xref: /linux/fs/fs-writeback.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 struct wb_completion {
40 	atomic_t		cnt;
41 };
42 
43 /*
44  * Passed into wb_writeback(), essentially a subset of writeback_control
45  */
46 struct wb_writeback_work {
47 	long nr_pages;
48 	struct super_block *sb;
49 	unsigned long *older_than_this;
50 	enum writeback_sync_modes sync_mode;
51 	unsigned int tagged_writepages:1;
52 	unsigned int for_kupdate:1;
53 	unsigned int range_cyclic:1;
54 	unsigned int for_background:1;
55 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
56 	unsigned int auto_free:1;	/* free on completion */
57 	enum wb_reason reason;		/* why was writeback initiated? */
58 
59 	struct list_head list;		/* pending work list */
60 	struct wb_completion *done;	/* set if the caller waits */
61 };
62 
63 /*
64  * If one wants to wait for one or more wb_writeback_works, each work's
65  * ->done should be set to a wb_completion defined using the following
66  * macro.  Once all work items are issued with wb_queue_work(), the caller
67  * can wait for the completion of all using wb_wait_for_completion().  Work
68  * items which are waited upon aren't freed automatically on completion.
69  */
70 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
71 	struct wb_completion cmpl = {					\
72 		.cnt		= ATOMIC_INIT(1),			\
73 	}
74 
75 
76 /*
77  * If an inode is constantly having its pages dirtied, but then the
78  * updates stop dirtytime_expire_interval seconds in the past, it's
79  * possible for the worst case time between when an inode has its
80  * timestamps updated and when they finally get written out to be two
81  * dirtytime_expire_intervals.  We set the default to 12 hours (in
82  * seconds), which means most of the time inodes will have their
83  * timestamps written to disk after 12 hours, but in the worst case a
84  * few inodes might not their timestamps updated for 24 hours.
85  */
86 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87 
88 static inline struct inode *wb_inode(struct list_head *head)
89 {
90 	return list_entry(head, struct inode, i_io_list);
91 }
92 
93 /*
94  * Include the creation of the trace points after defining the
95  * wb_writeback_work structure and inline functions so that the definition
96  * remains local to this file.
97  */
98 #define CREATE_TRACE_POINTS
99 #include <trace/events/writeback.h>
100 
101 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102 
103 static bool wb_io_lists_populated(struct bdi_writeback *wb)
104 {
105 	if (wb_has_dirty_io(wb)) {
106 		return false;
107 	} else {
108 		set_bit(WB_has_dirty_io, &wb->state);
109 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
110 		atomic_long_add(wb->avg_write_bandwidth,
111 				&wb->bdi->tot_write_bandwidth);
112 		return true;
113 	}
114 }
115 
116 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117 {
118 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120 		clear_bit(WB_has_dirty_io, &wb->state);
121 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122 					&wb->bdi->tot_write_bandwidth) < 0);
123 	}
124 }
125 
126 /**
127  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
128  * @inode: inode to be moved
129  * @wb: target bdi_writeback
130  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
131  *
132  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
133  * Returns %true if @inode is the first occupant of the !dirty_time IO
134  * lists; otherwise, %false.
135  */
136 static bool inode_io_list_move_locked(struct inode *inode,
137 				      struct bdi_writeback *wb,
138 				      struct list_head *head)
139 {
140 	assert_spin_locked(&wb->list_lock);
141 
142 	list_move(&inode->i_io_list, head);
143 
144 	/* dirty_time doesn't count as dirty_io until expiration */
145 	if (head != &wb->b_dirty_time)
146 		return wb_io_lists_populated(wb);
147 
148 	wb_io_lists_depopulated(wb);
149 	return false;
150 }
151 
152 /**
153  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
154  * @inode: inode to be removed
155  * @wb: bdi_writeback @inode is being removed from
156  *
157  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158  * clear %WB_has_dirty_io if all are empty afterwards.
159  */
160 static void inode_io_list_del_locked(struct inode *inode,
161 				     struct bdi_writeback *wb)
162 {
163 	assert_spin_locked(&wb->list_lock);
164 
165 	list_del_init(&inode->i_io_list);
166 	wb_io_lists_depopulated(wb);
167 }
168 
169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171 	spin_lock_bh(&wb->work_lock);
172 	if (test_bit(WB_registered, &wb->state))
173 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 	spin_unlock_bh(&wb->work_lock);
175 }
176 
177 static void finish_writeback_work(struct bdi_writeback *wb,
178 				  struct wb_writeback_work *work)
179 {
180 	struct wb_completion *done = work->done;
181 
182 	if (work->auto_free)
183 		kfree(work);
184 	if (done && atomic_dec_and_test(&done->cnt))
185 		wake_up_all(&wb->bdi->wb_waitq);
186 }
187 
188 static void wb_queue_work(struct bdi_writeback *wb,
189 			  struct wb_writeback_work *work)
190 {
191 	trace_writeback_queue(wb, work);
192 
193 	if (work->done)
194 		atomic_inc(&work->done->cnt);
195 
196 	spin_lock_bh(&wb->work_lock);
197 
198 	if (test_bit(WB_registered, &wb->state)) {
199 		list_add_tail(&work->list, &wb->work_list);
200 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 	} else
202 		finish_writeback_work(wb, work);
203 
204 	spin_unlock_bh(&wb->work_lock);
205 }
206 
207 /**
208  * wb_wait_for_completion - wait for completion of bdi_writeback_works
209  * @bdi: bdi work items were issued to
210  * @done: target wb_completion
211  *
212  * Wait for one or more work items issued to @bdi with their ->done field
213  * set to @done, which should have been defined with
214  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
215  * work items are completed.  Work items which are waited upon aren't freed
216  * automatically on completion.
217  */
218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 				   struct wb_completion *done)
220 {
221 	atomic_dec(&done->cnt);		/* put down the initial count */
222 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224 
225 #ifdef CONFIG_CGROUP_WRITEBACK
226 
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
232 
233 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 					/* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
237 					/* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 					/* one round can affect upto 5 slots */
240 
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243 
244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246 	struct backing_dev_info *bdi = inode_to_bdi(inode);
247 	struct bdi_writeback *wb = NULL;
248 
249 	if (inode_cgwb_enabled(inode)) {
250 		struct cgroup_subsys_state *memcg_css;
251 
252 		if (page) {
253 			memcg_css = mem_cgroup_css_from_page(page);
254 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 		} else {
256 			/* must pin memcg_css, see wb_get_create() */
257 			memcg_css = task_get_css(current, memory_cgrp_id);
258 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 			css_put(memcg_css);
260 		}
261 	}
262 
263 	if (!wb)
264 		wb = &bdi->wb;
265 
266 	/*
267 	 * There may be multiple instances of this function racing to
268 	 * update the same inode.  Use cmpxchg() to tell the winner.
269 	 */
270 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 		wb_put(wb);
272 }
273 
274 /**
275  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
276  * @inode: inode of interest with i_lock held
277  *
278  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
279  * held on entry and is released on return.  The returned wb is guaranteed
280  * to stay @inode's associated wb until its list_lock is released.
281  */
282 static struct bdi_writeback *
283 locked_inode_to_wb_and_lock_list(struct inode *inode)
284 	__releases(&inode->i_lock)
285 	__acquires(&wb->list_lock)
286 {
287 	while (true) {
288 		struct bdi_writeback *wb = inode_to_wb(inode);
289 
290 		/*
291 		 * inode_to_wb() association is protected by both
292 		 * @inode->i_lock and @wb->list_lock but list_lock nests
293 		 * outside i_lock.  Drop i_lock and verify that the
294 		 * association hasn't changed after acquiring list_lock.
295 		 */
296 		wb_get(wb);
297 		spin_unlock(&inode->i_lock);
298 		spin_lock(&wb->list_lock);
299 
300 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
301 		if (likely(wb == inode->i_wb)) {
302 			wb_put(wb);	/* @inode already has ref */
303 			return wb;
304 		}
305 
306 		spin_unlock(&wb->list_lock);
307 		wb_put(wb);
308 		cpu_relax();
309 		spin_lock(&inode->i_lock);
310 	}
311 }
312 
313 /**
314  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
315  * @inode: inode of interest
316  *
317  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
318  * on entry.
319  */
320 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
321 	__acquires(&wb->list_lock)
322 {
323 	spin_lock(&inode->i_lock);
324 	return locked_inode_to_wb_and_lock_list(inode);
325 }
326 
327 struct inode_switch_wbs_context {
328 	struct inode		*inode;
329 	struct bdi_writeback	*new_wb;
330 
331 	struct rcu_head		rcu_head;
332 	struct work_struct	work;
333 };
334 
335 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
336 {
337 	down_write(&bdi->wb_switch_rwsem);
338 }
339 
340 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
341 {
342 	up_write(&bdi->wb_switch_rwsem);
343 }
344 
345 static void inode_switch_wbs_work_fn(struct work_struct *work)
346 {
347 	struct inode_switch_wbs_context *isw =
348 		container_of(work, struct inode_switch_wbs_context, work);
349 	struct inode *inode = isw->inode;
350 	struct backing_dev_info *bdi = inode_to_bdi(inode);
351 	struct address_space *mapping = inode->i_mapping;
352 	struct bdi_writeback *old_wb = inode->i_wb;
353 	struct bdi_writeback *new_wb = isw->new_wb;
354 	XA_STATE(xas, &mapping->i_pages, 0);
355 	struct page *page;
356 	bool switched = false;
357 
358 	/*
359 	 * If @inode switches cgwb membership while sync_inodes_sb() is
360 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
361 	 */
362 	down_read(&bdi->wb_switch_rwsem);
363 
364 	/*
365 	 * By the time control reaches here, RCU grace period has passed
366 	 * since I_WB_SWITCH assertion and all wb stat update transactions
367 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
368 	 * synchronizing against the i_pages lock.
369 	 *
370 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
371 	 * gives us exclusion against all wb related operations on @inode
372 	 * including IO list manipulations and stat updates.
