1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 unsigned long *older_than_this; 46 enum writeback_sync_modes sync_mode; 47 unsigned int tagged_writepages:1; 48 unsigned int for_kupdate:1; 49 unsigned int range_cyclic:1; 50 unsigned int for_background:1; 51 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 52 unsigned int auto_free:1; /* free on completion */ 53 enum wb_reason reason; /* why was writeback initiated? */ 54 55 struct list_head list; /* pending work list */ 56 struct wb_completion *done; /* set if the caller waits */ 57 }; 58 59 /* 60 * If an inode is constantly having its pages dirtied, but then the 61 * updates stop dirtytime_expire_interval seconds in the past, it's 62 * possible for the worst case time between when an inode has its 63 * timestamps updated and when they finally get written out to be two 64 * dirtytime_expire_intervals. We set the default to 12 hours (in 65 * seconds), which means most of the time inodes will have their 66 * timestamps written to disk after 12 hours, but in the worst case a 67 * few inodes might not their timestamps updated for 24 hours. 68 */ 69 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 70 71 static inline struct inode *wb_inode(struct list_head *head) 72 { 73 return list_entry(head, struct inode, i_io_list); 74 } 75 76 /* 77 * Include the creation of the trace points after defining the 78 * wb_writeback_work structure and inline functions so that the definition 79 * remains local to this file. 80 */ 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/writeback.h> 83 84 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 85 86 static bool wb_io_lists_populated(struct bdi_writeback *wb) 87 { 88 if (wb_has_dirty_io(wb)) { 89 return false; 90 } else { 91 set_bit(WB_has_dirty_io, &wb->state); 92 WARN_ON_ONCE(!wb->avg_write_bandwidth); 93 atomic_long_add(wb->avg_write_bandwidth, 94 &wb->bdi->tot_write_bandwidth); 95 return true; 96 } 97 } 98 99 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 100 { 101 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 102 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 103 clear_bit(WB_has_dirty_io, &wb->state); 104 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 105 &wb->bdi->tot_write_bandwidth) < 0); 106 } 107 } 108 109 /** 110 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 111 * @inode: inode to be moved 112 * @wb: target bdi_writeback 113 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 114 * 115 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 116 * Returns %true if @inode is the first occupant of the !dirty_time IO 117 * lists; otherwise, %false. 118 */ 119 static bool inode_io_list_move_locked(struct inode *inode, 120 struct bdi_writeback *wb, 121 struct list_head *head) 122 { 123 assert_spin_locked(&wb->list_lock); 124 125 list_move(&inode->i_io_list, head); 126 127 /* dirty_time doesn't count as dirty_io until expiration */ 128 if (head != &wb->b_dirty_time) 129 return wb_io_lists_populated(wb); 130 131 wb_io_lists_depopulated(wb); 132 return false; 133 } 134 135 /** 136 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 137 * @inode: inode to be removed 138 * @wb: bdi_writeback @inode is being removed from 139 * 140 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 141 * clear %WB_has_dirty_io if all are empty afterwards. 142 */ 143 static void inode_io_list_del_locked(struct inode *inode, 144 struct bdi_writeback *wb) 145 { 146 assert_spin_locked(&wb->list_lock); 147 148 list_del_init(&inode->i_io_list); 149 wb_io_lists_depopulated(wb); 150 } 151 152 static void wb_wakeup(struct bdi_writeback *wb) 153 { 154 spin_lock_bh(&wb->work_lock); 155 if (test_bit(WB_registered, &wb->state)) 156 mod_delayed_work(bdi_wq, &wb->dwork, 0); 157 spin_unlock_bh(&wb->work_lock); 158 } 159 160 static void finish_writeback_work(struct bdi_writeback *wb, 161 struct wb_writeback_work *work) 162 { 163 struct wb_completion *done = work->done; 164 165 if (work->auto_free) 166 kfree(work); 167 if (done) { 168 wait_queue_head_t *waitq = done->waitq; 169 170 /* @done can't be accessed after the following dec */ 171 if (atomic_dec_and_test(&done->cnt)) 172 wake_up_all(waitq); 173 } 174 } 175 176 static void wb_queue_work(struct bdi_writeback *wb, 177 struct wb_writeback_work *work) 178 { 179 trace_writeback_queue(wb, work); 180 181 if (work->done) 182 atomic_inc(&work->done->cnt); 183 184 spin_lock_bh(&wb->work_lock); 185 186 if (test_bit(WB_registered, &wb->state)) { 187 list_add_tail(&work->list, &wb->work_list); 188 mod_delayed_work(bdi_wq, &wb->dwork, 0); 189 } else 190 finish_writeback_work(wb, work); 191 192 spin_unlock_bh(&wb->work_lock); 193 } 194 195 /** 196 * wb_wait_for_completion - wait for completion of bdi_writeback_works 197 * @done: target wb_completion 198 * 199 * Wait for one or more work items issued to @bdi with their ->done field 200 * set to @done, which should have been initialized with 201 * DEFINE_WB_COMPLETION(). This function returns after all such work items 202 * are completed. Work items which are waited upon aren't freed 203 * automatically on completion. 204 */ 205 void wb_wait_for_completion(struct wb_completion *done) 206 { 207 atomic_dec(&done->cnt); /* put down the initial count */ 208 wait_event(*done->waitq, !atomic_read(&done->cnt)); 209 } 210 211 #ifdef CONFIG_CGROUP_WRITEBACK 212 213 /* 214 * Parameters for foreign inode detection, see wbc_detach_inode() to see 215 * how they're used. 216 * 217 * These paramters are inherently heuristical as the detection target 218 * itself is fuzzy. All we want to do is detaching an inode from the 219 * current owner if it's being written to by some other cgroups too much. 220 * 221 * The current cgroup writeback is built on the assumption that multiple 222 * cgroups writing to the same inode concurrently is very rare and a mode 223 * of operation which isn't well supported. As such, the goal is not 224 * taking too long when a different cgroup takes over an inode while 225 * avoiding too aggressive flip-flops from occasional foreign writes. 226 * 227 * We record, very roughly, 2s worth of IO time history and if more than 228 * half of that is foreign, trigger the switch. The recording is quantized 229 * to 16 slots. To avoid tiny writes from swinging the decision too much, 230 * writes smaller than 1/8 of avg size are ignored. 231 */ 232 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 233 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 234 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 235 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 236 237 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 238 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 239 /* each slot's duration is 2s / 16 */ 240 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 241 /* if foreign slots >= 8, switch */ 242 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 243 /* one round can affect upto 5 slots */ 244 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 245 246 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 247 static struct workqueue_struct *isw_wq; 248 249 void __inode_attach_wb(struct inode *inode, struct page *page) 250 { 251 struct backing_dev_info *bdi = inode_to_bdi(inode); 252 struct bdi_writeback *wb = NULL; 253 254 if (inode_cgwb_enabled(inode)) { 255 struct cgroup_subsys_state *memcg_css; 256 257 if (page) { 258 memcg_css = mem_cgroup_css_from_page(page); 259 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 260 } else { 261 /* must pin memcg_css, see wb_get_create() */ 262 memcg_css = task_get_css(current, memory_cgrp_id); 263 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 264 css_put(memcg_css); 265 } 266 } 267 268 if (!wb) 269 wb = &bdi->wb; 270 271 /* 272 * There may be multiple instances of this function racing to 273 * update the same inode. Use cmpxchg() to tell the winner. 274 */ 275 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 276 wb_put(wb); 277 } 278 EXPORT_SYMBOL_GPL(__inode_attach_wb); 279 280 /** 281 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 282 * @inode: inode of interest with i_lock held 283 * 284 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 285 * held on entry and is released on return. The returned wb is guaranteed 286 * to stay @inode's associated wb until its list_lock is released. 287 */ 288 static struct bdi_writeback * 289 locked_inode_to_wb_and_lock_list(struct inode *inode) 290 __releases(&inode->i_lock) 291 __acquires(&wb->list_lock) 292 { 293 while (true) { 294 struct bdi_writeback *wb = inode_to_wb(inode); 295 296 /* 297 * inode_to_wb() association is protected by both 298 * @inode->i_lock and @wb->list_lock but list_lock nests 299 * outside i_lock. Drop i_lock and verify that the 300 * association hasn't changed after acquiring list_lock. 301 */ 302 wb_get(wb); 303 spin_unlock(&inode->i_lock); 304 spin_lock(&wb->list_lock); 305 306 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 307 if (likely(wb == inode->i_wb)) { 308 wb_put(wb); /* @inode already has ref */ 309 return wb; 310 } 311 312 spin_unlock(&wb->list_lock); 313 wb_put(wb); 314 cpu_relax(); 315 spin_lock(&inode->i_lock); 316 } 317 } 318 319 /** 320 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 321 * @inode: inode of interest 322 * 323 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 324 * on entry. 325 */ 326 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 327 __acquires(&wb->list_lock) 328 { 329 spin_lock(&inode->i_lock); 330 return locked_inode_to_wb_and_lock_list(inode); 331 } 332 333 struct inode_switch_wbs_context { 334 struct inode *inode; 335 struct bdi_writeback *new_wb; 336 337 struct rcu_head rcu_head; 338 struct work_struct work; 339 }; 340 341 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 342 { 343 down_write(&bdi->wb_switch_rwsem); 344 } 345 346 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 347 { 348 up_write(&bdi->wb_switch_rwsem); 349 } 350 351 static void inode_switch_wbs_work_fn(struct work_struct *work) 352 { 353 struct inode_switch_wbs_context *isw = 354 container_of(work, struct inode_switch_wbs_context, work); 355 struct inode *inode = isw->inode; 356 struct backing_dev_info *bdi = inode_to_bdi(inode); 357 struct address_space *mapping = inode->i_mapping; 358 struct bdi_writeback *old_wb = inode->i_wb; 359 struct bdi_writeback *new_wb = isw->new_wb; 360 XA_STATE(xas, &mapping->i_pages, 0); 361 struct page *page; 362 bool switched = false; 363 364 /* 365 * If @inode switches cgwb membership while sync_inodes_sb() is 366 * being issued, sync_inodes_sb() might miss it. Synchronize. 