb);	/* @inode already has ref */
347 			return wb;
348 		}
349 
350 		spin_unlock(&wb->list_lock);
351 		wb_put(wb);
352 		cpu_relax();
353 		spin_lock(&inode->i_lock);
354 	}
355 }
356 
357 /**
358  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
359  * @inode: inode of interest
360  *
361  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
362  * on entry.
363  */
364 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
365 	__acquires(&wb->list_lock)
366 {
367 	spin_lock(&inode->i_lock);
368 	return locked_inode_to_wb_and_lock_list(inode);
369 }
370 
371 struct inode_switch_wbs_context {
372 	struct rcu_work		work;
373 
374 	/*
375 	 * Multiple inodes can be switched at once.  The switching procedure
376 	 * consists of two parts, separated by a RCU grace period.  To make
377 	 * sure that the second part is executed for each inode gone through
378 	 * the first part, all inode pointers are placed into a NULL-terminated
379 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
380 	 * an inode could be left in a non-consistent state.
381 	 */
382 	struct bdi_writeback	*new_wb;
383 	struct inode		*inodes[];
384 };
385 
386 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
387 {
388 	down_write(&bdi->wb_switch_rwsem);
389 }
390 
391 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
392 {
393 	up_write(&bdi->wb_switch_rwsem);
394 }
395 
396 static bool inode_do_switch_wbs(struct inode *inode,
397 				struct bdi_writeback *old_wb,
398 				struct bdi_writeback *new_wb)
399 {
400 	struct address_space *mapping = inode->i_mapping;
401 	XA_STATE(xas, &mapping->i_pages, 0);
402 	struct folio *folio;
403 	bool switched = false;
404 
405 	spin_lock(&inode->i_lock);
406 	xa_lock_irq(&mapping->i_pages);
407 
408 	/*
409 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
410 	 * path owns the inode and we shouldn't modify ->i_io_list.
411 	 */
412 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
413 		goto skip_switch;
414 
415 	trace_inode_switch_wbs(inode, old_wb, new_wb);
416 
417 	/*
418 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
419 	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
420 	 * folios actually under writeback.
421 	 */
422 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
423 		if (folio_test_dirty(folio)) {
424 			long nr = folio_nr_pages(folio);
425 			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
426 			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
427 		}
428 	}
429 
430 	xas_set(&xas, 0);
431 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
432 		long nr = folio_nr_pages(folio);
433 		WARN_ON_ONCE(!folio_test_writeback(folio));
434 		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
435 		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
436 	}
437 
438 	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
439 		atomic_dec(&old_wb->writeback_inodes);
440 		atomic_inc(&new_wb->writeback_inodes);
441 	}
442 
443 	wb_get(new_wb);
444 
445 	/*
446 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
447 	 * the specific list @inode was on is ignored and the @inode is put on
448 	 * ->b_dirty which is always correct including from ->b_dirty_time.
449 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
450 	 * was clean, it means it was on the b_attached list, so move it onto
451 	 * the b_attached list of @new_wb.
452 	 */
453 	if (!list_empty(&inode->i_io_list)) {
454 		inode->i_wb = new_wb;
455 
456 		if (inode->i_state & I_DIRTY_ALL) {
457 			struct inode *pos;
458 
459 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
460 				if (time_after_eq(inode->dirtied_when,
461 						  pos->dirtied_when))
462 					break;
463 			inode_io_list_move_locked(inode, new_wb,
464 						  pos->i_io_list.prev);
465 		} else {
466 			inode_cgwb_move_to_attached(inode, new_wb);
467 		}
468 	} else {
469 		inode->i_wb = new_wb;
470 	}
471 
472 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
473 	inode->i_wb_frn_winner = 0;
474 	inode->i_wb_frn_avg_time = 0;
475 	inode->i_wb_frn_history = 0;
476 	switched = true;
477 skip_switch:
478 	/*
479 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
480 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
481 	 */
482 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
483 
484 	xa_unlock_irq(&mapping->i_pages);
485 	spin_unlock(&inode->i_lock);
486 
487 	return switched;
488 }
489 
490 static void inode_switch_wbs_work_fn(struct work_struct *work)
491 {
492 	struct inode_switch_wbs_context *isw =
493 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
494 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
495 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
496 	struct bdi_writeback *new_wb = isw->new_wb;
497 	unsigned long nr_switched = 0;
498 	struct inode **inodep;
499 
500 	/*
501 	 * If @inode switches cgwb membership while sync_inodes_sb() is
502 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
503 	 */
504 	down_read(&bdi->wb_switch_rwsem);
505 
506 	/*
507 	 * By the time control reaches here, RCU grace period has passed
508 	 * since I_WB_SWITCH assertion and all wb stat update transactions
509 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
510 	 * synchronizing against the i_pages lock.
511 	 *
512 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
513 	 * gives us exclusion against all wb related operations on @inode
514 	 * including IO list manipulations and stat updates.
515 	 */
516 	if (old_wb < new_wb) {
517 		spin_lock(&old_wb->list_lock);
518 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
519 	} else {
520 		spin_lock(&new_wb->list_lock);
521 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
522 	}
523 
524 	for (inodep = isw->inodes; *inodep; inodep++) {
525 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
526 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
527 			nr_switched++;
528 	}
529 
530 	spin_unlock(&new_wb->list_lock);
531 	spin_unlock(&old_wb->list_lock);
532 
533 	up_read(&bdi->wb_switch_rwsem);
534 
535 	if (nr_switched) {
536 		wb_wakeup(new_wb);
537 		wb_put_many(old_wb, nr_switched);
538 	}
539 
540 	for (inodep = isw->inodes; *inodep; inodep++)
541 		iput(*inodep);
542 	wb_put(new_wb);
543 	kfree(isw);
544 	atomic_dec(&isw_nr_in_flight);
545 }
546 
547 static bool inode_prepare_wbs_switch(struct inode *inode,
548 				     struct bdi_writeback *new_wb)
549 {
550 	/*
551 	 * Paired with smp_mb() in cgroup_writeback_umount().
552 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
553 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
554 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
555 	 */
556 	smp_mb();
557 
558 	if (IS_DAX(inode))
559 		return false;
560 
561 	/* while holding I_WB_SWITCH, no one else can update the association */
562 	spin_lock(&inode->i_lock);
563 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
564 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
565 	    inode_to_wb(inode) == new_wb) {
566 		spin_unlock(&inode->i_lock);
567 		return false;
568 	}
569 	inode->i_state |= I_WB_SWITCH;
570 	__iget(inode);
571 	spin_unlock(&inode->i_lock);
572 
573 	return true;
574 }
575 
576 /**
577  * inode_switch_wbs - change the wb association of an inode
578  * @inode: target inode
579  * @new_wb_id: ID of the new wb
580  *
581  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
582  * switching is performed asynchronously and may fail silently.
583  */
584 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
585 {
586 	struct backing_dev_info *bdi = inode_to_bdi(inode);
587 	struct cgroup_subsys_state *memcg_css;
588 	struct inode_switch_wbs_context *isw;
589 
590 	/* noop if seems to be already in progress */
591 	if (inode->i_state & I_WB_SWITCH)
592 		return;
593 
594 	/* avoid queueing a new switch if too many are already in flight */
595 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
596 		return;
597 
598 	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
599 	if (!isw)
600 		return;
601 
602 	atomic_inc(&isw_nr_in_flight);
603 
604 	/* find and pin the new wb */
605 	rcu_read_lock();
606 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
607 	if (memcg_css && !css_tryget(memcg_css))
608 		memcg_css = NULL;
609 	rcu_read_unlock();
610 	if (!memcg_css)
611 		goto out_free;
612 
613 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
614 	css_put(memcg_css);
615 	if (!isw->new_wb)
616 		goto out_free;
617 
618 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
619 		goto out_free;
620 
621 	isw->inodes[0] = inode;
622 
623 	/*
624 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
625 	 * the RCU protected stat update paths to grab the i_page
626 	 * lock so that stat transfer can synchronize against them.
627 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
628 	 */
629 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
630 	queue_rcu_work(isw_wq, &isw->work);
631 	return;
632 
633 out_free:
634 	atomic_dec(&isw_nr_in_flight);
635 	if (isw->new_wb)
636 		wb_put(isw->new_wb);
637 	kfree(isw);
638 }
639 
640 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
641 				   struct list_head *list, int *nr)
642 {
643 	struct inode *inode;
644 
645 	list_for_each_entry(inode, list, i_io_list) {
646 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
647 			continue;
648 
649 		isw->inodes[*nr] = inode;
650 		(*nr)++;
651 
652 		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
653 			return true;
654 	}
655 	return false;
656 }
657 
658 /**
659  * cleanup_offline_cgwb - detach associated inodes
660  * @wb: target wb
661  *
662  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
663  * to eventually release the dying @wb.  Returns %true if not all inodes were
664  * switched and the function has to be restarted.
665  */
666 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
667 {
668 	struct cgroup_subsys_state *memcg_css;
669 	struct inode_switch_wbs_context *isw;
670 	int nr;
671 	bool restart = false;
672 
673 	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
674 		      GFP_KERNEL);
675 	if (!isw)
676 		return restart;
677 
678 	atomic_inc(&isw_nr_in_flight);
679 
680 	for (memcg_css = wb->memcg_css->parent; memcg_css;
681 	     memcg_css = memcg_css->parent) {
682 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
683 		if (isw->new_wb)
684 			break;
685 	}
686 	if (unlikely(!isw->new_wb))
687 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
688 
689 	nr = 0;
690 	spin_lock(&wb->list_lock);
691 	/*
692 	 * In addition to the inodes that have completed writeback, also switch
693 	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
694 	 * inodes won't be written back for a long time when lazytime is
695 	 * enabled, and thus pinning the dying cgwbs. It won't break the
696 	 * bandwidth restrictions, as writeback of inode metadata is not
697 	 * accounted for.
698 	 */
699 	restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
700 	if (!restart)
701 		restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
702 	spin_unlock(&wb->list_lock);
703 
704 	/* no attached inodes? bail out */
705 	if (nr == 0) {
706 		atomic_dec(&isw_nr_in_flight);
707 		wb_put(isw->new_wb);
708 		kfree(isw);
709 		return restart;
710 	}
711 
712 	/*
713 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
714 	 * the RCU protected stat update paths to grab the i_page
715 	 * lock so that stat transfer can synchronize against them.
