xref: /linux/fs/fs-writeback.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
50 	enum wb_reason reason;		/* why was writeback initiated? */
51 
52 	struct list_head list;		/* pending work list */
53 	struct completion *done;	/* set if the caller waits */
54 };
55 
56 /**
57  * writeback_in_progress - determine whether there is writeback in progress
58  * @bdi: the device's backing_dev_info structure.
59  *
60  * Determine whether there is writeback waiting to be handled against a
61  * backing device.
62  */
63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65 	return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68 
69 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71 	struct super_block *sb = inode->i_sb;
72 
73 	if (sb_is_blkdev_sb(sb))
74 		return inode->i_mapping->backing_dev_info;
75 
76 	return sb->s_bdi;
77 }
78 
79 static inline struct inode *wb_inode(struct list_head *head)
80 {
81 	return list_entry(head, struct inode, i_wb_list);
82 }
83 
84 /*
85  * Include the creation of the trace points after defining the
86  * wb_writeback_work structure and inline functions so that the definition
87  * remains local to this file.
88  */
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/writeback.h>
91 
92 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
93 
94 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
95 {
96 	spin_lock_bh(&bdi->wb_lock);
97 	if (test_bit(BDI_registered, &bdi->state))
98 		mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
99 	spin_unlock_bh(&bdi->wb_lock);
100 }
101 
102 static void bdi_queue_work(struct backing_dev_info *bdi,
103 			   struct wb_writeback_work *work)
104 {
105 	trace_writeback_queue(bdi, work);
106 
107 	spin_lock_bh(&bdi->wb_lock);
108 	if (!test_bit(BDI_registered, &bdi->state)) {
109 		if (work->done)
110 			complete(work->done);
111 		goto out_unlock;
112 	}
113 	list_add_tail(&work->list, &bdi->work_list);
114 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
115 out_unlock:
116 	spin_unlock_bh(&bdi->wb_lock);
117 }
118 
119 static void
120 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
121 		      bool range_cyclic, enum wb_reason reason)
122 {
123 	struct wb_writeback_work *work;
124 
125 	/*
126 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
127 	 * wakeup the thread for old dirty data writeback
128 	 */
129 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
130 	if (!work) {
131 		trace_writeback_nowork(bdi);
132 		bdi_wakeup_thread(bdi);
133 		return;
134 	}
135 
136 	work->sync_mode	= WB_SYNC_NONE;
137 	work->nr_pages	= nr_pages;
138 	work->range_cyclic = range_cyclic;
139 	work->reason	= reason;
140 
141 	bdi_queue_work(bdi, work);
142 }
143 
144 /**
145  * bdi_start_writeback - start writeback
146  * @bdi: the backing device to write from
147  * @nr_pages: the number of pages to write
148  * @reason: reason why some writeback work was initiated
149  *
150  * Description:
151  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
152  *   started when this function returns, we make no guarantees on
153  *   completion. Caller need not hold sb s_umount semaphore.
154  *
155  */
156 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
157 			enum wb_reason reason)
158 {
159 	__bdi_start_writeback(bdi, nr_pages, true, reason);
160 }
161 
162 /**
163  * bdi_start_background_writeback - start background writeback
164  * @bdi: the backing device to write from
165  *
166  * Description:
167  *   This makes sure WB_SYNC_NONE background writeback happens. When
168  *   this function returns, it is only guaranteed that for given BDI
169  *   some IO is happening if we are over background dirty threshold.
170  *   Caller need not hold sb s_umount semaphore.
171  */
172 void bdi_start_background_writeback(struct backing_dev_info *bdi)
173 {
174 	/*
175 	 * We just wake up the flusher thread. It will perform background
176 	 * writeback as soon as there is no other work to do.
177 	 */
178 	trace_writeback_wake_background(bdi);
179 	bdi_wakeup_thread(bdi);
180 }
181 
182 /*
183  * Remove the inode from the writeback list it is on.
184  */
185 void inode_wb_list_del(struct inode *inode)
186 {
187 	struct backing_dev_info *bdi = inode_to_bdi(inode);
188 
189 	spin_lock(&bdi->wb.list_lock);
190 	list_del_init(&inode->i_wb_list);
191 	spin_unlock(&bdi->wb.list_lock);
192 }
193 
194 /*
195  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
196  * furthest end of its superblock's dirty-inode list.
197  *
198  * Before stamping the inode's ->dirtied_when, we check to see whether it is
199  * already the most-recently-dirtied inode on the b_dirty list.  If that is
200  * the case then the inode must have been redirtied while it was being written
201  * out and we don't reset its dirtied_when.
202  */
203 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
204 {
205 	assert_spin_locked(&wb->list_lock);
206 	if (!list_empty(&wb->b_dirty)) {
207 		struct inode *tail;
208 
209 		tail = wb_inode(wb->b_dirty.next);
210 		if (time_before(inode->dirtied_when, tail->dirtied_when))
211 			inode->dirtied_when = jiffies;
212 	}
213 	list_move(&inode->i_wb_list, &wb->b_dirty);
214 }
215 
216 /*
217  * requeue inode for re-scanning after bdi->b_io list is exhausted.
218  */
219 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
220 {
221 	assert_spin_locked(&wb->list_lock);
222 	list_move(&inode->i_wb_list, &wb->b_more_io);
223 }
224 
225 static void inode_sync_complete(struct inode *inode)
226 {
227 	inode->i_state &= ~I_SYNC;
228 	/* If inode is clean an unused, put it into LRU now... */
229 	inode_add_lru(inode);
230 	/* Waiters must see I_SYNC cleared before being woken up */
231 	smp_mb();
232 	wake_up_bit(&inode->i_state, __I_SYNC);
233 }
234 
235 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236 {
237 	bool ret = time_after(inode->dirtied_when, t);
238 #ifndef CONFIG_64BIT
239 	/*
240 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 	 * It _appears_ to be in the future, but is actually in distant past.