367 */ 368 down_read(&bdi->wb_switch_rwsem); 369 370 /* 371 * By the time control reaches here, RCU grace period has passed 372 * since I_WB_SWITCH assertion and all wb stat update transactions 373 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 374 * synchronizing against the i_pages lock. 375 * 376 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 377 * gives us exclusion against all wb related operations on @inode 378 * including IO list manipulations and stat updates. 379 */ 380 if (old_wb < new_wb) { 381 spin_lock(&old_wb->list_lock); 382 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 383 } else { 384 spin_lock(&new_wb->list_lock); 385 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 386 } 387 spin_lock(&inode->i_lock); 388 xa_lock_irq(&mapping->i_pages); 389 390 /* 391 * Once I_FREEING is visible under i_lock, the eviction path owns 392 * the inode and we shouldn't modify ->i_io_list. 393 */ 394 if (unlikely(inode->i_state & I_FREEING)) 395 goto skip_switch; 396 397 trace_inode_switch_wbs(inode, old_wb, new_wb); 398 399 /* 400 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 401 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 402 * pages actually under writeback. 403 */ 404 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 405 if (PageDirty(page)) { 406 dec_wb_stat(old_wb, WB_RECLAIMABLE); 407 inc_wb_stat(new_wb, WB_RECLAIMABLE); 408 } 409 } 410 411 xas_set(&xas, 0); 412 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 413 WARN_ON_ONCE(!PageWriteback(page)); 414 dec_wb_stat(old_wb, WB_WRITEBACK); 415 inc_wb_stat(new_wb, WB_WRITEBACK); 416 } 417 418 wb_get(new_wb); 419 420 /* 421 * Transfer to @new_wb's IO list if necessary. The specific list 422 * @inode was on is ignored and the inode is put on ->b_dirty which 423 * is always correct including from ->b_dirty_time. The transfer 424 * preserves @inode->dirtied_when ordering. 425 */ 426 if (!list_empty(&inode->i_io_list)) { 427 struct inode *pos; 428 429 inode_io_list_del_locked(inode, old_wb); 430 inode->i_wb = new_wb; 431 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 432 if (time_after_eq(inode->dirtied_when, 433 pos->dirtied_when)) 434 break; 435 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 436 } else { 437 inode->i_wb = new_wb; 438 } 439 440 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 441 inode->i_wb_frn_winner = 0; 442 inode->i_wb_frn_avg_time = 0; 443 inode->i_wb_frn_history = 0; 444 switched = true; 445 skip_switch: 446 /* 447 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 448 * ensures that the new wb is visible if they see !I_WB_SWITCH. 449 */ 450 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 451 452 xa_unlock_irq(&mapping->i_pages); 453 spin_unlock(&inode->i_lock); 454 spin_unlock(&new_wb->list_lock); 455 spin_unlock(&old_wb->list_lock); 456 457 up_read(&bdi->wb_switch_rwsem); 458 459 if (switched) { 460 wb_wakeup(new_wb); 461 wb_put(old_wb); 462 } 463 wb_put(new_wb); 464 465 iput(inode); 466 kfree(isw); 467 468 atomic_dec(&isw_nr_in_flight); 469 } 470 471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 472 { 473 struct inode_switch_wbs_context *isw = container_of(rcu_head, 474 struct inode_switch_wbs_context, rcu_head); 475 476 /* needs to grab bh-unsafe locks, bounce to work item */ 477 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 478 queue_work(isw_wq, &isw->work); 479 } 480 481 /** 482 * inode_switch_wbs - change the wb association of an inode 483 * @inode: target inode 484 * @new_wb_id: ID of the new wb 485 * 486 * Switch @inode's wb association to the wb identified by @new_wb_id. The 487 * switching is performed asynchronously and may fail silently. 488 */ 489 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 490 { 491 struct backing_dev_info *bdi = inode_to_bdi(inode); 492 struct cgroup_subsys_state *memcg_css; 493 struct inode_switch_wbs_context *isw; 494 495 /* noop if seems to be already in progress */ 496 if (inode->i_state & I_WB_SWITCH) 497 return; 498 499 /* avoid queueing a new switch if too many are already in flight */ 500 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 501 return; 502 503 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 504 if (!isw) 505 return; 506 507 /* find and pin the new wb */ 508 rcu_read_lock(); 509 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 510 if (memcg_css) 511 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 512 rcu_read_unlock(); 513 if (!isw->new_wb) 514 goto out_free; 515 516 /* while holding I_WB_SWITCH, no one else can update the association */ 517 spin_lock(&inode->i_lock); 518 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 519 inode->i_state & (I_WB_SWITCH | I_FREEING) || 520 inode_to_wb(inode) == isw->new_wb) { 521 spin_unlock(&inode->i_lock); 522 goto out_free; 523 } 524 inode->i_state |= I_WB_SWITCH; 525 __iget(inode); 526 spin_unlock(&inode->i_lock); 527 528 isw->inode = inode; 529 530 /* 531 * In addition to synchronizing among switchers, I_WB_SWITCH tells 532 * the RCU protected stat update paths to grab the i_page 533 * lock so that stat transfer can synchronize against them. 534 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 535 */ 536 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 537 538 atomic_inc(&isw_nr_in_flight); 539 return; 540 541 out_free: 542 if (isw->new_wb) 543 wb_put(isw->new_wb); 544 kfree(isw); 545 } 546 547 /** 548 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 549 * @wbc: writeback_control of interest 550 * @inode: target inode 551 * 552 * @inode is locked and about to be written back under the control of @wbc. 553 * Record @inode's writeback context into @wbc and unlock the i_lock. On 554 * writeback completion, wbc_detach_inode() should be called. This is used 555 * to track the cgroup writeback context. 556 */ 557 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 558 struct inode *inode) 559 { 560 if (!inode_cgwb_enabled(inode)) { 561 spin_unlock(&inode->i_lock); 562 return; 563 } 564 565 wbc->wb = inode_to_wb(inode); 566 wbc->inode = inode; 567 568 wbc->wb_id = wbc->wb->memcg_css->id; 569 wbc->wb_lcand_id = inode->i_wb_frn_winner; 570 wbc->wb_tcand_id = 0; 571 wbc->wb_bytes = 0; 572 wbc->wb_lcand_bytes = 0; 573 wbc->wb_tcand_bytes = 0; 574 575 wb_get(wbc->wb); 576 spin_unlock(&inode->i_lock); 577 578 /* 579 * A dying wb indicates that the memcg-blkcg mapping has changed 580 * and a new wb is already serving the memcg. Switch immediately. 581 */ 582 if (unlikely(wb_dying(wbc->wb))) 583 inode_switch_wbs(inode, wbc->wb_id); 584 } 585 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 586 587 /** 588 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 589 * @wbc: writeback_control of the just finished writeback 590 * 591 * To be called after a writeback attempt of an inode finishes and undoes 592 * wbc_attach_and_unlock_inode(). Can be called under any context. 593 * 594 * As concurrent write sharing of an inode is expected to be very rare and 595 * memcg only tracks page ownership on first-use basis severely confining 596 * the usefulness of such sharing, cgroup writeback tracks ownership 597 * per-inode. While the support for concurrent write sharing of an inode 598 * is deemed unnecessary, an inode being written to by different cgroups at 599 * different points in time is a lot more common, and, more importantly, 600 * charging only by first-use can too readily lead to grossly incorrect 601 * behaviors (single foreign page can lead to gigabytes of writeback to be 602 * incorrectly attributed). 603 * 604 * To resolve this issue, cgroup writeback detects the majority dirtier of 605 * an inode and transfers the ownership to it. To avoid unnnecessary 606 * oscillation, the detection mechanism keeps track of history and gives 607 * out the switch verdict only if the foreign usage pattern is stable over 608 * a certain amount of time and/or writeback attempts. 609 * 610 * On each writeback attempt, @wbc tries to detect the majority writer 611 * using Boyer-Moore majority vote algorithm. In addition to the byte 612 * count from the majority voting, it also counts the bytes written for the 613 * current wb and the last round's winner wb (max of last round's current 614 * wb, the winner from two rounds ago, and the last round's majority 615 * candidate). Keeping track of the historical winner helps the algorithm 616 * to semi-reliably detect the most active writer even when it's not the 617 * absolute majority. 618 * 619 * Once the winner of the round is determined, whether the winner is 620 * foreign or not and how much IO time the round consumed is recorded in 621 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 622 * over a certain threshold, the switch verdict is given. 623 */ 624 void wbc_detach_inode(struct writeback_control *wbc) 625 { 626 struct bdi_writeback *wb = wbc->wb; 627 struct inode *inode = wbc->inode; 628 unsigned long avg_time, max_bytes, max_time; 629 u16 history; 630 int max_id; 631 632 if (!wb) 633 return; 634 635 history = inode->i_wb_frn_history; 636 avg_time = inode->i_wb_frn_avg_time; 637 638 /* pick the winner of this round */ 639 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 640 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 641 max_id = wbc->wb_id; 642 max_bytes = wbc->wb_bytes; 643 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 644 max_id = wbc->wb_lcand_id; 645 max_bytes = wbc->wb_lcand_bytes; 646 } else { 647 max_id = wbc->wb_tcand_id; 648 max_bytes = wbc->wb_tcand_bytes; 649 } 650 651 /* 652 * Calculate the amount of IO time the winner consumed and fold it 653 * into the running average kept per inode. If the consumed IO 654 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 655 * deciding whether to switch or not. This is to prevent one-off 656 * small dirtiers from skewing the verdict. 