373 	 */
374 	if (old_wb < new_wb) {
375 		spin_lock(&old_wb->list_lock);
376 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
377 	} else {
378 		spin_lock(&new_wb->list_lock);
379 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
380 	}
381 	spin_lock(&inode->i_lock);
382 	xa_lock_irq(&mapping->i_pages);
383 
384 	/*
385 	 * Once I_FREEING is visible under i_lock, the eviction path owns
386 	 * the inode and we shouldn't modify ->i_io_list.
387 	 */
388 	if (unlikely(inode->i_state & I_FREEING))
389 		goto skip_switch;
390 
391 	/*
392 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
393 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
394 	 * pages actually under writeback.
395 	 */
396 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397 		if (PageDirty(page)) {
398 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
399 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
400 		}
401 	}
402 
403 	xas_set(&xas, 0);
404 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405 		WARN_ON_ONCE(!PageWriteback(page));
406 		dec_wb_stat(old_wb, WB_WRITEBACK);
407 		inc_wb_stat(new_wb, WB_WRITEBACK);
408 	}
409 
410 	wb_get(new_wb);
411 
412 	/*
413 	 * Transfer to @new_wb's IO list if necessary.  The specific list
414 	 * @inode was on is ignored and the inode is put on ->b_dirty which
415 	 * is always correct including from ->b_dirty_time.  The transfer
416 	 * preserves @inode->dirtied_when ordering.
417 	 */
418 	if (!list_empty(&inode->i_io_list)) {
419 		struct inode *pos;
420 
421 		inode_io_list_del_locked(inode, old_wb);
422 		inode->i_wb = new_wb;
423 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
424 			if (time_after_eq(inode->dirtied_when,
425 					  pos->dirtied_when))
426 				break;
427 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
428 	} else {
429 		inode->i_wb = new_wb;
430 	}
431 
432 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
433 	inode->i_wb_frn_winner = 0;
434 	inode->i_wb_frn_avg_time = 0;
435 	inode->i_wb_frn_history = 0;
436 	switched = true;
437 skip_switch:
438 	/*
439 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
440 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
441 	 */
442 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
443 
444 	xa_unlock_irq(&mapping->i_pages);
445 	spin_unlock(&inode->i_lock);
446 	spin_unlock(&new_wb->list_lock);
447 	spin_unlock(&old_wb->list_lock);
448 
449 	up_read(&bdi->wb_switch_rwsem);
450 
451 	if (switched) {
452 		wb_wakeup(new_wb);
453 		wb_put(old_wb);
454 	}
455 	wb_put(new_wb);
456 
457 	iput(inode);
458 	kfree(isw);
459 
460 	atomic_dec(&isw_nr_in_flight);
461 }
462 
463 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
464 {
465 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
466 				struct inode_switch_wbs_context, rcu_head);
467 
468 	/* needs to grab bh-unsafe locks, bounce to work item */
469 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
470 	queue_work(isw_wq, &isw->work);
471 }
472 
473 /**
474  * inode_switch_wbs - change the wb association of an inode
475  * @inode: target inode
476  * @new_wb_id: ID of the new wb
477  *
478  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
479  * switching is performed asynchronously and may fail silently.
480  */
481 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
482 {
483 	struct backing_dev_info *bdi = inode_to_bdi(inode);
484 	struct cgroup_subsys_state *memcg_css;
485 	struct inode_switch_wbs_context *isw;
486 
487 	/* noop if seems to be already in progress */
488 	if (inode->i_state & I_WB_SWITCH)
489 		return;
490 
491 	/*
492 	 * Avoid starting new switches while sync_inodes_sb() is in
493 	 * progress.  Otherwise, if the down_write protected issue path
494 	 * blocks heavily, we might end up starting a large number of
495 	 * switches which will block on the rwsem.
496 	 */
497 	if (!down_read_trylock(&bdi->wb_switch_rwsem))
498 		return;
499 
500 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
501 	if (!isw)
502 		goto out_unlock;
503 
504 	/* find and pin the new wb */
505 	rcu_read_lock();
506 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
507 	if (memcg_css)
508 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
509 	rcu_read_unlock();
510 	if (!isw->new_wb)
511 		goto out_free;
512 
513 	/* while holding I_WB_SWITCH, no one else can update the association */
514 	spin_lock(&inode->i_lock);
515 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
516 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
517 	    inode_to_wb(inode) == isw->new_wb) {
518 		spin_unlock(&inode->i_lock);
519 		goto out_free;
520 	}
521 	inode->i_state |= I_WB_SWITCH;
522 	__iget(inode);
523 	spin_unlock(&inode->i_lock);
524 
525 	isw->inode = inode;
526 
527 	/*
528 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
529 	 * the RCU protected stat update paths to grab the i_page
530 	 * lock so that stat transfer can synchronize against them.
531 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
532 	 */
533 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
534 
535 	atomic_inc(&isw_nr_in_flight);
536 
537 	goto out_unlock;
538 
539 out_free:
540 	if (isw->new_wb)
541 		wb_put(isw->new_wb);
542 	kfree(isw);
543 out_unlock:
544 	up_read(&bdi->wb_switch_rwsem);
545 }
546 
547 /**
548  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
549  * @wbc: writeback_control of interest
550  * @inode: target inode
551  *
552  * @inode is locked and about to be written back under the control of @wbc.
553  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
554  * writeback completion, wbc_detach_inode() should be called.  This is used
555  * to track the cgroup writeback context.
556  */
557 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
558 				 struct inode *inode)
559 {
560 	if (!inode_cgwb_enabled(inode)) {
561 		spin_unlock(&inode->i_lock);
562 		return;
563 	}
564 
565 	wbc->wb = inode_to_wb(inode);
566 	wbc->inode = inode;
567 
568 	wbc->wb_id = wbc->wb->memcg_css->id;
569 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
570 	wbc->wb_tcand_id = 0;
571 	wbc->wb_bytes = 0;
572 	wbc->wb_lcand_bytes = 0;
573 	wbc->wb_tcand_bytes = 0;
574 
575 	wb_get(wbc->wb);
576 	spin_unlock(&inode->i_lock);
577 
578 	/*
579 	 * A dying wb indicates that the memcg-blkcg mapping has changed
580 	 * and a new wb is already serving the memcg.  Switch immediately.
581 	 */
582 	if (unlikely(wb_dying(wbc->wb)))
583 		inode_switch_wbs(inode, wbc->wb_id);
584 }
585 
586 /**
587  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
588  * @wbc: writeback_control of the just finished writeback
589  *
590  * To be called after a writeback attempt of an inode finishes and undoes
591  * wbc_attach_and_unlock_inode().  Can be called under any context.
592  *
593  * As concurrent write sharing of an inode is expected to be very rare and
594  * memcg only tracks page ownership on first-use basis severely confining
595  * the usefulness of such sharing, cgroup writeback tracks ownership
596  * per-inode.  While the support for concurrent write sharing of an inode
597  * is deemed unnecessary, an inode being written to by different cgroups at
598  * different points in time is a lot more common, and, more importantly,
599  * charging only by first-use can too readily lead to grossly incorrect
600  * behaviors (single foreign page can lead to gigabytes of writeback to be
601  * incorrectly attributed).
602  *
603  * To resolve this issue, cgroup writeback detects the majority dirtier of
604  * an inode and transfers the ownership to it.  To avoid unnnecessary
605  * oscillation, the detection mechanism keeps track of history and gives
606  * out the switch verdict only if the foreign usage pattern is stable over
607  * a certain amount of time and/or writeback attempts.
608  *
609  * On each writeback attempt, @wbc tries to detect the majority writer
610  * using Boyer-Moore majority vote algorithm.  In addition to the byte
611  * count from the majority voting, it also counts the bytes written for the
612  * current wb and the last round's winner wb (max of last round's current
613  * wb, the winner from two rounds ago, and the last round's majority
614  * candidate).  Keeping track of the historical winner helps the algorithm
615  * to semi-reliably detect the most active writer even when it's not the
616  * absolute majority.
617  *
618  * Once the winner of the round is determined, whether the winner is
619  * foreign or not and how much IO time the round consumed is recorded in
620  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
621  * over a certain threshold, the switch verdict is given.
622  */
623 void wbc_detach_inode(struct writeback_control *wbc)
624 {
625 	struct bdi_writeback *wb = wbc->wb;
626 	struct inode *inode = wbc->inode;
627 	unsigned long avg_time, max_bytes, max_time;
628 	u16 history;
629 	int max_id;
630 
631 	if (!wb)
632 		return;
633 
634 	history = inode->i_wb_frn_history;
635 	avg_time = inode->i_wb_frn_avg_time;
636 
637 	/* pick the winner of this round */
638 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
639 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
640 		max_id = wbc->wb_id;
641 		max_bytes = wbc->wb_bytes;
642 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
643 		max_id = wbc->wb_lcand_id;
644 		max_bytes = wbc->wb_lcand_bytes;
645 	} else {
646 		max_id = wbc->wb_tcand_id;
647 		max_bytes = wbc->wb_tcand_bytes;
648 	}
649 
650 	/*
651 	 * Calculate the amount of IO time the winner consumed and fold it
652 	 * into the running average kept per inode.  If the consumed IO
653 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
654 	 * deciding whether to switch or not.  This is to prevent one-off
655 	 * small dirtiers from skewing the verdict.
656 	 */
657 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
658 				wb->avg_write_bandwidth);
659 	if (avg_time)
660 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
661 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
662 	else
663 		avg_time = max_time;	/* immediate catch up on first run */
664 
665 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
666 		int slots;
667 
668 		/*
669 		 * The switch verdict is reached if foreign wb's consume
670 		 * more than a certain proportion of IO time in a
671 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
672 		 * history mask where each bit represents one sixteenth of
673 		 * the period.  Determine the number of slots to shift into
674 		 * history from @max_time.
675 		 */
676 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
677 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
678 		history <<= slots;
679 		if (wbc->wb_id != max_id)
680 			history |= (1U << slots) - 1;
681 
682 		/*
683 		 * Switch if the current wb isn't the consistent winner.
684 		 * If there are multiple closely competing dirtiers, the
685 		 * inode may switch across them repeatedly over time, which
686 		 * is okay.  The main goal is avoiding keeping an inode on
687 		 * the wrong wb for an extended period of time.
