xref: /linux/fs/fs-writeback.c (revision 363737d66427c18edb321a06933ac999d9ce5d7f)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	enum wb_reason reason;		/* why was writeback initiated? */
50 
51 	struct list_head list;		/* pending work list */
52 	struct completion *done;	/* set if the caller waits */
53 };
54 
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59 
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 	return test_bit(BDI_writeback_running, &bdi->state);
70 }
71 
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 	struct super_block *sb = inode->i_sb;
75 
76 	if (strcmp(sb->s_type->name, "bdev") == 0)
77 		return inode->i_mapping->backing_dev_info;
78 
79 	return sb->s_bdi;
80 }
81 
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84 	return list_entry(head, struct inode, i_wb_list);
85 }
86 
87 /*
88  * Include the creation of the trace points after defining the
89  * wb_writeback_work structure and inline functions so that the definition
90  * remains local to this file.
91  */
92 #define CREATE_TRACE_POINTS
93 #include <trace/events/writeback.h>
94 
95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
96 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
97 {
98 	if (bdi->wb.task) {
99 		wake_up_process(bdi->wb.task);
100 	} else {
101 		/*
102 		 * The bdi thread isn't there, wake up the forker thread which
103 		 * will create and run it.
104 		 */
105 		wake_up_process(default_backing_dev_info.wb.task);
106 	}
107 }
108 
109 static void bdi_queue_work(struct backing_dev_info *bdi,
110 			   struct wb_writeback_work *work)
111 {
112 	trace_writeback_queue(bdi, work);
113 
114 	spin_lock_bh(&bdi->wb_lock);
115 	list_add_tail(&work->list, &bdi->work_list);
116 	if (!bdi->wb.task)
117 		trace_writeback_nothread(bdi, work);
118 	bdi_wakeup_flusher(bdi);
119 	spin_unlock_bh(&bdi->wb_lock);
120 }
121 
122 static void
123 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
124 		      bool range_cyclic, enum wb_reason reason)
125 {
126 	struct wb_writeback_work *work;
127 
128 	/*
129 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
130 	 * wakeup the thread for old dirty data writeback
131 	 */
132 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
133 	if (!work) {
134 		if (bdi->wb.task) {
135 			trace_writeback_nowork(bdi);
136 			wake_up_process(bdi->wb.task);
137 		}
138 		return;
139 	}
140 
141 	work->sync_mode	= WB_SYNC_NONE;
142 	work->nr_pages	= nr_pages;
143 	work->range_cyclic = range_cyclic;
144 	work->reason	= reason;
145 
146 	bdi_queue_work(bdi, work);
147 }
148 
149 /**
150  * bdi_start_writeback - start writeback
151  * @bdi: the backing device to write from
152  * @nr_pages: the number of pages to write
153  * @reason: reason why some writeback work was initiated
154  *
155  * Description:
156  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
157  *   started when this function returns, we make no guarantees on
158  *   completion. Caller need not hold sb s_umount semaphore.
159  *
160  */
161 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
162 			enum wb_reason reason)
163 {
164 	__bdi_start_writeback(bdi, nr_pages, true, reason);
165 }
166 
167 /**
168  * bdi_start_background_writeback - start background writeback
169  * @bdi: the backing device to write from
170  *
171  * Description:
172  *   This makes sure WB_SYNC_NONE background writeback happens. When
173  *   this function returns, it is only guaranteed that for given BDI
174  *   some IO is happening if we are over background dirty threshold.
175  *   Caller need not hold sb s_umount semaphore.
176  */
177 void bdi_start_background_writeback(struct backing_dev_info *bdi)
178 {
179 	/*
180 	 * We just wake up the flusher thread. It will perform background
181 	 * writeback as soon as there is no other work to do.
182 	 */
183 	trace_writeback_wake_background(bdi);
184 	spin_lock_bh(&bdi->wb_lock);
185 	bdi_wakeup_flusher(bdi);
186 	spin_unlock_bh(&bdi->wb_lock);
187 }
188 
189 /*
190  * Remove the inode from the writeback list it is on.
191  */
192 void inode_wb_list_del(struct inode *inode)
193 {
194 	struct backing_dev_info *bdi = inode_to_bdi(inode);
195 
196 	spin_lock(&bdi->wb.list_lock);
197 	list_del_init(&inode->i_wb_list);
198 	spin_unlock(&bdi->wb.list_lock);
199 }
200 
201 /*
202  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
203  * furthest end of its superblock's dirty-inode list.
204  *
205  * Before stamping the inode's ->dirtied_when, we check to see whether it is
206  * already the most-recently-dirtied inode on the b_dirty list.  If that is
207  * the case then the inode must have been redirtied while it was being written
208  * out and we don't reset its dirtied_when.
209  */
210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
211 {
212 	assert_spin_locked(&wb->list_lock);
213 	if (!list_empty(&wb->b_dirty)) {
214 		struct inode *tail;
215 
216 		tail = wb_inode(wb->b_dirty.next);
217 		if (time_before(inode->dirtied_when, tail->dirtied_when))
218 			inode->dirtied_when = jiffies;
219 	}
220 	list_move(&inode->i_wb_list, &wb->b_dirty);
221 }
222 
223 /*
224  * requeue inode for re-scanning after bdi->b_io list is exhausted.
225  */
226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
227 {
228 	assert_spin_locked(&wb->list_lock);
229 	list_move(&inode->i_wb_list, &wb->b_more_io);
230 }
231 
232 static void inode_sync_complete(struct inode *inode)
233 {
234 	inode->i_state &= ~I_SYNC;
235 	/* Waiters must see I_SYNC cleared before being woken up */
236 	smp_mb();
237 	wake_up_bit(&inode->i_state, __I_SYNC);
238 }
239 
240 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
241 {
242 	bool ret = time_after(inode->dirtied_when, t);
243 #ifndef CONFIG_64BIT
244 	/*
245 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
246 	 * It _appears_ to be in the future, but is actually in distant past.