657 */ 658 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 659 wb->avg_write_bandwidth); 660 if (avg_time) 661 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 662 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 663 else 664 avg_time = max_time; /* immediate catch up on first run */ 665 666 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 667 int slots; 668 669 /* 670 * The switch verdict is reached if foreign wb's consume 671 * more than a certain proportion of IO time in a 672 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 673 * history mask where each bit represents one sixteenth of 674 * the period. Determine the number of slots to shift into 675 * history from @max_time. 676 */ 677 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 678 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 679 history <<= slots; 680 if (wbc->wb_id != max_id) 681 history |= (1U << slots) - 1; 682 683 if (history) 684 trace_inode_foreign_history(inode, wbc, history); 685 686 /* 687 * Switch if the current wb isn't the consistent winner. 688 * If there are multiple closely competing dirtiers, the 689 * inode may switch across them repeatedly over time, which 690 * is okay. The main goal is avoiding keeping an inode on 691 * the wrong wb for an extended period of time. 692 */ 693 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 694 inode_switch_wbs(inode, max_id); 695 } 696 697 /* 698 * Multiple instances of this function may race to update the 699 * following fields but we don't mind occassional inaccuracies. 700 */ 701 inode->i_wb_frn_winner = max_id; 702 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 703 inode->i_wb_frn_history = history; 704 705 wb_put(wbc->wb); 706 wbc->wb = NULL; 707 } 708 EXPORT_SYMBOL_GPL(wbc_detach_inode); 709 710 /** 711 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 712 * @wbc: writeback_control of the writeback in progress 713 * @page: page being written out 714 * @bytes: number of bytes being written out 715 * 716 * @bytes from @page are about to written out during the writeback 717 * controlled by @wbc. Keep the book for foreign inode detection. See 718 * wbc_detach_inode(). 719 */ 720 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 721 size_t bytes) 722 { 723 struct cgroup_subsys_state *css; 724 int id; 725 726 /* 727 * pageout() path doesn't attach @wbc to the inode being written 728 * out. This is intentional as we don't want the function to block 729 * behind a slow cgroup. Ultimately, we want pageout() to kick off 730 * regular writeback instead of writing things out itself. 731 */ 732 if (!wbc->wb || wbc->no_cgroup_owner) 733 return; 734 735 css = mem_cgroup_css_from_page(page); 736 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 737 if (!(css->flags & CSS_ONLINE)) 738 return; 739 740 id = css->id; 741 742 if (id == wbc->wb_id) { 743 wbc->wb_bytes += bytes; 744 return; 745 } 746 747 if (id == wbc->wb_lcand_id) 748 wbc->wb_lcand_bytes += bytes; 749 750 /* Boyer-Moore majority vote algorithm */ 751 if (!wbc->wb_tcand_bytes) 752 wbc->wb_tcand_id = id; 753 if (id == wbc->wb_tcand_id) 754 wbc->wb_tcand_bytes += bytes; 755 else 756 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 757 } 758 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 759 760 /** 761 * inode_congested - test whether an inode is congested 762 * @inode: inode to test for congestion (may be NULL) 763 * @cong_bits: mask of WB_[a]sync_congested bits to test 764 * 765 * Tests whether @inode is congested. @cong_bits is the mask of congestion 766 * bits to test and the return value is the mask of set bits. 767 * 768 * If cgroup writeback is enabled for @inode, the congestion state is 769 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 770 * associated with @inode is congested; otherwise, the root wb's congestion 771 * state is used. 772 * 773 * @inode is allowed to be NULL as this function is often called on 774 * mapping->host which is NULL for the swapper space. 775 */ 776 int inode_congested(struct inode *inode, int cong_bits) 777 { 778 /* 779 * Once set, ->i_wb never becomes NULL while the inode is alive. 780 * Start transaction iff ->i_wb is visible. 781 */ 782 if (inode && inode_to_wb_is_valid(inode)) { 783 struct bdi_writeback *wb; 784 struct wb_lock_cookie lock_cookie = {}; 785 bool congested; 786 787 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 788 congested = wb_congested(wb, cong_bits); 789 unlocked_inode_to_wb_end(inode, &lock_cookie); 790 return congested; 791 } 792 793 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 794 } 795 EXPORT_SYMBOL_GPL(inode_congested); 796 797 /** 798 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 799 * @wb: target bdi_writeback to split @nr_pages to 800 * @nr_pages: number of pages to write for the whole bdi 801 * 802 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 803 * relation to the total write bandwidth of all wb's w/ dirty inodes on 804 * @wb->bdi. 805 */ 806 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 807 { 808 unsigned long this_bw = wb->avg_write_bandwidth; 809 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 810 811 if (nr_pages == LONG_MAX) 812 return LONG_MAX; 813 814 /* 815 * This may be called on clean wb's and proportional distribution 816 * may not make sense, just use the original @nr_pages in those 817 * cases. In general, we wanna err on the side of writing more. 818 */ 819 if (!tot_bw || this_bw >= tot_bw) 820 return nr_pages; 821 else 822 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 823 } 824 825 /** 826 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 827 * @bdi: target backing_dev_info 828 * @base_work: wb_writeback_work to issue 829 * @skip_if_busy: skip wb's which already have writeback in progress 830 * 831 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 832 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 833 * distributed to the busy wbs according to each wb's proportion in the 834 * total active write bandwidth of @bdi. 835 */ 836 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 837 struct wb_writeback_work *base_work, 838 bool skip_if_busy) 839 { 840 struct bdi_writeback *last_wb = NULL; 841 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 842 struct bdi_writeback, bdi_node); 843 844 might_sleep(); 845 restart: 846 rcu_read_lock(); 847 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 848 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 849 struct wb_writeback_work fallback_work; 850 struct wb_writeback_work *work; 851 long nr_pages; 852 853 if (last_wb) { 854 wb_put(last_wb); 855 last_wb = NULL; 856 } 857 858 /* SYNC_ALL writes out I_DIRTY_TIME too */ 859 if (!wb_has_dirty_io(wb) && 860 (base_work->sync_mode == WB_SYNC_NONE || 861 list_empty(&wb->b_dirty_time))) 862 continue; 863 if (skip_if_busy && writeback_in_progress(wb)) 864 continue; 865 866 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 867 868 work = kmalloc(sizeof(*work), GFP_ATOMIC); 869 if (work) { 870 *work = *base_work; 871 work->nr_pages = nr_pages; 872 work->auto_free = 1; 873 wb_queue_work(wb, work); 874 continue; 875 } 876 877 /* alloc failed, execute synchronously using on-stack fallback */ 878 work = &fallback_work; 879 *work = *base_work; 880 work->nr_pages = nr_pages; 881 work->auto_free = 0; 882 work->done = &fallback_work_done; 883 884 wb_queue_work(wb, work); 885 886 /* 887 * Pin @wb so that it stays on @bdi->wb_list. This allows 888 * continuing iteration from @wb after dropping and 889 * regrabbing rcu read lock. 890 */ 891 wb_get(wb); 892 last_wb = wb; 893 894 rcu_read_unlock(); 895 wb_wait_for_completion(&fallback_work_done); 896 goto restart; 897 } 898 rcu_read_unlock(); 899 900 if (last_wb) 901 wb_put(last_wb); 902 } 903 904 /** 905 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 906 * @bdi_id: target bdi id 907 * @memcg_id: target memcg css id 908 * @nr_pages: number of pages to write, 0 for best-effort dirty flushing 909 * @reason: reason why some writeback work initiated 910 * @done: target wb_completion 911 * 912 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 913 * with the specified parameters. 914 */ 915 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr, 916 enum wb_reason reason, struct wb_completion *done) 917 { 918 struct backing_dev_info *bdi; 919 struct cgroup_subsys_state *memcg_css; 920 struct bdi_writeback *wb; 921 struct wb_writeback_work *work; 922 int ret; 923 924 /* lookup bdi and memcg */ 925 bdi = bdi_get_by_id(bdi_id); 926 if (!bdi) 927 return -ENOENT; 928 929 rcu_read_lock(); 930 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 931 if (memcg_css && !css_tryget(memcg_css)) 932 memcg_css = NULL; 933 rcu_read_unlock(); 934 if (!memcg_css) { 935 ret = -ENOENT; 936 goto out_bdi_put; 937 } 938 939 /* 940 * And find the associated wb. If the wb isn't there already 941 * there's nothing to flush, don't create one. 942 */ 943 wb = wb_get_lookup(bdi, memcg_css); 944 if (!wb) { 945 ret = -ENOENT; 946 goto out_css_put; 947 } 948 949 /* 950 * If @nr is zero, the caller is attempting to write out most of 951 * the currently dirty pages. Let's take the current dirty page 952 * count and inflate it by 25% which should be large enough to 953 * flush out most dirty pages while avoiding getting livelocked by 954 * concurrent dirtiers. 