688 		 */
689 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
690 			inode_switch_wbs(inode, max_id);
691 	}
692 
693 	/*
694 	 * Multiple instances of this function may race to update the
695 	 * following fields but we don't mind occassional inaccuracies.
696 	 */
697 	inode->i_wb_frn_winner = max_id;
698 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
699 	inode->i_wb_frn_history = history;
700 
701 	wb_put(wbc->wb);
702 	wbc->wb = NULL;
703 }
704 
705 /**
706  * wbc_account_io - account IO issued during writeback
707  * @wbc: writeback_control of the writeback in progress
708  * @page: page being written out
709  * @bytes: number of bytes being written out
710  *
711  * @bytes from @page are about to written out during the writeback
712  * controlled by @wbc.  Keep the book for foreign inode detection.  See
713  * wbc_detach_inode().
714  */
715 void wbc_account_io(struct writeback_control *wbc, struct page *page,
716 		    size_t bytes)
717 {
718 	struct cgroup_subsys_state *css;
719 	int id;
720 
721 	/*
722 	 * pageout() path doesn't attach @wbc to the inode being written
723 	 * out.  This is intentional as we don't want the function to block
724 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
725 	 * regular writeback instead of writing things out itself.
726 	 */
727 	if (!wbc->wb)
728 		return;
729 
730 	css = mem_cgroup_css_from_page(page);
731 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
732 	if (!(css->flags & CSS_ONLINE))
733 		return;
734 
735 	id = css->id;
736 
737 	if (id == wbc->wb_id) {
738 		wbc->wb_bytes += bytes;
739 		return;
740 	}
741 
742 	if (id == wbc->wb_lcand_id)
743 		wbc->wb_lcand_bytes += bytes;
744 
745 	/* Boyer-Moore majority vote algorithm */
746 	if (!wbc->wb_tcand_bytes)
747 		wbc->wb_tcand_id = id;
748 	if (id == wbc->wb_tcand_id)
749 		wbc->wb_tcand_bytes += bytes;
750 	else
751 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
752 }
753 EXPORT_SYMBOL_GPL(wbc_account_io);
754 
755 /**
756  * inode_congested - test whether an inode is congested
757  * @inode: inode to test for congestion (may be NULL)
758  * @cong_bits: mask of WB_[a]sync_congested bits to test
759  *
760  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
761  * bits to test and the return value is the mask of set bits.
762  *
763  * If cgroup writeback is enabled for @inode, the congestion state is
764  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
765  * associated with @inode is congested; otherwise, the root wb's congestion
766  * state is used.
767  *
768  * @inode is allowed to be NULL as this function is often called on
769  * mapping->host which is NULL for the swapper space.
770  */
771 int inode_congested(struct inode *inode, int cong_bits)
772 {
773 	/*
774 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
775 	 * Start transaction iff ->i_wb is visible.
776 	 */
777 	if (inode && inode_to_wb_is_valid(inode)) {
778 		struct bdi_writeback *wb;
779 		struct wb_lock_cookie lock_cookie = {};
780 		bool congested;
781 
782 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
783 		congested = wb_congested(wb, cong_bits);
784 		unlocked_inode_to_wb_end(inode, &lock_cookie);
785 		return congested;
786 	}
787 
788 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
789 }
790 EXPORT_SYMBOL_GPL(inode_congested);
791 
792 /**
793  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
794  * @wb: target bdi_writeback to split @nr_pages to
795  * @nr_pages: number of pages to write for the whole bdi
796  *
797  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
798  * relation to the total write bandwidth of all wb's w/ dirty inodes on
799  * @wb->bdi.
800  */
801 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
802 {
803 	unsigned long this_bw = wb->avg_write_bandwidth;
804 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
805 
806 	if (nr_pages == LONG_MAX)
807 		return LONG_MAX;
808 
809 	/*
810 	 * This may be called on clean wb's and proportional distribution
811 	 * may not make sense, just use the original @nr_pages in those
812 	 * cases.  In general, we wanna err on the side of writing more.
813 	 */
814 	if (!tot_bw || this_bw >= tot_bw)
815 		return nr_pages;
816 	else
817 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
818 }
819 
820 /**
821  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
822  * @bdi: target backing_dev_info
823  * @base_work: wb_writeback_work to issue
824  * @skip_if_busy: skip wb's which already have writeback in progress
825  *
826  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
827  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
828  * distributed to the busy wbs according to each wb's proportion in the
829  * total active write bandwidth of @bdi.
830  */
831 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
832 				  struct wb_writeback_work *base_work,
833 				  bool skip_if_busy)
834 {
835 	struct bdi_writeback *last_wb = NULL;
836 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
837 					      struct bdi_writeback, bdi_node);
838 
839 	might_sleep();
840 restart:
841 	rcu_read_lock();
842 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
843 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
844 		struct wb_writeback_work fallback_work;
845 		struct wb_writeback_work *work;
846 		long nr_pages;
847 
848 		if (last_wb) {
849 			wb_put(last_wb);
850 			last_wb = NULL;
851 		}
852 
853 		/* SYNC_ALL writes out I_DIRTY_TIME too */
854 		if (!wb_has_dirty_io(wb) &&
855 		    (base_work->sync_mode == WB_SYNC_NONE ||
856 		     list_empty(&wb->b_dirty_time)))
857 			continue;
858 		if (skip_if_busy && writeback_in_progress(wb))
859 			continue;
860 
861 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
862 
863 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
864 		if (work) {
865 			*work = *base_work;
866 			work->nr_pages = nr_pages;
867 			work->auto_free = 1;
868 			wb_queue_work(wb, work);
869 			continue;
870 		}
871 
872 		/* alloc failed, execute synchronously using on-stack fallback */
873 		work = &fallback_work;
874 		*work = *base_work;
875 		work->nr_pages = nr_pages;
876 		work->auto_free = 0;
877 		work->done = &fallback_work_done;
878 
879 		wb_queue_work(wb, work);
880 
881 		/*
882 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
883 		 * continuing iteration from @wb after dropping and
884 		 * regrabbing rcu read lock.
885 		 */
886 		wb_get(wb);
887 		last_wb = wb;
888 
889 		rcu_read_unlock();
890 		wb_wait_for_completion(bdi, &fallback_work_done);
891 		goto restart;
892 	}
893 	rcu_read_unlock();
894 
895 	if (last_wb)
896 		wb_put(last_wb);
897 }
898 
899 /**
900  * cgroup_writeback_umount - flush inode wb switches for umount
901  *
902  * This function is called when a super_block is about to be destroyed and
903  * flushes in-flight inode wb switches.  An inode wb switch goes through
904  * RCU and then workqueue, so the two need to be flushed in order to ensure
905  * that all previously scheduled switches are finished.  As wb switches are
906  * rare occurrences and synchronize_rcu() can take a while, perform
907  * flushing iff wb switches are in flight.
908  */
909 void cgroup_writeback_umount(void)
910 {
911 	if (atomic_read(&isw_nr_in_flight)) {
912 		/*
913 		 * Use rcu_barrier() to wait for all pending callbacks to
914 		 * ensure that all in-flight wb switches are in the workqueue.
915 		 */
916 		rcu_barrier();
917 		flush_workqueue(isw_wq);
918 	}
919 }
920 
921 static int __init cgroup_writeback_init(void)
922 {
923 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
924 	if (!isw_wq)
925 		return -ENOMEM;
926 	return 0;
927 }
928 fs_initcall(cgroup_writeback_init);
929 
930 #else	/* CONFIG_CGROUP_WRITEBACK */
931 
932 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
933 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
934 
935 static struct bdi_writeback *
936 locked_inode_to_wb_and_lock_list(struct inode *inode)
937 	__releases(&inode->i_lock)
938 	__acquires(&wb->list_lock)
939 {
940 	struct bdi_writeback *wb = inode_to_wb(inode);
941 
942 	spin_unlock(&inode->i_lock);
943 	spin_lock(&wb->list_lock);
944 	return wb;
945 }
946 
947 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
948 	__acquires(&wb->list_lock)
949 {
950 	struct bdi_writeback *wb = inode_to_wb(inode);
951 
952 	spin_lock(&wb->list_lock);
953 	return wb;
954 }
955 
956 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
957 {
958 	return nr_pages;
959 }
960 
961 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
962 				  struct wb_writeback_work *base_work,
963 				  bool skip_if_busy)
964 {
965 	might_sleep();
966 
967 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
968 		base_work->auto_free = 0;
969 		wb_queue_work(&bdi->wb, base_work);
970 	}
971 }
972 
973 #endif	/* CONFIG_CGROUP_WRITEBACK */
974 
975 /*
976  * Add in the number of potentially dirty inodes, because each inode
977  * write can dirty pagecache in the underlying blockdev.
978  */
979 static unsigned long get_nr_dirty_pages(void)
980 {
981 	return global_node_page_state(NR_FILE_DIRTY) +
982 		global_node_page_state(NR_UNSTABLE_NFS) +
983 		get_nr_dirty_inodes();
984 }
985 
986 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
987 {
988 	if (!wb_has_dirty_io(wb))
989 		return;
990 
991 	/*
992 	 * All callers of this function want to start writeback of all
993 	 * dirty pages. Places like vmscan can call this at a very
994 	 * high frequency, causing pointless allocations of tons of
995 	 * work items and keeping the flusher threads busy retrieving
996 	 * that work. Ensure that we only allow one of them pending and
997 	 * inflight at the time.
998 	 */
999 	if (test_bit(WB_start_all, &wb->state) ||
1000 	    test_and_set_bit(WB_start_all, &wb->state))
1001 		return;
1002 
1003 	wb->start_all_reason = reason;
1004 	wb_wakeup(wb);
1005 }
1006 
1007 /**
1008  * wb_start_background_writeback - start background writeback
1009  * @wb: bdi_writback to write from
1010  *
1011  * Description:
1012  *   This makes sure WB_SYNC_NONE background writeback happens. When
1013  *   this function returns, it is only guaranteed that for given wb
1014  *   some IO is happening if we are over background dirty threshold.
1015  *   Caller need not hold sb s_umount semaphore.