247 	 * This test is necessary to prevent such wrapped-around relative times
248 	 * from permanently stopping the whole bdi writeback.
249 	 */
250 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
251 #endif
252 	return ret;
253 }
254 
255 /*
256  * Move expired (dirtied after work->older_than_this) dirty inodes from
257  * @delaying_queue to @dispatch_queue.
258  */
259 static int move_expired_inodes(struct list_head *delaying_queue,
260 			       struct list_head *dispatch_queue,
261 			       struct wb_writeback_work *work)
262 {
263 	LIST_HEAD(tmp);
264 	struct list_head *pos, *node;
265 	struct super_block *sb = NULL;
266 	struct inode *inode;
267 	int do_sb_sort = 0;
268 	int moved = 0;
269 
270 	while (!list_empty(delaying_queue)) {
271 		inode = wb_inode(delaying_queue->prev);
272 		if (work->older_than_this &&
273 		    inode_dirtied_after(inode, *work->older_than_this))
274 			break;
275 		if (sb && sb != inode->i_sb)
276 			do_sb_sort = 1;
277 		sb = inode->i_sb;
278 		list_move(&inode->i_wb_list, &tmp);
279 		moved++;
280 	}
281 
282 	/* just one sb in list, splice to dispatch_queue and we're done */
283 	if (!do_sb_sort) {
284 		list_splice(&tmp, dispatch_queue);
285 		goto out;
286 	}
287 
288 	/* Move inodes from one superblock together */
289 	while (!list_empty(&tmp)) {
290 		sb = wb_inode(tmp.prev)->i_sb;
291 		list_for_each_prev_safe(pos, node, &tmp) {
292 			inode = wb_inode(pos);
293 			if (inode->i_sb == sb)
294 				list_move(&inode->i_wb_list, dispatch_queue);
295 		}
296 	}
297 out:
298 	return moved;
299 }
300 
301 /*
302  * Queue all expired dirty inodes for io, eldest first.
303  * Before
304  *         newly dirtied     b_dirty    b_io    b_more_io
305  *         =============>    gf         edc     BA
306  * After
307  *         newly dirtied     b_dirty    b_io    b_more_io
308  *         =============>    g          fBAedc
309  *                                           |
310  *                                           +--> dequeue for IO
311  */
312 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
313 {
314 	int moved;
315 	assert_spin_locked(&wb->list_lock);
316 	list_splice_init(&wb->b_more_io, &wb->b_io);
317 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
318 	trace_writeback_queue_io(wb, work, moved);
319 }
320 
321 static int write_inode(struct inode *inode, struct writeback_control *wbc)
322 {
323 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
324 		return inode->i_sb->s_op->write_inode(inode, wbc);
325 	return 0;
326 }
327 
328 /*
329  * Wait for writeback on an inode to complete. Called with i_lock held.
330  * Caller must make sure inode cannot go away when we drop i_lock.
331  */
332 static void __inode_wait_for_writeback(struct inode *inode)
333 	__releases(inode->i_lock)
334 	__acquires(inode->i_lock)
335 {
336 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
337 	wait_queue_head_t *wqh;
338 
339 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
340 	while (inode->i_state & I_SYNC) {
341 		spin_unlock(&inode->i_lock);
342 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
343 		spin_lock(&inode->i_lock);
344 	}
345 }
346 
347 /*
348  * Wait for writeback on an inode to complete. Caller must have inode pinned.
349  */
350 void inode_wait_for_writeback(struct inode *inode)
351 {
352 	spin_lock(&inode->i_lock);
353 	__inode_wait_for_writeback(inode);
354 	spin_unlock(&inode->i_lock);
355 }
356 
357 /*
358  * Sleep until I_SYNC is cleared. This function must be called with i_lock
359  * held and drops it. It is aimed for callers not holding any inode reference
360  * so once i_lock is dropped, inode can go away.
361  */
362 static void inode_sleep_on_writeback(struct inode *inode)
363 	__releases(inode->i_lock)
364 {
365 	DEFINE_WAIT(wait);
366 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
367 	int sleep;
368 
369 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
370 	sleep = inode->i_state & I_SYNC;
371 	spin_unlock(&inode->i_lock);
372 	if (sleep)
373 		schedule();
374 	finish_wait(wqh, &wait);
375 }
376 
377 /*
378  * Find proper writeback list for the inode depending on its current state and
379  * possibly also change of its state while we were doing writeback.  Here we
380  * handle things such as livelock prevention or fairness of writeback among
381  * inodes. This function can be called only by flusher thread - noone else
382  * processes all inodes in writeback lists and requeueing inodes behind flusher
383  * thread's back can have unexpected consequences.
384  */
385 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
386 			  struct writeback_control *wbc)
387 {
388 	if (inode->i_state & I_FREEING)
389 		return;
390 
391 	/*
392 	 * Sync livelock prevention. Each inode is tagged and synced in one
393 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
394 	 * the dirty time to prevent enqueue and sync it again.
395 	 */
396 	if ((inode->i_state & I_DIRTY) &&
397 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
398 		inode->dirtied_when = jiffies;
399 
400 	if (wbc->pages_skipped) {
401 		/*
402 		 * writeback is not making progress due to locked
403 		 * buffers. Skip this inode for now.
404 		 */
405 		redirty_tail(inode, wb);
406 		return;
407 	}
408 
409 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
410 		/*
411 		 * We didn't write back all the pages.  nfs_writepages()
412 		 * sometimes bales out without doing anything.
413 		 */
414 		if (wbc->nr_to_write <= 0) {
415 			/* Slice used up. Queue for next turn. */
416 			requeue_io(inode, wb);
417 		} else {
418 			/*
419 			 * Writeback blocked by something other than
420 			 * congestion. Delay the inode for some time to
421 			 * avoid spinning on the CPU (100% iowait)
422 			 * retrying writeback of the dirty page/inode
423 			 * that cannot be performed immediately.