955 */ 956 if (!nr) { 957 unsigned long filepages, headroom, dirty, writeback; 958 959 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty, 960 &writeback); 961 nr = dirty * 10 / 8; 962 } 963 964 /* issue the writeback work */ 965 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 966 if (work) { 967 work->nr_pages = nr; 968 work->sync_mode = WB_SYNC_NONE; 969 work->range_cyclic = 1; 970 work->reason = reason; 971 work->done = done; 972 work->auto_free = 1; 973 wb_queue_work(wb, work); 974 ret = 0; 975 } else { 976 ret = -ENOMEM; 977 } 978 979 wb_put(wb); 980 out_css_put: 981 css_put(memcg_css); 982 out_bdi_put: 983 bdi_put(bdi); 984 return ret; 985 } 986 987 /** 988 * cgroup_writeback_umount - flush inode wb switches for umount 989 * 990 * This function is called when a super_block is about to be destroyed and 991 * flushes in-flight inode wb switches. An inode wb switch goes through 992 * RCU and then workqueue, so the two need to be flushed in order to ensure 993 * that all previously scheduled switches are finished. As wb switches are 994 * rare occurrences and synchronize_rcu() can take a while, perform 995 * flushing iff wb switches are in flight. 996 */ 997 void cgroup_writeback_umount(void) 998 { 999 if (atomic_read(&isw_nr_in_flight)) { 1000 /* 1001 * Use rcu_barrier() to wait for all pending callbacks to 1002 * ensure that all in-flight wb switches are in the workqueue. 1003 */ 1004 rcu_barrier(); 1005 flush_workqueue(isw_wq); 1006 } 1007 } 1008 1009 static int __init cgroup_writeback_init(void) 1010 { 1011 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1012 if (!isw_wq) 1013 return -ENOMEM; 1014 return 0; 1015 } 1016 fs_initcall(cgroup_writeback_init); 1017 1018 #else /* CONFIG_CGROUP_WRITEBACK */ 1019 1020 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1021 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1022 1023 static struct bdi_writeback * 1024 locked_inode_to_wb_and_lock_list(struct inode *inode) 1025 __releases(&inode->i_lock) 1026 __acquires(&wb->list_lock) 1027 { 1028 struct bdi_writeback *wb = inode_to_wb(inode); 1029 1030 spin_unlock(&inode->i_lock); 1031 spin_lock(&wb->list_lock); 1032 return wb; 1033 } 1034 1035 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1036 __acquires(&wb->list_lock) 1037 { 1038 struct bdi_writeback *wb = inode_to_wb(inode); 1039 1040 spin_lock(&wb->list_lock); 1041 return wb; 1042 } 1043 1044 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1045 { 1046 return nr_pages; 1047 } 1048 1049 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1050 struct wb_writeback_work *base_work, 1051 bool skip_if_busy) 1052 { 1053 might_sleep(); 1054 1055 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1056 base_work->auto_free = 0; 1057 wb_queue_work(&bdi->wb, base_work); 1058 } 1059 } 1060 1061 #endif /* CONFIG_CGROUP_WRITEBACK */ 1062 1063 /* 1064 * Add in the number of potentially dirty inodes, because each inode 1065 * write can dirty pagecache in the underlying blockdev. 1066 */ 1067 static unsigned long get_nr_dirty_pages(void) 1068 { 1069 return global_node_page_state(NR_FILE_DIRTY) + 1070 global_node_page_state(NR_UNSTABLE_NFS) + 1071 get_nr_dirty_inodes(); 1072 } 1073 1074 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1075 { 1076 if (!wb_has_dirty_io(wb)) 1077 return; 1078 1079 /* 1080 * All callers of this function want to start writeback of all 1081 * dirty pages. Places like vmscan can call this at a very 1082 * high frequency, causing pointless allocations of tons of 1083 * work items and keeping the flusher threads busy retrieving 1084 * that work. Ensure that we only allow one of them pending and 1085 * inflight at the time. 1086 */ 1087 if (test_bit(WB_start_all, &wb->state) || 1088 test_and_set_bit(WB_start_all, &wb->state)) 1089 return; 1090 1091 wb->start_all_reason = reason; 1092 wb_wakeup(wb); 1093 } 1094 1095 /** 1096 * wb_start_background_writeback - start background writeback 1097 * @wb: bdi_writback to write from 1098 * 1099 * Description: 1100 * This makes sure WB_SYNC_NONE background writeback happens. When 1101 * this function returns, it is only guaranteed that for given wb 1102 * some IO is happening if we are over background dirty threshold. 1103 * Caller need not hold sb s_umount semaphore. 1104 */ 1105 void wb_start_background_writeback(struct bdi_writeback *wb) 1106 { 1107 /* 1108 * We just wake up the flusher thread. It will perform background 1109 * writeback as soon as there is no other work to do. 1110 */ 1111 trace_writeback_wake_background(wb); 1112 wb_wakeup(wb); 1113 } 1114 1115 /* 1116 * Remove the inode from the writeback list it is on. 1117 */ 1118 void inode_io_list_del(struct inode *inode) 1119 { 1120 struct bdi_writeback *wb; 1121 1122 wb = inode_to_wb_and_lock_list(inode); 1123 inode_io_list_del_locked(inode, wb); 1124 spin_unlock(&wb->list_lock); 1125 } 1126 1127 /* 1128 * mark an inode as under writeback on the sb 1129 */ 1130 void sb_mark_inode_writeback(struct inode *inode) 1131 { 1132 struct super_block *sb = inode->i_sb; 1133 unsigned long flags; 1134 1135 if (list_empty(&inode->i_wb_list)) { 1136 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1137 if (list_empty(&inode->i_wb_list)) { 1138 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1139 trace_sb_mark_inode_writeback(inode); 1140 } 1141 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1142 } 1143 } 1144 1145 /* 1146 * clear an inode as under writeback on the sb 1147 */ 1148 void sb_clear_inode_writeback(struct inode *inode) 1149 { 1150 struct super_block *sb = inode->i_sb; 1151 unsigned long flags; 1152 1153 if (!list_empty(&inode->i_wb_list)) { 1154 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1155 if (!list_empty(&inode->i_wb_list)) { 1156 list_del_init(&inode->i_wb_list); 1157 trace_sb_clear_inode_writeback(inode); 1158 } 1159 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1160 } 1161 } 1162 1163 /* 1164 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1165 * furthest end of its superblock's dirty-inode list. 1166 * 1167 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1168 * already the most-recently-dirtied inode on the b_dirty list. If that is 1169 * the case then the inode must have been redirtied while it was being written 1170 * out and we don't reset its dirtied_when. 1171 */ 1172 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1173 { 1174 if (!list_empty(&wb->b_dirty)) { 1175 struct inode *tail; 1176 1177 tail = wb_inode(wb->b_dirty.next); 1178 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1179 inode->dirtied_when = jiffies; 1180 } 1181 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1182 } 1183 1184 /* 1185 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1186 */ 1187 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1188 { 1189 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1190 } 1191 1192 static void inode_sync_complete(struct inode *inode) 1193 { 1194 inode->i_state &= ~I_SYNC; 1195 /* If inode is clean an unused, put it into LRU now... */ 1196 inode_add_lru(inode); 1197 /* Waiters must see I_SYNC cleared before being woken up */ 1198 smp_mb(); 1199 wake_up_bit(&inode->i_state, __I_SYNC); 1200 } 1201 1202 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1203 { 1204 bool ret = time_after(inode->dirtied_when, t); 1205 #ifndef CONFIG_64BIT 1206 /* 1207 * For inodes being constantly redirtied, dirtied_when can get stuck. 1208 * It _appears_ to be in the future, but is actually in distant past. 1209 * This test is necessary to prevent such wrapped-around relative times 1210 * from permanently stopping the whole bdi writeback. 1211 */ 1212 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1213 #endif 1214 return ret; 1215 } 1216 1217 #define EXPIRE_DIRTY_ATIME 0x0001 1218 1219 /* 1220 * Move expired (dirtied before work->older_than_this) dirty inodes from 1221 * @delaying_queue to @dispatch_queue. 1222 */ 1223 static int move_expired_inodes(struct list_head *delaying_queue, 1224 struct list_head *dispatch_queue, 1225 int flags, 1226 struct wb_writeback_work *work) 1227 { 1228 unsigned long *older_than_this = NULL; 1229 unsigned long expire_time; 1230 LIST_HEAD(tmp); 1231 struct list_head *pos, *node; 1232 struct super_block *sb = NULL; 1233 struct inode *inode; 1234 int do_sb_sort = 0; 1235 int moved = 0; 1236 1237 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1238 older_than_this = work->older_than_this; 1239 else if (!work->for_sync) { 1240 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1241 older_than_this = &expire_time; 1242 } 1243 while (!list_empty(delaying_queue)) { 1244 inode = wb_inode(delaying_queue->prev); 1245 if (older_than_this && 1246 inode_dirtied_after(inode, *older_than_this)) 1247 break; 1248 list_move(&inode->i_io_list, &tmp); 1249 moved++; 1250 if (flags & EXPIRE_DIRTY_ATIME) 1251 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1252 if (sb_is_blkdev_sb(inode->i_sb)) 1253 continue; 1254 if (sb && sb != inode->i_sb) 1255 do_sb_sort = 1; 1256 sb = inode->i_sb; 1257 } 1258 1259 /* just one sb in list, splice to dispatch_queue and we're done */ 1260 if (!do_sb_sort) { 1261 list_splice(&tmp, dispatch_queue); 1262 goto out; 1263 } 1264 1265 /* Move inodes from one superblock together */ 1266 while (!list_empty(&tmp)) { 1267 sb = wb_inode(tmp.prev)->i_sb; 1268 list_for_each_prev_safe(pos, node, &tmp) { 1269 inode = wb_inode(pos); 1270 if (inode->i_sb == sb) 1271 list_move(&inode->i_io_list, dispatch_queue); 1272 } 1273 } 1274 out: 1275 return moved; 1276 } 1277 1278 /* 1279 * Queue all expired dirty inodes for io, eldest first. 