1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include "internal.h" 31 32 /* 33 * 4MB minimal write chunk size 34 */ 35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_work { 41 long nr_pages; 42 struct super_block *sb; 43 unsigned long *older_than_this; 44 enum writeback_sync_modes sync_mode; 45 unsigned int tagged_writepages:1; 46 unsigned int for_kupdate:1; 47 unsigned int range_cyclic:1; 48 unsigned int for_background:1; 49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 50 enum wb_reason reason; /* why was writeback initiated? */ 51 52 struct list_head list; /* pending work list */ 53 struct completion *done; /* set if the caller waits */ 54 }; 55 56 /** 57 * writeback_in_progress - determine whether there is writeback in progress 58 * @bdi: the device's backing_dev_info structure. 59 * 60 * Determine whether there is writeback waiting to be handled against a 61 * backing device. 62 */ 63 int writeback_in_progress(struct backing_dev_info *bdi) 64 { 65 return test_bit(BDI_writeback_running, &bdi->state); 66 } 67 EXPORT_SYMBOL(writeback_in_progress); 68 69 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 70 { 71 struct super_block *sb = inode->i_sb; 72 73 if (sb_is_blkdev_sb(sb)) 74 return inode->i_mapping->backing_dev_info; 75 76 return sb->s_bdi; 77 } 78 79 static inline struct inode *wb_inode(struct list_head *head) 80 { 81 return list_entry(head, struct inode, i_wb_list); 82 } 83 84 /* 85 * Include the creation of the trace points after defining the 86 * wb_writeback_work structure and inline functions so that the definition 87 * remains local to this file. 88 */ 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/writeback.h> 91 92 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 93 94 static void bdi_wakeup_thread(struct backing_dev_info *bdi) 95 { 96 spin_lock_bh(&bdi->wb_lock); 97 if (test_bit(BDI_registered, &bdi->state)) 98 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 99 spin_unlock_bh(&bdi->wb_lock); 100 } 101 102 static void bdi_queue_work(struct backing_dev_info *bdi, 103 struct wb_writeback_work *work) 104 { 105 trace_writeback_queue(bdi, work); 106 107 spin_lock_bh(&bdi->wb_lock); 108 if (!test_bit(BDI_registered, &bdi->state)) { 109 if (work->done) 110 complete(work->done); 111 goto out_unlock; 112 } 113 list_add_tail(&work->list, &bdi->work_list); 114 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 115 out_unlock: 116 spin_unlock_bh(&bdi->wb_lock); 117 } 118 119 static void 120 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 121 bool range_cyclic, enum wb_reason reason) 122 { 123 struct wb_writeback_work *work; 124 125 /* 126 * This is WB_SYNC_NONE writeback, so if allocation fails just 127 * wakeup the thread for old dirty data writeback 128 */ 129 work = kzalloc(sizeof(*work), GFP_ATOMIC); 130 if (!work) { 131 trace_writeback_nowork(bdi); 132 bdi_wakeup_thread(bdi); 133 return; 134 } 135 136 work->sync_mode = WB_SYNC_NONE; 137 work->nr_pages = nr_pages; 138 work->range_cyclic = range_cyclic; 139 work->reason = reason; 140 141 bdi_queue_work(bdi, work); 142 } 143 144 /** 145 * bdi_start_writeback - start writeback 146 * @bdi: the backing device to write from 147 * @nr_pages: the number of pages to write 148 * @reason: reason why some writeback work was initiated 149 * 150 * Description: 151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 152 * started when this function returns, we make no guarantees on 153 * completion. Caller need not hold sb s_umount semaphore. 154 * 155 */ 156 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 157 enum wb_reason reason) 158 { 159 __bdi_start_writeback(bdi, nr_pages, true, reason); 160 } 161 162 /** 163 * bdi_start_background_writeback - start background writeback 164 * @bdi: the backing device to write from 165 * 166 * Description: 167 * This makes sure WB_SYNC_NONE background writeback happens. When 168 * this function returns, it is only guaranteed that for given BDI 169 * some IO is happening if we are over background dirty threshold. 170 * Caller need not hold sb s_umount semaphore. 171 */ 172 void bdi_start_background_writeback(struct backing_dev_info *bdi) 173 { 174 /* 175 * We just wake up the flusher thread. It will perform background 176 * writeback as soon as there is no other work to do. 177 */ 178 trace_writeback_wake_background(bdi); 179 bdi_wakeup_thread(bdi); 180 } 181 182 /* 183 * Remove the inode from the writeback list it is on. 184 */ 185 void inode_wb_list_del(struct inode *inode) 186 { 187 struct backing_dev_info *bdi = inode_to_bdi(inode); 188 189 spin_lock(&bdi->wb.list_lock); 190 list_del_init(&inode->i_wb_list); 191 spin_unlock(&bdi->wb.list_lock); 192 } 193 194 /* 195 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 196 * furthest end of its superblock's dirty-inode list. 197 * 198 * Before stamping the inode's ->dirtied_when, we check to see whether it is 199 * already the most-recently-dirtied inode on the b_dirty list. If that is 200 * the case then the inode must have been redirtied while it was being written 201 * out and we don't reset its dirtied_when. 202 */ 203 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 204 { 205 assert_spin_locked(&wb->list_lock); 206 if (!list_empty(&wb->b_dirty)) { 207 struct inode *tail; 208 209 tail = wb_inode(wb->b_dirty.next); 210 if (time_before(inode->dirtied_when, tail->dirtied_when)) 211 inode->dirtied_when = jiffies; 212 } 213 list_move(&inode->i_wb_list, &wb->b_dirty); 214 } 215 216 /* 217 * requeue inode for re-scanning after bdi->b_io list is exhausted. 