242 	 * This test is necessary to prevent such wrapped-around relative times
243 	 * from permanently stopping the whole bdi writeback.
244 	 */
245 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246 #endif
247 	return ret;
248 }
249 
250 /*
251  * Move expired (dirtied before work->older_than_this) dirty inodes from
252  * @delaying_queue to @dispatch_queue.
253  */
254 static int move_expired_inodes(struct list_head *delaying_queue,
255 			       struct list_head *dispatch_queue,
256 			       struct wb_writeback_work *work)
257 {
258 	LIST_HEAD(tmp);
259 	struct list_head *pos, *node;
260 	struct super_block *sb = NULL;
261 	struct inode *inode;
262 	int do_sb_sort = 0;
263 	int moved = 0;
264 
265 	while (!list_empty(delaying_queue)) {
266 		inode = wb_inode(delaying_queue->prev);
267 		if (work->older_than_this &&
268 		    inode_dirtied_after(inode, *work->older_than_this))
269 			break;
270 		list_move(&inode->i_wb_list, &tmp);
271 		moved++;
272 		if (sb_is_blkdev_sb(inode->i_sb))
273 			continue;
274 		if (sb && sb != inode->i_sb)
275 			do_sb_sort = 1;
276 		sb = inode->i_sb;
277 	}
278 
279 	/* just one sb in list, splice to dispatch_queue and we're done */
280 	if (!do_sb_sort) {
281 		list_splice(&tmp, dispatch_queue);
282 		goto out;
283 	}
284 
285 	/* Move inodes from one superblock together */
286 	while (!list_empty(&tmp)) {
287 		sb = wb_inode(tmp.prev)->i_sb;
288 		list_for_each_prev_safe(pos, node, &tmp) {
289 			inode = wb_inode(pos);
290 			if (inode->i_sb == sb)
291 				list_move(&inode->i_wb_list, dispatch_queue);
292 		}
293 	}
294 out:
295 	return moved;
296 }
297 
298 /*
299  * Queue all expired dirty inodes for io, eldest first.
300  * Before
301  *         newly dirtied     b_dirty    b_io    b_more_io
302  *         =============>    gf         edc     BA
303  * After
304  *         newly dirtied     b_dirty    b_io    b_more_io
305  *         =============>    g          fBAedc
306  *                                           |
307  *                                           +--> dequeue for IO
308  */
309 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
310 {
311 	int moved;
312 	assert_spin_locked(&wb->list_lock);
313 	list_splice_init(&wb->b_more_io, &wb->b_io);
314 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
315 	trace_writeback_queue_io(wb, work, moved);
316 }
317 
318 static int write_inode(struct inode *inode, struct writeback_control *wbc)
319 {
320 	int ret;
321 
322 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
323 		trace_writeback_write_inode_start(inode, wbc);
324 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
325 		trace_writeback_write_inode(inode, wbc);
326 		return ret;
327 	}
328 	return 0;
329 }
330 
331 /*
332  * Wait for writeback on an inode to complete. Called with i_lock held.
333  * Caller must make sure inode cannot go away when we drop i_lock.
334  */
335 static void __inode_wait_for_writeback(struct inode *inode)
336 	__releases(inode->i_lock)
337 	__acquires(inode->i_lock)
338 {
339 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
340 	wait_queue_head_t *wqh;
341 
342 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
343 	while (inode->i_state & I_SYNC) {
344 		spin_unlock(&inode->i_lock);
345 		__wait_on_bit(wqh, &wq, bit_wait,
346 			      TASK_UNINTERRUPTIBLE);
347 		spin_lock(&inode->i_lock);
348 	}
349 }
350 
351 /*
352  * Wait for writeback on an inode to complete. Caller must have inode pinned.
353  */
354 void inode_wait_for_writeback(struct inode *inode)
355 {
356 	spin_lock(&inode->i_lock);
357 	__inode_wait_for_writeback(inode);
358 	spin_unlock(&inode->i_lock);
359 }
360 
361 /*
362  * Sleep until I_SYNC is cleared. This function must be called with i_lock
363  * held and drops it. It is aimed for callers not holding any inode reference
364  * so once i_lock is dropped, inode can go away.
365  */
366 static void inode_sleep_on_writeback(struct inode *inode)
367 	__releases(inode->i_lock)
368 {
369 	DEFINE_WAIT(wait);
370 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
371 	int sleep;
372 
373 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
374 	sleep = inode->i_state & I_SYNC;
375 	spin_unlock(&inode->i_lock);
376 	if (sleep)
377 		schedule();
378 	finish_wait(wqh, &wait);
379 }
380 
381 /*
382  * Find proper writeback list for the inode depending on its current state and
383  * possibly also change of its state while we were doing writeback.  Here we
384  * handle things such as livelock prevention or fairness of writeback among
385  * inodes. This function can be called only by flusher thread - noone else
386  * processes all inodes in writeback lists and requeueing inodes behind flusher
387  * thread's back can have unexpected consequences.
388  */
389 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
390 			  struct writeback_control *wbc)
391 {
392 	if (inode->i_state & I_FREEING)
393 		return;
394 
395 	/*
396 	 * Sync livelock prevention. Each inode is tagged and synced in one
397 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
398 	 * the dirty time to prevent enqueue and sync it again.
399 	 */
400 	if ((inode->i_state & I_DIRTY) &&
401 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
402 		inode->dirtied_when = jiffies;
403 
404 	if (wbc->pages_skipped) {
405 		/*
406 		 * writeback is not making progress due to locked
407 		 * buffers. Skip this inode for now.
408 		 */
409 		redirty_tail(inode, wb);
410 		return;
411 	}
412 
413 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
414 		/*
415 		 * We didn't write back all the pages.  nfs_writepages()
416 		 * sometimes bales out without doing anything.