1280 * Before 1281 * newly dirtied b_dirty b_io b_more_io 1282 * =============> gf edc BA 1283 * After 1284 * newly dirtied b_dirty b_io b_more_io 1285 * =============> g fBAedc 1286 * | 1287 * +--> dequeue for IO 1288 */ 1289 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1290 { 1291 int moved; 1292 1293 assert_spin_locked(&wb->list_lock); 1294 list_splice_init(&wb->b_more_io, &wb->b_io); 1295 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1296 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1297 EXPIRE_DIRTY_ATIME, work); 1298 if (moved) 1299 wb_io_lists_populated(wb); 1300 trace_writeback_queue_io(wb, work, moved); 1301 } 1302 1303 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1304 { 1305 int ret; 1306 1307 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1308 trace_writeback_write_inode_start(inode, wbc); 1309 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1310 trace_writeback_write_inode(inode, wbc); 1311 return ret; 1312 } 1313 return 0; 1314 } 1315 1316 /* 1317 * Wait for writeback on an inode to complete. Called with i_lock held. 1318 * Caller must make sure inode cannot go away when we drop i_lock. 1319 */ 1320 static void __inode_wait_for_writeback(struct inode *inode) 1321 __releases(inode->i_lock) 1322 __acquires(inode->i_lock) 1323 { 1324 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1325 wait_queue_head_t *wqh; 1326 1327 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1328 while (inode->i_state & I_SYNC) { 1329 spin_unlock(&inode->i_lock); 1330 __wait_on_bit(wqh, &wq, bit_wait, 1331 TASK_UNINTERRUPTIBLE); 1332 spin_lock(&inode->i_lock); 1333 } 1334 } 1335 1336 /* 1337 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1338 */ 1339 void inode_wait_for_writeback(struct inode *inode) 1340 { 1341 spin_lock(&inode->i_lock); 1342 __inode_wait_for_writeback(inode); 1343 spin_unlock(&inode->i_lock); 1344 } 1345 1346 /* 1347 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1348 * held and drops it. It is aimed for callers not holding any inode reference 1349 * so once i_lock is dropped, inode can go away. 1350 */ 1351 static void inode_sleep_on_writeback(struct inode *inode) 1352 __releases(inode->i_lock) 1353 { 1354 DEFINE_WAIT(wait); 1355 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1356 int sleep; 1357 1358 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1359 sleep = inode->i_state & I_SYNC; 1360 spin_unlock(&inode->i_lock); 1361 if (sleep) 1362 schedule(); 1363 finish_wait(wqh, &wait); 1364 } 1365 1366 /* 1367 * Find proper writeback list for the inode depending on its current state and 1368 * possibly also change of its state while we were doing writeback. Here we 1369 * handle things such as livelock prevention or fairness of writeback among 1370 * inodes. This function can be called only by flusher thread - noone else 1371 * processes all inodes in writeback lists and requeueing inodes behind flusher 1372 * thread's back can have unexpected consequences. 1373 */ 1374 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1375 struct writeback_control *wbc) 1376 { 1377 if (inode->i_state & I_FREEING) 1378 return; 1379 1380 /* 1381 * Sync livelock prevention. Each inode is tagged and synced in one 1382 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1383 * the dirty time to prevent enqueue and sync it again. 1384 */ 1385 if ((inode->i_state & I_DIRTY) && 1386 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1387 inode->dirtied_when = jiffies; 1388 1389 if (wbc->pages_skipped) { 1390 /* 1391 * writeback is not making progress due to locked 1392 * buffers. Skip this inode for now. 1393 */ 1394 redirty_tail(inode, wb); 1395 return; 1396 } 1397 1398 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1399 /* 1400 * We didn't write back all the pages. nfs_writepages() 1401 * sometimes bales out without doing anything. 1402 */ 1403 if (wbc->nr_to_write <= 0) { 1404 /* Slice used up. Queue for next turn. */ 1405 requeue_io(inode, wb); 1406 } else { 1407 /* 1408 * Writeback blocked by something other than 1409 * congestion. Delay the inode for some time to 1410 * avoid spinning on the CPU (100% iowait) 1411 * retrying writeback of the dirty page/inode 1412 * that cannot be performed immediately. 1413 */ 1414 redirty_tail(inode, wb); 1415 } 1416 } else if (inode->i_state & I_DIRTY) { 1417 /* 1418 * Filesystems can dirty the inode during writeback operations, 1419 * such as delayed allocation during submission or metadata 1420 * updates after data IO completion. 1421 */ 1422 redirty_tail(inode, wb); 1423 } else if (inode->i_state & I_DIRTY_TIME) { 1424 inode->dirtied_when = jiffies; 1425 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1426 } else { 1427 /* The inode is clean. Remove from writeback lists. */ 1428 inode_io_list_del_locked(inode, wb); 1429 } 1430 } 1431 1432 /* 1433 * Write out an inode and its dirty pages. Do not update the writeback list 1434 * linkage. That is left to the caller. The caller is also responsible for 1435 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1436 */ 1437 static int 1438 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1439 { 1440 struct address_space *mapping = inode->i_mapping; 1441 long nr_to_write = wbc->nr_to_write; 1442 unsigned dirty; 1443 int ret; 1444 1445 WARN_ON(!(inode->i_state & I_SYNC)); 1446 1447 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1448 1449 ret = do_writepages(mapping, wbc); 1450 1451 /* 1452 * Make sure to wait on the data before writing out the metadata. 1453 * This is important for filesystems that modify metadata on data 1454 * I/O completion. We don't do it for sync(2) writeback because it has a 1455 * separate, external IO completion path and ->sync_fs for guaranteeing 1456 * inode metadata is written back correctly. 1457 */ 1458 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1459 int err = filemap_fdatawait(mapping); 1460 if (ret == 0) 1461 ret = err; 1462 } 1463 1464 /* 1465 * Some filesystems may redirty the inode during the writeback 1466 * due to delalloc, clear dirty metadata flags right before 1467 * write_inode() 1468 */ 1469 spin_lock(&inode->i_lock); 1470 1471 dirty = inode->i_state & I_DIRTY; 1472 if (inode->i_state & I_DIRTY_TIME) { 1473 if ((dirty & I_DIRTY_INODE) || 1474 wbc->sync_mode == WB_SYNC_ALL || 1475 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1476 unlikely(time_after(jiffies, 1477 (inode->dirtied_time_when + 1478 dirtytime_expire_interval * HZ)))) { 1479 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1480 trace_writeback_lazytime(inode); 1481 } 1482 } else 1483 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1484 inode->i_state &= ~dirty; 1485 1486 /* 1487 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1488 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1489 * either they see the I_DIRTY bits cleared or we see the dirtied 1490 * inode. 1491 * 1492 * I_DIRTY_PAGES is always cleared together above even if @mapping 1493 * still has dirty pages. The flag is reinstated after smp_mb() if 1494 * necessary. This guarantees that either __mark_inode_dirty() 1495 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1496 */ 1497 smp_mb(); 1498 1499 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1500 inode->i_state |= I_DIRTY_PAGES; 1501 1502 spin_unlock(&inode->i_lock); 1503 1504 if (dirty & I_DIRTY_TIME) 1505 mark_inode_dirty_sync(inode); 1506 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1507 if (dirty & ~I_DIRTY_PAGES) { 1508 int err = write_inode(inode, wbc); 1509 if (ret == 0) 1510 ret = err; 1511 } 1512 trace_writeback_single_inode(inode, wbc, nr_to_write); 1513 return ret; 1514 } 1515 1516 /* 1517 * Write out an inode's dirty pages. Either the caller has an active reference 1518 * on the inode or the inode has I_WILL_FREE set. 1519 * 1520 * This function is designed to be called for writing back one inode which 1521 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1522 * and does more profound writeback list handling in writeback_sb_inodes(). 1523 */ 1524 static int writeback_single_inode(struct inode *inode, 1525 struct writeback_control *wbc) 1526 { 1527 struct bdi_writeback *wb; 1528 int ret = 0; 1529 1530 spin_lock(&inode->i_lock); 1531 if (!atomic_read(&inode->i_count)) 1532 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1533 else 1534 WARN_ON(inode->i_state & I_WILL_FREE); 1535 1536 if (inode->i_state & I_SYNC) { 1537 if (wbc->sync_mode != WB_SYNC_ALL) 1538 goto out; 1539 /* 1540 * It's a data-integrity sync. We must wait. Since callers hold 1541 * inode reference or inode has I_WILL_FREE set, it cannot go 1542 * away under us. 1543 */ 1544 __inode_wait_for_writeback(inode); 1545 } 1546 WARN_ON(inode->i_state & I_SYNC); 1547 /* 1548 * Skip inode if it is clean and we have no outstanding writeback in 1549 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1550 * function since flusher thread may be doing for example sync in 1551 * parallel and if we move the inode, it could get skipped. So here we 1552 * make sure inode is on some writeback list and leave it there unless 1553 * we have completely cleaned the inode. 1554 */ 1555 if (!(inode->i_state & I_DIRTY_ALL) && 1556 (wbc->sync_mode != WB_SYNC_ALL || 1557 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1558 goto out; 1559 inode->i_state |= I_SYNC; 1560 wbc_attach_and_unlock_inode(wbc, inode); 1561 1562 ret = __writeback_single_inode(inode, wbc); 1563 1564 wbc_detach_inode(wbc); 1565 1566 wb = inode_to_wb_and_lock_list(inode); 1567 spin_lock(&inode->i_lock); 1568 /* 1569 * If inode is clean, remove it from writeback lists. Otherwise don't 1570 * touch it. See comment above for explanation. 1571 */ 1572 if (!(inode->i_state & I_DIRTY_ALL)) 1573 inode_io_list_del_locked(inode, wb); 1574 spin_unlock(&wb->list_lock); 1575 inode_sync_complete(inode); 1576 out: 1577 spin_unlock(&inode->i_lock); 1578 return ret; 1579 } 1580 1581 static long writeback_chunk_size(struct bdi_writeback *wb, 1582 struct wb_writeback_work *work) 1583 { 1584 long pages; 1585 1586 /* 1587 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1588 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1589 * here avoids calling into writeback_inodes_wb() more than once. 1590 * 1591 * The intended call sequence for WB_SYNC_ALL writeback is: 1592 * 1593 * wb_writeback() 1594 * writeback_sb_inodes() <== called only once 1595 * write_cache_pages() <== called once for each inode 1596 * (quickly) tag currently dirty pages 1597 * (maybe slowly) sync all tagged pages 1598 */ 1599 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1600 pages = LONG_MAX; 1601 else { 1602 pages = min(wb->avg_write_bandwidth / 2, 1603 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1604 pages = min(pages, work->nr_pages); 1605 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1606 MIN_WRITEBACK_PAGES); 1607 } 1608 1609 return pages; 1610 } 1611 1612 /* 1613 * Write a portion of b_io inodes which belong to @sb. 1614 * 1615 * Return the number of pages and/or inodes written. 