716 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
717 	 */
718 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
719 	queue_rcu_work(isw_wq, &isw->work);
720 
721 	return restart;
722 }
723 
724 /**
725  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
726  * @wbc: writeback_control of interest
727  * @inode: target inode
728  *
729  * @inode is locked and about to be written back under the control of @wbc.
730  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
731  * writeback completion, wbc_detach_inode() should be called.  This is used
732  * to track the cgroup writeback context.
733  */
734 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
735 				 struct inode *inode)
736 {
737 	if (!inode_cgwb_enabled(inode)) {
738 		spin_unlock(&inode->i_lock);
739 		return;
740 	}
741 
742 	wbc->wb = inode_to_wb(inode);
743 	wbc->inode = inode;
744 
745 	wbc->wb_id = wbc->wb->memcg_css->id;
746 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
747 	wbc->wb_tcand_id = 0;
748 	wbc->wb_bytes = 0;
749 	wbc->wb_lcand_bytes = 0;
750 	wbc->wb_tcand_bytes = 0;
751 
752 	wb_get(wbc->wb);
753 	spin_unlock(&inode->i_lock);
754 
755 	/*
756 	 * A dying wb indicates that either the blkcg associated with the
757 	 * memcg changed or the associated memcg is dying.  In the first
758 	 * case, a replacement wb should already be available and we should
759 	 * refresh the wb immediately.  In the second case, trying to
760 	 * refresh will keep failing.
761 	 */
762 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
763 		inode_switch_wbs(inode, wbc->wb_id);
764 }
765 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
766 
767 /**
768  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
769  * @wbc: writeback_control of the just finished writeback
770  *
771  * To be called after a writeback attempt of an inode finishes and undoes
772  * wbc_attach_and_unlock_inode().  Can be called under any context.
773  *
774  * As concurrent write sharing of an inode is expected to be very rare and
775  * memcg only tracks page ownership on first-use basis severely confining
776  * the usefulness of such sharing, cgroup writeback tracks ownership
777  * per-inode.  While the support for concurrent write sharing of an inode
778  * is deemed unnecessary, an inode being written to by different cgroups at
779  * different points in time is a lot more common, and, more importantly,
780  * charging only by first-use can too readily lead to grossly incorrect
781  * behaviors (single foreign page can lead to gigabytes of writeback to be
782  * incorrectly attributed).
783  *
784  * To resolve this issue, cgroup writeback detects the majority dirtier of
785  * an inode and transfers the ownership to it.  To avoid unnecessary
786  * oscillation, the detection mechanism keeps track of history and gives
787  * out the switch verdict only if the foreign usage pattern is stable over
788  * a certain amount of time and/or writeback attempts.
789  *
790  * On each writeback attempt, @wbc tries to detect the majority writer
791  * using Boyer-Moore majority vote algorithm.  In addition to the byte
792  * count from the majority voting, it also counts the bytes written for the
793  * current wb and the last round's winner wb (max of last round's current
794  * wb, the winner from two rounds ago, and the last round's majority
795  * candidate).  Keeping track of the historical winner helps the algorithm
796  * to semi-reliably detect the most active writer even when it's not the
797  * absolute majority.
798  *
799  * Once the winner of the round is determined, whether the winner is
800  * foreign or not and how much IO time the round consumed is recorded in
801  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
802  * over a certain threshold, the switch verdict is given.
803  */
804 void wbc_detach_inode(struct writeback_control *wbc)
805 {
806 	struct bdi_writeback *wb = wbc->wb;
807 	struct inode *inode = wbc->inode;
808 	unsigned long avg_time, max_bytes, max_time;
809 	u16 history;
810 	int max_id;
811 
812 	if (!wb)
813 		return;
814 
815 	history = inode->i_wb_frn_history;
816 	avg_time = inode->i_wb_frn_avg_time;
817 
818 	/* pick the winner of this round */
819 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
820 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
821 		max_id = wbc->wb_id;
822 		max_bytes = wbc->wb_bytes;
823 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
824 		max_id = wbc->wb_lcand_id;
825 		max_bytes = wbc->wb_lcand_bytes;
826 	} else {
827 		max_id = wbc->wb_tcand_id;
828 		max_bytes = wbc->wb_tcand_bytes;
829 	}
830 
831 	/*
832 	 * Calculate the amount of IO time the winner consumed and fold it
833 	 * into the running average kept per inode.  If the consumed IO
834 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
835 	 * deciding whether to switch or not.  This is to prevent one-off
836 	 * small dirtiers from skewing the verdict.
837 	 */
838 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
839 				wb->avg_write_bandwidth);
840 	if (avg_time)
841 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
842 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
843 	else
844 		avg_time = max_time;	/* immediate catch up on first run */
845 
846 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
847 		int slots;
848 
849 		/*
850 		 * The switch verdict is reached if foreign wb's consume
851 		 * more than a certain proportion of IO time in a
852 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
853 		 * history mask where each bit represents one sixteenth of
854 		 * the period.  Determine the number of slots to shift into
855 		 * history from @max_time.
856 		 */
857 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
858 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
859 		history <<= slots;
860 		if (wbc->wb_id != max_id)
861 			history |= (1U << slots) - 1;
862 
863 		if (history)
864 			trace_inode_foreign_history(inode, wbc, history);
865 
866 		/*
867 		 * Switch if the current wb isn't the consistent winner.
868 		 * If there are multiple closely competing dirtiers, the
869 		 * inode may switch across them repeatedly over time, which
870 		 * is okay.  The main goal is avoiding keeping an inode on
871 		 * the wrong wb for an extended period of time.
872 		 */
873 		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
874 			inode_switch_wbs(inode, max_id);
875 	}
876 
877 	/*
878 	 * Multiple instances of this function may race to update the
879 	 * following fields but we don't mind occassional inaccuracies.
880 	 */
881 	inode->i_wb_frn_winner = max_id;
882 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
883 	inode->i_wb_frn_history = history;
884 
885 	wb_put(wbc->wb);
886 	wbc->wb = NULL;
887 }
888 EXPORT_SYMBOL_GPL(wbc_detach_inode);
889 
890 /**
891  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
892  * @wbc: writeback_control of the writeback in progress
893  * @page: page being written out
894  * @bytes: number of bytes being written out
895  *
896  * @bytes from @page are about to written out during the writeback
897  * controlled by @wbc.  Keep the book for foreign inode detection.  See
898  * wbc_detach_inode().
899  */
900 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
901 			      size_t bytes)
902 {
903 	struct folio *folio;
904 	struct cgroup_subsys_state *css;
905 	int id;
906 
907 	/*
908 	 * pageout() path doesn't attach @wbc to the inode being written
909 	 * out.  This is intentional as we don't want the function to block
910 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
911 	 * regular writeback instead of writing things out itself.
912 	 */
913 	if (!wbc->wb || wbc->no_cgroup_owner)
914 		return;
915 
916 	folio = page_folio(page);
917 	css = mem_cgroup_css_from_folio(folio);
918 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
919 	if (!(css->flags & CSS_ONLINE))
920 		return;
921 
922 	id = css->id;
923 
924 	if (id == wbc->wb_id) {
925 		wbc->wb_bytes += bytes;
926 		return;
927 	}
928 
929 	if (id == wbc->wb_lcand_id)
930 		wbc->wb_lcand_bytes += bytes;
931 
932 	/* Boyer-Moore majority vote algorithm */
933 	if (!wbc->wb_tcand_bytes)
934 		wbc->wb_tcand_id = id;
935 	if (id == wbc->wb_tcand_id)
936 		wbc->wb_tcand_bytes += bytes;
937 	else
938 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
939 }
940 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
941 
942 /**
943  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
944  * @wb: target bdi_writeback to split @nr_pages to
945  * @nr_pages: number of pages to write for the whole bdi
946  *
947  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
948  * relation to the total write bandwidth of all wb's w/ dirty inodes on
949  * @wb->bdi.
950  */
951 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
952 {
953 	unsigned long this_bw = wb->avg_write_bandwidth;
954 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
955 
956 	if (nr_pages == LONG_MAX)
957 		return LONG_MAX;
958 
959 	/*
960 	 * This may be called on clean wb's and proportional distribution
961 	 * may not make sense, just use the original @nr_pages in those
962 	 * cases.  In general, we wanna err on the side of writing more.
963 	 */
964 	if (!tot_bw || this_bw >= tot_bw)
965 		return nr_pages;
966 	else
967 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
968 }
969 
970 /**
971  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
972  * @bdi: target backing_dev_info
973  * @base_work: wb_writeback_work to issue
974  * @skip_if_busy: skip wb's which already have writeback in progress
975  *
976  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
977  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
978  * distributed to the busy wbs according to each wb's proportion in the
979  * total active write bandwidth of @bdi.
980  */
981 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
982 				  struct wb_writeback_work *base_work,
983 				  bool skip_if_busy)
984 {
985 	struct bdi_writeback *last_wb = NULL;
986 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
987 					      struct bdi_writeback, bdi_node);
988 
989 	might_sleep();
990 restart:
991 	rcu_read_lock();
992 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
993 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
994 		struct wb_writeback_work fallback_work;
995 		struct wb_writeback_work *work;
996 		long nr_pages;
997 
998 		if (last_wb) {
999 			wb_put(last_wb);
1000 			last_wb = NULL;
1001 		}
1002 
1003 		/* SYNC_ALL writes out I_DIRTY_TIME too */
1004 		if (!wb_has_dirty_io(wb) &&
1005 		    (base_work->sync_mode == WB_SYNC_NONE ||
1006 		     list_empty(&wb->b_dirty_time)))
1007 			continue;
1008 		if (skip_if_busy && writeback_in_progress(wb))
1009 			continue;
1010 
1011 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1012 
1013 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1014 		if (work) {
1015 			*work = *base_work;
1016 			work->nr_pages = nr_pages;
1017 			work->auto_free = 1;
1018 			wb_queue_work(wb, work);
1019 			continue;
1020 		}
1021 
1022 		/*
1023 		 * If wb_tryget fails, the wb has been shutdown, skip it.
1024 		 *
1025 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1026 		 * continuing iteration from @wb after dropping and
1027 		 * regrabbing rcu read lock.