218 */ 219 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 220 { 221 assert_spin_locked(&wb->list_lock); 222 list_move(&inode->i_wb_list, &wb->b_more_io); 223 } 224 225 static void inode_sync_complete(struct inode *inode) 226 { 227 inode->i_state &= ~I_SYNC; 228 /* If inode is clean an unused, put it into LRU now... */ 229 inode_add_lru(inode); 230 /* Waiters must see I_SYNC cleared before being woken up */ 231 smp_mb(); 232 wake_up_bit(&inode->i_state, __I_SYNC); 233 } 234 235 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 236 { 237 bool ret = time_after(inode->dirtied_when, t); 238 #ifndef CONFIG_64BIT 239 /* 240 * For inodes being constantly redirtied, dirtied_when can get stuck. 241 * It _appears_ to be in the future, but is actually in distant past. 242 * This test is necessary to prevent such wrapped-around relative times 243 * from permanently stopping the whole bdi writeback. 244 */ 245 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 246 #endif 247 return ret; 248 } 249 250 /* 251 * Move expired (dirtied before work->older_than_this) dirty inodes from 252 * @delaying_queue to @dispatch_queue. 253 */ 254 static int move_expired_inodes(struct list_head *delaying_queue, 255 struct list_head *dispatch_queue, 256 struct wb_writeback_work *work) 257 { 258 LIST_HEAD(tmp); 259 struct list_head *pos, *node; 260 struct super_block *sb = NULL; 261 struct inode *inode; 262 int do_sb_sort = 0; 263 int moved = 0; 264 265 while (!list_empty(delaying_queue)) { 266 inode = wb_inode(delaying_queue->prev); 267 if (work->older_than_this && 268 inode_dirtied_after(inode, *work->older_than_this)) 269 break; 270 list_move(&inode->i_wb_list, &tmp); 271 moved++; 272 if (sb_is_blkdev_sb(inode->i_sb)) 273 continue; 274 if (sb && sb != inode->i_sb) 275 do_sb_sort = 1; 276 sb = inode->i_sb; 277 } 278 279 /* just one sb in list, splice to dispatch_queue and we're done */ 280 if (!do_sb_sort) { 281 list_splice(&tmp, dispatch_queue); 282 goto out; 283 } 284 285 /* Move inodes from one superblock together */ 286 while (!list_empty(&tmp)) { 287 sb = wb_inode(tmp.prev)->i_sb; 288 list_for_each_prev_safe(pos, node, &tmp) { 289 inode = wb_inode(pos); 290 if (inode->i_sb == sb) 291 list_move(&inode->i_wb_list, dispatch_queue); 292 } 293 } 294 out: 295 return moved; 296 } 297 298 /* 299 * Queue all expired dirty inodes for io, eldest first. 300 * Before 301 * newly dirtied b_dirty b_io b_more_io 302 * =============> gf edc BA 303 * After 304 * newly dirtied b_dirty b_io b_more_io 305 * =============> g fBAedc 306 * | 307 * +--> dequeue for IO 308 */ 309 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 310 { 311 int moved; 312 assert_spin_locked(&wb->list_lock); 313 list_splice_init(&wb->b_more_io, &wb->b_io); 314 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 315 trace_writeback_queue_io(wb, work, moved); 316 } 317 318 static int write_inode(struct inode *inode, struct writeback_control *wbc) 319 { 320 int ret; 321 322 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 323 trace_writeback_write_inode_start(inode, wbc); 324 ret = inode->i_sb->s_op->write_inode(inode, wbc); 325 trace_writeback_write_inode(inode, wbc); 326 return ret; 327 } 328 return 0; 329 } 330 331 /* 332 * Wait for writeback on an inode to complete. Called with i_lock held. 333 * Caller must make sure inode cannot go away when we drop i_lock. 334 */ 335 static void __inode_wait_for_writeback(struct inode *inode) 336 __releases(inode->i_lock) 337 __acquires(inode->i_lock) 338 { 339 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 340 wait_queue_head_t *wqh; 341 342 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 343 while (inode->i_state & I_SYNC) { 344 spin_unlock(&inode->i_lock); 345 __wait_on_bit(wqh, &wq, bit_wait, 346 TASK_UNINTERRUPTIBLE); 347 spin_lock(&inode->i_lock); 348 } 349 } 350 351 /* 352 * Wait for writeback on an inode to complete. Caller must have inode pinned. 353 */ 354 void inode_wait_for_writeback(struct inode *inode) 355 { 356 spin_lock(&inode->i_lock); 357 __inode_wait_for_writeback(inode); 358 spin_unlock(&inode->i_lock); 359 } 360 361 /* 362 * Sleep until I_SYNC is cleared. This function must be called with i_lock 363 * held and drops it. It is aimed for callers not holding any inode reference 364 * so once i_lock is dropped, inode can go away. 365 */ 366 static void inode_sleep_on_writeback(struct inode *inode) 367 __releases(inode->i_lock) 368 { 369 DEFINE_WAIT(wait); 370 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 371 int sleep; 372 373 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 374 sleep = inode->i_state & I_SYNC; 375 spin_unlock(&inode->i_lock); 376 if (sleep) 377 schedule(); 378 finish_wait(wqh, &wait); 379 } 380 381 /* 382 * Find proper writeback list for the inode depending on its current state and 383 * possibly also change of its state while we were doing writeback. Here we 384 * handle things such as livelock prevention or fairness of writeback among 385 * inodes. This function can be called only by flusher thread - noone else 386 * processes all inodes in writeback lists and requeueing inodes behind flusher 387 * thread's back can have unexpected consequences. 