1616 * 1617 * NOTE! This is called with wb->list_lock held, and will 1618 * unlock and relock that for each inode it ends up doing 1619 * IO for. 1620 */ 1621 static long writeback_sb_inodes(struct super_block *sb, 1622 struct bdi_writeback *wb, 1623 struct wb_writeback_work *work) 1624 { 1625 struct writeback_control wbc = { 1626 .sync_mode = work->sync_mode, 1627 .tagged_writepages = work->tagged_writepages, 1628 .for_kupdate = work->for_kupdate, 1629 .for_background = work->for_background, 1630 .for_sync = work->for_sync, 1631 .range_cyclic = work->range_cyclic, 1632 .range_start = 0, 1633 .range_end = LLONG_MAX, 1634 }; 1635 unsigned long start_time = jiffies; 1636 long write_chunk; 1637 long wrote = 0; /* count both pages and inodes */ 1638 1639 while (!list_empty(&wb->b_io)) { 1640 struct inode *inode = wb_inode(wb->b_io.prev); 1641 struct bdi_writeback *tmp_wb; 1642 1643 if (inode->i_sb != sb) { 1644 if (work->sb) { 1645 /* 1646 * We only want to write back data for this 1647 * superblock, move all inodes not belonging 1648 * to it back onto the dirty list. 1649 */ 1650 redirty_tail(inode, wb); 1651 continue; 1652 } 1653 1654 /* 1655 * The inode belongs to a different superblock. 1656 * Bounce back to the caller to unpin this and 1657 * pin the next superblock. 1658 */ 1659 break; 1660 } 1661 1662 /* 1663 * Don't bother with new inodes or inodes being freed, first 1664 * kind does not need periodic writeout yet, and for the latter 1665 * kind writeout is handled by the freer. 1666 */ 1667 spin_lock(&inode->i_lock); 1668 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1669 spin_unlock(&inode->i_lock); 1670 redirty_tail(inode, wb); 1671 continue; 1672 } 1673 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1674 /* 1675 * If this inode is locked for writeback and we are not 1676 * doing writeback-for-data-integrity, move it to 1677 * b_more_io so that writeback can proceed with the 1678 * other inodes on s_io. 1679 * 1680 * We'll have another go at writing back this inode 1681 * when we completed a full scan of b_io. 1682 */ 1683 spin_unlock(&inode->i_lock); 1684 requeue_io(inode, wb); 1685 trace_writeback_sb_inodes_requeue(inode); 1686 continue; 1687 } 1688 spin_unlock(&wb->list_lock); 1689 1690 /* 1691 * We already requeued the inode if it had I_SYNC set and we 1692 * are doing WB_SYNC_NONE writeback. So this catches only the 1693 * WB_SYNC_ALL case. 1694 */ 1695 if (inode->i_state & I_SYNC) { 1696 /* Wait for I_SYNC. This function drops i_lock... */ 1697 inode_sleep_on_writeback(inode); 1698 /* Inode may be gone, start again */ 1699 spin_lock(&wb->list_lock); 1700 continue; 1701 } 1702 inode->i_state |= I_SYNC; 1703 wbc_attach_and_unlock_inode(&wbc, inode); 1704 1705 write_chunk = writeback_chunk_size(wb, work); 1706 wbc.nr_to_write = write_chunk; 1707 wbc.pages_skipped = 0; 1708 1709 /* 1710 * We use I_SYNC to pin the inode in memory. While it is set 1711 * evict_inode() will wait so the inode cannot be freed. 1712 */ 1713 __writeback_single_inode(inode, &wbc); 1714 1715 wbc_detach_inode(&wbc); 1716 work->nr_pages -= write_chunk - wbc.nr_to_write; 1717 wrote += write_chunk - wbc.nr_to_write; 1718 1719 if (need_resched()) { 1720 /* 1721 * We're trying to balance between building up a nice 1722 * long list of IOs to improve our merge rate, and 1723 * getting those IOs out quickly for anyone throttling 1724 * in balance_dirty_pages(). cond_resched() doesn't 1725 * unplug, so get our IOs out the door before we 1726 * give up the CPU. 1727 */ 1728 blk_flush_plug(current); 1729 cond_resched(); 1730 } 1731 1732 /* 1733 * Requeue @inode if still dirty. Be careful as @inode may 1734 * have been switched to another wb in the meantime. 1735 */ 1736 tmp_wb = inode_to_wb_and_lock_list(inode); 1737 spin_lock(&inode->i_lock); 1738 if (!(inode->i_state & I_DIRTY_ALL)) 1739 wrote++; 1740 requeue_inode(inode, tmp_wb, &wbc); 1741 inode_sync_complete(inode); 1742 spin_unlock(&inode->i_lock); 1743 1744 if (unlikely(tmp_wb != wb)) { 1745 spin_unlock(&tmp_wb->list_lock); 1746 spin_lock(&wb->list_lock); 1747 } 1748 1749 /* 1750 * bail out to wb_writeback() often enough to check 1751 * background threshold and other termination conditions. 1752 */ 1753 if (wrote) { 1754 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1755 break; 1756 if (work->nr_pages <= 0) 1757 break; 1758 } 1759 } 1760 return wrote; 1761 } 1762 1763 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1764 struct wb_writeback_work *work) 1765 { 1766 unsigned long start_time = jiffies; 1767 long wrote = 0; 1768 1769 while (!list_empty(&wb->b_io)) { 1770 struct inode *inode = wb_inode(wb->b_io.prev); 1771 struct super_block *sb = inode->i_sb; 1772 1773 if (!trylock_super(sb)) { 1774 /* 1775 * trylock_super() may fail consistently due to 1776 * s_umount being grabbed by someone else. Don't use 1777 * requeue_io() to avoid busy retrying the inode/sb. 1778 */ 1779 redirty_tail(inode, wb); 1780 continue; 1781 } 1782 wrote += writeback_sb_inodes(sb, wb, work); 1783 up_read(&sb->s_umount); 1784 1785 /* refer to the same tests at the end of writeback_sb_inodes */ 1786 if (wrote) { 1787 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1788 break; 1789 if (work->nr_pages <= 0) 1790 break; 1791 } 1792 } 1793 /* Leave any unwritten inodes on b_io */ 1794 return wrote; 1795 } 1796 1797 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1798 enum wb_reason reason) 1799 { 1800 struct wb_writeback_work work = { 1801 .nr_pages = nr_pages, 1802 .sync_mode = WB_SYNC_NONE, 1803 .range_cyclic = 1, 1804 .reason = reason, 1805 }; 1806 struct blk_plug plug; 1807 1808 blk_start_plug(&plug); 1809 spin_lock(&wb->list_lock); 1810 if (list_empty(&wb->b_io)) 1811 queue_io(wb, &work); 1812 __writeback_inodes_wb(wb, &work); 1813 spin_unlock(&wb->list_lock); 1814 blk_finish_plug(&plug); 1815 1816 return nr_pages - work.nr_pages; 1817 } 1818 1819 /* 1820 * Explicit flushing or periodic writeback of "old" data. 1821 * 1822 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1823 * dirtying-time in the inode's address_space. So this periodic writeback code 1824 * just walks the superblock inode list, writing back any inodes which are 1825 * older than a specific point in time. 1826 * 1827 * Try to run once per dirty_writeback_interval. But if a writeback event 1828 * takes longer than a dirty_writeback_interval interval, then leave a 1829 * one-second gap. 1830 * 1831 * older_than_this takes precedence over nr_to_write. So we'll only write back 1832 * all dirty pages if they are all attached to "old" mappings. 1833 */ 1834 static long wb_writeback(struct bdi_writeback *wb, 1835 struct wb_writeback_work *work) 1836 { 1837 unsigned long wb_start = jiffies; 1838 long nr_pages = work->nr_pages; 1839 unsigned long oldest_jif; 1840 struct inode *inode; 1841 long progress; 1842 struct blk_plug plug; 1843 1844 oldest_jif = jiffies; 1845 work->older_than_this = &oldest_jif; 1846 1847 blk_start_plug(&plug); 1848 spin_lock(&wb->list_lock); 1849 for (;;) { 1850 /* 1851 * Stop writeback when nr_pages has been consumed 1852 */ 1853 if (work->nr_pages <= 0) 1854 break; 1855 1856 /* 1857 * Background writeout and kupdate-style writeback may 1858 * run forever. Stop them if there is other work to do 1859 * so that e.g. sync can proceed. They'll be restarted 1860 * after the other works are all done. 1861 */ 1862 if ((work->for_background || work->for_kupdate) && 1863 !list_empty(&wb->work_list)) 1864 break; 1865 1866 /* 1867 * For background writeout, stop when we are below the 1868 * background dirty threshold 1869 */ 1870 if (work->for_background && !wb_over_bg_thresh(wb)) 1871 break; 1872 1873 /* 1874 * Kupdate and background works are special and we want to 1875 * include all inodes that need writing. Livelock avoidance is 1876 * handled by these works yielding to any other work so we are 1877 * safe. 1878 */ 1879 if (work->for_kupdate) { 1880 oldest_jif = jiffies - 1881 msecs_to_jiffies(dirty_expire_interval * 10); 1882 } else if (work->for_background) 1883 oldest_jif = jiffies; 1884 1885 trace_writeback_start(wb, work); 1886 if (list_empty(&wb->b_io)) 1887 queue_io(wb, work); 1888 if (work->sb) 1889 progress = writeback_sb_inodes(work->sb, wb, work); 1890 else 1891 progress = __writeback_inodes_wb(wb, work); 1892 trace_writeback_written(wb, work); 1893 1894 wb_update_bandwidth(wb, wb_start); 1895 1896 /* 1897 * Did we write something? Try for more 1898 * 1899 * Dirty inodes are moved to b_io for writeback in batches. 1900 * The completion of the current batch does not necessarily 1901 * mean the overall work is done. So we keep looping as long 1902 * as made some progress on cleaning pages or inodes. 1903 */ 1904 if (progress) 1905 continue; 1906 /* 1907 * No more inodes for IO, bail 1908 */ 1909 if (list_empty(&wb->b_more_io)) 1910 break; 1911 /* 1912 * Nothing written. Wait for some inode to 1913 * become available for writeback. Otherwise 1914 * we'll just busyloop. 