424 			 */
425 			redirty_tail(inode, wb);
426 		}
427 	} else if (inode->i_state & I_DIRTY) {
428 		/*
429 		 * Filesystems can dirty the inode during writeback operations,
430 		 * such as delayed allocation during submission or metadata
431 		 * updates after data IO completion.
432 		 */
433 		redirty_tail(inode, wb);
434 	} else {
435 		/* The inode is clean. Remove from writeback lists. */
436 		list_del_init(&inode->i_wb_list);
437 	}
438 }
439 
440 /*
441  * Write out an inode and its dirty pages. Do not update the writeback list
442  * linkage. That is left to the caller. The caller is also responsible for
443  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
444  */
445 static int
446 __writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
447 			 struct writeback_control *wbc)
448 {
449 	struct address_space *mapping = inode->i_mapping;
450 	long nr_to_write = wbc->nr_to_write;
451 	unsigned dirty;
452 	int ret;
453 
454 	WARN_ON(!(inode->i_state & I_SYNC));
455 
456 	ret = do_writepages(mapping, wbc);
457 
458 	/*
459 	 * Make sure to wait on the data before writing out the metadata.
460 	 * This is important for filesystems that modify metadata on data
461 	 * I/O completion.
462 	 */
463 	if (wbc->sync_mode == WB_SYNC_ALL) {
464 		int err = filemap_fdatawait(mapping);
465 		if (ret == 0)
466 			ret = err;
467 	}
468 
469 	/*
470 	 * Some filesystems may redirty the inode during the writeback
471 	 * due to delalloc, clear dirty metadata flags right before
472 	 * write_inode()
473 	 */
474 	spin_lock(&inode->i_lock);
475 	/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
476 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
477 		inode->i_state &= ~I_DIRTY_PAGES;
478 	dirty = inode->i_state & I_DIRTY;
479 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
480 	spin_unlock(&inode->i_lock);
481 	/* Don't write the inode if only I_DIRTY_PAGES was set */
482 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
483 		int err = write_inode(inode, wbc);
484 		if (ret == 0)
485 			ret = err;
486 	}
487 	trace_writeback_single_inode(inode, wbc, nr_to_write);
488 	return ret;
489 }
490 
491 /*
492  * Write out an inode's dirty pages. Either the caller has an active reference
493  * on the inode or the inode has I_WILL_FREE set.
494  *
495  * This function is designed to be called for writing back one inode which
496  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
497  * and does more profound writeback list handling in writeback_sb_inodes().
498  */
499 static int
500 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
501 		       struct writeback_control *wbc)
502 {
503 	int ret = 0;
504 
505 	spin_lock(&inode->i_lock);
506 	if (!atomic_read(&inode->i_count))
507 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
508 	else
509 		WARN_ON(inode->i_state & I_WILL_FREE);
510 
511 	if (inode->i_state & I_SYNC) {
512 		if (wbc->sync_mode != WB_SYNC_ALL)
513 			goto out;
514 		/*
515 		 * It's a data-integrity sync. We must wait. Since callers hold
516 		 * inode reference or inode has I_WILL_FREE set, it cannot go
517 		 * away under us.
518 		 */
519 		__inode_wait_for_writeback(inode);
520 	}
521 	WARN_ON(inode->i_state & I_SYNC);
522 	/*
523 	 * Skip inode if it is clean. We don't want to mess with writeback
524 	 * lists in this function since flusher thread may be doing for example
525 	 * sync in parallel and if we move the inode, it could get skipped. So
526 	 * here we make sure inode is on some writeback list and leave it there
527 	 * unless we have completely cleaned the inode.
528 	 */
529 	if (!(inode->i_state & I_DIRTY))
530 		goto out;
531 	inode->i_state |= I_SYNC;
532 	spin_unlock(&inode->i_lock);
533 
534 	ret = __writeback_single_inode(inode, wb, wbc);
535 
536 	spin_lock(&wb->list_lock);
537 	spin_lock(&inode->i_lock);
538 	/*
539 	 * If inode is clean, remove it from writeback lists. Otherwise don't
540 	 * touch it. See comment above for explanation.
541 	 */
542 	if (!(inode->i_state & I_DIRTY))
543 		list_del_init(&inode->i_wb_list);
544 	spin_unlock(&wb->list_lock);
545 	inode_sync_complete(inode);
546 out:
547 	spin_unlock(&inode->i_lock);
548 	return ret;
549 }
550 
551 static long writeback_chunk_size(struct backing_dev_info *bdi,
552 				 struct wb_writeback_work *work)
553 {
554 	long pages;
555 
556 	/*
557 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
558 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
559 	 * here avoids calling into writeback_inodes_wb() more than once.
560 	 *
561 	 * The intended call sequence for WB_SYNC_ALL writeback is:
562 	 *
563 	 *      wb_writeback()
564 	 *          writeback_sb_inodes()       <== called only once
565 	 *              write_cache_pages()     <== called once for each inode
566 	 *                   (quickly) tag currently dirty pages
567 	 *                   (maybe slowly) sync all tagged pages
568 	 */
569 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
570 		pages = LONG_MAX;
571 	else {
572 		pages = min(bdi->avg_write_bandwidth / 2,
573 			    global_dirty_limit / DIRTY_SCOPE);
574 		pages = min(pages, work->nr_pages);
575 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
576 				   MIN_WRITEBACK_PAGES);
577 	}
578 
579 	return pages;
580 }
581 
582 /*
583  * Write a portion of b_io inodes which belong to @sb.
584  *
585  * If @only_this_sb is true, then find and write all such
586  * inodes. Otherwise write only ones which go sequentially
587  * in reverse order.
588  *
589  * Return the number of pages and/or inodes written.