388 */ 389 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 390 struct writeback_control *wbc) 391 { 392 if (inode->i_state & I_FREEING) 393 return; 394 395 /* 396 * Sync livelock prevention. Each inode is tagged and synced in one 397 * shot. If still dirty, it will be redirty_tail()'ed below. Update 398 * the dirty time to prevent enqueue and sync it again. 399 */ 400 if ((inode->i_state & I_DIRTY) && 401 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 402 inode->dirtied_when = jiffies; 403 404 if (wbc->pages_skipped) { 405 /* 406 * writeback is not making progress due to locked 407 * buffers. Skip this inode for now. 408 */ 409 redirty_tail(inode, wb); 410 return; 411 } 412 413 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 414 /* 415 * We didn't write back all the pages. nfs_writepages() 416 * sometimes bales out without doing anything. 417 */ 418 if (wbc->nr_to_write <= 0) { 419 /* Slice used up. Queue for next turn. */ 420 requeue_io(inode, wb); 421 } else { 422 /* 423 * Writeback blocked by something other than 424 * congestion. Delay the inode for some time to 425 * avoid spinning on the CPU (100% iowait) 426 * retrying writeback of the dirty page/inode 427 * that cannot be performed immediately. 428 */ 429 redirty_tail(inode, wb); 430 } 431 } else if (inode->i_state & I_DIRTY) { 432 /* 433 * Filesystems can dirty the inode during writeback operations, 434 * such as delayed allocation during submission or metadata 435 * updates after data IO completion. 436 */ 437 redirty_tail(inode, wb); 438 } else { 439 /* The inode is clean. Remove from writeback lists. */ 440 list_del_init(&inode->i_wb_list); 441 } 442 } 443 444 /* 445 * Write out an inode and its dirty pages. Do not update the writeback list 446 * linkage. That is left to the caller. The caller is also responsible for 447 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 448 */ 449 static int 450 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 451 { 452 struct address_space *mapping = inode->i_mapping; 453 long nr_to_write = wbc->nr_to_write; 454 unsigned dirty; 455 int ret; 456 457 WARN_ON(!(inode->i_state & I_SYNC)); 458 459 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 460 461 ret = do_writepages(mapping, wbc); 462 463 /* 464 * Make sure to wait on the data before writing out the metadata. 465 * This is important for filesystems that modify metadata on data 466 * I/O completion. We don't do it for sync(2) writeback because it has a 467 * separate, external IO completion path and ->sync_fs for guaranteeing 468 * inode metadata is written back correctly. 469 */ 470 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 471 int err = filemap_fdatawait(mapping); 472 if (ret == 0) 473 ret = err; 474 } 475 476 /* 477 * Some filesystems may redirty the inode during the writeback 478 * due to delalloc, clear dirty metadata flags right before 479 * write_inode() 480 */ 481 spin_lock(&inode->i_lock); 482 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */ 483 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 484 inode->i_state &= ~I_DIRTY_PAGES; 485 dirty = inode->i_state & I_DIRTY; 486 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 487 spin_unlock(&inode->i_lock); 488 /* Don't write the inode if only I_DIRTY_PAGES was set */ 489 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 490 int err = write_inode(inode, wbc); 491 if (ret == 0) 492 ret = err; 493 } 494 trace_writeback_single_inode(inode, wbc, nr_to_write); 495 return ret; 496 } 497 498 /* 499 * Write out an inode's dirty pages. Either the caller has an active reference 500 * on the inode or the inode has I_WILL_FREE set. 501 * 502 * This function is designed to be called for writing back one inode which 503 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 504 * and does more profound writeback list handling in writeback_sb_inodes(). 505 */ 506 static int 507 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 508 struct writeback_control *wbc) 509 { 510 int ret = 0; 511 512 spin_lock(&inode->i_lock); 513 if (!atomic_read(&inode->i_count)) 514 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 515 else 516 WARN_ON(inode->i_state & I_WILL_FREE); 517 518 if (inode->i_state & I_SYNC) { 519 if (wbc->sync_mode != WB_SYNC_ALL) 520 goto out; 521 /* 522 * It's a data-integrity sync. We must wait. Since callers hold 523 * inode reference or inode has I_WILL_FREE set, it cannot go 524 * away under us. 525 */ 526 __inode_wait_for_writeback(inode); 527 } 528 WARN_ON(inode->i_state & I_SYNC); 529 /* 530 * Skip inode if it is clean and we have no outstanding writeback in 531 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 532 * function since flusher thread may be doing for example sync in 533 * parallel and if we move the inode, it could get skipped. So here we 534 * make sure inode is on some writeback list and leave it there unless 535 * we have completely cleaned the inode. 536 */ 537 if (!(inode->i_state & I_DIRTY) && 538 (wbc->sync_mode != WB_SYNC_ALL || 539 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 540 goto out; 541 inode->i_state |= I_SYNC; 542 spin_unlock(&inode->i_lock); 543 544 ret = __writeback_single_inode(inode, wbc); 545 546 spin_lock(&wb->list_lock); 547 spin_lock(&inode->i_lock); 548 /* 549 * If inode is clean, remove it from writeback lists. Otherwise don't 550 * touch it. See comment above for explanation. 