1915 */ 1916 trace_writeback_wait(wb, work); 1917 inode = wb_inode(wb->b_more_io.prev); 1918 spin_lock(&inode->i_lock); 1919 spin_unlock(&wb->list_lock); 1920 /* This function drops i_lock... */ 1921 inode_sleep_on_writeback(inode); 1922 spin_lock(&wb->list_lock); 1923 } 1924 spin_unlock(&wb->list_lock); 1925 blk_finish_plug(&plug); 1926 1927 return nr_pages - work->nr_pages; 1928 } 1929 1930 /* 1931 * Return the next wb_writeback_work struct that hasn't been processed yet. 1932 */ 1933 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1934 { 1935 struct wb_writeback_work *work = NULL; 1936 1937 spin_lock_bh(&wb->work_lock); 1938 if (!list_empty(&wb->work_list)) { 1939 work = list_entry(wb->work_list.next, 1940 struct wb_writeback_work, list); 1941 list_del_init(&work->list); 1942 } 1943 spin_unlock_bh(&wb->work_lock); 1944 return work; 1945 } 1946 1947 static long wb_check_background_flush(struct bdi_writeback *wb) 1948 { 1949 if (wb_over_bg_thresh(wb)) { 1950 1951 struct wb_writeback_work work = { 1952 .nr_pages = LONG_MAX, 1953 .sync_mode = WB_SYNC_NONE, 1954 .for_background = 1, 1955 .range_cyclic = 1, 1956 .reason = WB_REASON_BACKGROUND, 1957 }; 1958 1959 return wb_writeback(wb, &work); 1960 } 1961 1962 return 0; 1963 } 1964 1965 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1966 { 1967 unsigned long expired; 1968 long nr_pages; 1969 1970 /* 1971 * When set to zero, disable periodic writeback 1972 */ 1973 if (!dirty_writeback_interval) 1974 return 0; 1975 1976 expired = wb->last_old_flush + 1977 msecs_to_jiffies(dirty_writeback_interval * 10); 1978 if (time_before(jiffies, expired)) 1979 return 0; 1980 1981 wb->last_old_flush = jiffies; 1982 nr_pages = get_nr_dirty_pages(); 1983 1984 if (nr_pages) { 1985 struct wb_writeback_work work = { 1986 .nr_pages = nr_pages, 1987 .sync_mode = WB_SYNC_NONE, 1988 .for_kupdate = 1, 1989 .range_cyclic = 1, 1990 .reason = WB_REASON_PERIODIC, 1991 }; 1992 1993 return wb_writeback(wb, &work); 1994 } 1995 1996 return 0; 1997 } 1998 1999 static long wb_check_start_all(struct bdi_writeback *wb) 2000 { 2001 long nr_pages; 2002 2003 if (!test_bit(WB_start_all, &wb->state)) 2004 return 0; 2005 2006 nr_pages = get_nr_dirty_pages(); 2007 if (nr_pages) { 2008 struct wb_writeback_work work = { 2009 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2010 .sync_mode = WB_SYNC_NONE, 2011 .range_cyclic = 1, 2012 .reason = wb->start_all_reason, 2013 }; 2014 2015 nr_pages = wb_writeback(wb, &work); 2016 } 2017 2018 clear_bit(WB_start_all, &wb->state); 2019 return nr_pages; 2020 } 2021 2022 2023 /* 2024 * Retrieve work items and do the writeback they describe 2025 */ 2026 static long wb_do_writeback(struct bdi_writeback *wb) 2027 { 2028 struct wb_writeback_work *work; 2029 long wrote = 0; 2030 2031 set_bit(WB_writeback_running, &wb->state); 2032 while ((work = get_next_work_item(wb)) != NULL) { 2033 trace_writeback_exec(wb, work); 2034 wrote += wb_writeback(wb, work); 2035 finish_writeback_work(wb, work); 2036 } 2037 2038 /* 2039 * Check for a flush-everything request 2040 */ 2041 wrote += wb_check_start_all(wb); 2042 2043 /* 2044 * Check for periodic writeback, kupdated() style 2045 */ 2046 wrote += wb_check_old_data_flush(wb); 2047 wrote += wb_check_background_flush(wb); 2048 clear_bit(WB_writeback_running, &wb->state); 2049 2050 return wrote; 2051 } 2052 2053 /* 2054 * Handle writeback of dirty data for the device backed by this bdi. Also 2055 * reschedules periodically and does kupdated style flushing. 2056 */ 2057 void wb_workfn(struct work_struct *work) 2058 { 2059 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2060 struct bdi_writeback, dwork); 2061 long pages_written; 2062 2063 set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); 2064 current->flags |= PF_SWAPWRITE; 2065 2066 if (likely(!current_is_workqueue_rescuer() || 2067 !test_bit(WB_registered, &wb->state))) { 2068 /* 2069 * The normal path. Keep writing back @wb until its 2070 * work_list is empty. Note that this path is also taken 2071 * if @wb is shutting down even when we're running off the 2072 * rescuer as work_list needs to be drained. 2073 */ 2074 do { 2075 pages_written = wb_do_writeback(wb); 2076 trace_writeback_pages_written(pages_written); 2077 } while (!list_empty(&wb->work_list)); 2078 } else { 2079 /* 2080 * bdi_wq can't get enough workers and we're running off 2081 * the emergency worker. Don't hog it. Hopefully, 1024 is 2082 * enough for efficient IO. 2083 */ 2084 pages_written = writeback_inodes_wb(wb, 1024, 2085 WB_REASON_FORKER_THREAD); 2086 trace_writeback_pages_written(pages_written); 2087 } 2088 2089 if (!list_empty(&wb->work_list)) 2090 wb_wakeup(wb); 2091 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2092 wb_wakeup_delayed(wb); 2093 2094 current->flags &= ~PF_SWAPWRITE; 2095 } 2096 2097 /* 2098 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2099 * write back the whole world. 2100 */ 2101 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2102 enum wb_reason reason) 2103 { 2104 struct bdi_writeback *wb; 2105 2106 if (!bdi_has_dirty_io(bdi)) 2107 return; 2108 2109 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2110 wb_start_writeback(wb, reason); 2111 } 2112 2113 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2114 enum wb_reason reason) 2115 { 2116 rcu_read_lock(); 2117 __wakeup_flusher_threads_bdi(bdi, reason); 2118 rcu_read_unlock(); 2119 } 2120 2121 /* 2122 * Wakeup the flusher threads to start writeback of all currently dirty pages 2123 */ 2124 void wakeup_flusher_threads(enum wb_reason reason) 2125 { 2126 struct backing_dev_info *bdi; 2127 2128 /* 2129 * If we are expecting writeback progress we must submit plugged IO. 2130 */ 2131 if (blk_needs_flush_plug(current)) 2132 blk_schedule_flush_plug(current); 2133 2134 rcu_read_lock(); 2135 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2136 __wakeup_flusher_threads_bdi(bdi, reason); 2137 rcu_read_unlock(); 2138 } 2139 2140 /* 2141 * Wake up bdi's periodically to make sure dirtytime inodes gets 2142 * written back periodically. We deliberately do *not* check the 2143 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2144 * kernel to be constantly waking up once there are any dirtytime 2145 * inodes on the system. So instead we define a separate delayed work 2146 * function which gets called much more rarely. (By default, only 2147 * once every 12 hours.) 2148 * 2149 * If there is any other write activity going on in the file system, 2150 * this function won't be necessary. But if the only thing that has 2151 * happened on the file system is a dirtytime inode caused by an atime 2152 * update, we need this infrastructure below to make sure that inode 2153 * eventually gets pushed out to disk. 2154 */ 2155 static void wakeup_dirtytime_writeback(struct work_struct *w); 2156 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2157 2158 static void wakeup_dirtytime_writeback(struct work_struct *w) 2159 { 2160 struct backing_dev_info *bdi; 2161 2162 rcu_read_lock(); 2163 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2164 struct bdi_writeback *wb; 2165 2166 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2167 if (!list_empty(&wb->b_dirty_time)) 2168 wb_wakeup(wb); 2169 } 2170 rcu_read_unlock(); 2171 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2172 } 2173 2174 static int __init start_dirtytime_writeback(void) 2175 { 2176 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2177 return 0; 2178 } 2179 __initcall(start_dirtytime_writeback); 2180 2181 int dirtytime_interval_handler(struct ctl_table *table, int write, 2182 void __user *buffer, size_t *lenp, loff_t *ppos) 2183 { 2184 int ret; 2185 2186 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2187 if (ret == 0 && write) 2188 mod_delayed_work(system_wq, &dirtytime_work, 0); 2189 return ret; 2190 } 2191 2192 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2193 { 2194 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2195 struct dentry *dentry; 2196 const char *name = "?"; 2197 2198 dentry = d_find_alias(inode); 2199 if (dentry) { 2200 spin_lock(&dentry->d_lock); 2201 name = (const char *) dentry->d_name.name; 2202 } 2203 printk(KERN_DEBUG 2204 "%s(%d): dirtied inode %lu (%s) on %s\n", 2205 current->comm, task_pid_nr(current), inode->i_ino, 2206 name, inode->i_sb->s_id); 2207 if (dentry) { 2208 spin_unlock(&dentry->d_lock); 2209 dput(dentry); 2210 } 2211 } 2212 } 2213 2214 /** 2215 * __mark_inode_dirty - internal function 2216 * 2217 * @inode: inode to mark 2218 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2219 * 2220 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2221 * mark_inode_dirty_sync. 2222 * 2223 * Put the inode on the super block's dirty list. 2224 * 2225 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2226 * dirty list only if it is hashed or if it refers to a blockdev. 2227 * If it was not hashed, it will never be added to the dirty list 2228 * even if it is later hashed, as it will have been marked dirty already. 2229 * 2230 * In short, make sure you hash any inodes _before_ you start marking 2231 * them dirty. 2232 * 2233 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2234 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2235 * the kernel-internal blockdev inode represents the dirtying time of the 2236 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2237 * page->mapping->host, so the page-dirtying time is recorded in the internal 2238 * blockdev inode. 2239 */ 2240 void __mark_inode_dirty(struct inode *inode, int flags) 2241 { 2242 struct super_block *sb = inode->i_sb; 2243 int dirtytime; 2244 2245 trace_writeback_mark_inode_dirty(inode, flags); 2246 2247 /* 2248 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2249 * dirty the inode itself 2250 */ 2251 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) { 2252 trace_writeback_dirty_inode_start(inode, flags); 2253 2254 if (sb->s_op->dirty_inode) 2255 sb->s_op->dirty_inode(inode, flags); 2256 2257 trace_writeback_dirty_inode(inode, flags); 2258 } 2259 if (flags & I_DIRTY_INODE) 2260 flags &= ~I_DIRTY_TIME; 2261 dirtytime = flags & I_DIRTY_TIME; 2262 2263 /* 2264 * Paired with smp_mb() in __writeback_single_inode() for the 2265 * following lockless i_state test. See there for details. 2266 */ 2267 smp_mb(); 2268 2269 if (((inode->i_state & flags) == flags) || 2270 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2271 return; 2272 2273 if (unlikely(block_dump)) 2274 block_dump___mark_inode_dirty(inode); 2275 2276 spin_lock(&inode->i_lock); 2277 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2278 goto out_unlock_inode; 2279 if ((inode->i_state & flags) != flags) { 2280 const int was_dirty = inode->i_state & I_DIRTY; 2281 2282 inode_attach_wb(inode, NULL); 2283 2284 if (flags & I_DIRTY_INODE) 2285 inode->i_state &= ~I_DIRTY_TIME; 2286 inode->i_state |= flags; 2287 2288 /* 2289 * If the inode is being synced, just update its dirty state. 2290 * The unlocker will place the inode on the appropriate 2291 * superblock list, based upon its state. 2292 */ 2293 if (inode->i_state & I_SYNC) 2294 goto out_unlock_inode; 2295 2296 /* 2297 * Only add valid (hashed) inodes to the superblock's 2298 * dirty list. Add blockdev inodes as well. 2299 */ 2300 if (!S_ISBLK(inode->i_mode)) { 2301 if (inode_unhashed(inode)) 2302 goto out_unlock_inode; 2303 } 2304 if (inode->i_state & I_FREEING) 2305 goto out_unlock_inode; 2306 2307 /* 2308 * If the inode was already on b_dirty/b_io/b_more_io, don't 2309 * reposition it (that would break b_dirty time-ordering). 