590  */
591 static long writeback_sb_inodes(struct super_block *sb,
592 				struct bdi_writeback *wb,
593 				struct wb_writeback_work *work)
594 {
595 	struct writeback_control wbc = {
596 		.sync_mode		= work->sync_mode,
597 		.tagged_writepages	= work->tagged_writepages,
598 		.for_kupdate		= work->for_kupdate,
599 		.for_background		= work->for_background,
600 		.range_cyclic		= work->range_cyclic,
601 		.range_start		= 0,
602 		.range_end		= LLONG_MAX,
603 	};
604 	unsigned long start_time = jiffies;
605 	long write_chunk;
606 	long wrote = 0;  /* count both pages and inodes */
607 
608 	while (!list_empty(&wb->b_io)) {
609 		struct inode *inode = wb_inode(wb->b_io.prev);
610 
611 		if (inode->i_sb != sb) {
612 			if (work->sb) {
613 				/*
614 				 * We only want to write back data for this
615 				 * superblock, move all inodes not belonging
616 				 * to it back onto the dirty list.
617 				 */
618 				redirty_tail(inode, wb);
619 				continue;
620 			}
621 
622 			/*
623 			 * The inode belongs to a different superblock.
624 			 * Bounce back to the caller to unpin this and
625 			 * pin the next superblock.
626 			 */
627 			break;
628 		}
629 
630 		/*
631 		 * Don't bother with new inodes or inodes beeing freed, first
632 		 * kind does not need peridic writeout yet, and for the latter
633 		 * kind writeout is handled by the freer.
634 		 */
635 		spin_lock(&inode->i_lock);
636 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
637 			spin_unlock(&inode->i_lock);
638 			redirty_tail(inode, wb);
639 			continue;
640 		}
641 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
642 			/*
643 			 * If this inode is locked for writeback and we are not
644 			 * doing writeback-for-data-integrity, move it to
645 			 * b_more_io so that writeback can proceed with the
646 			 * other inodes on s_io.
647 			 *
648 			 * We'll have another go at writing back this inode
649 			 * when we completed a full scan of b_io.
650 			 */
651 			spin_unlock(&inode->i_lock);
652 			requeue_io(inode, wb);
653 			trace_writeback_sb_inodes_requeue(inode);
654 			continue;
655 		}
656 		spin_unlock(&wb->list_lock);
657 
658 		/*
659 		 * We already requeued the inode if it had I_SYNC set and we
660 		 * are doing WB_SYNC_NONE writeback. So this catches only the
661 		 * WB_SYNC_ALL case.
662 		 */
663 		if (inode->i_state & I_SYNC) {
664 			/* Wait for I_SYNC. This function drops i_lock... */
665 			inode_sleep_on_writeback(inode);
666 			/* Inode may be gone, start again */
667 			continue;
668 		}
669 		inode->i_state |= I_SYNC;
670 		spin_unlock(&inode->i_lock);
671 
672 		write_chunk = writeback_chunk_size(wb->bdi, work);
673 		wbc.nr_to_write = write_chunk;
674 		wbc.pages_skipped = 0;
675 
676 		/*
677 		 * We use I_SYNC to pin the inode in memory. While it is set
678 		 * evict_inode() will wait so the inode cannot be freed.
679 		 */
680 		__writeback_single_inode(inode, wb, &wbc);
681 
682 		work->nr_pages -= write_chunk - wbc.nr_to_write;
683 		wrote += write_chunk - wbc.nr_to_write;
684 		spin_lock(&wb->list_lock);
685 		spin_lock(&inode->i_lock);
686 		if (!(inode->i_state & I_DIRTY))
687 			wrote++;
688 		requeue_inode(inode, wb, &wbc);
689 		inode_sync_complete(inode);
690 		spin_unlock(&inode->i_lock);
691 		cond_resched_lock(&wb->list_lock);
692 		/*
693 		 * bail out to wb_writeback() often enough to check
694 		 * background threshold and other termination conditions.
695 		 */
696 		if (wrote) {
697 			if (time_is_before_jiffies(start_time + HZ / 10UL))
698 				break;
699 			if (work->nr_pages <= 0)
700 				break;
701 		}
702 	}
703 	return wrote;
704 }
705 
706 static long __writeback_inodes_wb(struct bdi_writeback *wb,
707 				  struct wb_writeback_work *work)
708 {
709 	unsigned long start_time = jiffies;
710 	long wrote = 0;
711 
712 	while (!list_empty(&wb->b_io)) {
713 		struct inode *inode = wb_inode(wb->b_io.prev);
714 		struct super_block *sb = inode->i_sb;
715 
716 		if (!grab_super_passive(sb)) {
717 			/*
718 			 * grab_super_passive() may fail consistently due to
719 			 * s_umount being grabbed by someone else. Don't use
720 			 * requeue_io() to avoid busy retrying the inode/sb.
721 			 */
722 			redirty_tail(inode, wb);
723 			continue;
724 		}
725 		wrote += writeback_sb_inodes(sb, wb, work);
726 		drop_super(sb);
727 
728 		/* refer to the same tests at the end of writeback_sb_inodes */
729 		if (wrote) {
730 			if (time_is_before_jiffies(start_time + HZ / 10UL))
731 				break;
732 			if (work->nr_pages <= 0)
733 				break;
734 		}
735 	}
736 	/* Leave any unwritten inodes on b_io */
737 	return wrote;
738 }
739 
740 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
741 				enum wb_reason reason)
742 {
743 	struct wb_writeback_work work = {
744 		.nr_pages	= nr_pages,
745 		.sync_mode	= WB_SYNC_NONE,
746 		.range_cyclic	= 1,
747 		.reason		= reason,
748 	};
749 
750 	spin_lock(&wb->list_lock);
751 	if (list_empty(&wb->b_io))
752 		queue_io(wb, &work);
753 	__writeback_inodes_wb(wb, &work);
754 	spin_unlock(&wb->list_lock);
755 
756 	return nr_pages - work.nr_pages;
757 }
758 
759 static bool over_bground_thresh(struct backing_dev_info *bdi)
760 {
761 	unsigned long background_thresh, dirty_thresh;
762 
763 	global_dirty_limits(&background_thresh, &dirty_thresh);
764 
765 	if (global_page_state(NR_FILE_DIRTY) +
766 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
767 		return true;
768 
769 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
770 				bdi_dirty_limit(bdi, background_thresh))
771 		return true;
772 
773 	return false;
774 }
775 
776 /*
777  * Called under wb->list_lock. If there are multiple wb per bdi,
778  * only the flusher working on the first wb should do it.