417 		 */
418 		if (wbc->nr_to_write <= 0) {
419 			/* Slice used up. Queue for next turn. */
420 			requeue_io(inode, wb);
421 		} else {
422 			/*
423 			 * Writeback blocked by something other than
424 			 * congestion. Delay the inode for some time to
425 			 * avoid spinning on the CPU (100% iowait)
426 			 * retrying writeback of the dirty page/inode
427 			 * that cannot be performed immediately.
428 			 */
429 			redirty_tail(inode, wb);
430 		}
431 	} else if (inode->i_state & I_DIRTY) {
432 		/*
433 		 * Filesystems can dirty the inode during writeback operations,
434 		 * such as delayed allocation during submission or metadata
435 		 * updates after data IO completion.
436 		 */
437 		redirty_tail(inode, wb);
438 	} else {
439 		/* The inode is clean. Remove from writeback lists. */
440 		list_del_init(&inode->i_wb_list);
441 	}
442 }
443 
444 /*
445  * Write out an inode and its dirty pages. Do not update the writeback list
446  * linkage. That is left to the caller. The caller is also responsible for
447  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
448  */
449 static int
450 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
451 {
452 	struct address_space *mapping = inode->i_mapping;
453 	long nr_to_write = wbc->nr_to_write;
454 	unsigned dirty;
455 	int ret;
456 
457 	WARN_ON(!(inode->i_state & I_SYNC));
458 
459 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
460 
461 	ret = do_writepages(mapping, wbc);
462 
463 	/*
464 	 * Make sure to wait on the data before writing out the metadata.
465 	 * This is important for filesystems that modify metadata on data
466 	 * I/O completion. We don't do it for sync(2) writeback because it has a
467 	 * separate, external IO completion path and ->sync_fs for guaranteeing
468 	 * inode metadata is written back correctly.
469 	 */
470 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
471 		int err = filemap_fdatawait(mapping);
472 		if (ret == 0)
473 			ret = err;
474 	}
475 
476 	/*
477 	 * Some filesystems may redirty the inode during the writeback
478 	 * due to delalloc, clear dirty metadata flags right before
479 	 * write_inode()
480 	 */
481 	spin_lock(&inode->i_lock);
482 	/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
483 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
484 		inode->i_state &= ~I_DIRTY_PAGES;
485 	dirty = inode->i_state & I_DIRTY;
486 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
487 	spin_unlock(&inode->i_lock);
488 	/* Don't write the inode if only I_DIRTY_PAGES was set */
489 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
490 		int err = write_inode(inode, wbc);
491 		if (ret == 0)
492 			ret = err;
493 	}
494 	trace_writeback_single_inode(inode, wbc, nr_to_write);
495 	return ret;
496 }
497 
498 /*
499  * Write out an inode's dirty pages. Either the caller has an active reference
500  * on the inode or the inode has I_WILL_FREE set.
501  *
502  * This function is designed to be called for writing back one inode which
503  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
504  * and does more profound writeback list handling in writeback_sb_inodes().
505  */
506 static int
507 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
508 		       struct writeback_control *wbc)
509 {
510 	int ret = 0;
511 
512 	spin_lock(&inode->i_lock);
513 	if (!atomic_read(&inode->i_count))
514 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
515 	else
516 		WARN_ON(inode->i_state & I_WILL_FREE);
517 
518 	if (inode->i_state & I_SYNC) {
519 		if (wbc->sync_mode != WB_SYNC_ALL)
520 			goto out;
521 		/*
522 		 * It's a data-integrity sync. We must wait. Since callers hold
523 		 * inode reference or inode has I_WILL_FREE set, it cannot go
524 		 * away under us.
525 		 */
526 		__inode_wait_for_writeback(inode);
527 	}
528 	WARN_ON(inode->i_state & I_SYNC);
529 	/*
530 	 * Skip inode if it is clean and we have no outstanding writeback in
531 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
532 	 * function since flusher thread may be doing for example sync in
533 	 * parallel and if we move the inode, it could get skipped. So here we
534 	 * make sure inode is on some writeback list and leave it there unless
535 	 * we have completely cleaned the inode.
536 	 */
537 	if (!(inode->i_state & I_DIRTY) &&
538 	    (wbc->sync_mode != WB_SYNC_ALL ||
539 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
540 		goto out;
541 	inode->i_state |= I_SYNC;
542 	spin_unlock(&inode->i_lock);
543 
544 	ret = __writeback_single_inode(inode, wbc);
545 
546 	spin_lock(&wb->list_lock);
547 	spin_lock(&inode->i_lock);
548 	/*
549 	 * If inode is clean, remove it from writeback lists. Otherwise don't
550 	 * touch it. See comment above for explanation.
551 	 */
552 	if (!(inode->i_state & I_DIRTY))
553 		list_del_init(&inode->i_wb_list);
554 	spin_unlock(&wb->list_lock);
555 	inode_sync_complete(inode);
556 out:
557 	spin_unlock(&inode->i_lock);
558 	return ret;
559 }
560 
561 static long writeback_chunk_size(struct backing_dev_info *bdi,
562 				 struct wb_writeback_work *work)
563 {
564 	long pages;
565 
566 	/*
567 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
568 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
569 	 * here avoids calling into writeback_inodes_wb() more than once.
570 	 *
571 	 * The intended call sequence for WB_SYNC_ALL writeback is:
572 	 *
573 	 *      wb_writeback()
574 	 *          writeback_sb_inodes()       <== called only once
575 	 *              write_cache_pages()     <== called once for each inode
576 	 *                   (quickly) tag currently dirty pages
577 	 *                   (maybe slowly) sync all tagged pages
578 	 */
579 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
580 		pages = LONG_MAX;
581 	else {
582 		pages = min(bdi->avg_write_bandwidth / 2,
583 			    global_dirty_limit / DIRTY_SCOPE);
584 		pages = min(pages, work->nr_pages);
585 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
586 				   MIN_WRITEBACK_PAGES);
587 	}
588 
589 	return pages;
590 }
591 
592 /*
593  * Write a portion of b_io inodes which belong to @sb.