551 */ 552 if (!(inode->i_state & I_DIRTY)) 553 list_del_init(&inode->i_wb_list); 554 spin_unlock(&wb->list_lock); 555 inode_sync_complete(inode); 556 out: 557 spin_unlock(&inode->i_lock); 558 return ret; 559 } 560 561 static long writeback_chunk_size(struct backing_dev_info *bdi, 562 struct wb_writeback_work *work) 563 { 564 long pages; 565 566 /* 567 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 568 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 569 * here avoids calling into writeback_inodes_wb() more than once. 570 * 571 * The intended call sequence for WB_SYNC_ALL writeback is: 572 * 573 * wb_writeback() 574 * writeback_sb_inodes() <== called only once 575 * write_cache_pages() <== called once for each inode 576 * (quickly) tag currently dirty pages 577 * (maybe slowly) sync all tagged pages 578 */ 579 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 580 pages = LONG_MAX; 581 else { 582 pages = min(bdi->avg_write_bandwidth / 2, 583 global_dirty_limit / DIRTY_SCOPE); 584 pages = min(pages, work->nr_pages); 585 pages = round_down(pages + MIN_WRITEBACK_PAGES, 586 MIN_WRITEBACK_PAGES); 587 } 588 589 return pages; 590 } 591 592 /* 593 * Write a portion of b_io inodes which belong to @sb. 594 * 595 * Return the number of pages and/or inodes written. 596 */ 597 static long writeback_sb_inodes(struct super_block *sb, 598 struct bdi_writeback *wb, 599 struct wb_writeback_work *work) 600 { 601 struct writeback_control wbc = { 602 .sync_mode = work->sync_mode, 603 .tagged_writepages = work->tagged_writepages, 604 .for_kupdate = work->for_kupdate, 605 .for_background = work->for_background, 606 .for_sync = work->for_sync, 607 .range_cyclic = work->range_cyclic, 608 .range_start = 0, 609 .range_end = LLONG_MAX, 610 }; 611 unsigned long start_time = jiffies; 612 long write_chunk; 613 long wrote = 0; /* count both pages and inodes */ 614 615 while (!list_empty(&wb->b_io)) { 616 struct inode *inode = wb_inode(wb->b_io.prev); 617 618 if (inode->i_sb != sb) { 619 if (work->sb) { 620 /* 621 * We only want to write back data for this 622 * superblock, move all inodes not belonging 623 * to it back onto the dirty list. 624 */ 625 redirty_tail(inode, wb); 626 continue; 627 } 628 629 /* 630 * The inode belongs to a different superblock. 631 * Bounce back to the caller to unpin this and 632 * pin the next superblock. 633 */ 634 break; 635 } 636 637 /* 638 * Don't bother with new inodes or inodes being freed, first 639 * kind does not need periodic writeout yet, and for the latter 640 * kind writeout is handled by the freer. 641 */ 642 spin_lock(&inode->i_lock); 643 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 644 spin_unlock(&inode->i_lock); 645 redirty_tail(inode, wb); 646 continue; 647 } 648 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 649 /* 650 * If this inode is locked for writeback and we are not 651 * doing writeback-for-data-integrity, move it to 652 * b_more_io so that writeback can proceed with the 653 * other inodes on s_io. 654 * 655 * We'll have another go at writing back this inode 656 * when we completed a full scan of b_io. 657 */ 658 spin_unlock(&inode->i_lock); 659 requeue_io(inode, wb); 660 trace_writeback_sb_inodes_requeue(inode); 661 continue; 662 } 663 spin_unlock(&wb->list_lock); 664 665 /* 666 * We already requeued the inode if it had I_SYNC set and we 667 * are doing WB_SYNC_NONE writeback. So this catches only the 668 * WB_SYNC_ALL case. 669 */ 670 if (inode->i_state & I_SYNC) { 671 /* Wait for I_SYNC. This function drops i_lock... */ 672 inode_sleep_on_writeback(inode); 673 /* Inode may be gone, start again */ 674 spin_lock(&wb->list_lock); 675 continue; 676 } 677 inode->i_state |= I_SYNC; 678 spin_unlock(&inode->i_lock); 679 680 write_chunk = writeback_chunk_size(wb->bdi, work); 681 wbc.nr_to_write = write_chunk; 682 wbc.pages_skipped = 0; 683 684 /* 685 * We use I_SYNC to pin the inode in memory. While it is set 686 * evict_inode() will wait so the inode cannot be freed. 687 */ 688 __writeback_single_inode(inode, &wbc); 689 690 work->nr_pages -= write_chunk - wbc.nr_to_write; 691 wrote += write_chunk - wbc.nr_to_write; 692 spin_lock(&wb->list_lock); 693 spin_lock(&inode->i_lock); 694 if (!(inode->i_state & I_DIRTY)) 695 wrote++; 696 requeue_inode(inode, wb, &wbc); 697 inode_sync_complete(inode); 698 spin_unlock(&inode->i_lock); 699 cond_resched_lock(&wb->list_lock); 700 /* 701 * bail out to wb_writeback() often enough to check 702 * background threshold and other termination conditions. 