779  */
780 static void wb_update_bandwidth(struct bdi_writeback *wb,
781 				unsigned long start_time)
782 {
783 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
784 }
785 
786 /*
787  * Explicit flushing or periodic writeback of "old" data.
788  *
789  * Define "old": the first time one of an inode's pages is dirtied, we mark the
790  * dirtying-time in the inode's address_space.  So this periodic writeback code
791  * just walks the superblock inode list, writing back any inodes which are
792  * older than a specific point in time.
793  *
794  * Try to run once per dirty_writeback_interval.  But if a writeback event
795  * takes longer than a dirty_writeback_interval interval, then leave a
796  * one-second gap.
797  *
798  * older_than_this takes precedence over nr_to_write.  So we'll only write back
799  * all dirty pages if they are all attached to "old" mappings.
800  */
801 static long wb_writeback(struct bdi_writeback *wb,
802 			 struct wb_writeback_work *work)
803 {
804 	unsigned long wb_start = jiffies;
805 	long nr_pages = work->nr_pages;
806 	unsigned long oldest_jif;
807 	struct inode *inode;
808 	long progress;
809 
810 	oldest_jif = jiffies;
811 	work->older_than_this = &oldest_jif;
812 
813 	spin_lock(&wb->list_lock);
814 	for (;;) {
815 		/*
816 		 * Stop writeback when nr_pages has been consumed
817 		 */
818 		if (work->nr_pages <= 0)
819 			break;
820 
821 		/*
822 		 * Background writeout and kupdate-style writeback may
823 		 * run forever. Stop them if there is other work to do
824 		 * so that e.g. sync can proceed. They'll be restarted
825 		 * after the other works are all done.
826 		 */
827 		if ((work->for_background || work->for_kupdate) &&
828 		    !list_empty(&wb->bdi->work_list))
829 			break;
830 
831 		/*
832 		 * For background writeout, stop when we are below the
833 		 * background dirty threshold
834 		 */
835 		if (work->for_background && !over_bground_thresh(wb->bdi))
836 			break;
837 
838 		/*
839 		 * Kupdate and background works are special and we want to
840 		 * include all inodes that need writing. Livelock avoidance is
841 		 * handled by these works yielding to any other work so we are
842 		 * safe.
843 		 */
844 		if (work->for_kupdate) {
845 			oldest_jif = jiffies -
846 				msecs_to_jiffies(dirty_expire_interval * 10);
847 		} else if (work->for_background)
848 			oldest_jif = jiffies;
849 
850 		trace_writeback_start(wb->bdi, work);
851 		if (list_empty(&wb->b_io))
852 			queue_io(wb, work);
853 		if (work->sb)
854 			progress = writeback_sb_inodes(work->sb, wb, work);
855 		else
856 			progress = __writeback_inodes_wb(wb, work);
857 		trace_writeback_written(wb->bdi, work);
858 
859 		wb_update_bandwidth(wb, wb_start);
860 
861 		/*
862 		 * Did we write something? Try for more
863 		 *
864 		 * Dirty inodes are moved to b_io for writeback in batches.
865 		 * The completion of the current batch does not necessarily
866 		 * mean the overall work is done. So we keep looping as long
867 		 * as made some progress on cleaning pages or inodes.
868 		 */
869 		if (progress)
870 			continue;
871 		/*
872 		 * No more inodes for IO, bail
873 		 */
874 		if (list_empty(&wb->b_more_io))
875 			break;
876 		/*
877 		 * Nothing written. Wait for some inode to
878 		 * become available for writeback. Otherwise
879 		 * we'll just busyloop.
880 		 */
881 		if (!list_empty(&wb->b_more_io))  {
882 			trace_writeback_wait(wb->bdi, work);
883 			inode = wb_inode(wb->b_more_io.prev);
884 			spin_lock(&inode->i_lock);
885 			spin_unlock(&wb->list_lock);
886 			/* This function drops i_lock... */
887 			inode_sleep_on_writeback(inode);
888 			spin_lock(&wb->list_lock);
889 		}
890 	}
891 	spin_unlock(&wb->list_lock);
892 
893 	return nr_pages - work->nr_pages;
894 }
895 
896 /*
897  * Return the next wb_writeback_work struct that hasn't been processed yet.
898  */
899 static struct wb_writeback_work *
900 get_next_work_item(struct backing_dev_info *bdi)
901 {
902 	struct wb_writeback_work *work = NULL;
903 
904 	spin_lock_bh(&bdi->wb_lock);
905 	if (!list_empty(&bdi->work_list)) {
906 		work = list_entry(bdi->work_list.next,
907 				  struct wb_writeback_work, list);
908 		list_del_init(&work->list);
909 	}
910 	spin_unlock_bh(&bdi->wb_lock);
911 	return work;
912 }
913 
914 /*
915  * Add in the number of potentially dirty inodes, because each inode
916  * write can dirty pagecache in the underlying blockdev.