594  *
595  * Return the number of pages and/or inodes written.
596  */
597 static long writeback_sb_inodes(struct super_block *sb,
598 				struct bdi_writeback *wb,
599 				struct wb_writeback_work *work)
600 {
601 	struct writeback_control wbc = {
602 		.sync_mode		= work->sync_mode,
603 		.tagged_writepages	= work->tagged_writepages,
604 		.for_kupdate		= work->for_kupdate,
605 		.for_background		= work->for_background,
606 		.for_sync		= work->for_sync,
607 		.range_cyclic		= work->range_cyclic,
608 		.range_start		= 0,
609 		.range_end		= LLONG_MAX,
610 	};
611 	unsigned long start_time = jiffies;
612 	long write_chunk;
613 	long wrote = 0;  /* count both pages and inodes */
614 
615 	while (!list_empty(&wb->b_io)) {
616 		struct inode *inode = wb_inode(wb->b_io.prev);
617 
618 		if (inode->i_sb != sb) {
619 			if (work->sb) {
620 				/*
621 				 * We only want to write back data for this
622 				 * superblock, move all inodes not belonging
623 				 * to it back onto the dirty list.
624 				 */
625 				redirty_tail(inode, wb);
626 				continue;
627 			}
628 
629 			/*
630 			 * The inode belongs to a different superblock.
631 			 * Bounce back to the caller to unpin this and
632 			 * pin the next superblock.
633 			 */
634 			break;
635 		}
636 
637 		/*
638 		 * Don't bother with new inodes or inodes being freed, first
639 		 * kind does not need periodic writeout yet, and for the latter
640 		 * kind writeout is handled by the freer.
641 		 */
642 		spin_lock(&inode->i_lock);
643 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
644 			spin_unlock(&inode->i_lock);
645 			redirty_tail(inode, wb);
646 			continue;
647 		}
648 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
649 			/*
650 			 * If this inode is locked for writeback and we are not
651 			 * doing writeback-for-data-integrity, move it to
652 			 * b_more_io so that writeback can proceed with the
653 			 * other inodes on s_io.
654 			 *
655 			 * We'll have another go at writing back this inode
656 			 * when we completed a full scan of b_io.
657 			 */
658 			spin_unlock(&inode->i_lock);
659 			requeue_io(inode, wb);
660 			trace_writeback_sb_inodes_requeue(inode);
661 			continue;
662 		}
663 		spin_unlock(&wb->list_lock);
664 
665 		/*
666 		 * We already requeued the inode if it had I_SYNC set and we
667 		 * are doing WB_SYNC_NONE writeback. So this catches only the
668 		 * WB_SYNC_ALL case.
669 		 */
670 		if (inode->i_state & I_SYNC) {
671 			/* Wait for I_SYNC. This function drops i_lock... */
672 			inode_sleep_on_writeback(inode);
673 			/* Inode may be gone, start again */
674 			spin_lock(&wb->list_lock);
675 			continue;
676 		}
677 		inode->i_state |= I_SYNC;
678 		spin_unlock(&inode->i_lock);
679 
680 		write_chunk = writeback_chunk_size(wb->bdi, work);
681 		wbc.nr_to_write = write_chunk;
682 		wbc.pages_skipped = 0;
683 
684 		/*
685 		 * We use I_SYNC to pin the inode in memory. While it is set
686 		 * evict_inode() will wait so the inode cannot be freed.
687 		 */
688 		__writeback_single_inode(inode, &wbc);
689 
690 		work->nr_pages -= write_chunk - wbc.nr_to_write;
691 		wrote += write_chunk - wbc.nr_to_write;
692 		spin_lock(&wb->list_lock);
693 		spin_lock(&inode->i_lock);
694 		if (!(inode->i_state & I_DIRTY))
695 			wrote++;
696 		requeue_inode(inode, wb, &wbc);
697 		inode_sync_complete(inode);
698 		spin_unlock(&inode->i_lock);
699 		cond_resched_lock(&wb->list_lock);
700 		/*
701 		 * bail out to wb_writeback() often enough to check
702 		 * background threshold and other termination conditions.
703 		 */
704 		if (wrote) {
705 			if (time_is_before_jiffies(start_time + HZ / 10UL))
706 				break;
707 			if (work->nr_pages <= 0)
708 				break;
709 		}
710 	}
711 	return wrote;
712 }
713 
714 static long __writeback_inodes_wb(struct bdi_writeback *wb,
715 				  struct wb_writeback_work *work)
716 {
717 	unsigned long start_time = jiffies;
718 	long wrote = 0;
719 
720 	while (!list_empty(&wb->b_io)) {
721 		struct inode *inode = wb_inode(wb->b_io.prev);
722 		struct super_block *sb = inode->i_sb;
723 
724 		if (!grab_super_passive(sb)) {
725 			/*
726 			 * grab_super_passive() may fail consistently due to
727 			 * s_umount being grabbed by someone else. Don't use
728 			 * requeue_io() to avoid busy retrying the inode/sb.