703 */ 704 if (wrote) { 705 if (time_is_before_jiffies(start_time + HZ / 10UL)) 706 break; 707 if (work->nr_pages <= 0) 708 break; 709 } 710 } 711 return wrote; 712 } 713 714 static long __writeback_inodes_wb(struct bdi_writeback *wb, 715 struct wb_writeback_work *work) 716 { 717 unsigned long start_time = jiffies; 718 long wrote = 0; 719 720 while (!list_empty(&wb->b_io)) { 721 struct inode *inode = wb_inode(wb->b_io.prev); 722 struct super_block *sb = inode->i_sb; 723 724 if (!grab_super_passive(sb)) { 725 /* 726 * grab_super_passive() may fail consistently due to 727 * s_umount being grabbed by someone else. Don't use 728 * requeue_io() to avoid busy retrying the inode/sb. 729 */ 730 redirty_tail(inode, wb); 731 continue; 732 } 733 wrote += writeback_sb_inodes(sb, wb, work); 734 drop_super(sb); 735 736 /* refer to the same tests at the end of writeback_sb_inodes */ 737 if (wrote) { 738 if (time_is_before_jiffies(start_time + HZ / 10UL)) 739 break; 740 if (work->nr_pages <= 0) 741 break; 742 } 743 } 744 /* Leave any unwritten inodes on b_io */ 745 return wrote; 746 } 747 748 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 749 enum wb_reason reason) 750 { 751 struct wb_writeback_work work = { 752 .nr_pages = nr_pages, 753 .sync_mode = WB_SYNC_NONE, 754 .range_cyclic = 1, 755 .reason = reason, 756 }; 757 758 spin_lock(&wb->list_lock); 759 if (list_empty(&wb->b_io)) 760 queue_io(wb, &work); 761 __writeback_inodes_wb(wb, &work); 762 spin_unlock(&wb->list_lock); 763 764 return nr_pages - work.nr_pages; 765 } 766 767 static bool over_bground_thresh(struct backing_dev_info *bdi) 768 { 769 unsigned long background_thresh, dirty_thresh; 770 771 global_dirty_limits(&background_thresh, &dirty_thresh); 772 773 if (global_page_state(NR_FILE_DIRTY) + 774 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 775 return true; 776 777 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 778 bdi_dirty_limit(bdi, background_thresh)) 779 return true; 780 781 return false; 782 } 783 784 /* 785 * Called under wb->list_lock. If there are multiple wb per bdi, 786 * only the flusher working on the first wb should do it. 787 */ 788 static void wb_update_bandwidth(struct bdi_writeback *wb, 789 unsigned long start_time) 790 { 791 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 792 } 793 794 /* 795 * Explicit flushing or periodic writeback of "old" data. 796 * 797 * Define "old": the first time one of an inode's pages is dirtied, we mark the 798 * dirtying-time in the inode's address_space. So this periodic writeback code 799 * just walks the superblock inode list, writing back any inodes which are 800 * older than a specific point in time. 801 * 802 * Try to run once per dirty_writeback_interval. But if a writeback event 803 * takes longer than a dirty_writeback_interval interval, then leave a 804 * one-second gap. 805 * 806 * older_than_this takes precedence over nr_to_write. So we'll only write back 807 * all dirty pages if they are all attached to "old" mappings. 808 */ 809 static long wb_writeback(struct bdi_writeback *wb, 810 struct wb_writeback_work *work) 811 { 812 unsigned long wb_start = jiffies; 813 long nr_pages = work->nr_pages; 814 unsigned long oldest_jif; 815 struct inode *inode; 816 long progress; 817 818 oldest_jif = jiffies; 819 work->older_than_this = &oldest_jif; 820 821 spin_lock(&wb->list_lock); 822 for (;;) { 823 /* 824 * Stop writeback when nr_pages has been consumed 825 */ 826 if (work->nr_pages <= 0) 827 break; 828 829 /* 830 * Background writeout and kupdate-style writeback may 831 * run forever. Stop them if there is other work to do 832 * so that e.g. sync can proceed. They'll be restarted 833 * after the other works are all done. 834 */ 835 if ((work->for_background || work->for_kupdate) && 836 !list_empty(&wb->bdi->work_list)) 837 break; 838 839 /* 840 * For background writeout, stop when we are below the 841 * background dirty threshold 842 */ 843 if (work->for_background && !over_bground_thresh(wb->bdi)) 844 break; 845 846 /* 847 * Kupdate and background works are special and we want to 848 * include all inodes that need writing. Livelock avoidance is 849 * handled by these works yielding to any other work so we are 850 * safe. 851 */ 852 if (work->for_kupdate) { 853 oldest_jif = jiffies - 854 msecs_to_jiffies(dirty_expire_interval * 10); 855 } else if (work->for_background) 856 oldest_jif = jiffies; 857 858 trace_writeback_start(wb->bdi, work); 859 if (list_empty(&wb->b_io)) 860 queue_io(wb, work); 861 if (work->sb) 862 progress = writeback_sb_inodes(work->sb, wb, work); 863 else 864 progress = __writeback_inodes_wb(wb, work); 865 trace_writeback_written(wb->bdi, work); 866 867 wb_update_bandwidth(wb, wb_start); 868 869 /* 870 * Did we write something? Try for more 871 * 872 * Dirty inodes are moved to b_io for writeback in batches. 873 * The completion of the current batch does not necessarily 874 * mean the overall work is done. So we keep looping as long 875 * as made some progress on cleaning pages or inodes. 876 */ 877 if (progress) 878 continue; 879 /* 880 * No more inodes for IO, bail 881 */ 882 if (list_empty(&wb->b_more_io)) 883 break; 884 /* 885 * Nothing written. Wait for some inode to 886 * become available for writeback. Otherwise 887 * we'll just busyloop. 888 */ 889 if (!list_empty(&wb->b_more_io)) { 890 trace_writeback_wait(wb->bdi, work); 891 inode = wb_inode(wb->b_more_io.prev); 892 spin_lock(&inode->i_lock); 893 spin_unlock(&wb->list_lock); 894 /* This function drops i_lock... */ 895 inode_sleep_on_writeback(inode); 896 spin_lock(&wb->list_lock); 897 } 898 } 899 spin_unlock(&wb->list_lock); 900 901 return nr_pages - work->nr_pages; 902 } 903 904 /* 905 * Return the next wb_writeback_work struct that hasn't been processed yet. 906 */ 907 static struct wb_writeback_work * 908 get_next_work_item(struct backing_dev_info *bdi) 909 { 910 struct wb_writeback_work *work = NULL; 911 912 spin_lock_bh(&bdi->wb_lock); 913 if (!list_empty(&bdi->work_list)) { 914 work = list_entry(bdi->work_list.next, 915 struct wb_writeback_work, list); 916 list_del_init(&work->list); 917 } 918 spin_unlock_bh(&bdi->wb_lock); 919 return work; 920 } 921 922 /* 923 * Add in the number of potentially dirty inodes, because each inode 924 * write can dirty pagecache in the underlying blockdev. 