917  */
918 static unsigned long get_nr_dirty_pages(void)
919 {
920 	return global_page_state(NR_FILE_DIRTY) +
921 		global_page_state(NR_UNSTABLE_NFS) +
922 		get_nr_dirty_inodes();
923 }
924 
925 static long wb_check_background_flush(struct bdi_writeback *wb)
926 {
927 	if (over_bground_thresh(wb->bdi)) {
928 
929 		struct wb_writeback_work work = {
930 			.nr_pages	= LONG_MAX,
931 			.sync_mode	= WB_SYNC_NONE,
932 			.for_background	= 1,
933 			.range_cyclic	= 1,
934 			.reason		= WB_REASON_BACKGROUND,
935 		};
936 
937 		return wb_writeback(wb, &work);
938 	}
939 
940 	return 0;
941 }
942 
943 static long wb_check_old_data_flush(struct bdi_writeback *wb)
944 {
945 	unsigned long expired;
946 	long nr_pages;
947 
948 	/*
949 	 * When set to zero, disable periodic writeback
950 	 */
951 	if (!dirty_writeback_interval)
952 		return 0;
953 
954 	expired = wb->last_old_flush +
955 			msecs_to_jiffies(dirty_writeback_interval * 10);
956 	if (time_before(jiffies, expired))
957 		return 0;
958 
959 	wb->last_old_flush = jiffies;
960 	nr_pages = get_nr_dirty_pages();
961 
962 	if (nr_pages) {
963 		struct wb_writeback_work work = {
964 			.nr_pages	= nr_pages,
965 			.sync_mode	= WB_SYNC_NONE,
966 			.for_kupdate	= 1,
967 			.range_cyclic	= 1,
968 			.reason		= WB_REASON_PERIODIC,
969 		};
970 
971 		return wb_writeback(wb, &work);
972 	}
973 
974 	return 0;
975 }
976 
977 /*
978  * Retrieve work items and do the writeback they describe
979  */
980 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
981 {
982 	struct backing_dev_info *bdi = wb->bdi;
983 	struct wb_writeback_work *work;
984 	long wrote = 0;
985 
986 	set_bit(BDI_writeback_running, &wb->bdi->state);
987 	while ((work = get_next_work_item(bdi)) != NULL) {
988 		/*
989 		 * Override sync mode, in case we must wait for completion
990 		 * because this thread is exiting now.
991 		 */
992 		if (force_wait)
993 			work->sync_mode = WB_SYNC_ALL;
994 
995 		trace_writeback_exec(bdi, work);
996 
997 		wrote += wb_writeback(wb, work);
998 
999 		/*
1000 		 * Notify the caller of completion if this is a synchronous
1001 		 * work item, otherwise just free it.
1002 		 */
1003 		if (work->done)
1004 			complete(work->done);
1005 		else
1006 			kfree(work);
1007 	}
1008 
1009 	/*
1010 	 * Check for periodic writeback, kupdated() style
1011 	 */
1012 	wrote += wb_check_old_data_flush(wb);
1013 	wrote += wb_check_background_flush(wb);
1014 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1015 
1016 	return wrote;
1017 }
1018 
1019 /*
1020  * Handle writeback of dirty data for the device backed by this bdi. Also
1021  * wakes up periodically and does kupdated style flushing.
1022  */
1023 int bdi_writeback_thread(void *data)
1024 {
1025 	struct bdi_writeback *wb = data;
1026 	struct backing_dev_info *bdi = wb->bdi;
1027 	long pages_written;
1028 
1029 	current->flags |= PF_SWAPWRITE;
1030 	set_freezable();
1031 	wb->last_active = jiffies;
1032 
1033 	/*
1034 	 * Our parent may run at a different priority, just set us to normal
1035 	 */
1036 	set_user_nice(current, 0);
1037 
1038 	trace_writeback_thread_start(bdi);
1039 
1040 	while (!kthread_freezable_should_stop(NULL)) {
1041 		/*
1042 		 * Remove own delayed wake-up timer, since we are already awake
1043 		 * and we'll take care of the preriodic write-back.
1044 		 */
1045 		del_timer(&wb->wakeup_timer);
1046 
1047 		pages_written = wb_do_writeback(wb, 0);
1048 
1049 		trace_writeback_pages_written(pages_written);
1050 
1051 		if (pages_written)
1052 			wb->last_active = jiffies;
1053 
1054 		set_current_state(TASK_INTERRUPTIBLE);
1055 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1056 			__set_current_state(TASK_RUNNING);
1057 			continue;
1058 		}
1059 
1060 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1061 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1062 		else {
1063 			/*
1064 			 * We have nothing to do, so can go sleep without any
1065 			 * timeout and save power. When a work is queued or
1066 			 * something is made dirty - we will be woken up.
1067 			 */
1068 			schedule();
1069 		}
1070 	}
1071 
1072 	/* Flush any work that raced with us exiting */
1073 	if (!list_empty(&bdi->work_list))
1074 		wb_do_writeback(wb, 1);
1075 
1076 	trace_writeback_thread_stop(bdi);
1077 	return 0;
1078 }
1079 
1080 
1081 /*
1082  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1083  * the whole world.
1084  */
1085 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1086 {
1087 	struct backing_dev_info *bdi;
1088 
1089 	if (!nr_pages) {
1090 		nr_pages = global_page_state(NR_FILE_DIRTY) +
1091 				global_page_state(NR_UNSTABLE_NFS);
1092 	}
1093 
1094 	rcu_read_lock();
1095 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1096 		if (!bdi_has_dirty_io(bdi))
1097 			continue;
1098 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1099 	}
1100 	rcu_read_unlock();
1101 }
1102 
1103 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1104 {
1105 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1106 		struct dentry *dentry;
1107 		const char *name = "?";
1108 
1109 		dentry = d_find_alias(inode);
1110 		if (dentry) {
1111 			spin_lock(&dentry->d_lock);
1112 			name = (const char *) dentry->d_name.name;
1113 		}
1114 		printk(KERN_DEBUG
1115 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1116 		       current->comm, task_pid_nr(current), inode->i_ino,
1117 		       name, inode->i_sb->s_id);
1118 		if (dentry) {
1119 			spin_unlock(&dentry->d_lock);
1120 			dput(dentry);
1121 		}
1122 	}
1123 }
1124 
1125 /**
1126  *	__mark_inode_dirty -	internal function
1127  *	@inode: inode to mark
1128  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1129  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1130  *  	mark_inode_dirty_sync.