729 			 */
730 			redirty_tail(inode, wb);
731 			continue;
732 		}
733 		wrote += writeback_sb_inodes(sb, wb, work);
734 		drop_super(sb);
735 
736 		/* refer to the same tests at the end of writeback_sb_inodes */
737 		if (wrote) {
738 			if (time_is_before_jiffies(start_time + HZ / 10UL))
739 				break;
740 			if (work->nr_pages <= 0)
741 				break;
742 		}
743 	}
744 	/* Leave any unwritten inodes on b_io */
745 	return wrote;
746 }
747 
748 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
749 				enum wb_reason reason)
750 {
751 	struct wb_writeback_work work = {
752 		.nr_pages	= nr_pages,
753 		.sync_mode	= WB_SYNC_NONE,
754 		.range_cyclic	= 1,
755 		.reason		= reason,
756 	};
757 
758 	spin_lock(&wb->list_lock);
759 	if (list_empty(&wb->b_io))
760 		queue_io(wb, &work);
761 	__writeback_inodes_wb(wb, &work);
762 	spin_unlock(&wb->list_lock);
763 
764 	return nr_pages - work.nr_pages;
765 }
766 
767 static bool over_bground_thresh(struct backing_dev_info *bdi)
768 {
769 	unsigned long background_thresh, dirty_thresh;
770 
771 	global_dirty_limits(&background_thresh, &dirty_thresh);
772 
773 	if (global_page_state(NR_FILE_DIRTY) +
774 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
775 		return true;
776 
777 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
778 				bdi_dirty_limit(bdi, background_thresh))
779 		return true;
780 
781 	return false;
782 }
783 
784 /*
785  * Called under wb->list_lock. If there are multiple wb per bdi,
786  * only the flusher working on the first wb should do it.
787  */
788 static void wb_update_bandwidth(struct bdi_writeback *wb,
789 				unsigned long start_time)
790 {
791 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
792 }
793 
794 /*
795  * Explicit flushing or periodic writeback of "old" data.
796  *
797  * Define "old": the first time one of an inode's pages is dirtied, we mark the
798  * dirtying-time in the inode's address_space.  So this periodic writeback code
799  * just walks the superblock inode list, writing back any inodes which are
800  * older than a specific point in time.
801  *
802  * Try to run once per dirty_writeback_interval.  But if a writeback event
803  * takes longer than a dirty_writeback_interval interval, then leave a
804  * one-second gap.
805  *
806  * older_than_this takes precedence over nr_to_write.  So we'll only write back
807  * all dirty pages if they are all attached to "old" mappings.
808  */
809 static long wb_writeback(struct bdi_writeback *wb,
810 			 struct wb_writeback_work *work)
811 {
812 	unsigned long wb_start = jiffies;
813 	long nr_pages = work->nr_pages;
814 	unsigned long oldest_jif;
815 	struct inode *inode;
816 	long progress;
817 
818 	oldest_jif = jiffies;
819 	work->older_than_this = &oldest_jif;
820 
821 	spin_lock(&wb->list_lock);
822 	for (;;) {
823 		/*
824 		 * Stop writeback when nr_pages has been consumed
825 		 */
826 		if (work->nr_pages <= 0)
827 			break;
828 
829 		/*
830 		 * Background writeout and kupdate-style writeback may
831 		 * run forever. Stop them if there is other work to do
832 		 * so that e.g. sync can proceed. They'll be restarted
833 		 * after the other works are all done.
834 		 */
835 		if ((work->for_background || work->for_kupdate) &&
836 		    !list_empty(&wb->bdi->work_list))
837 			break;
838 
839 		/*
840 		 * For background writeout, stop when we are below the
841 		 * background dirty threshold
842 		 */
843 		if (work->for_background && !over_bground_thresh(wb->bdi))
844 			break;
845 
846 		/*
847 		 * Kupdate and background works are special and we want to
848 		 * include all inodes that need writing. Livelock avoidance is
849 		 * handled by these works yielding to any other work so we are
850 		 * safe.
851 		 */
852 		if (work->for_kupdate) {
853 			oldest_jif = jiffies -
854 				msecs_to_jiffies(dirty_expire_interval * 10);
855 		} else if (work->for_background)
856 			oldest_jif = jiffies;
857 
858 		trace_writeback_start(wb->bdi, work);
859 		if (list_empty(&wb->b_io))
860 			queue_io(wb, work);
861 		if (work->sb)
862 			progress = writeback_sb_inodes(work->sb, wb, work);
863 		else
864 			progress = __writeback_inodes_wb(wb, work);
865 		trace_writeback_written(wb->bdi, work);
866 
867 		wb_update_bandwidth(wb, wb_start);
868 
869 		/*
870 		 * Did we write something? Try for more
871 		 *
872 		 * Dirty inodes are moved to b_io for writeback in batches.
873 		 * The completion of the current batch does not necessarily
874 		 * mean the overall work is done. So we keep looping as long
875 		 * as made some progress on cleaning pages or inodes.
876 		 */
877 		if (progress)
878 			continue;
879 		/*
880 		 * No more inodes for IO, bail
881 		 */
882 		if (list_empty(&wb->b_more_io))
883 			break;
884 		/*
885 		 * Nothing written. Wait for some inode to
886 		 * become available for writeback. Otherwise
887 		 * we'll just busyloop.
888 		 */
889 		if (!list_empty(&wb->b_more_io))  {
890 			trace_writeback_wait(wb->bdi, work);
891 			inode = wb_inode(wb->b_more_io.prev);
892 			spin_lock(&inode->i_lock);
893 			spin_unlock(&wb->list_lock);
894 			/* This function drops i_lock... */
895 			inode_sleep_on_writeback(inode);
896 			spin_lock(&wb->list_lock);
897 		}
898 	}
899 	spin_unlock(&wb->list_lock);
900 
901 	return nr_pages - work->nr_pages;
902 }
903 
904 /*
905  * Return the next wb_writeback_work struct that hasn't been processed yet.
906  */
907 static struct wb_writeback_work *
908 get_next_work_item(struct backing_dev_info *bdi)
909 {
910 	struct wb_writeback_work *work = NULL;
911 
912 	spin_lock_bh(&bdi->wb_lock);
913 	if (!list_empty(&bdi->work_list)) {
914 		work = list_entry(bdi->work_list.next,
915 				  struct wb_writeback_work, list);
916 		list_del_init(&work->list);
917 	}
918 	spin_unlock_bh(&bdi->wb_lock);
919 	return work;
920 }
921 
922 /*
923  * Add in the number of potentially dirty inodes, because each inode
924  * write can dirty pagecache in the underlying blockdev.