1016  */
1017 void wb_start_background_writeback(struct bdi_writeback *wb)
1018 {
1019 	/*
1020 	 * We just wake up the flusher thread. It will perform background
1021 	 * writeback as soon as there is no other work to do.
1022 	 */
1023 	trace_writeback_wake_background(wb);
1024 	wb_wakeup(wb);
1025 }
1026 
1027 /*
1028  * Remove the inode from the writeback list it is on.
1029  */
1030 void inode_io_list_del(struct inode *inode)
1031 {
1032 	struct bdi_writeback *wb;
1033 
1034 	wb = inode_to_wb_and_lock_list(inode);
1035 	inode_io_list_del_locked(inode, wb);
1036 	spin_unlock(&wb->list_lock);
1037 }
1038 
1039 /*
1040  * mark an inode as under writeback on the sb
1041  */
1042 void sb_mark_inode_writeback(struct inode *inode)
1043 {
1044 	struct super_block *sb = inode->i_sb;
1045 	unsigned long flags;
1046 
1047 	if (list_empty(&inode->i_wb_list)) {
1048 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1049 		if (list_empty(&inode->i_wb_list)) {
1050 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1051 			trace_sb_mark_inode_writeback(inode);
1052 		}
1053 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1054 	}
1055 }
1056 
1057 /*
1058  * clear an inode as under writeback on the sb
1059  */
1060 void sb_clear_inode_writeback(struct inode *inode)
1061 {
1062 	struct super_block *sb = inode->i_sb;
1063 	unsigned long flags;
1064 
1065 	if (!list_empty(&inode->i_wb_list)) {
1066 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1067 		if (!list_empty(&inode->i_wb_list)) {
1068 			list_del_init(&inode->i_wb_list);
1069 			trace_sb_clear_inode_writeback(inode);
1070 		}
1071 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1072 	}
1073 }
1074 
1075 /*
1076  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1077  * furthest end of its superblock's dirty-inode list.
1078  *
1079  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1080  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1081  * the case then the inode must have been redirtied while it was being written
1082  * out and we don't reset its dirtied_when.
1083  */
1084 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1085 {
1086 	if (!list_empty(&wb->b_dirty)) {
1087 		struct inode *tail;
1088 
1089 		tail = wb_inode(wb->b_dirty.next);
1090 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1091 			inode->dirtied_when = jiffies;
1092 	}
1093 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1094 }
1095 
1096 /*
1097  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1098  */
1099 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1100 {
1101 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1102 }
1103 
1104 static void inode_sync_complete(struct inode *inode)
1105 {
1106 	inode->i_state &= ~I_SYNC;
1107 	/* If inode is clean an unused, put it into LRU now... */
1108 	inode_add_lru(inode);
1109 	/* Waiters must see I_SYNC cleared before being woken up */
1110 	smp_mb();
1111 	wake_up_bit(&inode->i_state, __I_SYNC);
1112 }
1113 
1114 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1115 {
1116 	bool ret = time_after(inode->dirtied_when, t);
1117 #ifndef CONFIG_64BIT
1118 	/*
1119 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1120 	 * It _appears_ to be in the future, but is actually in distant past.
1121 	 * This test is necessary to prevent such wrapped-around relative times
1122 	 * from permanently stopping the whole bdi writeback.
1123 	 */
1124 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1125 #endif
1126 	return ret;
1127 }
1128 
1129 #define EXPIRE_DIRTY_ATIME 0x0001
1130 
1131 /*
1132  * Move expired (dirtied before work->older_than_this) dirty inodes from
1133  * @delaying_queue to @dispatch_queue.
1134  */
1135 static int move_expired_inodes(struct list_head *delaying_queue,
1136 			       struct list_head *dispatch_queue,
1137 			       int flags,
1138 			       struct wb_writeback_work *work)
1139 {
1140 	unsigned long *older_than_this = NULL;
1141 	unsigned long expire_time;
1142 	LIST_HEAD(tmp);
1143 	struct list_head *pos, *node;
1144 	struct super_block *sb = NULL;
1145 	struct inode *inode;
1146 	int do_sb_sort = 0;
1147 	int moved = 0;
1148 
1149 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1150 		older_than_this = work->older_than_this;
1151 	else if (!work->for_sync) {
1152 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1153 		older_than_this = &expire_time;
1154 	}
1155 	while (!list_empty(delaying_queue)) {
1156 		inode = wb_inode(delaying_queue->prev);
1157 		if (older_than_this &&
1158 		    inode_dirtied_after(inode, *older_than_this))
1159 			break;
1160 		list_move(&inode->i_io_list, &tmp);
1161 		moved++;
1162 		if (flags & EXPIRE_DIRTY_ATIME)
1163 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1164 		if (sb_is_blkdev_sb(inode->i_sb))
1165 			continue;
1166 		if (sb && sb != inode->i_sb)
1167 			do_sb_sort = 1;
1168 		sb = inode->i_sb;
1169 	}
1170 
1171 	/* just one sb in list, splice to dispatch_queue and we're done */
1172 	if (!do_sb_sort) {
1173 		list_splice(&tmp, dispatch_queue);
1174 		goto out;
1175 	}
1176 
1177 	/* Move inodes from one superblock together */
1178 	while (!list_empty(&tmp)) {
1179 		sb = wb_inode(tmp.prev)->i_sb;
1180 		list_for_each_prev_safe(pos, node, &tmp) {
1181 			inode = wb_inode(pos);
1182 			if (inode->i_sb == sb)
1183 				list_move(&inode->i_io_list, dispatch_queue);
1184 		}
1185 	}
1186 out:
1187 	return moved;
1188 }
1189 
1190 /*
1191  * Queue all expired dirty inodes for io, eldest first.
1192  * Before
1193  *         newly dirtied     b_dirty    b_io    b_more_io
1194  *         =============>    gf         edc     BA
1195  * After
1196  *         newly dirtied     b_dirty    b_io    b_more_io
1197  *         =============>    g          fBAedc
1198  *                                           |
1199  *                                           +--> dequeue for IO
1200  */
1201 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1202 {
1203 	int moved;
1204 
1205 	assert_spin_locked(&wb->list_lock);
1206 	list_splice_init(&wb->b_more_io, &wb->b_io);
1207 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1208 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1209 				     EXPIRE_DIRTY_ATIME, work);
1210 	if (moved)
1211 		wb_io_lists_populated(wb);
1212 	trace_writeback_queue_io(wb, work, moved);
1213 }
1214 
1215 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1216 {
1217 	int ret;
1218 
1219 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1220 		trace_writeback_write_inode_start(inode, wbc);
1221 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1222 		trace_writeback_write_inode(inode, wbc);
1223 		return ret;
1224 	}
1225 	return 0;
1226 }
1227 
1228 /*
1229  * Wait for writeback on an inode to complete. Called with i_lock held.
1230  * Caller must make sure inode cannot go away when we drop i_lock.
1231  */
1232 static void __inode_wait_for_writeback(struct inode *inode)
1233 	__releases(inode->i_lock)
1234 	__acquires(inode->i_lock)
1235 {
1236 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1237 	wait_queue_head_t *wqh;
1238 
1239 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1240 	while (inode->i_state & I_SYNC) {
1241 		spin_unlock(&inode->i_lock);
1242 		__wait_on_bit(wqh, &wq, bit_wait,
1243 			      TASK_UNINTERRUPTIBLE);
1244 		spin_lock(&inode->i_lock);
1245 	}
1246 }
1247 
1248 /*
1249  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1250  */
1251 void inode_wait_for_writeback(struct inode *inode)
1252 {
1253 	spin_lock(&inode->i_lock);
1254 	__inode_wait_for_writeback(inode);
1255 	spin_unlock(&inode->i_lock);
1256 }
1257 
1258 /*
1259  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1260  * held and drops it. It is aimed for callers not holding any inode reference
1261  * so once i_lock is dropped, inode can go away.
1262  */
1263 static void inode_sleep_on_writeback(struct inode *inode)
1264 	__releases(inode->i_lock)
1265 {
1266 	DEFINE_WAIT(wait);
1267 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1268 	int sleep;
1269 
1270 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1271 	sleep = inode->i_state & I_SYNC;
1272 	spin_unlock(&inode->i_lock);
1273 	if (sleep)
1274 		schedule();
1275 	finish_wait(wqh, &wait);
1276 }
1277 
1278 /*
1279  * Find proper writeback list for the inode depending on its current state and
1280  * possibly also change of its state while we were doing writeback.  Here we
1281  * handle things such as livelock prevention or fairness of writeback among
1282  * inodes. This function can be called only by flusher thread - noone else
1283  * processes all inodes in writeback lists and requeueing inodes behind flusher
1284  * thread's back can have unexpected consequences.
1285  */
1286 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1287 			  struct writeback_control *wbc)
1288 {
1289 	if (inode->i_state & I_FREEING)
1290 		return;
1291 
1292 	/*
1293 	 * Sync livelock prevention. Each inode is tagged and synced in one
1294 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1295 	 * the dirty time to prevent enqueue and sync it again.
1296 	 */
1297 	if ((inode->i_state & I_DIRTY) &&
1298 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1299 		inode->dirtied_when = jiffies;
1300 
1301 	if (wbc->pages_skipped) {
1302 		/*
1303 		 * writeback is not making progress due to locked
1304 		 * buffers. Skip this inode for now.
1305 		 */
1306 		redirty_tail(inode, wb);
1307 		return;
1308 	}
1309 
1310 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1311 		/*
1312 		 * We didn't write back all the pages.  nfs_writepages()
1313 		 * sometimes bales out without doing anything.
1314 		 */
1315 		if (wbc->nr_to_write <= 0) {
1316 			/* Slice used up. Queue for next turn. */
1317 			requeue_io(inode, wb);
1318 		} else {
1319 			/*
1320 			 * Writeback blocked by something other than
1321 			 * congestion. Delay the inode for some time to
1322 			 * avoid spinning on the CPU (100% iowait)
1323 			 * retrying writeback of the dirty page/inode
1324 			 * that cannot be performed immediately.