925 */ 926 static unsigned long get_nr_dirty_pages(void) 927 { 928 return global_page_state(NR_FILE_DIRTY) + 929 global_page_state(NR_UNSTABLE_NFS) + 930 get_nr_dirty_inodes(); 931 } 932 933 static long wb_check_background_flush(struct bdi_writeback *wb) 934 { 935 if (over_bground_thresh(wb->bdi)) { 936 937 struct wb_writeback_work work = { 938 .nr_pages = LONG_MAX, 939 .sync_mode = WB_SYNC_NONE, 940 .for_background = 1, 941 .range_cyclic = 1, 942 .reason = WB_REASON_BACKGROUND, 943 }; 944 945 return wb_writeback(wb, &work); 946 } 947 948 return 0; 949 } 950 951 static long wb_check_old_data_flush(struct bdi_writeback *wb) 952 { 953 unsigned long expired; 954 long nr_pages; 955 956 /* 957 * When set to zero, disable periodic writeback 958 */ 959 if (!dirty_writeback_interval) 960 return 0; 961 962 expired = wb->last_old_flush + 963 msecs_to_jiffies(dirty_writeback_interval * 10); 964 if (time_before(jiffies, expired)) 965 return 0; 966 967 wb->last_old_flush = jiffies; 968 nr_pages = get_nr_dirty_pages(); 969 970 if (nr_pages) { 971 struct wb_writeback_work work = { 972 .nr_pages = nr_pages, 973 .sync_mode = WB_SYNC_NONE, 974 .for_kupdate = 1, 975 .range_cyclic = 1, 976 .reason = WB_REASON_PERIODIC, 977 }; 978 979 return wb_writeback(wb, &work); 980 } 981 982 return 0; 983 } 984 985 /* 986 * Retrieve work items and do the writeback they describe 987 */ 988 static long wb_do_writeback(struct bdi_writeback *wb) 989 { 990 struct backing_dev_info *bdi = wb->bdi; 991 struct wb_writeback_work *work; 992 long wrote = 0; 993 994 set_bit(BDI_writeback_running, &wb->bdi->state); 995 while ((work = get_next_work_item(bdi)) != NULL) { 996 997 trace_writeback_exec(bdi, work); 998 999 wrote += wb_writeback(wb, work); 1000 1001 /* 1002 * Notify the caller of completion if this is a synchronous 1003 * work item, otherwise just free it. 1004 */ 1005 if (work->done) 1006 complete(work->done); 1007 else 1008 kfree(work); 1009 } 1010 1011 /* 1012 * Check for periodic writeback, kupdated() style 1013 */ 1014 wrote += wb_check_old_data_flush(wb); 1015 wrote += wb_check_background_flush(wb); 1016 clear_bit(BDI_writeback_running, &wb->bdi->state); 1017 1018 return wrote; 1019 } 1020 1021 /* 1022 * Handle writeback of dirty data for the device backed by this bdi. Also 1023 * reschedules periodically and does kupdated style flushing. 1024 */ 1025 void bdi_writeback_workfn(struct work_struct *work) 1026 { 1027 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1028 struct bdi_writeback, dwork); 1029 struct backing_dev_info *bdi = wb->bdi; 1030 long pages_written; 1031 1032 set_worker_desc("flush-%s", dev_name(bdi->dev)); 1033 current->flags |= PF_SWAPWRITE; 1034 1035 if (likely(!current_is_workqueue_rescuer() || 1036 !test_bit(BDI_registered, &bdi->state))) { 1037 /* 1038 * The normal path. Keep writing back @bdi until its 1039 * work_list is empty. Note that this path is also taken 1040 * if @bdi is shutting down even when we're running off the 1041 * rescuer as work_list needs to be drained. 1042 */ 1043 do { 1044 pages_written = wb_do_writeback(wb); 1045 trace_writeback_pages_written(pages_written); 1046 } while (!list_empty(&bdi->work_list)); 1047 } else { 1048 /* 1049 * bdi_wq can't get enough workers and we're running off 1050 * the emergency worker. Don't hog it. Hopefully, 1024 is 1051 * enough for efficient IO. 1052 */ 1053 pages_written = writeback_inodes_wb(&bdi->wb, 1024, 1054 WB_REASON_FORKER_THREAD); 1055 trace_writeback_pages_written(pages_written); 1056 } 1057 1058 if (!list_empty(&bdi->work_list)) 1059 mod_delayed_work(bdi_wq, &wb->dwork, 0); 1060 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1061 bdi_wakeup_thread_delayed(bdi); 1062 1063 current->flags &= ~PF_SWAPWRITE; 1064 } 1065 1066 /* 1067 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1068 * the whole world. 1069 */ 1070 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1071 { 1072 struct backing_dev_info *bdi; 1073 1074 if (!nr_pages) 1075 nr_pages = get_nr_dirty_pages(); 1076 1077 rcu_read_lock(); 1078 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1079 if (!bdi_has_dirty_io(bdi)) 1080 continue; 1081 __bdi_start_writeback(bdi, nr_pages, false, reason); 1082 } 1083 rcu_read_unlock(); 1084 } 1085 1086 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1087 { 1088 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1089 struct dentry *dentry; 1090 const char *name = "?"; 1091 1092 dentry = d_find_alias(inode); 1093 if (dentry) { 1094 spin_lock(&dentry->d_lock); 1095 name = (const char *) dentry->d_name.name; 1096 } 1097 printk(KERN_DEBUG 1098 "%s(%d): dirtied inode %lu (%s) on %s\n", 1099 current->comm, task_pid_nr(current), inode->i_ino, 1100 name, inode->i_sb->s_id); 1101 if (dentry) { 1102 spin_unlock(&dentry->d_lock); 1103 dput(dentry); 1104 } 1105 } 1106 } 1107 1108 /** 1109 * __mark_inode_dirty - internal function 1110 * @inode: inode to mark 1111 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1112 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1113 * mark_inode_dirty_sync. 1114 * 1115 * Put the inode on the super block's dirty list. 1116 * 1117 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1118 * dirty list only if it is hashed or if it refers to a blockdev. 