1028 		 */
1029 		if (!wb_tryget(wb))
1030 			continue;
1031 
1032 		/* alloc failed, execute synchronously using on-stack fallback */
1033 		work = &fallback_work;
1034 		*work = *base_work;
1035 		work->nr_pages = nr_pages;
1036 		work->auto_free = 0;
1037 		work->done = &fallback_work_done;
1038 
1039 		wb_queue_work(wb, work);
1040 		last_wb = wb;
1041 
1042 		rcu_read_unlock();
1043 		wb_wait_for_completion(&fallback_work_done);
1044 		goto restart;
1045 	}
1046 	rcu_read_unlock();
1047 
1048 	if (last_wb)
1049 		wb_put(last_wb);
1050 }
1051 
1052 /**
1053  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1054  * @bdi_id: target bdi id
1055  * @memcg_id: target memcg css id
1056  * @reason: reason why some writeback work initiated
1057  * @done: target wb_completion
1058  *
1059  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1060  * with the specified parameters.
1061  */
1062 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1063 			   enum wb_reason reason, struct wb_completion *done)
1064 {
1065 	struct backing_dev_info *bdi;
1066 	struct cgroup_subsys_state *memcg_css;
1067 	struct bdi_writeback *wb;
1068 	struct wb_writeback_work *work;
1069 	unsigned long dirty;
1070 	int ret;
1071 
1072 	/* lookup bdi and memcg */
1073 	bdi = bdi_get_by_id(bdi_id);
1074 	if (!bdi)
1075 		return -ENOENT;
1076 
1077 	rcu_read_lock();
1078 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1079 	if (memcg_css && !css_tryget(memcg_css))
1080 		memcg_css = NULL;
1081 	rcu_read_unlock();
1082 	if (!memcg_css) {
1083 		ret = -ENOENT;
1084 		goto out_bdi_put;
1085 	}
1086 
1087 	/*
1088 	 * And find the associated wb.  If the wb isn't there already
1089 	 * there's nothing to flush, don't create one.
1090 	 */
1091 	wb = wb_get_lookup(bdi, memcg_css);
1092 	if (!wb) {
1093 		ret = -ENOENT;
1094 		goto out_css_put;
1095 	}
1096 
1097 	/*
1098 	 * The caller is attempting to write out most of
1099 	 * the currently dirty pages.  Let's take the current dirty page
1100 	 * count and inflate it by 25% which should be large enough to
1101 	 * flush out most dirty pages while avoiding getting livelocked by
1102 	 * concurrent dirtiers.
1103 	 *
1104 	 * BTW the memcg stats are flushed periodically and this is best-effort
1105 	 * estimation, so some potential error is ok.
1106 	 */
1107 	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1108 	dirty = dirty * 10 / 8;
1109 
1110 	/* issue the writeback work */
1111 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1112 	if (work) {
1113 		work->nr_pages = dirty;
1114 		work->sync_mode = WB_SYNC_NONE;
1115 		work->range_cyclic = 1;
1116 		work->reason = reason;
1117 		work->done = done;
1118 		work->auto_free = 1;
1119 		wb_queue_work(wb, work);
1120 		ret = 0;
1121 	} else {
1122 		ret = -ENOMEM;
1123 	}
1124 
1125 	wb_put(wb);
1126 out_css_put:
1127 	css_put(memcg_css);
1128 out_bdi_put:
1129 	bdi_put(bdi);
1130 	return ret;
1131 }
1132 
1133 /**
1134  * cgroup_writeback_umount - flush inode wb switches for umount
1135  * @sb: target super_block
1136  *
1137  * This function is called when a super_block is about to be destroyed and
1138  * flushes in-flight inode wb switches.  An inode wb switch goes through
1139  * RCU and then workqueue, so the two need to be flushed in order to ensure
1140  * that all previously scheduled switches are finished.  As wb switches are
1141  * rare occurrences and synchronize_rcu() can take a while, perform
1142  * flushing iff wb switches are in flight.
1143  */
1144 void cgroup_writeback_umount(struct super_block *sb)
1145 {
1146 
1147 	if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
1148 		return;
1149 
1150 	/*
1151 	 * SB_ACTIVE should be reliably cleared before checking
1152 	 * isw_nr_in_flight, see generic_shutdown_super().
1153 	 */
1154 	smp_mb();
1155 
1156 	if (atomic_read(&isw_nr_in_flight)) {
1157 		/*
1158 		 * Use rcu_barrier() to wait for all pending callbacks to
1159 		 * ensure that all in-flight wb switches are in the workqueue.
1160 		 */
1161 		rcu_barrier();
1162 		flush_workqueue(isw_wq);
1163 	}
1164 }
1165 
1166 static int __init cgroup_writeback_init(void)
1167 {
1168 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1169 	if (!isw_wq)
1170 		return -ENOMEM;
1171 	return 0;
1172 }
1173 fs_initcall(cgroup_writeback_init);
1174 
1175 #else	/* CONFIG_CGROUP_WRITEBACK */
1176 
1177 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1178 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1179 
1180 static void inode_cgwb_move_to_attached(struct inode *inode,
1181 					struct bdi_writeback *wb)
1182 {
1183 	assert_spin_locked(&wb->list_lock);
1184 	assert_spin_locked(&inode->i_lock);
1185 	WARN_ON_ONCE(inode->i_state & I_FREEING);
1186 
1187 	inode->i_state &= ~I_SYNC_QUEUED;
1188 	list_del_init(&inode->i_io_list);
1189 	wb_io_lists_depopulated(wb);
1190 }
1191 
1192 static struct bdi_writeback *
1193 locked_inode_to_wb_and_lock_list(struct inode *inode)
1194 	__releases(&inode->i_lock)
1195 	__acquires(&wb->list_lock)
1196 {
1197 	struct bdi_writeback *wb = inode_to_wb(inode);
1198 
1199 	spin_unlock(&inode->i_lock);
1200 	spin_lock(&wb->list_lock);
1201 	return wb;
1202 }
1203 
1204 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1205 	__acquires(&wb->list_lock)
1206 {
1207 	struct bdi_writeback *wb = inode_to_wb(inode);
1208 
1209 	spin_lock(&wb->list_lock);
1210 	return wb;
1211 }
1212 
1213 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1214 {
1215 	return nr_pages;
1216 }
1217 
1218 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1219 				  struct wb_writeback_work *base_work,
1220 				  bool skip_if_busy)
1221 {
1222 	might_sleep();
1223 
1224 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1225 		base_work->auto_free = 0;
1226 		wb_queue_work(&bdi->wb, base_work);
1227 	}
1228 }
1229 
1230 #endif	/* CONFIG_CGROUP_WRITEBACK */
1231 
1232 /*
1233  * Add in the number of potentially dirty inodes, because each inode
1234  * write can dirty pagecache in the underlying blockdev.
1235  */
1236 static unsigned long get_nr_dirty_pages(void)
1237 {
1238 	return global_node_page_state(NR_FILE_DIRTY) +
1239 		get_nr_dirty_inodes();
1240 }
1241 
1242 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1243 {
1244 	if (!wb_has_dirty_io(wb))
1245 		return;
1246 
1247 	/*
1248 	 * All callers of this function want to start writeback of all
1249 	 * dirty pages. Places like vmscan can call this at a very
1250 	 * high frequency, causing pointless allocations of tons of
1251 	 * work items and keeping the flusher threads busy retrieving
1252 	 * that work. Ensure that we only allow one of them pending and
1253 	 * inflight at the time.
1254 	 */
1255 	if (test_bit(WB_start_all, &wb->state) ||
1256 	    test_and_set_bit(WB_start_all, &wb->state))
1257 		return;
1258 
1259 	wb->start_all_reason = reason;
1260 	wb_wakeup(wb);
1261 }
1262 
1263 /**
1264  * wb_start_background_writeback - start background writeback
1265  * @wb: bdi_writback to write from
1266  *
1267  * Description:
1268  *   This makes sure WB_SYNC_NONE background writeback happens. When
1269  *   this function returns, it is only guaranteed that for given wb
1270  *   some IO is happening if we are over background dirty threshold.
1271  *   Caller need not hold sb s_umount semaphore.
1272  */
1273 void wb_start_background_writeback(struct bdi_writeback *wb)
1274 {
1275 	/*
1276 	 * We just wake up the flusher thread. It will perform background
1277 	 * writeback as soon as there is no other work to do.
1278 	 */
1279 	trace_writeback_wake_background(wb);
1280 	wb_wakeup(wb);
1281 }
1282 
1283 /*
1284  * Remove the inode from the writeback list it is on.
1285  */
1286 void inode_io_list_del(struct inode *inode)
1287 {
1288 	struct bdi_writeback *wb;
1289 
1290 	wb = inode_to_wb_and_lock_list(inode);
1291 	spin_lock(&inode->i_lock);
1292 
1293 	inode->i_state &= ~I_SYNC_QUEUED;
1294 	list_del_init(&inode->i_io_list);
1295 	wb_io_lists_depopulated(wb);
1296 
1297 	spin_unlock(&inode->i_lock);
1298 	spin_unlock(&wb->list_lock);
1299 }
1300 EXPORT_SYMBOL(inode_io_list_del);
1301 
1302 /*
1303  * mark an inode as under writeback on the sb
1304  */
1305 void sb_mark_inode_writeback(struct inode *inode)
1306 {
1307 	struct super_block *sb = inode->i_sb;
1308 	unsigned long flags;
1309 
1310 	if (list_empty(&inode->i_wb_list)) {
1311 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1312 		if (list_empty(&inode->i_wb_list)) {
1313 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1314 			trace_sb_mark_inode_writeback(inode);
1315 		}
1316 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1317 	}
1318 }
1319 
1320 /*
1321  * clear an inode as under writeback on the sb
1322  */
1323 void sb_clear_inode_writeback(struct inode *inode)
1324 {
1325 	struct super_block *sb = inode->i_sb;
1326 	unsigned long flags;
1327 
1328 	if (!list_empty(&inode->i_wb_list)) {
1329 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1330 		if (!list_empty(&inode->i_wb_list)) {
1331 			list_del_init(&inode->i_wb_list);
1332 			trace_sb_clear_inode_writeback(inode);
1333 		}
1334 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1335 	}
1336 }
1337 
1338 /*
1339  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1340  * furthest end of its superblock's dirty-inode list.