925  */
926 static unsigned long get_nr_dirty_pages(void)
927 {
928 	return global_page_state(NR_FILE_DIRTY) +
929 		global_page_state(NR_UNSTABLE_NFS) +
930 		get_nr_dirty_inodes();
931 }
932 
933 static long wb_check_background_flush(struct bdi_writeback *wb)
934 {
935 	if (over_bground_thresh(wb->bdi)) {
936 
937 		struct wb_writeback_work work = {
938 			.nr_pages	= LONG_MAX,
939 			.sync_mode	= WB_SYNC_NONE,
940 			.for_background	= 1,
941 			.range_cyclic	= 1,
942 			.reason		= WB_REASON_BACKGROUND,
943 		};
944 
945 		return wb_writeback(wb, &work);
946 	}
947 
948 	return 0;
949 }
950 
951 static long wb_check_old_data_flush(struct bdi_writeback *wb)
952 {
953 	unsigned long expired;
954 	long nr_pages;
955 
956 	/*
957 	 * When set to zero, disable periodic writeback
958 	 */
959 	if (!dirty_writeback_interval)
960 		return 0;
961 
962 	expired = wb->last_old_flush +
963 			msecs_to_jiffies(dirty_writeback_interval * 10);
964 	if (time_before(jiffies, expired))
965 		return 0;
966 
967 	wb->last_old_flush = jiffies;
968 	nr_pages = get_nr_dirty_pages();
969 
970 	if (nr_pages) {
971 		struct wb_writeback_work work = {
972 			.nr_pages	= nr_pages,
973 			.sync_mode	= WB_SYNC_NONE,
974 			.for_kupdate	= 1,
975 			.range_cyclic	= 1,
976 			.reason		= WB_REASON_PERIODIC,
977 		};
978 
979 		return wb_writeback(wb, &work);
980 	}
981 
982 	return 0;
983 }
984 
985 /*
986  * Retrieve work items and do the writeback they describe
987  */
988 static long wb_do_writeback(struct bdi_writeback *wb)
989 {
990 	struct backing_dev_info *bdi = wb->bdi;
991 	struct wb_writeback_work *work;
992 	long wrote = 0;
993 
994 	set_bit(BDI_writeback_running, &wb->bdi->state);
995 	while ((work = get_next_work_item(bdi)) != NULL) {
996 
997 		trace_writeback_exec(bdi, work);
998 
999 		wrote += wb_writeback(wb, work);
1000 
1001 		/*
1002 		 * Notify the caller of completion if this is a synchronous
1003 		 * work item, otherwise just free it.
1004 		 */
1005 		if (work->done)
1006 			complete(work->done);
1007 		else
1008 			kfree(work);
1009 	}
1010 
1011 	/*
1012 	 * Check for periodic writeback, kupdated() style
1013 	 */
1014 	wrote += wb_check_old_data_flush(wb);
1015 	wrote += wb_check_background_flush(wb);
1016 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1017 
1018 	return wrote;
1019 }
1020 
1021 /*
1022  * Handle writeback of dirty data for the device backed by this bdi. Also
1023  * reschedules periodically and does kupdated style flushing.
1024  */
1025 void bdi_writeback_workfn(struct work_struct *work)
1026 {
1027 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1028 						struct bdi_writeback, dwork);
1029 	struct backing_dev_info *bdi = wb->bdi;
1030 	long pages_written;
1031 
1032 	set_worker_desc("flush-%s", dev_name(bdi->dev));
1033 	current->flags |= PF_SWAPWRITE;
1034 
1035 	if (likely(!current_is_workqueue_rescuer() ||
1036 		   !test_bit(BDI_registered, &bdi->state))) {
1037 		/*
1038 		 * The normal path.  Keep writing back @bdi until its
1039 		 * work_list is empty.  Note that this path is also taken
1040 		 * if @bdi is shutting down even when we're running off the
1041 		 * rescuer as work_list needs to be drained.
1042 		 */
1043 		do {
1044 			pages_written = wb_do_writeback(wb);
1045 			trace_writeback_pages_written(pages_written);
1046 		} while (!list_empty(&bdi->work_list));
1047 	} else {
1048 		/*
1049 		 * bdi_wq can't get enough workers and we're running off
1050 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1051 		 * enough for efficient IO.
1052 		 */
1053 		pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1054 						    WB_REASON_FORKER_THREAD);
1055 		trace_writeback_pages_written(pages_written);
1056 	}
1057 
1058 	if (!list_empty(&bdi->work_list))
1059 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1060 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1061 		bdi_wakeup_thread_delayed(bdi);
1062 
1063 	current->flags &= ~PF_SWAPWRITE;
1064 }
1065 
1066 /*
1067  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1068  * the whole world.
1069  */
1070 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1071 {
1072 	struct backing_dev_info *bdi;
1073 
1074 	if (!nr_pages)
1075 		nr_pages = get_nr_dirty_pages();
1076 
1077 	rcu_read_lock();
1078 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1079 		if (!bdi_has_dirty_io(bdi))
1080 			continue;
1081 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1082 	}
1083 	rcu_read_unlock();
1084 }
1085 
1086 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1087 {
1088 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1089 		struct dentry *dentry;
1090 		const char *name = "?";
1091 
1092 		dentry = d_find_alias(inode);
1093 		if (dentry) {
1094 			spin_lock(&dentry->d_lock);
1095 			name = (const char *) dentry->d_name.name;
1096 		}
1097 		printk(KERN_DEBUG
1098 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1099 		       current->comm, task_pid_nr(current), inode->i_ino,
1100 		       name, inode->i_sb->s_id);
1101 		if (dentry) {
1102 			spin_unlock(&dentry->d_lock);
1103 			dput(dentry);
1104 		}
1105 	}
1106 }
1107 
1108 /**
1109  *	__mark_inode_dirty -	internal function
1110  *	@inode: inode to mark
1111  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1112  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1113  *  	mark_inode_dirty_sync.