1131  *
1132  * Put the inode on the super block's dirty list.
1133  *
1134  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1135  * dirty list only if it is hashed or if it refers to a blockdev.
1136  * If it was not hashed, it will never be added to the dirty list
1137  * even if it is later hashed, as it will have been marked dirty already.
1138  *
1139  * In short, make sure you hash any inodes _before_ you start marking
1140  * them dirty.
1141  *
1142  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1143  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1144  * the kernel-internal blockdev inode represents the dirtying time of the
1145  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1146  * page->mapping->host, so the page-dirtying time is recorded in the internal
1147  * blockdev inode.
1148  */
1149 void __mark_inode_dirty(struct inode *inode, int flags)
1150 {
1151 	struct super_block *sb = inode->i_sb;
1152 	struct backing_dev_info *bdi = NULL;
1153 
1154 	/*
1155 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1156 	 * dirty the inode itself
1157 	 */
1158 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1159 		if (sb->s_op->dirty_inode)
1160 			sb->s_op->dirty_inode(inode, flags);
1161 	}
1162 
1163 	/*
1164 	 * make sure that changes are seen by all cpus before we test i_state
1165 	 * -- mikulas
1166 	 */
1167 	smp_mb();
1168 
1169 	/* avoid the locking if we can */
1170 	if ((inode->i_state & flags) == flags)
1171 		return;
1172 
1173 	if (unlikely(block_dump))
1174 		block_dump___mark_inode_dirty(inode);
1175 
1176 	spin_lock(&inode->i_lock);
1177 	if ((inode->i_state & flags) != flags) {
1178 		const int was_dirty = inode->i_state & I_DIRTY;
1179 
1180 		inode->i_state |= flags;
1181 
1182 		/*
1183 		 * If the inode is being synced, just update its dirty state.
1184 		 * The unlocker will place the inode on the appropriate
1185 		 * superblock list, based upon its state.
1186 		 */
1187 		if (inode->i_state & I_SYNC)
1188 			goto out_unlock_inode;
1189 
1190 		/*
1191 		 * Only add valid (hashed) inodes to the superblock's
1192 		 * dirty list.  Add blockdev inodes as well.
1193 		 */
1194 		if (!S_ISBLK(inode->i_mode)) {
1195 			if (inode_unhashed(inode))
1196 				goto out_unlock_inode;
1197 		}
1198 		if (inode->i_state & I_FREEING)
1199 			goto out_unlock_inode;
1200 
1201 		/*
1202 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1203 		 * reposition it (that would break b_dirty time-ordering).
1204 		 */
1205 		if (!was_dirty) {
1206 			bool wakeup_bdi = false;
1207 			bdi = inode_to_bdi(inode);
1208 
1209 			if (bdi_cap_writeback_dirty(bdi)) {
1210 				WARN(!test_bit(BDI_registered, &bdi->state),
1211 				     "bdi-%s not registered\n", bdi->name);
1212 
1213 				/*
1214 				 * If this is the first dirty inode for this
1215 				 * bdi, we have to wake-up the corresponding
1216 				 * bdi thread to make sure background
1217 				 * write-back happens later.
1218 				 */
1219 				if (!wb_has_dirty_io(&bdi->wb))
1220 					wakeup_bdi = true;
1221 			}
1222 
1223 			spin_unlock(&inode->i_lock);
1224 			spin_lock(&bdi->wb.list_lock);
1225 			inode->dirtied_when = jiffies;
1226 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1227 			spin_unlock(&bdi->wb.list_lock);
1228 
1229 			if (wakeup_bdi)
1230 				bdi_wakeup_thread_delayed(bdi);
1231 			return;
1232 		}
1233 	}
1234 out_unlock_inode:
1235 	spin_unlock(&inode->i_lock);
1236 
1237 }
1238 EXPORT_SYMBOL(__mark_inode_dirty);
1239 
1240 static void wait_sb_inodes(struct super_block *sb)
1241 {
1242 	struct inode *inode, *old_inode = NULL;
1243 
1244 	/*
1245 	 * We need to be protected against the filesystem going from
1246 	 * r/o to r/w or vice versa.
1247 	 */
1248 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1249 
1250 	spin_lock(&inode_sb_list_lock);
1251 
1252 	/*
1253 	 * Data integrity sync. Must wait for all pages under writeback,
1254 	 * because there may have been pages dirtied before our sync
1255 	 * call, but which had writeout started before we write it out.
1256 	 * In which case, the inode may not be on the dirty list, but
1257 	 * we still have to wait for that writeout.
1258 	 */
1259 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1260 		struct address_space *mapping = inode->i_mapping;
1261 
1262 		spin_lock(&inode->i_lock);
1263 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1264 		    (mapping->nrpages == 0)) {
1265 			spin_unlock(&inode->i_lock);
1266 			continue;
1267 		}
1268 		__iget(inode);
1269 		spin_unlock(&inode->i_lock);
1270 		spin_unlock(&inode_sb_list_lock);
1271 
1272 		/*
1273 		 * We hold a reference to 'inode' so it couldn't have been
1274 		 * removed from s_inodes list while we dropped the
1275 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1276 		 * be holding the last reference and we cannot iput it under
1277 		 * inode_sb_list_lock. So we keep the reference and iput it
1278 		 * later.
1279 		 */
1280 		iput(old_inode);
1281 		old_inode = inode;
1282 
1283 		filemap_fdatawait(mapping);
1284 
1285 		cond_resched();
1286 
1287 		spin_lock(&inode_sb_list_lock);
1288 	}
1289 	spin_unlock(&inode_sb_list_lock);
1290 	iput(old_inode);
1291 }
1292 
1293 /**
1294  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1295  * @sb: the superblock
1296  * @nr: the number of pages to write
1297  * @reason: reason why some writeback work initiated
1298  *
1299  * Start writeback on some inodes on this super_block. No guarantees are made
1300  * on how many (if any) will be written, and this function does not wait
1301  * for IO completion of submitted IO.