1325 			 */
1326 			redirty_tail(inode, wb);
1327 		}
1328 	} else if (inode->i_state & I_DIRTY) {
1329 		/*
1330 		 * Filesystems can dirty the inode during writeback operations,
1331 		 * such as delayed allocation during submission or metadata
1332 		 * updates after data IO completion.
1333 		 */
1334 		redirty_tail(inode, wb);
1335 	} else if (inode->i_state & I_DIRTY_TIME) {
1336 		inode->dirtied_when = jiffies;
1337 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1338 	} else {
1339 		/* The inode is clean. Remove from writeback lists. */
1340 		inode_io_list_del_locked(inode, wb);
1341 	}
1342 }
1343 
1344 /*
1345  * Write out an inode and its dirty pages. Do not update the writeback list
1346  * linkage. That is left to the caller. The caller is also responsible for
1347  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1348  */
1349 static int
1350 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1351 {
1352 	struct address_space *mapping = inode->i_mapping;
1353 	long nr_to_write = wbc->nr_to_write;
1354 	unsigned dirty;
1355 	int ret;
1356 
1357 	WARN_ON(!(inode->i_state & I_SYNC));
1358 
1359 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1360 
1361 	ret = do_writepages(mapping, wbc);
1362 
1363 	/*
1364 	 * Make sure to wait on the data before writing out the metadata.
1365 	 * This is important for filesystems that modify metadata on data
1366 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1367 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1368 	 * inode metadata is written back correctly.
1369 	 */
1370 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1371 		int err = filemap_fdatawait(mapping);
1372 		if (ret == 0)
1373 			ret = err;
1374 	}
1375 
1376 	/*
1377 	 * Some filesystems may redirty the inode during the writeback
1378 	 * due to delalloc, clear dirty metadata flags right before
1379 	 * write_inode()
1380 	 */
1381 	spin_lock(&inode->i_lock);
1382 
1383 	dirty = inode->i_state & I_DIRTY;
1384 	if (inode->i_state & I_DIRTY_TIME) {
1385 		if ((dirty & I_DIRTY_INODE) ||
1386 		    wbc->sync_mode == WB_SYNC_ALL ||
1387 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1388 		    unlikely(time_after(jiffies,
1389 					(inode->dirtied_time_when +
1390 					 dirtytime_expire_interval * HZ)))) {
1391 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1392 			trace_writeback_lazytime(inode);
1393 		}
1394 	} else
1395 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1396 	inode->i_state &= ~dirty;
1397 
1398 	/*
1399 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1400 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1401 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1402 	 * inode.
1403 	 *
1404 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1405 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1406 	 * necessary.  This guarantees that either __mark_inode_dirty()
1407 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1408 	 */
1409 	smp_mb();
1410 
1411 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1412 		inode->i_state |= I_DIRTY_PAGES;
1413 
1414 	spin_unlock(&inode->i_lock);
1415 
1416 	if (dirty & I_DIRTY_TIME)
1417 		mark_inode_dirty_sync(inode);
1418 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1419 	if (dirty & ~I_DIRTY_PAGES) {
1420 		int err = write_inode(inode, wbc);
1421 		if (ret == 0)
1422 			ret = err;
1423 	}
1424 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1425 	return ret;
1426 }
1427 
1428 /*
1429  * Write out an inode's dirty pages. Either the caller has an active reference
1430  * on the inode or the inode has I_WILL_FREE set.
1431  *
1432  * This function is designed to be called for writing back one inode which
1433  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1434  * and does more profound writeback list handling in writeback_sb_inodes().
1435  */
1436 static int writeback_single_inode(struct inode *inode,
1437 				  struct writeback_control *wbc)
1438 {
1439 	struct bdi_writeback *wb;
1440 	int ret = 0;
1441 
1442 	spin_lock(&inode->i_lock);
1443 	if (!atomic_read(&inode->i_count))
1444 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1445 	else
1446 		WARN_ON(inode->i_state & I_WILL_FREE);
1447 
1448 	if (inode->i_state & I_SYNC) {
1449 		if (wbc->sync_mode != WB_SYNC_ALL)
1450 			goto out;
1451 		/*
1452 		 * It's a data-integrity sync. We must wait. Since callers hold
1453 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1454 		 * away under us.
1455 		 */
1456 		__inode_wait_for_writeback(inode);
1457 	}
1458 	WARN_ON(inode->i_state & I_SYNC);
1459 	/*
1460 	 * Skip inode if it is clean and we have no outstanding writeback in
1461 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1462 	 * function since flusher thread may be doing for example sync in
1463 	 * parallel and if we move the inode, it could get skipped. So here we
1464 	 * make sure inode is on some writeback list and leave it there unless
1465 	 * we have completely cleaned the inode.
1466 	 */
1467 	if (!(inode->i_state & I_DIRTY_ALL) &&
1468 	    (wbc->sync_mode != WB_SYNC_ALL ||
1469 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1470 		goto out;
1471 	inode->i_state |= I_SYNC;
1472 	wbc_attach_and_unlock_inode(wbc, inode);
1473 
1474 	ret = __writeback_single_inode(inode, wbc);
1475 
1476 	wbc_detach_inode(wbc);
1477 
1478 	wb = inode_to_wb_and_lock_list(inode);
1479 	spin_lock(&inode->i_lock);
1480 	/*
1481 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1482 	 * touch it. See comment above for explanation.
1483 	 */
1484 	if (!(inode->i_state & I_DIRTY_ALL))
1485 		inode_io_list_del_locked(inode, wb);
1486 	spin_unlock(&wb->list_lock);
1487 	inode_sync_complete(inode);
1488 out:
1489 	spin_unlock(&inode->i_lock);
1490 	return ret;
1491 }
1492 
1493 static long writeback_chunk_size(struct bdi_writeback *wb,
1494 				 struct wb_writeback_work *work)
1495 {
1496 	long pages;
1497 
1498 	/*
1499 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1500 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1501 	 * here avoids calling into writeback_inodes_wb() more than once.
1502 	 *
1503 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1504 	 *
1505 	 *      wb_writeback()
1506 	 *          writeback_sb_inodes()       <== called only once
1507 	 *              write_cache_pages()     <== called once for each inode
1508 	 *                   (quickly) tag currently dirty pages
1509 	 *                   (maybe slowly) sync all tagged pages
1510 	 */
1511 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1512 		pages = LONG_MAX;
1513 	else {
1514 		pages = min(wb->avg_write_bandwidth / 2,
1515 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1516 		pages = min(pages, work->nr_pages);
1517 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1518 				   MIN_WRITEBACK_PAGES);
1519 	}
1520 
1521 	return pages;
1522 }
1523 
1524 /*
1525  * Write a portion of b_io inodes which belong to @sb.
1526  *
1527  * Return the number of pages and/or inodes written.
1528  *
1529  * NOTE! This is called with wb->list_lock held, and will
1530  * unlock and relock that for each inode it ends up doing
1531  * IO for.
1532  */
1533 static long writeback_sb_inodes(struct super_block *sb,
1534 				struct bdi_writeback *wb,
1535 				struct wb_writeback_work *work)
1536 {
1537 	struct writeback_control wbc = {
1538 		.sync_mode		= work->sync_mode,
1539 		.tagged_writepages	= work->tagged_writepages,
1540 		.for_kupdate		= work->for_kupdate,
1541 		.for_background		= work->for_background,
1542 		.for_sync		= work->for_sync,
1543 		.range_cyclic		= work->range_cyclic,
1544 		.range_start		= 0,
1545 		.range_end		= LLONG_MAX,
1546 	};
1547 	unsigned long start_time = jiffies;
1548 	long write_chunk;
1549 	long wrote = 0;  /* count both pages and inodes */
1550 
1551 	while (!list_empty(&wb->b_io)) {
1552 		struct inode *inode = wb_inode(wb->b_io.prev);
1553 		struct bdi_writeback *tmp_wb;
1554 
1555 		if (inode->i_sb != sb) {
1556 			if (work->sb) {
1557 				/*
1558 				 * We only want to write back data for this
1559 				 * superblock, move all inodes not belonging
1560 				 * to it back onto the dirty list.
1561 				 */
1562 				redirty_tail(inode, wb);
1563 				continue;
1564 			}
1565 
1566 			/*
1567 			 * The inode belongs to a different superblock.
1568 			 * Bounce back to the caller to unpin this and
1569 			 * pin the next superblock.
1570 			 */
1571 			break;
1572 		}
1573 
1574 		/*
1575 		 * Don't bother with new inodes or inodes being freed, first
1576 		 * kind does not need periodic writeout yet, and for the latter
1577 		 * kind writeout is handled by the freer.
1578 		 */
1579 		spin_lock(&inode->i_lock);
1580 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1581 			spin_unlock(&inode->i_lock);
1582 			redirty_tail(inode, wb);
1583 			continue;
1584 		}
1585 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1586 			/*
1587 			 * If this inode is locked for writeback and we are not
1588 			 * doing writeback-for-data-integrity, move it to
1589 			 * b_more_io so that writeback can proceed with the
1590 			 * other inodes on s_io.
1591 			 *
1592 			 * We'll have another go at writing back this inode
1593 			 * when we completed a full scan of b_io.
1594 			 */
1595 			spin_unlock(&inode->i_lock);
1596 			requeue_io(inode, wb);
1597 			trace_writeback_sb_inodes_requeue(inode);
1598 			continue;
1599 		}
1600 		spin_unlock(&wb->list_lock);
1601 
1602 		/*
1603 		 * We already requeued the inode if it had I_SYNC set and we
1604 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1605 		 * WB_SYNC_ALL case.
1606 		 */
1607 		if (inode->i_state & I_SYNC) {
1608 			/* Wait for I_SYNC. This function drops i_lock... */
1609 			inode_sleep_on_writeback(inode);
1610 			/* Inode may be gone, start again */
1611 			spin_lock(&wb->list_lock);
1612 			continue;
1613 		}
1614 		inode->i_state |= I_SYNC;
1615 		wbc_attach_and_unlock_inode(&wbc, inode);
1616 
1617 		write_chunk = writeback_chunk_size(wb, work);
1618 		wbc.nr_to_write = write_chunk;
1619 		wbc.pages_skipped = 0;
1620 
1621 		/*
1622 		 * We use I_SYNC to pin the inode in memory. While it is set
1623 		 * evict_inode() will wait so the inode cannot be freed.