1114  *
1115  * Put the inode on the super block's dirty list.
1116  *
1117  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1118  * dirty list only if it is hashed or if it refers to a blockdev.
1119  * If it was not hashed, it will never be added to the dirty list
1120  * even if it is later hashed, as it will have been marked dirty already.
1121  *
1122  * In short, make sure you hash any inodes _before_ you start marking
1123  * them dirty.
1124  *
1125  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1126  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1127  * the kernel-internal blockdev inode represents the dirtying time of the
1128  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1129  * page->mapping->host, so the page-dirtying time is recorded in the internal
1130  * blockdev inode.
1131  */
1132 void __mark_inode_dirty(struct inode *inode, int flags)
1133 {
1134 	struct super_block *sb = inode->i_sb;
1135 	struct backing_dev_info *bdi = NULL;
1136 
1137 	/*
1138 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1139 	 * dirty the inode itself
1140 	 */
1141 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1142 		trace_writeback_dirty_inode_start(inode, flags);
1143 
1144 		if (sb->s_op->dirty_inode)
1145 			sb->s_op->dirty_inode(inode, flags);
1146 
1147 		trace_writeback_dirty_inode(inode, flags);
1148 	}
1149 
1150 	/*
1151 	 * make sure that changes are seen by all cpus before we test i_state
1152 	 * -- mikulas
1153 	 */
1154 	smp_mb();
1155 
1156 	/* avoid the locking if we can */
1157 	if ((inode->i_state & flags) == flags)
1158 		return;
1159 
1160 	if (unlikely(block_dump))
1161 		block_dump___mark_inode_dirty(inode);
1162 
1163 	spin_lock(&inode->i_lock);
1164 	if ((inode->i_state & flags) != flags) {
1165 		const int was_dirty = inode->i_state & I_DIRTY;
1166 
1167 		inode->i_state |= flags;
1168 
1169 		/*
1170 		 * If the inode is being synced, just update its dirty state.
1171 		 * The unlocker will place the inode on the appropriate
1172 		 * superblock list, based upon its state.
1173 		 */
1174 		if (inode->i_state & I_SYNC)
1175 			goto out_unlock_inode;
1176 
1177 		/*
1178 		 * Only add valid (hashed) inodes to the superblock's
1179 		 * dirty list.  Add blockdev inodes as well.
1180 		 */
1181 		if (!S_ISBLK(inode->i_mode)) {
1182 			if (inode_unhashed(inode))
1183 				goto out_unlock_inode;
1184 		}
1185 		if (inode->i_state & I_FREEING)
1186 			goto out_unlock_inode;
1187 
1188 		/*
1189 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1190 		 * reposition it (that would break b_dirty time-ordering).
1191 		 */
1192 		if (!was_dirty) {
1193 			bool wakeup_bdi = false;
1194 			bdi = inode_to_bdi(inode);
1195 
1196 			spin_unlock(&inode->i_lock);
1197 			spin_lock(&bdi->wb.list_lock);
1198 			if (bdi_cap_writeback_dirty(bdi)) {
1199 				WARN(!test_bit(BDI_registered, &bdi->state),
1200 				     "bdi-%s not registered\n", bdi->name);
1201 
1202 				/*
1203 				 * If this is the first dirty inode for this
1204 				 * bdi, we have to wake-up the corresponding
1205 				 * bdi thread to make sure background
1206 				 * write-back happens later.
1207 				 */
1208 				if (!wb_has_dirty_io(&bdi->wb))
1209 					wakeup_bdi = true;
1210 			}
1211 
1212 			inode->dirtied_when = jiffies;
1213 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1214 			spin_unlock(&bdi->wb.list_lock);
1215 
1216 			if (wakeup_bdi)
1217 				bdi_wakeup_thread_delayed(bdi);
1218 			return;
1219 		}
1220 	}
1221 out_unlock_inode:
1222 	spin_unlock(&inode->i_lock);
1223 
1224 }
1225 EXPORT_SYMBOL(__mark_inode_dirty);
1226 
1227 static void wait_sb_inodes(struct super_block *sb)
1228 {
1229 	struct inode *inode, *old_inode = NULL;
1230 
1231 	/*
1232 	 * We need to be protected against the filesystem going from
1233 	 * r/o to r/w or vice versa.
1234 	 */
1235 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1236 
1237 	spin_lock(&inode_sb_list_lock);
1238 
1239 	/*
1240 	 * Data integrity sync. Must wait for all pages under writeback,
1241 	 * because there may have been pages dirtied before our sync
1242 	 * call, but which had writeout started before we write it out.
1243 	 * In which case, the inode may not be on the dirty list, but
1244 	 * we still have to wait for that writeout.
1245 	 */
1246 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1247 		struct address_space *mapping = inode->i_mapping;
1248 
1249 		spin_lock(&inode->i_lock);
1250 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1251 		    (mapping->nrpages == 0)) {
1252 			spin_unlock(&inode->i_lock);
1253 			continue;
1254 		}
1255 		__iget(inode);
1256 		spin_unlock(&inode->i_lock);
1257 		spin_unlock(&inode_sb_list_lock);
1258 
1259 		/*
1260 		 * We hold a reference to 'inode' so it couldn't have been
1261 		 * removed from s_inodes list while we dropped the
1262 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1263 		 * be holding the last reference and we cannot iput it under
1264 		 * inode_sb_list_lock. So we keep the reference and iput it
1265 		 * later.