1341  *
1342  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1343  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1344  * the case then the inode must have been redirtied while it was being written
1345  * out and we don't reset its dirtied_when.
1346  */
1347 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1348 {
1349 	assert_spin_locked(&inode->i_lock);
1350 
1351 	inode->i_state &= ~I_SYNC_QUEUED;
1352 	/*
1353 	 * When the inode is being freed just don't bother with dirty list
1354 	 * tracking. Flush worker will ignore this inode anyway and it will
1355 	 * trigger assertions in inode_io_list_move_locked().
1356 	 */
1357 	if (inode->i_state & I_FREEING) {
1358 		list_del_init(&inode->i_io_list);
1359 		wb_io_lists_depopulated(wb);
1360 		return;
1361 	}
1362 	if (!list_empty(&wb->b_dirty)) {
1363 		struct inode *tail;
1364 
1365 		tail = wb_inode(wb->b_dirty.next);
1366 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1367 			inode->dirtied_when = jiffies;
1368 	}
1369 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1370 }
1371 
1372 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1373 {
1374 	spin_lock(&inode->i_lock);
1375 	redirty_tail_locked(inode, wb);
1376 	spin_unlock(&inode->i_lock);
1377 }
1378 
1379 /*
1380  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1381  */
1382 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1383 {
1384 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1385 }
1386 
1387 static void inode_sync_complete(struct inode *inode)
1388 {
1389 	assert_spin_locked(&inode->i_lock);
1390 
1391 	inode->i_state &= ~I_SYNC;
1392 	/* If inode is clean an unused, put it into LRU now... */
1393 	inode_add_lru(inode);
1394 	/* Called with inode->i_lock which ensures memory ordering. */
1395 	inode_wake_up_bit(inode, __I_SYNC);
1396 }
1397 
1398 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1399 {
1400 	bool ret = time_after(inode->dirtied_when, t);
1401 #ifndef CONFIG_64BIT
1402 	/*
1403 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1404 	 * It _appears_ to be in the future, but is actually in distant past.
1405 	 * This test is necessary to prevent such wrapped-around relative times
1406 	 * from permanently stopping the whole bdi writeback.
1407 	 */
1408 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1409 #endif
1410 	return ret;
1411 }
1412 
1413 /*
1414  * Move expired (dirtied before dirtied_before) dirty inodes from
1415  * @delaying_queue to @dispatch_queue.
1416  */
1417 static int move_expired_inodes(struct list_head *delaying_queue,
1418 			       struct list_head *dispatch_queue,
1419 			       unsigned long dirtied_before)
1420 {
1421 	LIST_HEAD(tmp);
1422 	struct list_head *pos, *node;
1423 	struct super_block *sb = NULL;
1424 	struct inode *inode;
1425 	int do_sb_sort = 0;
1426 	int moved = 0;
1427 
1428 	while (!list_empty(delaying_queue)) {
1429 		inode = wb_inode(delaying_queue->prev);
1430 		if (inode_dirtied_after(inode, dirtied_before))
1431 			break;
1432 		spin_lock(&inode->i_lock);
1433 		list_move(&inode->i_io_list, &tmp);
1434 		moved++;
1435 		inode->i_state |= I_SYNC_QUEUED;
1436 		spin_unlock(&inode->i_lock);
1437 		if (sb_is_blkdev_sb(inode->i_sb))
1438 			continue;
1439 		if (sb && sb != inode->i_sb)
1440 			do_sb_sort = 1;
1441 		sb = inode->i_sb;
1442 	}
1443 
1444 	/* just one sb in list, splice to dispatch_queue and we're done */
1445 	if (!do_sb_sort) {
1446 		list_splice(&tmp, dispatch_queue);
1447 		goto out;
1448 	}
1449 
1450 	/*
1451 	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1452 	 * we don't take inode->i_lock here because it is just a pointless overhead.
1453 	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1454 	 * fully under our control.
1455 	 */
1456 	while (!list_empty(&tmp)) {
1457 		sb = wb_inode(tmp.prev)->i_sb;
1458 		list_for_each_prev_safe(pos, node, &tmp) {
1459 			inode = wb_inode(pos);
1460 			if (inode->i_sb == sb)
1461 				list_move(&inode->i_io_list, dispatch_queue);
1462 		}
1463 	}
1464 out:
1465 	return moved;
1466 }
1467 
1468 /*
1469  * Queue all expired dirty inodes for io, eldest first.
1470  * Before
1471  *         newly dirtied     b_dirty    b_io    b_more_io
1472  *         =============>    gf         edc     BA
1473  * After
1474  *         newly dirtied     b_dirty    b_io    b_more_io
1475  *         =============>    g          fBAedc
1476  *                                           |
1477  *                                           +--> dequeue for IO
1478  */
1479 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1480 		     unsigned long dirtied_before)
1481 {
1482 	int moved;
1483 	unsigned long time_expire_jif = dirtied_before;
1484 
1485 	assert_spin_locked(&wb->list_lock);
1486 	list_splice_init(&wb->b_more_io, &wb->b_io);
1487 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1488 	if (!work->for_sync)
1489 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1490 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1491 				     time_expire_jif);
1492 	if (moved)
1493 		wb_io_lists_populated(wb);
1494 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1495 }
1496 
1497 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1498 {
1499 	int ret;
1500 
1501 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1502 		trace_writeback_write_inode_start(inode, wbc);
1503 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1504 		trace_writeback_write_inode(inode, wbc);
1505 		return ret;
1506 	}
1507 	return 0;
1508 }
1509 
1510 /*
1511  * Wait for writeback on an inode to complete. Called with i_lock held.
1512  * Caller must make sure inode cannot go away when we drop i_lock.
1513  */
1514 void inode_wait_for_writeback(struct inode *inode)
1515 {
1516 	struct wait_bit_queue_entry wqe;
1517 	struct wait_queue_head *wq_head;
1518 
1519 	assert_spin_locked(&inode->i_lock);
1520 
1521 	if (!(inode->i_state & I_SYNC))
1522 		return;
1523 
1524 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1525 	for (;;) {
1526 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1527 		/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1528 		if (!(inode->i_state & I_SYNC))
1529 			break;
1530 		spin_unlock(&inode->i_lock);
1531 		schedule();
1532 		spin_lock(&inode->i_lock);
1533 	}
1534 	finish_wait(wq_head, &wqe.wq_entry);
1535 }
1536 
1537 /*
1538  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1539  * held and drops it. It is aimed for callers not holding any inode reference
1540  * so once i_lock is dropped, inode can go away.
1541  */
1542 static void inode_sleep_on_writeback(struct inode *inode)
1543 	__releases(inode->i_lock)
1544 {
1545 	struct wait_bit_queue_entry wqe;
1546 	struct wait_queue_head *wq_head;
1547 	bool sleep;
1548 
1549 	assert_spin_locked(&inode->i_lock);
1550 
1551 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1552 	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1553 	/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1554 	sleep = !!(inode->i_state & I_SYNC);
1555 	spin_unlock(&inode->i_lock);
1556 	if (sleep)
1557 		schedule();
1558 	finish_wait(wq_head, &wqe.wq_entry);
1559 }
1560 
1561 /*
1562  * Find proper writeback list for the inode depending on its current state and
1563  * possibly also change of its state while we were doing writeback.  Here we
1564  * handle things such as livelock prevention or fairness of writeback among
1565  * inodes. This function can be called only by flusher thread - noone else
1566  * processes all inodes in writeback lists and requeueing inodes behind flusher
1567  * thread's back can have unexpected consequences.
1568  */
1569 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1570 			  struct writeback_control *wbc,
1571 			  unsigned long dirtied_before)
1572 {
1573 	if (inode->i_state & I_FREEING)
1574 		return;
1575 
1576 	/*
1577 	 * Sync livelock prevention. Each inode is tagged and synced in one
1578 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1579 	 * the dirty time to prevent enqueue and sync it again.
1580 	 */
1581 	if ((inode->i_state & I_DIRTY) &&
1582 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1583 		inode->dirtied_when = jiffies;
1584 
1585 	if (wbc->pages_skipped) {
1586 		/*
1587 		 * Writeback is not making progress due to locked buffers.
1588 		 * Skip this inode for now. Although having skipped pages
1589 		 * is odd for clean inodes, it can happen for some
1590 		 * filesystems so handle that gracefully.
1591 		 */
1592 		if (inode->i_state & I_DIRTY_ALL)
1593 			redirty_tail_locked(inode, wb);
1594 		else
1595 			inode_cgwb_move_to_attached(inode, wb);
1596 		return;
1597 	}
1598 
1599 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1600 		/*
1601 		 * We didn't write back all the pages.  nfs_writepages()
1602 		 * sometimes bales out without doing anything.
1603 		 */
1604 		if (wbc->nr_to_write <= 0 &&
1605 		    !inode_dirtied_after(inode, dirtied_before)) {
1606 			/* Slice used up. Queue for next turn. */
1607 			requeue_io(inode, wb);
1608 		} else {
1609 			/*
1610 			 * Writeback blocked by something other than
1611 			 * congestion. Delay the inode for some time to
1612 			 * avoid spinning on the CPU (100% iowait)
1613 			 * retrying writeback of the dirty page/inode
1614 			 * that cannot be performed immediately.
1615 			 */
1616 			redirty_tail_locked(inode, wb);
1617 		}
1618 	} else if (inode->i_state & I_DIRTY) {
1619 		/*
1620 		 * Filesystems can dirty the inode during writeback operations,
1621 		 * such as delayed allocation during submission or metadata
1622 		 * updates after data IO completion.
1623 		 */
1624 		redirty_tail_locked(inode, wb);
1625 	} else if (inode->i_state & I_DIRTY_TIME) {
1626 		inode->dirtied_when = jiffies;
1627 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1628 		inode->i_state &= ~I_SYNC_QUEUED;
1629 	} else {
1630 		/* The inode is clean. Remove from writeback lists. */
1631 		inode_cgwb_move_to_attached(inode, wb);
1632 	}
1633 }
1634 
1635 /*
1636  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1637  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1638  *
1639  * This doesn't remove the inode from the writeback list it is on, except
1640  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1641  * expiration.  The caller is otherwise responsible for writeback list handling.