1119 * If it was not hashed, it will never be added to the dirty list 1120 * even if it is later hashed, as it will have been marked dirty already. 1121 * 1122 * In short, make sure you hash any inodes _before_ you start marking 1123 * them dirty. 1124 * 1125 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1126 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1127 * the kernel-internal blockdev inode represents the dirtying time of the 1128 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1129 * page->mapping->host, so the page-dirtying time is recorded in the internal 1130 * blockdev inode. 1131 */ 1132 void __mark_inode_dirty(struct inode *inode, int flags) 1133 { 1134 struct super_block *sb = inode->i_sb; 1135 struct backing_dev_info *bdi = NULL; 1136 1137 /* 1138 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1139 * dirty the inode itself 1140 */ 1141 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1142 trace_writeback_dirty_inode_start(inode, flags); 1143 1144 if (sb->s_op->dirty_inode) 1145 sb->s_op->dirty_inode(inode, flags); 1146 1147 trace_writeback_dirty_inode(inode, flags); 1148 } 1149 1150 /* 1151 * make sure that changes are seen by all cpus before we test i_state 1152 * -- mikulas 1153 */ 1154 smp_mb(); 1155 1156 /* avoid the locking if we can */ 1157 if ((inode->i_state & flags) == flags) 1158 return; 1159 1160 if (unlikely(block_dump)) 1161 block_dump___mark_inode_dirty(inode); 1162 1163 spin_lock(&inode->i_lock); 1164 if ((inode->i_state & flags) != flags) { 1165 const int was_dirty = inode->i_state & I_DIRTY; 1166 1167 inode->i_state |= flags; 1168 1169 /* 1170 * If the inode is being synced, just update its dirty state. 1171 * The unlocker will place the inode on the appropriate 1172 * superblock list, based upon its state. 1173 */ 1174 if (inode->i_state & I_SYNC) 1175 goto out_unlock_inode; 1176 1177 /* 1178 * Only add valid (hashed) inodes to the superblock's 1179 * dirty list. Add blockdev inodes as well. 1180 */ 1181 if (!S_ISBLK(inode->i_mode)) { 1182 if (inode_unhashed(inode)) 1183 goto out_unlock_inode; 1184 } 1185 if (inode->i_state & I_FREEING) 1186 goto out_unlock_inode; 1187 1188 /* 1189 * If the inode was already on b_dirty/b_io/b_more_io, don't 1190 * reposition it (that would break b_dirty time-ordering). 1191 */ 1192 if (!was_dirty) { 1193 bool wakeup_bdi = false; 1194 bdi = inode_to_bdi(inode); 1195 1196 spin_unlock(&inode->i_lock); 1197 spin_lock(&bdi->wb.list_lock); 1198 if (bdi_cap_writeback_dirty(bdi)) { 1199 WARN(!test_bit(BDI_registered, &bdi->state), 1200 "bdi-%s not registered\n", bdi->name); 1201 1202 /* 1203 * If this is the first dirty inode for this 1204 * bdi, we have to wake-up the corresponding 1205 * bdi thread to make sure background 1206 * write-back happens later. 1207 */ 1208 if (!wb_has_dirty_io(&bdi->wb)) 1209 wakeup_bdi = true; 1210 } 1211 1212 inode->dirtied_when = jiffies; 1213 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1214 spin_unlock(&bdi->wb.list_lock); 1215 1216 if (wakeup_bdi) 1217 bdi_wakeup_thread_delayed(bdi); 1218 return; 1219 } 1220 } 1221 out_unlock_inode: 1222 spin_unlock(&inode->i_lock); 1223 1224 } 1225 EXPORT_SYMBOL(__mark_inode_dirty); 1226 1227 static void wait_sb_inodes(struct super_block *sb) 1228 { 1229 struct inode *inode, *old_inode = NULL; 1230 1231 /* 1232 * We need to be protected against the filesystem going from 1233 * r/o to r/w or vice versa. 1234 */ 1235 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1236 1237 spin_lock(&inode_sb_list_lock); 1238 1239 /* 1240 * Data integrity sync. Must wait for all pages under writeback, 1241 * because there may have been pages dirtied before our sync 1242 * call, but which had writeout started before we write it out. 1243 * In which case, the inode may not be on the dirty list, but 1244 * we still have to wait for that writeout. 1245 */ 1246 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1247 struct address_space *mapping = inode->i_mapping; 1248 1249 spin_lock(&inode->i_lock); 1250 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1251 (mapping->nrpages == 0)) { 1252 spin_unlock(&inode->i_lock); 1253 continue; 1254 } 1255 __iget(inode); 1256 spin_unlock(&inode->i_lock); 1257 spin_unlock(&inode_sb_list_lock); 1258 1259 /* 1260 * We hold a reference to 'inode' so it couldn't have been 1261 * removed from s_inodes list while we dropped the 1262 * inode_sb_list_lock. We cannot iput the inode now as we can 1263 * be holding the last reference and we cannot iput it under 1264 * inode_sb_list_lock. So we keep the reference and iput it 1265 * later. 