1266 		 */
1267 		iput(old_inode);
1268 		old_inode = inode;
1269 
1270 		filemap_fdatawait(mapping);
1271 
1272 		cond_resched();
1273 
1274 		spin_lock(&inode_sb_list_lock);
1275 	}
1276 	spin_unlock(&inode_sb_list_lock);
1277 	iput(old_inode);
1278 }
1279 
1280 /**
1281  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1282  * @sb: the superblock
1283  * @nr: the number of pages to write
1284  * @reason: reason why some writeback work initiated
1285  *
1286  * Start writeback on some inodes on this super_block. No guarantees are made
1287  * on how many (if any) will be written, and this function does not wait
1288  * for IO completion of submitted IO.
1289  */
1290 void writeback_inodes_sb_nr(struct super_block *sb,
1291 			    unsigned long nr,
1292 			    enum wb_reason reason)
1293 {
1294 	DECLARE_COMPLETION_ONSTACK(done);
1295 	struct wb_writeback_work work = {
1296 		.sb			= sb,
1297 		.sync_mode		= WB_SYNC_NONE,
1298 		.tagged_writepages	= 1,
1299 		.done			= &done,
1300 		.nr_pages		= nr,
1301 		.reason			= reason,
1302 	};
1303 
1304 	if (sb->s_bdi == &noop_backing_dev_info)
1305 		return;
1306 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1307 	bdi_queue_work(sb->s_bdi, &work);
1308 	wait_for_completion(&done);
1309 }
1310 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1311 
1312 /**
1313  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1314  * @sb: the superblock
1315  * @reason: reason why some writeback work was initiated
1316  *
1317  * Start writeback on some inodes on this super_block. No guarantees are made
1318  * on how many (if any) will be written, and this function does not wait
1319  * for IO completion of submitted IO.
1320  */
1321 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1322 {
1323 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1324 }
1325 EXPORT_SYMBOL(writeback_inodes_sb);
1326 
1327 /**
1328  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1329  * @sb: the superblock
1330  * @nr: the number of pages to write
1331  * @reason: the reason of writeback
1332  *
1333  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1334  * Returns 1 if writeback was started, 0 if not.
1335  */
1336 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1337 				  unsigned long nr,
1338 				  enum wb_reason reason)
1339 {
1340 	if (writeback_in_progress(sb->s_bdi))
1341 		return 1;
1342 
1343 	if (!down_read_trylock(&sb->s_umount))
1344 		return 0;
1345 
1346 	writeback_inodes_sb_nr(sb, nr, reason);
1347 	up_read(&sb->s_umount);
1348 	return 1;
1349 }
1350 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1351 
1352 /**
1353  * try_to_writeback_inodes_sb - try to start writeback if none underway
1354  * @sb: the superblock
1355  * @reason: reason why some writeback work was initiated
1356  *
1357  * Implement by try_to_writeback_inodes_sb_nr()
1358  * Returns 1 if writeback was started, 0 if not.
1359  */
1360 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1361 {
1362 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1363 }
1364 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1365 
1366 /**
1367  * sync_inodes_sb	-	sync sb inode pages
1368  * @sb: the superblock
1369  *
1370  * This function writes and waits on any dirty inode belonging to this
1371  * super_block.
1372  */
1373 void sync_inodes_sb(struct super_block *sb)
1374 {
1375 	DECLARE_COMPLETION_ONSTACK(done);
1376 	struct wb_writeback_work work = {
1377 		.sb		= sb,
1378 		.sync_mode	= WB_SYNC_ALL,
1379 		.nr_pages	= LONG_MAX,
1380 		.range_cyclic	= 0,
1381 		.done		= &done,
1382 		.reason		= WB_REASON_SYNC,
1383 		.for_sync	= 1,
1384 	};
1385 
1386 	/* Nothing to do? */
1387 	if (sb->s_bdi == &noop_backing_dev_info)
1388 		return;
1389 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1390 
1391 	bdi_queue_work(sb->s_bdi, &work);
1392 	wait_for_completion(&done);
1393 
1394 	wait_sb_inodes(sb);
1395 }
1396 EXPORT_SYMBOL(sync_inodes_sb);
1397 
1398 /**
1399  * write_inode_now	-	write an inode to disk
1400  * @inode: inode to write to disk
1401  * @sync: whether the write should be synchronous or not
1402  *
1403  * This function commits an inode to disk immediately if it is dirty. This is
1404  * primarily needed by knfsd.
1405  *
1406  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1407  */
1408 int write_inode_now(struct inode *inode, int sync)
1409 {
1410 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1411 	struct writeback_control wbc = {
1412 		.nr_to_write = LONG_MAX,
1413 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1414 		.range_start = 0,
1415 		.range_end = LLONG_MAX,
1416 	};
1417 
1418 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1419 		wbc.nr_to_write = 0;
1420 
1421 	might_sleep();
1422 	return writeback_single_inode(inode, wb, &wbc);
1423 }
1424 EXPORT_SYMBOL(write_inode_now);
1425 
1426 /**
1427  * sync_inode - write an inode and its pages to disk.
1428  * @inode: the inode to sync
1429  * @wbc: controls the writeback mode
1430  *
1431  * sync_inode() will write an inode and its pages to disk.  It will also
1432  * correctly update the inode on its superblock's dirty inode lists and will
1433  * update inode->i_state.
1434  *
1435  * The caller must have a ref on the inode.
1436  */
1437 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1438 {
1439 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1440 }
1441 EXPORT_SYMBOL(sync_inode);
1442 
1443 /**
1444  * sync_inode_metadata - write an inode to disk
1445  * @inode: the inode to sync
1446  * @wait: wait for I/O to complete.
1447  *
1448  * Write an inode to disk and adjust its dirty state after completion.
1449  *
1450  * Note: only writes the actual inode, no associated data or other metadata.
1451  */
1452 int sync_inode_metadata(struct inode *inode, int wait)
1453 {
1454 	struct writeback_control wbc = {
1455 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1456 		.nr_to_write = 0, /* metadata-only */
1457 	};
1458 
1459 	return sync_inode(inode, &wbc);
1460 }
1461 EXPORT_SYMBOL(sync_inode_metadata);
1462