1642  *
1643  * The caller is also responsible for setting the I_SYNC flag beforehand and
1644  * calling inode_sync_complete() to clear it afterwards.
1645  */
1646 static int
1647 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1648 {
1649 	struct address_space *mapping = inode->i_mapping;
1650 	long nr_to_write = wbc->nr_to_write;
1651 	unsigned dirty;
1652 	int ret;
1653 
1654 	WARN_ON(!(inode->i_state & I_SYNC));
1655 
1656 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1657 
1658 	ret = do_writepages(mapping, wbc);
1659 
1660 	/*
1661 	 * Make sure to wait on the data before writing out the metadata.
1662 	 * This is important for filesystems that modify metadata on data
1663 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1664 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1665 	 * inode metadata is written back correctly.
1666 	 */
1667 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1668 		int err = filemap_fdatawait(mapping);
1669 		if (ret == 0)
1670 			ret = err;
1671 	}
1672 
1673 	/*
1674 	 * If the inode has dirty timestamps and we need to write them, call
1675 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1676 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1677 	 */
1678 	if ((inode->i_state & I_DIRTY_TIME) &&
1679 	    (wbc->sync_mode == WB_SYNC_ALL ||
1680 	     time_after(jiffies, inode->dirtied_time_when +
1681 			dirtytime_expire_interval * HZ))) {
1682 		trace_writeback_lazytime(inode);
1683 		mark_inode_dirty_sync(inode);
1684 	}
1685 
1686 	/*
1687 	 * Get and clear the dirty flags from i_state.  This needs to be done
1688 	 * after calling writepages because some filesystems may redirty the
1689 	 * inode during writepages due to delalloc.  It also needs to be done
1690 	 * after handling timestamp expiration, as that may dirty the inode too.
1691 	 */
1692 	spin_lock(&inode->i_lock);
1693 	dirty = inode->i_state & I_DIRTY;
1694 	inode->i_state &= ~dirty;
1695 
1696 	/*
1697 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1698 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1699 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1700 	 * inode.
1701 	 *
1702 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1703 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1704 	 * necessary.  This guarantees that either __mark_inode_dirty()
1705 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1706 	 */
1707 	smp_mb();
1708 
1709 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1710 		inode->i_state |= I_DIRTY_PAGES;
1711 	else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1712 		if (!(inode->i_state & I_DIRTY_PAGES)) {
1713 			inode->i_state &= ~I_PINNING_NETFS_WB;
1714 			wbc->unpinned_netfs_wb = true;
1715 			dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1716 		}
1717 	}
1718 
1719 	spin_unlock(&inode->i_lock);
1720 
1721 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1722 	if (dirty & ~I_DIRTY_PAGES) {
1723 		int err = write_inode(inode, wbc);
1724 		if (ret == 0)
1725 			ret = err;
1726 	}
1727 	wbc->unpinned_netfs_wb = false;
1728 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1729 	return ret;
1730 }
1731 
1732 /*
1733  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1734  * the regular batched writeback done by the flusher threads in
1735  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1736  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1737  *
1738  * To prevent the inode from going away, either the caller must have a reference
1739  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1740  */
1741 static int writeback_single_inode(struct inode *inode,
1742 				  struct writeback_control *wbc)
1743 {
1744 	struct bdi_writeback *wb;
1745 	int ret = 0;
1746 
1747 	spin_lock(&inode->i_lock);
1748 	if (!atomic_read(&inode->i_count))
1749 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1750 	else
1751 		WARN_ON(inode->i_state & I_WILL_FREE);
1752 
1753 	if (inode->i_state & I_SYNC) {
1754 		/*
1755 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1756 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1757 		 * must wait for the existing writeback to complete, then do
1758 		 * writeback again if there's anything left.
1759 		 */
1760 		if (wbc->sync_mode != WB_SYNC_ALL)
1761 			goto out;
1762 		inode_wait_for_writeback(inode);
1763 	}
1764 	WARN_ON(inode->i_state & I_SYNC);
1765 	/*
1766 	 * If the inode is already fully clean, then there's nothing to do.
1767 	 *
1768 	 * For data-integrity syncs we also need to check whether any pages are
1769 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1770 	 * there are any such pages, we'll need to wait for them.
1771 	 */
1772 	if (!(inode->i_state & I_DIRTY_ALL) &&
1773 	    (wbc->sync_mode != WB_SYNC_ALL ||
1774 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1775 		goto out;
1776 	inode->i_state |= I_SYNC;
1777 	wbc_attach_and_unlock_inode(wbc, inode);
1778 
1779 	ret = __writeback_single_inode(inode, wbc);
1780 
1781 	wbc_detach_inode(wbc);
1782 
1783 	wb = inode_to_wb_and_lock_list(inode);
1784 	spin_lock(&inode->i_lock);
1785 	/*
1786 	 * If the inode is freeing, its i_io_list shoudn't be updated
1787 	 * as it can be finally deleted at this moment.
1788 	 */
1789 	if (!(inode->i_state & I_FREEING)) {
1790 		/*
1791 		 * If the inode is now fully clean, then it can be safely
1792 		 * removed from its writeback list (if any). Otherwise the
1793 		 * flusher threads are responsible for the writeback lists.
1794 		 */
1795 		if (!(inode->i_state & I_DIRTY_ALL))
1796 			inode_cgwb_move_to_attached(inode, wb);
1797 		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1798 			if ((inode->i_state & I_DIRTY))
1799 				redirty_tail_locked(inode, wb);
1800 			else if (inode->i_state & I_DIRTY_TIME) {
1801 				inode->dirtied_when = jiffies;
1802 				inode_io_list_move_locked(inode,
1803 							  wb,
1804 							  &wb->b_dirty_time);
1805 			}
1806 		}
1807 	}
1808 
1809 	spin_unlock(&wb->list_lock);
1810 	inode_sync_complete(inode);
1811 out:
1812 	spin_unlock(&inode->i_lock);
1813 	return ret;
1814 }
1815 
1816 static long writeback_chunk_size(struct bdi_writeback *wb,
1817 				 struct wb_writeback_work *work)
1818 {
1819 	long pages;
1820 
1821 	/*
1822 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1823 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1824 	 * here avoids calling into writeback_inodes_wb() more than once.
1825 	 *
1826 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1827 	 *
1828 	 *      wb_writeback()
1829 	 *          writeback_sb_inodes()       <== called only once
1830 	 *              write_cache_pages()     <== called once for each inode
1831 	 *                   (quickly) tag currently dirty pages
1832 	 *                   (maybe slowly) sync all tagged pages
1833 	 */
1834 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1835 		pages = LONG_MAX;
1836 	else {
1837 		pages = min(wb->avg_write_bandwidth / 2,
1838 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1839 		pages = min(pages, work->nr_pages);
1840 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1841 				   MIN_WRITEBACK_PAGES);
1842 	}
1843 
1844 	return pages;
1845 }
1846 
1847 /*
1848  * Write a portion of b_io inodes which belong to @sb.
1849  *
1850  * Return the number of pages and/or inodes written.
1851  *
1852  * NOTE! This is called with wb->list_lock held, and will
1853  * unlock and relock that for each inode it ends up doing
1854  * IO for.
1855  */
1856 static long writeback_sb_inodes(struct super_block *sb,
1857 				struct bdi_writeback *wb,
1858 				struct wb_writeback_work *work)
1859 {
1860 	struct writeback_control wbc = {
1861 		.sync_mode		= work->sync_mode,
1862 		.tagged_writepages	= work->tagged_writepages,
1863 		.for_kupdate		= work->for_kupdate,
1864 		.for_background		= work->for_background,
1865 		.for_sync		= work->for_sync,
1866 		.range_cyclic		= work->range_cyclic,
1867 		.range_start		= 0,
1868 		.range_end		= LLONG_MAX,
1869 	};
1870 	unsigned long start_time = jiffies;
1871 	long write_chunk;
1872 	long total_wrote = 0;  /* count both pages and inodes */
1873 	unsigned long dirtied_before = jiffies;
1874 
1875 	if (work->for_kupdate)
1876 		dirtied_before = jiffies -
1877 			msecs_to_jiffies(dirty_expire_interval * 10);
1878 
1879 	while (!list_empty(&wb->b_io)) {
1880 		struct inode *inode = wb_inode(wb->b_io.prev);
1881 		struct bdi_writeback *tmp_wb;
1882 		long wrote;
1883 
1884 		if (inode->i_sb != sb) {
1885 			if (work->sb) {
1886 				/*
1887 				 * We only want to write back data for this
1888 				 * superblock, move all inodes not belonging
1889 				 * to it back onto the dirty list.
1890 				 */
1891 				redirty_tail(inode, wb);
1892 				continue;
1893 			}
1894 
1895 			/*
1896 			 * The inode belongs to a different superblock.
1897 			 * Bounce back to the caller to unpin this and
1898 			 * pin the next superblock.
1899 			 */
1900 			break;
1901 		}
1902 
1903 		/*
1904 		 * Don't bother with new inodes or inodes being freed, first
1905 		 * kind does not need periodic writeout yet, and for the latter
1906 		 * kind writeout is handled by the freer.
1907 		 */
1908 		spin_lock(&inode->i_lock);
1909 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1910 			redirty_tail_locked(inode, wb);
1911 			spin_unlock(&inode->i_lock);
1912 			continue;
1913 		}
1914 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1915 			/*
1916 			 * If this inode is locked for writeback and we are not
1917 			 * doing writeback-for-data-integrity, move it to
1918 			 * b_more_io so that writeback can proceed with the
1919 			 * other inodes on s_io.
1920 			 *
1921 			 * We'll have another go at writing back this inode
1922 			 * when we completed a full scan of b_io.
1923 			 */
1924 			requeue_io(inode, wb);
1925 			spin_unlock(&inode->i_lock);
1926 			trace_writeback_sb_inodes_requeue(inode);
1927 			continue;
1928 		}
1929 		spin_unlock(&wb->list_lock);
1930 
1931 		/*
1932 		 * We already requeued the inode if it had I_SYNC set and we
1933 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1934 		 * WB_SYNC_ALL case.