1624 		 */
1625 		__writeback_single_inode(inode, &wbc);
1626 
1627 		wbc_detach_inode(&wbc);
1628 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1629 		wrote += write_chunk - wbc.nr_to_write;
1630 
1631 		if (need_resched()) {
1632 			/*
1633 			 * We're trying to balance between building up a nice
1634 			 * long list of IOs to improve our merge rate, and
1635 			 * getting those IOs out quickly for anyone throttling
1636 			 * in balance_dirty_pages().  cond_resched() doesn't
1637 			 * unplug, so get our IOs out the door before we
1638 			 * give up the CPU.
1639 			 */
1640 			blk_flush_plug(current);
1641 			cond_resched();
1642 		}
1643 
1644 		/*
1645 		 * Requeue @inode if still dirty.  Be careful as @inode may
1646 		 * have been switched to another wb in the meantime.
1647 		 */
1648 		tmp_wb = inode_to_wb_and_lock_list(inode);
1649 		spin_lock(&inode->i_lock);
1650 		if (!(inode->i_state & I_DIRTY_ALL))
1651 			wrote++;
1652 		requeue_inode(inode, tmp_wb, &wbc);
1653 		inode_sync_complete(inode);
1654 		spin_unlock(&inode->i_lock);
1655 
1656 		if (unlikely(tmp_wb != wb)) {
1657 			spin_unlock(&tmp_wb->list_lock);
1658 			spin_lock(&wb->list_lock);
1659 		}
1660 
1661 		/*
1662 		 * bail out to wb_writeback() often enough to check
1663 		 * background threshold and other termination conditions.
1664 		 */
1665 		if (wrote) {
1666 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1667 				break;
1668 			if (work->nr_pages <= 0)
1669 				break;
1670 		}
1671 	}
1672 	return wrote;
1673 }
1674 
1675 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1676 				  struct wb_writeback_work *work)
1677 {
1678 	unsigned long start_time = jiffies;
1679 	long wrote = 0;
1680 
1681 	while (!list_empty(&wb->b_io)) {
1682 		struct inode *inode = wb_inode(wb->b_io.prev);
1683 		struct super_block *sb = inode->i_sb;
1684 
1685 		if (!trylock_super(sb)) {
1686 			/*
1687 			 * trylock_super() may fail consistently due to
1688 			 * s_umount being grabbed by someone else. Don't use
1689 			 * requeue_io() to avoid busy retrying the inode/sb.
1690 			 */
1691 			redirty_tail(inode, wb);
1692 			continue;
1693 		}
1694 		wrote += writeback_sb_inodes(sb, wb, work);
1695 		up_read(&sb->s_umount);
1696 
1697 		/* refer to the same tests at the end of writeback_sb_inodes */
1698 		if (wrote) {
1699 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1700 				break;
1701 			if (work->nr_pages <= 0)
1702 				break;
1703 		}
1704 	}
1705 	/* Leave any unwritten inodes on b_io */
1706 	return wrote;
1707 }
1708 
1709 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1710 				enum wb_reason reason)
1711 {
1712 	struct wb_writeback_work work = {
1713 		.nr_pages	= nr_pages,
1714 		.sync_mode	= WB_SYNC_NONE,
1715 		.range_cyclic	= 1,
1716 		.reason		= reason,
1717 	};
1718 	struct blk_plug plug;
1719 
1720 	blk_start_plug(&plug);
1721 	spin_lock(&wb->list_lock);
1722 	if (list_empty(&wb->b_io))
1723 		queue_io(wb, &work);
1724 	__writeback_inodes_wb(wb, &work);
1725 	spin_unlock(&wb->list_lock);
1726 	blk_finish_plug(&plug);
1727 
1728 	return nr_pages - work.nr_pages;
1729 }
1730 
1731 /*
1732  * Explicit flushing or periodic writeback of "old" data.
1733  *
1734  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1735  * dirtying-time in the inode's address_space.  So this periodic writeback code
1736  * just walks the superblock inode list, writing back any inodes which are
1737  * older than a specific point in time.
1738  *
1739  * Try to run once per dirty_writeback_interval.  But if a writeback event
1740  * takes longer than a dirty_writeback_interval interval, then leave a
1741  * one-second gap.
1742  *
1743  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1744  * all dirty pages if they are all attached to "old" mappings.
1745  */
1746 static long wb_writeback(struct bdi_writeback *wb,
1747 			 struct wb_writeback_work *work)
1748 {
1749 	unsigned long wb_start = jiffies;
1750 	long nr_pages = work->nr_pages;
1751 	unsigned long oldest_jif;
1752 	struct inode *inode;
1753 	long progress;
1754 	struct blk_plug plug;
1755 
1756 	oldest_jif = jiffies;
1757 	work->older_than_this = &oldest_jif;
1758 
1759 	blk_start_plug(&plug);
1760 	spin_lock(&wb->list_lock);
1761 	for (;;) {
1762 		/*
1763 		 * Stop writeback when nr_pages has been consumed
1764 		 */
1765 		if (work->nr_pages <= 0)
1766 			break;
1767 
1768 		/*
1769 		 * Background writeout and kupdate-style writeback may
1770 		 * run forever. Stop them if there is other work to do
1771 		 * so that e.g. sync can proceed. They'll be restarted
1772 		 * after the other works are all done.
1773 		 */
1774 		if ((work->for_background || work->for_kupdate) &&
1775 		    !list_empty(&wb->work_list))
1776 			break;
1777 
1778 		/*
1779 		 * For background writeout, stop when we are below the
1780 		 * background dirty threshold
1781 		 */
1782 		if (work->for_background && !wb_over_bg_thresh(wb))
1783 			break;
1784 
1785 		/*
1786 		 * Kupdate and background works are special and we want to
1787 		 * include all inodes that need writing. Livelock avoidance is
1788 		 * handled by these works yielding to any other work so we are
1789 		 * safe.
1790 		 */
1791 		if (work->for_kupdate) {
1792 			oldest_jif = jiffies -
1793 				msecs_to_jiffies(dirty_expire_interval * 10);
1794 		} else if (work->for_background)
1795 			oldest_jif = jiffies;
1796 
1797 		trace_writeback_start(wb, work);
1798 		if (list_empty(&wb->b_io))
1799 			queue_io(wb, work);
1800 		if (work->sb)
1801 			progress = writeback_sb_inodes(work->sb, wb, work);
1802 		else
1803 			progress = __writeback_inodes_wb(wb, work);
1804 		trace_writeback_written(wb, work);
1805 
1806 		wb_update_bandwidth(wb, wb_start);
1807 
1808 		/*
1809 		 * Did we write something? Try for more
1810 		 *
1811 		 * Dirty inodes are moved to b_io for writeback in batches.
1812 		 * The completion of the current batch does not necessarily
1813 		 * mean the overall work is done. So we keep looping as long
1814 		 * as made some progress on cleaning pages or inodes.
1815 		 */
1816 		if (progress)
1817 			continue;
1818 		/*
1819 		 * No more inodes for IO, bail
1820 		 */
1821 		if (list_empty(&wb->b_more_io))
1822 			break;
1823 		/*
1824 		 * Nothing written. Wait for some inode to
1825 		 * become available for writeback. Otherwise
1826 		 * we'll just busyloop.
1827 		 */
1828 		trace_writeback_wait(wb, work);
1829 		inode = wb_inode(wb->b_more_io.prev);
1830 		spin_lock(&inode->i_lock);
1831 		spin_unlock(&wb->list_lock);
1832 		/* This function drops i_lock... */
1833 		inode_sleep_on_writeback(inode);
1834 		spin_lock(&wb->list_lock);
1835 	}
1836 	spin_unlock(&wb->list_lock);
1837 	blk_finish_plug(&plug);
1838 
1839 	return nr_pages - work->nr_pages;
1840 }
1841 
1842 /*
1843  * Return the next wb_writeback_work struct that hasn't been processed yet.
1844  */
1845 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1846 {
1847 	struct wb_writeback_work *work = NULL;
1848 
1849 	spin_lock_bh(&wb->work_lock);
1850 	if (!list_empty(&wb->work_list)) {
1851 		work = list_entry(wb->work_list.next,
1852 				  struct wb_writeback_work, list);
1853 		list_del_init(&work->list);
1854 	}
1855 	spin_unlock_bh(&wb->work_lock);
1856 	return work;
1857 }
1858 
1859 static long wb_check_background_flush(struct bdi_writeback *wb)
1860 {
1861 	if (wb_over_bg_thresh(wb)) {
1862 
1863 		struct wb_writeback_work work = {
1864 			.nr_pages	= LONG_MAX,
1865 			.sync_mode	= WB_SYNC_NONE,
1866 			.for_background	= 1,
1867 			.range_cyclic	= 1,
1868 			.reason		= WB_REASON_BACKGROUND,
1869 		};
1870 
1871 		return wb_writeback(wb, &work);
1872 	}
1873 
1874 	return 0;
1875 }
1876 
1877 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1878 {
1879 	unsigned long expired;
1880 	long nr_pages;
1881 
1882 	/*
1883 	 * When set to zero, disable periodic writeback
1884 	 */
1885 	if (!dirty_writeback_interval)
1886 		return 0;
1887 
1888 	expired = wb->last_old_flush +
1889 			msecs_to_jiffies(dirty_writeback_interval * 10);
1890 	if (time_before(jiffies, expired))
1891 		return 0;
1892 
1893 	wb->last_old_flush = jiffies;
1894 	nr_pages = get_nr_dirty_pages();
1895 
1896 	if (nr_pages) {
1897 		struct wb_writeback_work work = {
1898 			.nr_pages	= nr_pages,
1899 			.sync_mode	= WB_SYNC_NONE,
1900 			.for_kupdate	= 1,
1901 			.range_cyclic	= 1,
1902 			.reason		= WB_REASON_PERIODIC,
1903 		};
1904 
1905 		return wb_writeback(wb, &work);
1906 	}
1907 
1908 	return 0;
1909 }
1910 
1911 static long wb_check_start_all(struct bdi_writeback *wb)
1912 {
1913 	long nr_pages;
1914 
1915 	if (!test_bit(WB_start_all, &wb->state))
1916 		return 0;
1917 
1918 	nr_pages = get_nr_dirty_pages();
1919 	if (nr_pages) {
1920 		struct wb_writeback_work work = {
1921 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
1922 			.sync_mode	= WB_SYNC_NONE,
1923 			.range_cyclic	= 1,
1924 			.reason		= wb->start_all_reason,
1925 		};
1926 
1927 		nr_pages = wb_writeback(wb, &work);
1928 	}
1929 
1930 	clear_bit(WB_start_all, &wb->state);
1931 	return nr_pages;
1932 }
1933 
1934 
1935 /*
1936  * Retrieve work items and do the writeback they describe
1937  */
1938 static long wb_do_writeback(struct bdi_writeback *wb)
1939 {
1940 	struct wb_writeback_work *work;
1941 	long wrote = 0;
1942 
1943 	set_bit(WB_writeback_running, &wb->state);
1944 	while ((work = get_next_work_item(wb)) != NULL) {
1945 		trace_writeback_exec(wb, work);
1946 		wrote += wb_writeback(wb, work);
1947 		finish_writeback_work(wb, work);
1948 	}
1949 
1950 	/*
1951 	 * Check for a flush-everything request
1952 	 */
1953 	wrote += wb_check_start_all(wb);
1954 
1955 	/*
1956 	 * Check for periodic writeback, kupdated() style
1957 	 */
1958 	wrote += wb_check_old_data_flush(wb);
1959 	wrote += wb_check_background_flush(wb);
1960 	clear_bit(WB_writeback_running, &wb->state);
1961 
1962 	return wrote;
1963 }
1964 
1965 /*
1966  * Handle writeback of dirty data for the device backed by this bdi. Also
1967  * reschedules periodically and does kupdated style flushing.