1266 */ 1267 iput(old_inode); 1268 old_inode = inode; 1269 1270 filemap_fdatawait(mapping); 1271 1272 cond_resched(); 1273 1274 spin_lock(&inode_sb_list_lock); 1275 } 1276 spin_unlock(&inode_sb_list_lock); 1277 iput(old_inode); 1278 } 1279 1280 /** 1281 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1282 * @sb: the superblock 1283 * @nr: the number of pages to write 1284 * @reason: reason why some writeback work initiated 1285 * 1286 * Start writeback on some inodes on this super_block. No guarantees are made 1287 * on how many (if any) will be written, and this function does not wait 1288 * for IO completion of submitted IO. 1289 */ 1290 void writeback_inodes_sb_nr(struct super_block *sb, 1291 unsigned long nr, 1292 enum wb_reason reason) 1293 { 1294 DECLARE_COMPLETION_ONSTACK(done); 1295 struct wb_writeback_work work = { 1296 .sb = sb, 1297 .sync_mode = WB_SYNC_NONE, 1298 .tagged_writepages = 1, 1299 .done = &done, 1300 .nr_pages = nr, 1301 .reason = reason, 1302 }; 1303 1304 if (sb->s_bdi == &noop_backing_dev_info) 1305 return; 1306 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1307 bdi_queue_work(sb->s_bdi, &work); 1308 wait_for_completion(&done); 1309 } 1310 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1311 1312 /** 1313 * writeback_inodes_sb - writeback dirty inodes from given super_block 1314 * @sb: the superblock 1315 * @reason: reason why some writeback work was initiated 1316 * 1317 * Start writeback on some inodes on this super_block. No guarantees are made 1318 * on how many (if any) will be written, and this function does not wait 1319 * for IO completion of submitted IO. 1320 */ 1321 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1322 { 1323 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1324 } 1325 EXPORT_SYMBOL(writeback_inodes_sb); 1326 1327 /** 1328 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway 1329 * @sb: the superblock 1330 * @nr: the number of pages to write 1331 * @reason: the reason of writeback 1332 * 1333 * Invoke writeback_inodes_sb_nr if no writeback is currently underway. 1334 * Returns 1 if writeback was started, 0 if not. 1335 */ 1336 int try_to_writeback_inodes_sb_nr(struct super_block *sb, 1337 unsigned long nr, 1338 enum wb_reason reason) 1339 { 1340 if (writeback_in_progress(sb->s_bdi)) 1341 return 1; 1342 1343 if (!down_read_trylock(&sb->s_umount)) 1344 return 0; 1345 1346 writeback_inodes_sb_nr(sb, nr, reason); 1347 up_read(&sb->s_umount); 1348 return 1; 1349 } 1350 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr); 1351 1352 /** 1353 * try_to_writeback_inodes_sb - try to start writeback if none underway 1354 * @sb: the superblock 1355 * @reason: reason why some writeback work was initiated 1356 * 1357 * Implement by try_to_writeback_inodes_sb_nr() 1358 * Returns 1 if writeback was started, 0 if not. 1359 */ 1360 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1361 { 1362 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1363 } 1364 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 1365 1366 /** 1367 * sync_inodes_sb - sync sb inode pages 1368 * @sb: the superblock 1369 * 1370 * This function writes and waits on any dirty inode belonging to this 1371 * super_block. 1372 */ 1373 void sync_inodes_sb(struct super_block *sb) 1374 { 1375 DECLARE_COMPLETION_ONSTACK(done); 1376 struct wb_writeback_work work = { 1377 .sb = sb, 1378 .sync_mode = WB_SYNC_ALL, 1379 .nr_pages = LONG_MAX, 1380 .range_cyclic = 0, 1381 .done = &done, 1382 .reason = WB_REASON_SYNC, 1383 .for_sync = 1, 1384 }; 1385 1386 /* Nothing to do? */ 1387 if (sb->s_bdi == &noop_backing_dev_info) 1388 return; 1389 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1390 1391 bdi_queue_work(sb->s_bdi, &work); 1392 wait_for_completion(&done); 1393 1394 wait_sb_inodes(sb); 1395 } 1396 EXPORT_SYMBOL(sync_inodes_sb); 1397 1398 /** 1399 * write_inode_now - write an inode to disk 1400 * @inode: inode to write to disk 1401 * @sync: whether the write should be synchronous or not 1402 * 1403 * This function commits an inode to disk immediately if it is dirty. This is 1404 * primarily needed by knfsd. 1405 * 1406 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1407 */ 1408 int write_inode_now(struct inode *inode, int sync) 1409 { 1410 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1411 struct writeback_control wbc = { 1412 .nr_to_write = LONG_MAX, 1413 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1414 .range_start = 0, 1415 .range_end = LLONG_MAX, 1416 }; 1417 1418 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1419 wbc.nr_to_write = 0; 1420 1421 might_sleep(); 1422 return writeback_single_inode(inode, wb, &wbc); 1423 } 1424 EXPORT_SYMBOL(write_inode_now); 1425 1426 /** 1427 * sync_inode - write an inode and its pages to disk. 1428 * @inode: the inode to sync 1429 * @wbc: controls the writeback mode 1430 * 1431 * sync_inode() will write an inode and its pages to disk. It will also 1432 * correctly update the inode on its superblock's dirty inode lists and will 1433 * update inode->i_state. 1434 * 1435 * The caller must have a ref on the inode. 1436 */ 1437 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1438 { 1439 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 1440 } 1441 EXPORT_SYMBOL(sync_inode); 1442 1443 /** 1444 * sync_inode_metadata - write an inode to disk 1445 * @inode: the inode to sync 1446 * @wait: wait for I/O to complete. 1447 * 1448 * Write an inode to disk and adjust its dirty state after completion. 1449 * 1450 * Note: only writes the actual inode, no associated data or other metadata. 1451 */ 1452 int sync_inode_metadata(struct inode *inode, int wait) 1453 { 1454 struct writeback_control wbc = { 1455 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1456 .nr_to_write = 0, /* metadata-only */ 1457 }; 1458 1459 return sync_inode(inode, &wbc); 1460 } 1461 EXPORT_SYMBOL(sync_inode_metadata); 1462