1935 		 */
1936 		if (inode->i_state & I_SYNC) {
1937 			/* Wait for I_SYNC. This function drops i_lock... */
1938 			inode_sleep_on_writeback(inode);
1939 			/* Inode may be gone, start again */
1940 			spin_lock(&wb->list_lock);
1941 			continue;
1942 		}
1943 		inode->i_state |= I_SYNC;
1944 		wbc_attach_and_unlock_inode(&wbc, inode);
1945 
1946 		write_chunk = writeback_chunk_size(wb, work);
1947 		wbc.nr_to_write = write_chunk;
1948 		wbc.pages_skipped = 0;
1949 
1950 		/*
1951 		 * We use I_SYNC to pin the inode in memory. While it is set
1952 		 * evict_inode() will wait so the inode cannot be freed.
1953 		 */
1954 		__writeback_single_inode(inode, &wbc);
1955 
1956 		wbc_detach_inode(&wbc);
1957 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1958 		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1959 		wrote = wrote < 0 ? 0 : wrote;
1960 		total_wrote += wrote;
1961 
1962 		if (need_resched()) {
1963 			/*
1964 			 * We're trying to balance between building up a nice
1965 			 * long list of IOs to improve our merge rate, and
1966 			 * getting those IOs out quickly for anyone throttling
1967 			 * in balance_dirty_pages().  cond_resched() doesn't
1968 			 * unplug, so get our IOs out the door before we
1969 			 * give up the CPU.
1970 			 */
1971 			blk_flush_plug(current->plug, false);
1972 			cond_resched();
1973 		}
1974 
1975 		/*
1976 		 * Requeue @inode if still dirty.  Be careful as @inode may
1977 		 * have been switched to another wb in the meantime.
1978 		 */
1979 		tmp_wb = inode_to_wb_and_lock_list(inode);
1980 		spin_lock(&inode->i_lock);
1981 		if (!(inode->i_state & I_DIRTY_ALL))
1982 			total_wrote++;
1983 		requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
1984 		inode_sync_complete(inode);
1985 		spin_unlock(&inode->i_lock);
1986 
1987 		if (unlikely(tmp_wb != wb)) {
1988 			spin_unlock(&tmp_wb->list_lock);
1989 			spin_lock(&wb->list_lock);
1990 		}
1991 
1992 		/*
1993 		 * bail out to wb_writeback() often enough to check
1994 		 * background threshold and other termination conditions.
1995 		 */
1996 		if (total_wrote) {
1997 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1998 				break;
1999 			if (work->nr_pages <= 0)
2000 				break;
2001 		}
2002 	}
2003 	return total_wrote;
2004 }
2005 
2006 static long __writeback_inodes_wb(struct bdi_writeback *wb,
2007 				  struct wb_writeback_work *work)
2008 {
2009 	unsigned long start_time = jiffies;
2010 	long wrote = 0;
2011 
2012 	while (!list_empty(&wb->b_io)) {
2013 		struct inode *inode = wb_inode(wb->b_io.prev);
2014 		struct super_block *sb = inode->i_sb;
2015 
2016 		if (!super_trylock_shared(sb)) {
2017 			/*
2018 			 * super_trylock_shared() may fail consistently due to
2019 			 * s_umount being grabbed by someone else. Don't use
2020 			 * requeue_io() to avoid busy retrying the inode/sb.
2021 			 */
2022 			redirty_tail(inode, wb);
2023 			continue;
2024 		}
2025 		wrote += writeback_sb_inodes(sb, wb, work);
2026 		up_read(&sb->s_umount);
2027 
2028 		/* refer to the same tests at the end of writeback_sb_inodes */
2029 		if (wrote) {
2030 			if (time_is_before_jiffies(start_time + HZ / 10UL))
2031 				break;
2032 			if (work->nr_pages <= 0)
2033 				break;
2034 		}
2035 	}
2036 	/* Leave any unwritten inodes on b_io */
2037 	return wrote;
2038 }
2039 
2040 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2041 				enum wb_reason reason)
2042 {
2043 	struct wb_writeback_work work = {
2044 		.nr_pages	= nr_pages,
2045 		.sync_mode	= WB_SYNC_NONE,
2046 		.range_cyclic	= 1,
2047 		.reason		= reason,
2048 	};
2049 	struct blk_plug plug;
2050 
2051 	blk_start_plug(&plug);
2052 	spin_lock(&wb->list_lock);
2053 	if (list_empty(&wb->b_io))
2054 		queue_io(wb, &work, jiffies);
2055 	__writeback_inodes_wb(wb, &work);
2056 	spin_unlock(&wb->list_lock);
2057 	blk_finish_plug(&plug);
2058 
2059 	return nr_pages - work.nr_pages;
2060 }
2061 
2062 /*
2063  * Explicit flushing or periodic writeback of "old" data.
2064  *
2065  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2066  * dirtying-time in the inode's address_space.  So this periodic writeback code
2067  * just walks the superblock inode list, writing back any inodes which are
2068  * older than a specific point in time.
2069  *
2070  * Try to run once per dirty_writeback_interval.  But if a writeback event
2071  * takes longer than a dirty_writeback_interval interval, then leave a
2072  * one-second gap.
2073  *
2074  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2075  * all dirty pages if they are all attached to "old" mappings.
2076  */
2077 static long wb_writeback(struct bdi_writeback *wb,
2078 			 struct wb_writeback_work *work)
2079 {
2080 	long nr_pages = work->nr_pages;
2081 	unsigned long dirtied_before = jiffies;
2082 	struct inode *inode;
2083 	long progress;
2084 	struct blk_plug plug;
2085 	bool queued = false;
2086 
2087 	blk_start_plug(&plug);
2088 	for (;;) {
2089 		/*
2090 		 * Stop writeback when nr_pages has been consumed
2091 		 */
2092 		if (work->nr_pages <= 0)
2093 			break;
2094 
2095 		/*
2096 		 * Background writeout and kupdate-style writeback may
2097 		 * run forever. Stop them if there is other work to do
2098 		 * so that e.g. sync can proceed. They'll be restarted
2099 		 * after the other works are all done.
2100 		 */
2101 		if ((work->for_background || work->for_kupdate) &&
2102 		    !list_empty(&wb->work_list))
2103 			break;
2104 
2105 		/*
2106 		 * For background writeout, stop when we are below the
2107 		 * background dirty threshold
2108 		 */
2109 		if (work->for_background && !wb_over_bg_thresh(wb))
2110 			break;
2111 
2112 
2113 		spin_lock(&wb->list_lock);
2114 
2115 		trace_writeback_start(wb, work);
2116 		if (list_empty(&wb->b_io)) {
2117 			/*
2118 			 * Kupdate and background works are special and we want
2119 			 * to include all inodes that need writing. Livelock
2120 			 * avoidance is handled by these works yielding to any
2121 			 * other work so we are safe.
2122 			 */
2123 			if (work->for_kupdate) {
2124 				dirtied_before = jiffies -
2125 					msecs_to_jiffies(dirty_expire_interval *
2126 							 10);
2127 			} else if (work->for_background)
2128 				dirtied_before = jiffies;
2129 
2130 			queue_io(wb, work, dirtied_before);
2131 			queued = true;
2132 		}
2133 		if (work->sb)
2134 			progress = writeback_sb_inodes(work->sb, wb, work);
2135 		else
2136 			progress = __writeback_inodes_wb(wb, work);
2137 		trace_writeback_written(wb, work);
2138 
2139 		/*
2140 		 * Did we write something? Try for more
2141 		 *
2142 		 * Dirty inodes are moved to b_io for writeback in batches.
2143 		 * The completion of the current batch does not necessarily
2144 		 * mean the overall work is done. So we keep looping as long
2145 		 * as made some progress on cleaning pages or inodes.
2146 		 */
2147 		if (progress || !queued) {
2148 			spin_unlock(&wb->list_lock);
2149 			continue;
2150 		}
2151 
2152 		/*
2153 		 * No more inodes for IO, bail
2154 		 */
2155 		if (list_empty(&wb->b_more_io)) {
2156 			spin_unlock(&wb->list_lock);
2157 			break;
2158 		}
2159 
2160 		/*
2161 		 * Nothing written. Wait for some inode to
2162 		 * become available for writeback. Otherwise
2163 		 * we'll just busyloop.
2164 		 */
2165 		trace_writeback_wait(wb, work);
2166 		inode = wb_inode(wb->b_more_io.prev);
2167 		spin_lock(&inode->i_lock);
2168 		spin_unlock(&wb->list_lock);
2169 		/* This function drops i_lock... */
2170 		inode_sleep_on_writeback(inode);
2171 	}
2172 	blk_finish_plug(&plug);
2173 
2174 	return nr_pages - work->nr_pages;
2175 }
2176 
2177 /*
2178  * Return the next wb_writeback_work struct that hasn't been processed yet.