2310 */ 2311 if (!was_dirty) { 2312 struct bdi_writeback *wb; 2313 struct list_head *dirty_list; 2314 bool wakeup_bdi = false; 2315 2316 wb = locked_inode_to_wb_and_lock_list(inode); 2317 2318 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2319 !test_bit(WB_registered, &wb->state), 2320 "bdi-%s not registered\n", wb->bdi->name); 2321 2322 inode->dirtied_when = jiffies; 2323 if (dirtytime) 2324 inode->dirtied_time_when = jiffies; 2325 2326 if (inode->i_state & I_DIRTY) 2327 dirty_list = &wb->b_dirty; 2328 else 2329 dirty_list = &wb->b_dirty_time; 2330 2331 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2332 dirty_list); 2333 2334 spin_unlock(&wb->list_lock); 2335 trace_writeback_dirty_inode_enqueue(inode); 2336 2337 /* 2338 * If this is the first dirty inode for this bdi, 2339 * we have to wake-up the corresponding bdi thread 2340 * to make sure background write-back happens 2341 * later. 2342 */ 2343 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2344 wb_wakeup_delayed(wb); 2345 return; 2346 } 2347 } 2348 out_unlock_inode: 2349 spin_unlock(&inode->i_lock); 2350 } 2351 EXPORT_SYMBOL(__mark_inode_dirty); 2352 2353 /* 2354 * The @s_sync_lock is used to serialise concurrent sync operations 2355 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2356 * Concurrent callers will block on the s_sync_lock rather than doing contending 2357 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2358 * has been issued up to the time this function is enter is guaranteed to be 2359 * completed by the time we have gained the lock and waited for all IO that is 2360 * in progress regardless of the order callers are granted the lock. 2361 */ 2362 static void wait_sb_inodes(struct super_block *sb) 2363 { 2364 LIST_HEAD(sync_list); 2365 2366 /* 2367 * We need to be protected against the filesystem going from 2368 * r/o to r/w or vice versa. 2369 */ 2370 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2371 2372 mutex_lock(&sb->s_sync_lock); 2373 2374 /* 2375 * Splice the writeback list onto a temporary list to avoid waiting on 2376 * inodes that have started writeback after this point. 2377 * 2378 * Use rcu_read_lock() to keep the inodes around until we have a 2379 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2380 * the local list because inodes can be dropped from either by writeback 2381 * completion. 2382 */ 2383 rcu_read_lock(); 2384 spin_lock_irq(&sb->s_inode_wblist_lock); 2385 list_splice_init(&sb->s_inodes_wb, &sync_list); 2386 2387 /* 2388 * Data integrity sync. Must wait for all pages under writeback, because 2389 * there may have been pages dirtied before our sync call, but which had 2390 * writeout started before we write it out. In which case, the inode 2391 * may not be on the dirty list, but we still have to wait for that 2392 * writeout. 2393 */ 2394 while (!list_empty(&sync_list)) { 2395 struct inode *inode = list_first_entry(&sync_list, struct inode, 2396 i_wb_list); 2397 struct address_space *mapping = inode->i_mapping; 2398 2399 /* 2400 * Move each inode back to the wb list before we drop the lock 2401 * to preserve consistency between i_wb_list and the mapping 2402 * writeback tag. Writeback completion is responsible to remove 2403 * the inode from either list once the writeback tag is cleared. 2404 */ 2405 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2406 2407 /* 2408 * The mapping can appear untagged while still on-list since we 2409 * do not have the mapping lock. Skip it here, wb completion 2410 * will remove it. 2411 */ 2412 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2413 continue; 2414 2415 spin_unlock_irq(&sb->s_inode_wblist_lock); 2416 2417 spin_lock(&inode->i_lock); 2418 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2419 spin_unlock(&inode->i_lock); 2420 2421 spin_lock_irq(&sb->s_inode_wblist_lock); 2422 continue; 2423 } 2424 __iget(inode); 2425 spin_unlock(&inode->i_lock); 2426 rcu_read_unlock(); 2427 2428 /* 2429 * We keep the error status of individual mapping so that 2430 * applications can catch the writeback error using fsync(2). 2431 * See filemap_fdatawait_keep_errors() for details. 2432 */ 2433 filemap_fdatawait_keep_errors(mapping); 2434 2435 cond_resched(); 2436 2437 iput(inode); 2438 2439 rcu_read_lock(); 2440 spin_lock_irq(&sb->s_inode_wblist_lock); 2441 } 2442 spin_unlock_irq(&sb->s_inode_wblist_lock); 2443 rcu_read_unlock(); 2444 mutex_unlock(&sb->s_sync_lock); 2445 } 2446 2447 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2448 enum wb_reason reason, bool skip_if_busy) 2449 { 2450 struct backing_dev_info *bdi = sb->s_bdi; 2451 DEFINE_WB_COMPLETION(done, bdi); 2452 struct wb_writeback_work work = { 2453 .sb = sb, 2454 .sync_mode = WB_SYNC_NONE, 2455 .tagged_writepages = 1, 2456 .done = &done, 2457 .nr_pages = nr, 2458 .reason = reason, 2459 }; 2460 2461 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2462 return; 2463 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2464 2465 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2466 wb_wait_for_completion(&done); 2467 } 2468 2469 /** 2470 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2471 * @sb: the superblock 2472 * @nr: the number of pages to write 2473 * @reason: reason why some writeback work initiated 2474 * 2475 * Start writeback on some inodes on this super_block. No guarantees are made 2476 * on how many (if any) will be written, and this function does not wait 2477 * for IO completion of submitted IO. 2478 */ 2479 void writeback_inodes_sb_nr(struct super_block *sb, 2480 unsigned long nr, 2481 enum wb_reason reason) 2482 { 2483 __writeback_inodes_sb_nr(sb, nr, reason, false); 2484 } 2485 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2486 2487 /** 2488 * writeback_inodes_sb - writeback dirty inodes from given super_block 2489 * @sb: the superblock 2490 * @reason: reason why some writeback work was initiated 2491 * 2492 * Start writeback on some inodes on this super_block. No guarantees are made 2493 * on how many (if any) will be written, and this function does not wait 2494 * for IO completion of submitted IO. 2495 */ 2496 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2497 { 2498 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2499 } 2500 EXPORT_SYMBOL(writeback_inodes_sb); 2501 2502 /** 2503 * try_to_writeback_inodes_sb - try to start writeback if none underway 2504 * @sb: the superblock 2505 * @reason: reason why some writeback work was initiated 2506 * 2507 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2508 */ 2509 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2510 { 2511 if (!down_read_trylock(&sb->s_umount)) 2512 return; 2513 2514 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2515 up_read(&sb->s_umount); 2516 } 2517 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2518 2519 /** 2520 * sync_inodes_sb - sync sb inode pages 2521 * @sb: the superblock 2522 * 2523 * This function writes and waits on any dirty inode belonging to this 2524 * super_block. 2525 */ 2526 void sync_inodes_sb(struct super_block *sb) 2527 { 2528 struct backing_dev_info *bdi = sb->s_bdi; 2529 DEFINE_WB_COMPLETION(done, bdi); 2530 struct wb_writeback_work work = { 2531 .sb = sb, 2532 .sync_mode = WB_SYNC_ALL, 2533 .nr_pages = LONG_MAX, 2534 .range_cyclic = 0, 2535 .done = &done, 2536 .reason = WB_REASON_SYNC, 2537 .for_sync = 1, 2538 }; 2539 2540 /* 2541 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2542 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2543 * bdi_has_dirty() need to be written out too. 2544 */ 2545 if (bdi == &noop_backing_dev_info) 2546 return; 2547 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2548 2549 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2550 bdi_down_write_wb_switch_rwsem(bdi); 2551 bdi_split_work_to_wbs(bdi, &work, false); 2552 wb_wait_for_completion(&done); 2553 bdi_up_write_wb_switch_rwsem(bdi); 2554 2555 wait_sb_inodes(sb); 2556 } 2557 EXPORT_SYMBOL(sync_inodes_sb); 2558 2559 /** 2560 * write_inode_now - write an inode to disk 2561 * @inode: inode to write to disk 2562 * @sync: whether the write should be synchronous or not 2563 * 2564 * This function commits an inode to disk immediately if it is dirty. This is 2565 * primarily needed by knfsd. 2566 * 2567 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2568 */ 2569 int write_inode_now(struct inode *inode, int sync) 2570 { 2571 struct writeback_control wbc = { 2572 .nr_to_write = LONG_MAX, 2573 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2574 .range_start = 0, 2575 .range_end = LLONG_MAX, 2576 }; 2577 2578 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2579 wbc.nr_to_write = 0; 2580 2581 might_sleep(); 2582 return writeback_single_inode(inode, &wbc); 2583 } 2584 EXPORT_SYMBOL(write_inode_now); 2585 2586 /** 2587 * sync_inode - write an inode and its pages to disk. 2588 * @inode: the inode to sync 2589 * @wbc: controls the writeback mode 2590 * 2591 * sync_inode() will write an inode and its pages to disk. It will also 2592 * correctly update the inode on its superblock's dirty inode lists and will 2593 * update inode->i_state. 2594 * 2595 * The caller must have a ref on the inode. 2596 */ 2597 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2598 { 2599 return writeback_single_inode(inode, wbc); 2600 } 2601 EXPORT_SYMBOL(sync_inode); 2602 2603 /** 2604 * sync_inode_metadata - write an inode to disk 2605 * @inode: the inode to sync 2606 * @wait: wait for I/O to complete. 2607 * 2608 * Write an inode to disk and adjust its dirty state after completion. 2609 * 2610 * Note: only writes the actual inode, no associated data or other metadata. 2611 */ 2612 int sync_inode_metadata(struct inode *inode, int wait) 2613 { 2614 struct writeback_control wbc = { 2615 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2616 .nr_to_write = 0, /* metadata-only */ 2617 }; 2618 2619 return sync_inode(inode, &wbc); 2620 } 2621 EXPORT_SYMBOL(sync_inode_metadata); 2622