1302  */
1303 void writeback_inodes_sb_nr(struct super_block *sb,
1304 			    unsigned long nr,
1305 			    enum wb_reason reason)
1306 {
1307 	DECLARE_COMPLETION_ONSTACK(done);
1308 	struct wb_writeback_work work = {
1309 		.sb			= sb,
1310 		.sync_mode		= WB_SYNC_NONE,
1311 		.tagged_writepages	= 1,
1312 		.done			= &done,
1313 		.nr_pages		= nr,
1314 		.reason			= reason,
1315 	};
1316 
1317 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1318 	bdi_queue_work(sb->s_bdi, &work);
1319 	wait_for_completion(&done);
1320 }
1321 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1322 
1323 /**
1324  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1325  * @sb: the superblock
1326  * @reason: reason why some writeback work was initiated
1327  *
1328  * Start writeback on some inodes on this super_block. No guarantees are made
1329  * on how many (if any) will be written, and this function does not wait
1330  * for IO completion of submitted IO.
1331  */
1332 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1333 {
1334 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1335 }
1336 EXPORT_SYMBOL(writeback_inodes_sb);
1337 
1338 /**
1339  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1340  * @sb: the superblock
1341  * @reason: reason why some writeback work was initiated
1342  *
1343  * Invoke writeback_inodes_sb if no writeback is currently underway.
1344  * Returns 1 if writeback was started, 0 if not.
1345  */
1346 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1347 {
1348 	if (!writeback_in_progress(sb->s_bdi)) {
1349 		down_read(&sb->s_umount);
1350 		writeback_inodes_sb(sb, reason);
1351 		up_read(&sb->s_umount);
1352 		return 1;
1353 	} else
1354 		return 0;
1355 }
1356 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1357 
1358 /**
1359  * writeback_inodes_sb_nr_if_idle	-	start writeback if none underway
1360  * @sb: the superblock
1361  * @nr: the number of pages to write
1362  * @reason: reason why some writeback work was initiated
1363  *
1364  * Invoke writeback_inodes_sb if no writeback is currently underway.
1365  * Returns 1 if writeback was started, 0 if not.
1366  */
1367 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1368 				   unsigned long nr,
1369 				   enum wb_reason reason)
1370 {
1371 	if (!writeback_in_progress(sb->s_bdi)) {
1372 		down_read(&sb->s_umount);
1373 		writeback_inodes_sb_nr(sb, nr, reason);
1374 		up_read(&sb->s_umount);
1375 		return 1;
1376 	} else
1377 		return 0;
1378 }
1379 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1380 
1381 /**
1382  * sync_inodes_sb	-	sync sb inode pages
1383  * @sb: the superblock
1384  *
1385  * This function writes and waits on any dirty inode belonging to this
1386  * super_block.
1387  */
1388 void sync_inodes_sb(struct super_block *sb)
1389 {
1390 	DECLARE_COMPLETION_ONSTACK(done);
1391 	struct wb_writeback_work work = {
1392 		.sb		= sb,
1393 		.sync_mode	= WB_SYNC_ALL,
1394 		.nr_pages	= LONG_MAX,
1395 		.range_cyclic	= 0,
1396 		.done		= &done,
1397 		.reason		= WB_REASON_SYNC,
1398 	};
1399 
1400 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1401 
1402 	bdi_queue_work(sb->s_bdi, &work);
1403 	wait_for_completion(&done);
1404 
1405 	wait_sb_inodes(sb);
1406 }
1407 EXPORT_SYMBOL(sync_inodes_sb);
1408 
1409 /**
1410  * write_inode_now	-	write an inode to disk
1411  * @inode: inode to write to disk
1412  * @sync: whether the write should be synchronous or not
1413  *
1414  * This function commits an inode to disk immediately if it is dirty. This is
1415  * primarily needed by knfsd.
1416  *
1417  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1418  */
1419 int write_inode_now(struct inode *inode, int sync)
1420 {
1421 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1422 	struct writeback_control wbc = {
1423 		.nr_to_write = LONG_MAX,
1424 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1425 		.range_start = 0,
1426 		.range_end = LLONG_MAX,
1427 	};
1428 
1429 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1430 		wbc.nr_to_write = 0;
1431 
1432 	might_sleep();
1433 	return writeback_single_inode(inode, wb, &wbc);
1434 }
1435 EXPORT_SYMBOL(write_inode_now);
1436 
1437 /**
1438  * sync_inode - write an inode and its pages to disk.
1439  * @inode: the inode to sync
1440  * @wbc: controls the writeback mode
1441  *
1442  * sync_inode() will write an inode and its pages to disk.  It will also
1443  * correctly update the inode on its superblock's dirty inode lists and will
1444  * update inode->i_state.
1445  *
1446  * The caller must have a ref on the inode.
1447  */
1448 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1449 {
1450 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1451 }
1452 EXPORT_SYMBOL(sync_inode);
1453 
1454 /**
1455  * sync_inode_metadata - write an inode to disk
1456  * @inode: the inode to sync
1457  * @wait: wait for I/O to complete.
1458  *
1459  * Write an inode to disk and adjust its dirty state after completion.
1460  *
1461  * Note: only writes the actual inode, no associated data or other metadata.
1462  */
1463 int sync_inode_metadata(struct inode *inode, int wait)
1464 {
1465 	struct writeback_control wbc = {
1466 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1467 		.nr_to_write = 0, /* metadata-only */
1468 	};
1469 
1470 	return sync_inode(inode, &wbc);
1471 }
1472 EXPORT_SYMBOL(sync_inode_metadata);
1473