1968  */
1969 void wb_workfn(struct work_struct *work)
1970 {
1971 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1972 						struct bdi_writeback, dwork);
1973 	long pages_written;
1974 
1975 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1976 	current->flags |= PF_SWAPWRITE;
1977 
1978 	if (likely(!current_is_workqueue_rescuer() ||
1979 		   !test_bit(WB_registered, &wb->state))) {
1980 		/*
1981 		 * The normal path.  Keep writing back @wb until its
1982 		 * work_list is empty.  Note that this path is also taken
1983 		 * if @wb is shutting down even when we're running off the
1984 		 * rescuer as work_list needs to be drained.
1985 		 */
1986 		do {
1987 			pages_written = wb_do_writeback(wb);
1988 			trace_writeback_pages_written(pages_written);
1989 		} while (!list_empty(&wb->work_list));
1990 	} else {
1991 		/*
1992 		 * bdi_wq can't get enough workers and we're running off
1993 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1994 		 * enough for efficient IO.
1995 		 */
1996 		pages_written = writeback_inodes_wb(wb, 1024,
1997 						    WB_REASON_FORKER_THREAD);
1998 		trace_writeback_pages_written(pages_written);
1999 	}
2000 
2001 	if (!list_empty(&wb->work_list))
2002 		wb_wakeup(wb);
2003 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2004 		wb_wakeup_delayed(wb);
2005 
2006 	current->flags &= ~PF_SWAPWRITE;
2007 }
2008 
2009 /*
2010  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2011  * write back the whole world.
2012  */
2013 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2014 					 enum wb_reason reason)
2015 {
2016 	struct bdi_writeback *wb;
2017 
2018 	if (!bdi_has_dirty_io(bdi))
2019 		return;
2020 
2021 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2022 		wb_start_writeback(wb, reason);
2023 }
2024 
2025 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2026 				enum wb_reason reason)
2027 {
2028 	rcu_read_lock();
2029 	__wakeup_flusher_threads_bdi(bdi, reason);
2030 	rcu_read_unlock();
2031 }
2032 
2033 /*
2034  * Wakeup the flusher threads to start writeback of all currently dirty pages
2035  */
2036 void wakeup_flusher_threads(enum wb_reason reason)
2037 {
2038 	struct backing_dev_info *bdi;
2039 
2040 	/*
2041 	 * If we are expecting writeback progress we must submit plugged IO.
2042 	 */
2043 	if (blk_needs_flush_plug(current))
2044 		blk_schedule_flush_plug(current);
2045 
2046 	rcu_read_lock();
2047 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2048 		__wakeup_flusher_threads_bdi(bdi, reason);
2049 	rcu_read_unlock();
2050 }
2051 
2052 /*
2053  * Wake up bdi's periodically to make sure dirtytime inodes gets
2054  * written back periodically.  We deliberately do *not* check the
2055  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2056  * kernel to be constantly waking up once there are any dirtytime
2057  * inodes on the system.  So instead we define a separate delayed work
2058  * function which gets called much more rarely.  (By default, only
2059  * once every 12 hours.)
2060  *
2061  * If there is any other write activity going on in the file system,
2062  * this function won't be necessary.  But if the only thing that has
2063  * happened on the file system is a dirtytime inode caused by an atime
2064  * update, we need this infrastructure below to make sure that inode
2065  * eventually gets pushed out to disk.
2066  */
2067 static void wakeup_dirtytime_writeback(struct work_struct *w);
2068 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2069 
2070 static void wakeup_dirtytime_writeback(struct work_struct *w)
2071 {
2072 	struct backing_dev_info *bdi;
2073 
2074 	rcu_read_lock();
2075 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2076 		struct bdi_writeback *wb;
2077 
2078 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2079 			if (!list_empty(&wb->b_dirty_time))
2080 				wb_wakeup(wb);
2081 	}
2082 	rcu_read_unlock();
2083 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2084 }
2085 
2086 static int __init start_dirtytime_writeback(void)
2087 {
2088 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2089 	return 0;
2090 }
2091 __initcall(start_dirtytime_writeback);
2092 
2093 int dirtytime_interval_handler(struct ctl_table *table, int write,
2094 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2095 {
2096 	int ret;
2097 
2098 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2099 	if (ret == 0 && write)
2100 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2101 	return ret;
2102 }
2103 
2104 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2105 {
2106 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2107 		struct dentry *dentry;
2108 		const char *name = "?";
2109 
2110 		dentry = d_find_alias(inode);
2111 		if (dentry) {
2112 			spin_lock(&dentry->d_lock);
2113 			name = (const char *) dentry->d_name.name;
2114 		}
2115 		printk(KERN_DEBUG
2116 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2117 		       current->comm, task_pid_nr(current), inode->i_ino,
2118 		       name, inode->i_sb->s_id);
2119 		if (dentry) {
2120 			spin_unlock(&dentry->d_lock);
2121 			dput(dentry);
2122 		}
2123 	}
2124 }
2125 
2126 /**
2127  * __mark_inode_dirty -	internal function
2128  *
2129  * @inode: inode to mark
2130  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2131  *
2132  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2133  * mark_inode_dirty_sync.
2134  *
2135  * Put the inode on the super block's dirty list.
2136  *
2137  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2138  * dirty list only if it is hashed or if it refers to a blockdev.
2139  * If it was not hashed, it will never be added to the dirty list
2140  * even if it is later hashed, as it will have been marked dirty already.
2141  *
2142  * In short, make sure you hash any inodes _before_ you start marking
2143  * them dirty.
2144  *
2145  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2146  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2147  * the kernel-internal blockdev inode represents the dirtying time of the
2148  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2149  * page->mapping->host, so the page-dirtying time is recorded in the internal
2150  * blockdev inode.
2151  */
2152 void __mark_inode_dirty(struct inode *inode, int flags)
2153 {
2154 	struct super_block *sb = inode->i_sb;
2155 	int dirtytime;
2156 
2157 	trace_writeback_mark_inode_dirty(inode, flags);
2158 
2159 	/*
2160 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2161 	 * dirty the inode itself
2162 	 */
2163 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2164 		trace_writeback_dirty_inode_start(inode, flags);
2165 
2166 		if (sb->s_op->dirty_inode)
2167 			sb->s_op->dirty_inode(inode, flags);
2168 
2169 		trace_writeback_dirty_inode(inode, flags);
2170 	}
2171 	if (flags & I_DIRTY_INODE)
2172 		flags &= ~I_DIRTY_TIME;
2173 	dirtytime = flags & I_DIRTY_TIME;
2174 
2175 	/*
2176 	 * Paired with smp_mb() in __writeback_single_inode() for the
2177 	 * following lockless i_state test.  See there for details.
2178 	 */
2179 	smp_mb();
2180 
2181 	if (((inode->i_state & flags) == flags) ||
2182 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2183 		return;
2184 
2185 	if (unlikely(block_dump))
2186 		block_dump___mark_inode_dirty(inode);
2187 
2188 	spin_lock(&inode->i_lock);
2189 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2190 		goto out_unlock_inode;
2191 	if ((inode->i_state & flags) != flags) {
2192 		const int was_dirty = inode->i_state & I_DIRTY;
2193 
2194 		inode_attach_wb(inode, NULL);
2195 
2196 		if (flags & I_DIRTY_INODE)
2197 			inode->i_state &= ~I_DIRTY_TIME;
2198 		inode->i_state |= flags;
2199 
2200 		/*
2201 		 * If the inode is being synced, just update its dirty state.
2202 		 * The unlocker will place the inode on the appropriate
2203 		 * superblock list, based upon its state.
2204 		 */
2205 		if (inode->i_state & I_SYNC)
2206 			goto out_unlock_inode;
2207 
2208 		/*
2209 		 * Only add valid (hashed) inodes to the superblock's
2210 		 * dirty list.  Add blockdev inodes as well.
2211 		 */
2212 		if (!S_ISBLK(inode->i_mode)) {
2213 			if (inode_unhashed(inode))
2214 				goto out_unlock_inode;
2215 		}
2216 		if (inode->i_state & I_FREEING)
2217 			goto out_unlock_inode;
2218 
2219 		/*
2220 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2221 		 * reposition it (that would break b_dirty time-ordering).