2179  */
2180 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2181 {
2182 	struct wb_writeback_work *work = NULL;
2183 
2184 	spin_lock_irq(&wb->work_lock);
2185 	if (!list_empty(&wb->work_list)) {
2186 		work = list_entry(wb->work_list.next,
2187 				  struct wb_writeback_work, list);
2188 		list_del_init(&work->list);
2189 	}
2190 	spin_unlock_irq(&wb->work_lock);
2191 	return work;
2192 }
2193 
2194 static long wb_check_background_flush(struct bdi_writeback *wb)
2195 {
2196 	if (wb_over_bg_thresh(wb)) {
2197 
2198 		struct wb_writeback_work work = {
2199 			.nr_pages	= LONG_MAX,
2200 			.sync_mode	= WB_SYNC_NONE,
2201 			.for_background	= 1,
2202 			.range_cyclic	= 1,
2203 			.reason		= WB_REASON_BACKGROUND,
2204 		};
2205 
2206 		return wb_writeback(wb, &work);
2207 	}
2208 
2209 	return 0;
2210 }
2211 
2212 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2213 {
2214 	unsigned long expired;
2215 	long nr_pages;
2216 
2217 	/*
2218 	 * When set to zero, disable periodic writeback
2219 	 */
2220 	if (!dirty_writeback_interval)
2221 		return 0;
2222 
2223 	expired = wb->last_old_flush +
2224 			msecs_to_jiffies(dirty_writeback_interval * 10);
2225 	if (time_before(jiffies, expired))
2226 		return 0;
2227 
2228 	wb->last_old_flush = jiffies;
2229 	nr_pages = get_nr_dirty_pages();
2230 
2231 	if (nr_pages) {
2232 		struct wb_writeback_work work = {
2233 			.nr_pages	= nr_pages,
2234 			.sync_mode	= WB_SYNC_NONE,
2235 			.for_kupdate	= 1,
2236 			.range_cyclic	= 1,
2237 			.reason		= WB_REASON_PERIODIC,
2238 		};
2239 
2240 		return wb_writeback(wb, &work);
2241 	}
2242 
2243 	return 0;
2244 }
2245 
2246 static long wb_check_start_all(struct bdi_writeback *wb)
2247 {
2248 	long nr_pages;
2249 
2250 	if (!test_bit(WB_start_all, &wb->state))
2251 		return 0;
2252 
2253 	nr_pages = get_nr_dirty_pages();
2254 	if (nr_pages) {
2255 		struct wb_writeback_work work = {
2256 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2257 			.sync_mode	= WB_SYNC_NONE,
2258 			.range_cyclic	= 1,
2259 			.reason		= wb->start_all_reason,
2260 		};
2261 
2262 		nr_pages = wb_writeback(wb, &work);
2263 	}
2264 
2265 	clear_bit(WB_start_all, &wb->state);
2266 	return nr_pages;
2267 }
2268 
2269 
2270 /*
2271  * Retrieve work items and do the writeback they describe
2272  */
2273 static long wb_do_writeback(struct bdi_writeback *wb)
2274 {
2275 	struct wb_writeback_work *work;
2276 	long wrote = 0;
2277 
2278 	set_bit(WB_writeback_running, &wb->state);
2279 	while ((work = get_next_work_item(wb)) != NULL) {
2280 		trace_writeback_exec(wb, work);
2281 		wrote += wb_writeback(wb, work);
2282 		finish_writeback_work(work);
2283 	}
2284 
2285 	/*
2286 	 * Check for a flush-everything request
2287 	 */
2288 	wrote += wb_check_start_all(wb);
2289 
2290 	/*
2291 	 * Check for periodic writeback, kupdated() style
2292 	 */
2293 	wrote += wb_check_old_data_flush(wb);
2294 	wrote += wb_check_background_flush(wb);
2295 	clear_bit(WB_writeback_running, &wb->state);
2296 
2297 	return wrote;
2298 }
2299 
2300 /*
2301  * Handle writeback of dirty data for the device backed by this bdi. Also
2302  * reschedules periodically and does kupdated style flushing.
2303  */
2304 void wb_workfn(struct work_struct *work)
2305 {
2306 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2307 						struct bdi_writeback, dwork);
2308 	long pages_written;
2309 
2310 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2311 
2312 	if (likely(!current_is_workqueue_rescuer() ||
2313 		   !test_bit(WB_registered, &wb->state))) {
2314 		/*
2315 		 * The normal path.  Keep writing back @wb until its
2316 		 * work_list is empty.  Note that this path is also taken
2317 		 * if @wb is shutting down even when we're running off the
2318 		 * rescuer as work_list needs to be drained.
2319 		 */
2320 		do {
2321 			pages_written = wb_do_writeback(wb);
2322 			trace_writeback_pages_written(pages_written);
2323 		} while (!list_empty(&wb->work_list));
2324 	} else {
2325 		/*
2326 		 * bdi_wq can't get enough workers and we're running off
2327 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2328 		 * enough for efficient IO.
2329 		 */
2330 		pages_written = writeback_inodes_wb(wb, 1024,
2331 						    WB_REASON_FORKER_THREAD);
2332 		trace_writeback_pages_written(pages_written);
2333 	}
2334 
2335 	if (!list_empty(&wb->work_list))
2336 		wb_wakeup(wb);
2337 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2338 		wb_wakeup_delayed(wb);
2339 }
2340 
2341 /*
2342  * Start writeback of all dirty pages on this bdi.
2343  */
2344 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2345 					 enum wb_reason reason)
2346 {
2347 	struct bdi_writeback *wb;
2348 
2349 	if (!bdi_has_dirty_io(bdi))
2350 		return;
2351 
2352 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2353 		wb_start_writeback(wb, reason);
2354 }
2355 
2356 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2357 				enum wb_reason reason)
2358 {
2359 	rcu_read_lock();
2360 	__wakeup_flusher_threads_bdi(bdi, reason);
2361 	rcu_read_unlock();
2362 }
2363 
2364 /*
2365  * Wakeup the flusher threads to start writeback of all currently dirty pages
2366  */
2367 void wakeup_flusher_threads(enum wb_reason reason)
2368 {
2369 	struct backing_dev_info *bdi;
2370 
2371 	/*
2372 	 * If we are expecting writeback progress we must submit plugged IO.
2373 	 */
2374 	blk_flush_plug(current->plug, true);
2375 
2376 	rcu_read_lock();
2377 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2378 		__wakeup_flusher_threads_bdi(bdi, reason);
2379 	rcu_read_unlock();
2380 }
2381 
2382 /*
2383  * Wake up bdi's periodically to make sure dirtytime inodes gets
2384  * written back periodically.  We deliberately do *not* check the
2385  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2386  * kernel to be constantly waking up once there are any dirtytime
2387  * inodes on the system.  So instead we define a separate delayed work
2388  * function which gets called much more rarely.  (By default, only
2389  * once every 12 hours.)
2390  *
2391  * If there is any other write activity going on in the file system,
2392  * this function won't be necessary.  But if the only thing that has
2393  * happened on the file system is a dirtytime inode caused by an atime
2394  * update, we need this infrastructure below to make sure that inode
2395  * eventually gets pushed out to disk.
2396  */
2397 static void wakeup_dirtytime_writeback(struct work_struct *w);
2398 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2399 
2400 static void wakeup_dirtytime_writeback(struct work_struct *w)
2401 {
2402 	struct backing_dev_info *bdi;
2403 
2404 	rcu_read_lock();
2405 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2406 		struct bdi_writeback *wb;
2407 
2408 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2409 			if (!list_empty(&wb->b_dirty_time))
2410 				wb_wakeup(wb);
2411 	}
2412 	rcu_read_unlock();
2413 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2414 }
2415 
2416 static int __init start_dirtytime_writeback(void)
2417 {
2418 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2419 	return 0;
2420 }
2421 __initcall(start_dirtytime_writeback);
2422 
2423 int dirtytime_interval_handler(const struct ctl_table *table, int write,
2424 			       void *buffer, size_t *lenp, loff_t *ppos)
2425 {
2426 	int ret;
2427 
2428 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2429 	if (ret == 0 && write)
2430 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2431 	return ret;
2432 }
2433 
2434 /**
2435  * __mark_inode_dirty -	internal function to mark an inode dirty
2436  *
2437  * @inode: inode to mark
2438  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2439  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2440  *	   with I_DIRTY_PAGES.
2441  *
2442  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2443  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2444  *
2445  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2446  * instead of calling this directly.
2447  *
2448  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2449  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2450  * even if they are later hashed, as they will have been marked dirty already.
2451  *
2452  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2453  *
2454  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2455  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2456  * the kernel-internal blockdev inode represents the dirtying time of the
2457  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2458  * page->mapping->host, so the page-dirtying time is recorded in the internal
2459  * blockdev inode.
2460  */
2461 void __mark_inode_dirty(struct inode *inode, int flags)
2462 {
2463 	struct super_block *sb = inode->i_sb;
2464 	int dirtytime = 0;
2465 	struct bdi_writeback *wb = NULL;
2466 
2467 	trace_writeback_mark_inode_dirty(inode, flags);
2468 
2469 	if (flags & I_DIRTY_INODE) {
2470 		/*
2471 		 * Inode timestamp update will piggback on this dirtying.
2472 		 * We tell ->dirty_inode callback that timestamps need to
2473 		 * be updated by setting I_DIRTY_TIME in flags.
2474 		 */
2475 		if (inode->i_state & I_DIRTY_TIME) {
2476 			spin_lock(&inode->i_lock);
2477 			if (inode->i_state & I_DIRTY_TIME) {
2478 				inode->i_state &= ~I_DIRTY_TIME;
2479 				flags |= I_DIRTY_TIME;
2480 			}
2481 			spin_unlock(&inode->i_lock);
2482 		}
2483 
2484 		/*
2485 		 * Notify the filesystem about the inode being dirtied, so that
2486 		 * (if needed) it can update on-disk fields and journal the
2487 		 * inode.  This is only needed when the inode itself is being
2488 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2489 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2490 		 */
2491 		trace_writeback_dirty_inode_start(inode, flags);
2492 		if (sb->s_op->dirty_inode)
2493 			sb->s_op->dirty_inode(inode,
2494 				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2495 		trace_writeback_dirty_inode(inode, flags);
2496 
2497 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2498 		flags &= ~I_DIRTY_TIME;
2499 	} else {
2500 		/*
2501 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2502 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2503 		 * in one call to __mark_inode_dirty().)
2504 		 */
2505 		dirtytime = flags & I_DIRTY_TIME;
2506 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2507 	}
2508 
2509 	/*
2510 	 * Paired with smp_mb() in __writeback_single_inode() for the
2511 	 * following lockless i_state test.  See there for details.
2512 	 */
2513 	smp_mb();
2514 
2515 	if ((inode->i_state & flags) == flags)
2516 		return;
2517 
2518 	spin_lock(&inode->i_lock);
2519 	if ((inode->i_state & flags) != flags) {
2520 		const int was_dirty = inode->i_state & I_DIRTY;
2521 
2522 		inode_attach_wb(inode, NULL);
2523 
2524 		inode->i_state |= flags;
2525 
2526 		/*
2527 		 * Grab inode's wb early because it requires dropping i_lock and we
2528 		 * need to make sure following checks happen atomically with dirty
2529 		 * list handling so that we don't move inodes under flush worker's
2530 		 * hands.
2531 		 */
2532 		if (!was_dirty) {
2533 			wb = locked_inode_to_wb_and_lock_list(inode);
2534 			spin_lock(&inode->i_lock);
2535 		}
2536 
2537 		/*
2538 		 * If the inode is queued for writeback by flush worker, just
2539 		 * update its dirty state. Once the flush worker is done with
2540 		 * the inode it will place it on the appropriate superblock
2541 		 * list, based upon its state.