2222 		 */
2223 		if (!was_dirty) {
2224 			struct bdi_writeback *wb;
2225 			struct list_head *dirty_list;
2226 			bool wakeup_bdi = false;
2227 
2228 			wb = locked_inode_to_wb_and_lock_list(inode);
2229 
2230 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2231 			     !test_bit(WB_registered, &wb->state),
2232 			     "bdi-%s not registered\n", wb->bdi->name);
2233 
2234 			inode->dirtied_when = jiffies;
2235 			if (dirtytime)
2236 				inode->dirtied_time_when = jiffies;
2237 
2238 			if (inode->i_state & I_DIRTY)
2239 				dirty_list = &wb->b_dirty;
2240 			else
2241 				dirty_list = &wb->b_dirty_time;
2242 
2243 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2244 							       dirty_list);
2245 
2246 			spin_unlock(&wb->list_lock);
2247 			trace_writeback_dirty_inode_enqueue(inode);
2248 
2249 			/*
2250 			 * If this is the first dirty inode for this bdi,
2251 			 * we have to wake-up the corresponding bdi thread
2252 			 * to make sure background write-back happens
2253 			 * later.
2254 			 */
2255 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2256 				wb_wakeup_delayed(wb);
2257 			return;
2258 		}
2259 	}
2260 out_unlock_inode:
2261 	spin_unlock(&inode->i_lock);
2262 }
2263 EXPORT_SYMBOL(__mark_inode_dirty);
2264 
2265 /*
2266  * The @s_sync_lock is used to serialise concurrent sync operations
2267  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2268  * Concurrent callers will block on the s_sync_lock rather than doing contending
2269  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2270  * has been issued up to the time this function is enter is guaranteed to be
2271  * completed by the time we have gained the lock and waited for all IO that is
2272  * in progress regardless of the order callers are granted the lock.
2273  */
2274 static void wait_sb_inodes(struct super_block *sb)
2275 {
2276 	LIST_HEAD(sync_list);
2277 
2278 	/*
2279 	 * We need to be protected against the filesystem going from
2280 	 * r/o to r/w or vice versa.
2281 	 */
2282 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2283 
2284 	mutex_lock(&sb->s_sync_lock);
2285 
2286 	/*
2287 	 * Splice the writeback list onto a temporary list to avoid waiting on
2288 	 * inodes that have started writeback after this point.
2289 	 *
2290 	 * Use rcu_read_lock() to keep the inodes around until we have a
2291 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2292 	 * the local list because inodes can be dropped from either by writeback
2293 	 * completion.
2294 	 */
2295 	rcu_read_lock();
2296 	spin_lock_irq(&sb->s_inode_wblist_lock);
2297 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2298 
2299 	/*
2300 	 * Data integrity sync. Must wait for all pages under writeback, because
2301 	 * there may have been pages dirtied before our sync call, but which had
2302 	 * writeout started before we write it out.  In which case, the inode
2303 	 * may not be on the dirty list, but we still have to wait for that
2304 	 * writeout.
2305 	 */
2306 	while (!list_empty(&sync_list)) {
2307 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2308 						       i_wb_list);
2309 		struct address_space *mapping = inode->i_mapping;
2310 
2311 		/*
2312 		 * Move each inode back to the wb list before we drop the lock
2313 		 * to preserve consistency between i_wb_list and the mapping
2314 		 * writeback tag. Writeback completion is responsible to remove
2315 		 * the inode from either list once the writeback tag is cleared.
2316 		 */
2317 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2318 
2319 		/*
2320 		 * The mapping can appear untagged while still on-list since we
2321 		 * do not have the mapping lock. Skip it here, wb completion
2322 		 * will remove it.
2323 		 */
2324 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2325 			continue;
2326 
2327 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2328 
2329 		spin_lock(&inode->i_lock);
2330 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2331 			spin_unlock(&inode->i_lock);
2332 
2333 			spin_lock_irq(&sb->s_inode_wblist_lock);
2334 			continue;
2335 		}
2336 		__iget(inode);
2337 		spin_unlock(&inode->i_lock);
2338 		rcu_read_unlock();
2339 
2340 		/*
2341 		 * We keep the error status of individual mapping so that
2342 		 * applications can catch the writeback error using fsync(2).
2343 		 * See filemap_fdatawait_keep_errors() for details.
2344 		 */
2345 		filemap_fdatawait_keep_errors(mapping);
2346 
2347 		cond_resched();
2348 
2349 		iput(inode);
2350 
2351 		rcu_read_lock();
2352 		spin_lock_irq(&sb->s_inode_wblist_lock);
2353 	}
2354 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2355 	rcu_read_unlock();
2356 	mutex_unlock(&sb->s_sync_lock);
2357 }
2358 
2359 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2360 				     enum wb_reason reason, bool skip_if_busy)
2361 {
2362 	DEFINE_WB_COMPLETION_ONSTACK(done);
2363 	struct wb_writeback_work work = {
2364 		.sb			= sb,
2365 		.sync_mode		= WB_SYNC_NONE,
2366 		.tagged_writepages	= 1,
2367 		.done			= &done,
2368 		.nr_pages		= nr,
2369 		.reason			= reason,
2370 	};
2371 	struct backing_dev_info *bdi = sb->s_bdi;
2372 
2373 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2374 		return;
2375 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2376 
2377 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2378 	wb_wait_for_completion(bdi, &done);
2379 }
2380 
2381 /**
2382  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2383  * @sb: the superblock
2384  * @nr: the number of pages to write
2385  * @reason: reason why some writeback work initiated
2386  *
2387  * Start writeback on some inodes on this super_block. No guarantees are made
2388  * on how many (if any) will be written, and this function does not wait
2389  * for IO completion of submitted IO.
2390  */
2391 void writeback_inodes_sb_nr(struct super_block *sb,
2392 			    unsigned long nr,
2393 			    enum wb_reason reason)
2394 {
2395 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2396 }
2397 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2398 
2399 /**
2400  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2401  * @sb: the superblock
2402  * @reason: reason why some writeback work was initiated
2403  *
2404  * Start writeback on some inodes on this super_block. No guarantees are made
2405  * on how many (if any) will be written, and this function does not wait
2406  * for IO completion of submitted IO.
2407  */
2408 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2409 {
2410 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2411 }
2412 EXPORT_SYMBOL(writeback_inodes_sb);
2413 
2414 /**
2415  * try_to_writeback_inodes_sb - try to start writeback if none underway
2416  * @sb: the superblock
2417  * @reason: reason why some writeback work was initiated
2418  *
2419  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2420  */
2421 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2422 {
2423 	if (!down_read_trylock(&sb->s_umount))
2424 		return;
2425 
2426 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2427 	up_read(&sb->s_umount);
2428 }
2429 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2430 
2431 /**
2432  * sync_inodes_sb	-	sync sb inode pages
2433  * @sb: the superblock
2434  *
2435  * This function writes and waits on any dirty inode belonging to this
2436  * super_block.
2437  */
2438 void sync_inodes_sb(struct super_block *sb)
2439 {
2440 	DEFINE_WB_COMPLETION_ONSTACK(done);
2441 	struct wb_writeback_work work = {
2442 		.sb		= sb,
2443 		.sync_mode	= WB_SYNC_ALL,
2444 		.nr_pages	= LONG_MAX,
2445 		.range_cyclic	= 0,
2446 		.done		= &done,
2447 		.reason		= WB_REASON_SYNC,
2448 		.for_sync	= 1,
2449 	};
2450 	struct backing_dev_info *bdi = sb->s_bdi;
2451 
2452 	/*
2453 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2454 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2455 	 * bdi_has_dirty() need to be written out too.
2456 	 */
2457 	if (bdi == &noop_backing_dev_info)
2458 		return;
2459 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2460 
2461 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2462 	bdi_down_write_wb_switch_rwsem(bdi);
2463 	bdi_split_work_to_wbs(bdi, &work, false);
2464 	wb_wait_for_completion(bdi, &done);
2465 	bdi_up_write_wb_switch_rwsem(bdi);
2466 
2467 	wait_sb_inodes(sb);
2468 }
2469 EXPORT_SYMBOL(sync_inodes_sb);
2470 
2471 /**
2472  * write_inode_now	-	write an inode to disk
2473  * @inode: inode to write to disk
2474  * @sync: whether the write should be synchronous or not
2475  *
2476  * This function commits an inode to disk immediately if it is dirty. This is
2477  * primarily needed by knfsd.
2478  *
2479  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2480  */
2481 int write_inode_now(struct inode *inode, int sync)
2482 {
2483 	struct writeback_control wbc = {
2484 		.nr_to_write = LONG_MAX,
2485 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2486 		.range_start = 0,
2487 		.range_end = LLONG_MAX,
2488 	};
2489 
2490 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2491 		wbc.nr_to_write = 0;
2492 
2493 	might_sleep();
2494 	return writeback_single_inode(inode, &wbc);
2495 }
2496 EXPORT_SYMBOL(write_inode_now);
2497 
2498 /**
2499  * sync_inode - write an inode and its pages to disk.
2500  * @inode: the inode to sync
2501  * @wbc: controls the writeback mode
2502  *
2503  * sync_inode() will write an inode and its pages to disk.  It will also
2504  * correctly update the inode on its superblock's dirty inode lists and will
2505  * update inode->i_state.
2506  *
2507  * The caller must have a ref on the inode.
2508  */
2509 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2510 {
2511 	return writeback_single_inode(inode, wbc);
2512 }
2513 EXPORT_SYMBOL(sync_inode);
2514 
2515 /**
2516  * sync_inode_metadata - write an inode to disk
2517  * @inode: the inode to sync
2518  * @wait: wait for I/O to complete.
2519  *
2520  * Write an inode to disk and adjust its dirty state after completion.
2521  *
2522  * Note: only writes the actual inode, no associated data or other metadata.
2523  */
2524 int sync_inode_metadata(struct inode *inode, int wait)
2525 {
2526 	struct writeback_control wbc = {
2527 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2528 		.nr_to_write = 0, /* metadata-only */
2529 	};
2530 
2531 	return sync_inode(inode, &wbc);
2532 }
2533 EXPORT_SYMBOL(sync_inode_metadata);
2534