2542 		 */
2543 		if (inode->i_state & I_SYNC_QUEUED)
2544 			goto out_unlock;
2545 
2546 		/*
2547 		 * Only add valid (hashed) inodes to the superblock's
2548 		 * dirty list.  Add blockdev inodes as well.
2549 		 */
2550 		if (!S_ISBLK(inode->i_mode)) {
2551 			if (inode_unhashed(inode))
2552 				goto out_unlock;
2553 		}
2554 		if (inode->i_state & I_FREEING)
2555 			goto out_unlock;
2556 
2557 		/*
2558 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2559 		 * reposition it (that would break b_dirty time-ordering).
2560 		 */
2561 		if (!was_dirty) {
2562 			struct list_head *dirty_list;
2563 			bool wakeup_bdi = false;
2564 
2565 			inode->dirtied_when = jiffies;
2566 			if (dirtytime)
2567 				inode->dirtied_time_when = jiffies;
2568 
2569 			if (inode->i_state & I_DIRTY)
2570 				dirty_list = &wb->b_dirty;
2571 			else
2572 				dirty_list = &wb->b_dirty_time;
2573 
2574 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2575 							       dirty_list);
2576 
2577 			spin_unlock(&wb->list_lock);
2578 			spin_unlock(&inode->i_lock);
2579 			trace_writeback_dirty_inode_enqueue(inode);
2580 
2581 			/*
2582 			 * If this is the first dirty inode for this bdi,
2583 			 * we have to wake-up the corresponding bdi thread
2584 			 * to make sure background write-back happens
2585 			 * later.
2586 			 */
2587 			if (wakeup_bdi &&
2588 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2589 				wb_wakeup_delayed(wb);
2590 			return;
2591 		}
2592 	}
2593 out_unlock:
2594 	if (wb)
2595 		spin_unlock(&wb->list_lock);
2596 	spin_unlock(&inode->i_lock);
2597 }
2598 EXPORT_SYMBOL(__mark_inode_dirty);
2599 
2600 /*
2601  * The @s_sync_lock is used to serialise concurrent sync operations
2602  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2603  * Concurrent callers will block on the s_sync_lock rather than doing contending
2604  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2605  * has been issued up to the time this function is enter is guaranteed to be
2606  * completed by the time we have gained the lock and waited for all IO that is
2607  * in progress regardless of the order callers are granted the lock.
2608  */
2609 static void wait_sb_inodes(struct super_block *sb)
2610 {
2611 	LIST_HEAD(sync_list);
2612 
2613 	/*
2614 	 * We need to be protected against the filesystem going from
2615 	 * r/o to r/w or vice versa.
2616 	 */
2617 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2618 
2619 	mutex_lock(&sb->s_sync_lock);
2620 
2621 	/*
2622 	 * Splice the writeback list onto a temporary list to avoid waiting on
2623 	 * inodes that have started writeback after this point.
2624 	 *
2625 	 * Use rcu_read_lock() to keep the inodes around until we have a
2626 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2627 	 * the local list because inodes can be dropped from either by writeback
2628 	 * completion.
2629 	 */
2630 	rcu_read_lock();
2631 	spin_lock_irq(&sb->s_inode_wblist_lock);
2632 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2633 
2634 	/*
2635 	 * Data integrity sync. Must wait for all pages under writeback, because
2636 	 * there may have been pages dirtied before our sync call, but which had
2637 	 * writeout started before we write it out.  In which case, the inode
2638 	 * may not be on the dirty list, but we still have to wait for that
2639 	 * writeout.
2640 	 */
2641 	while (!list_empty(&sync_list)) {
2642 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2643 						       i_wb_list);
2644 		struct address_space *mapping = inode->i_mapping;
2645 
2646 		/*
2647 		 * Move each inode back to the wb list before we drop the lock
2648 		 * to preserve consistency between i_wb_list and the mapping
2649 		 * writeback tag. Writeback completion is responsible to remove
2650 		 * the inode from either list once the writeback tag is cleared.
2651 		 */
2652 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2653 
2654 		/*
2655 		 * The mapping can appear untagged while still on-list since we
2656 		 * do not have the mapping lock. Skip it here, wb completion
2657 		 * will remove it.
2658 		 */
2659 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2660 			continue;
2661 
2662 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2663 
2664 		spin_lock(&inode->i_lock);
2665 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2666 			spin_unlock(&inode->i_lock);
2667 
2668 			spin_lock_irq(&sb->s_inode_wblist_lock);
2669 			continue;
2670 		}
2671 		__iget(inode);
2672 		spin_unlock(&inode->i_lock);
2673 		rcu_read_unlock();
2674 
2675 		/*
2676 		 * We keep the error status of individual mapping so that
2677 		 * applications can catch the writeback error using fsync(2).
2678 		 * See filemap_fdatawait_keep_errors() for details.
2679 		 */
2680 		filemap_fdatawait_keep_errors(mapping);
2681 
2682 		cond_resched();
2683 
2684 		iput(inode);
2685 
2686 		rcu_read_lock();
2687 		spin_lock_irq(&sb->s_inode_wblist_lock);
2688 	}
2689 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2690 	rcu_read_unlock();
2691 	mutex_unlock(&sb->s_sync_lock);
2692 }
2693 
2694 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2695 				     enum wb_reason reason, bool skip_if_busy)
2696 {
2697 	struct backing_dev_info *bdi = sb->s_bdi;
2698 	DEFINE_WB_COMPLETION(done, bdi);
2699 	struct wb_writeback_work work = {
2700 		.sb			= sb,
2701 		.sync_mode		= WB_SYNC_NONE,
2702 		.tagged_writepages	= 1,
2703 		.done			= &done,
2704 		.nr_pages		= nr,
2705 		.reason			= reason,
2706 	};
2707 
2708 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2709 		return;
2710 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2711 
2712 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2713 	wb_wait_for_completion(&done);
2714 }
2715 
2716 /**
2717  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2718  * @sb: the superblock
2719  * @nr: the number of pages to write
2720  * @reason: reason why some writeback work initiated
2721  *
2722  * Start writeback on some inodes on this super_block. No guarantees are made
2723  * on how many (if any) will be written, and this function does not wait
2724  * for IO completion of submitted IO.
2725  */
2726 void writeback_inodes_sb_nr(struct super_block *sb,
2727 			    unsigned long nr,
2728 			    enum wb_reason reason)
2729 {
2730 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2731 }
2732 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2733 
2734 /**
2735  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2736  * @sb: the superblock
2737  * @reason: reason why some writeback work was initiated
2738  *
2739  * Start writeback on some inodes on this super_block. No guarantees are made
2740  * on how many (if any) will be written, and this function does not wait
2741  * for IO completion of submitted IO.
2742  */
2743 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2744 {
2745 	writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2746 }
2747 EXPORT_SYMBOL(writeback_inodes_sb);
2748 
2749 /**
2750  * try_to_writeback_inodes_sb - try to start writeback if none underway
2751  * @sb: the superblock
2752  * @reason: reason why some writeback work was initiated
2753  *
2754  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2755  */
2756 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2757 {
2758 	if (!down_read_trylock(&sb->s_umount))
2759 		return;
2760 
2761 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2762 	up_read(&sb->s_umount);
2763 }
2764 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2765 
2766 /**
2767  * sync_inodes_sb	-	sync sb inode pages
2768  * @sb: the superblock
2769  *
2770  * This function writes and waits on any dirty inode belonging to this
2771  * super_block.
2772  */
2773 void sync_inodes_sb(struct super_block *sb)
2774 {
2775 	struct backing_dev_info *bdi = sb->s_bdi;
2776 	DEFINE_WB_COMPLETION(done, bdi);
2777 	struct wb_writeback_work work = {
2778 		.sb		= sb,
2779 		.sync_mode	= WB_SYNC_ALL,
2780 		.nr_pages	= LONG_MAX,
2781 		.range_cyclic	= 0,
2782 		.done		= &done,
2783 		.reason		= WB_REASON_SYNC,
2784 		.for_sync	= 1,
2785 	};
2786 
2787 	/*
2788 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2789 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2790 	 * bdi_has_dirty() need to be written out too.
2791 	 */
2792 	if (bdi == &noop_backing_dev_info)
2793 		return;
2794 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2795 
2796 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2797 	bdi_down_write_wb_switch_rwsem(bdi);
2798 	bdi_split_work_to_wbs(bdi, &work, false);
2799 	wb_wait_for_completion(&done);
2800 	bdi_up_write_wb_switch_rwsem(bdi);
2801 
2802 	wait_sb_inodes(sb);
2803 }
2804 EXPORT_SYMBOL(sync_inodes_sb);
2805 
2806 /**
2807  * write_inode_now	-	write an inode to disk
2808  * @inode: inode to write to disk
2809  * @sync: whether the write should be synchronous or not
2810  *
2811  * This function commits an inode to disk immediately if it is dirty. This is
2812  * primarily needed by knfsd.
2813  *
2814  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2815  */
2816 int write_inode_now(struct inode *inode, int sync)
2817 {
2818 	struct writeback_control wbc = {
2819 		.nr_to_write = LONG_MAX,
2820 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2821 		.range_start = 0,
2822 		.range_end = LLONG_MAX,
2823 	};
2824 
2825 	if (!mapping_can_writeback(inode->i_mapping))
2826 		wbc.nr_to_write = 0;
2827 
2828 	might_sleep();
2829 	return writeback_single_inode(inode, &wbc);
2830 }
2831 EXPORT_SYMBOL(write_inode_now);
2832 
2833 /**
2834  * sync_inode_metadata - write an inode to disk
2835  * @inode: the inode to sync
2836  * @wait: wait for I/O to complete.
2837  *
2838  * Write an inode to disk and adjust its dirty state after completion.
2839  *
2840  * Note: only writes the actual inode, no associated data or other metadata.
2841  */
2842 int sync_inode_metadata(struct inode *inode, int wait)
2843 {
2844 	struct writeback_control wbc = {
2845 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2846 		.nr_to_write = 0, /* metadata-only */
2847 	};
2848 
2849 	return writeback_single_inode(inode, &wbc);
2850 }
2851 EXPORT_SYMBOL(sync_inode_metadata);
2852