1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/sched.h> 20 #include <linux/fs.h> 21 #include <linux/mm.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/backing-dev.h> 27 #include <linux/buffer_head.h> 28 #include "internal.h" 29 30 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info) 31 32 /* 33 * We don't actually have pdflush, but this one is exported though /proc... 34 */ 35 int nr_pdflush_threads; 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_args { 41 long nr_pages; 42 struct super_block *sb; 43 enum writeback_sync_modes sync_mode; 44 int for_kupdate:1; 45 int range_cyclic:1; 46 int for_background:1; 47 }; 48 49 /* 50 * Work items for the bdi_writeback threads 51 */ 52 struct bdi_work { 53 struct list_head list; /* pending work list */ 54 struct rcu_head rcu_head; /* for RCU free/clear of work */ 55 56 unsigned long seen; /* threads that have seen this work */ 57 atomic_t pending; /* number of threads still to do work */ 58 59 struct wb_writeback_args args; /* writeback arguments */ 60 61 unsigned long state; /* flag bits, see WS_* */ 62 }; 63 64 enum { 65 WS_USED_B = 0, 66 WS_ONSTACK_B, 67 }; 68 69 #define WS_USED (1 << WS_USED_B) 70 #define WS_ONSTACK (1 << WS_ONSTACK_B) 71 72 static inline bool bdi_work_on_stack(struct bdi_work *work) 73 { 74 return test_bit(WS_ONSTACK_B, &work->state); 75 } 76 77 static inline void bdi_work_init(struct bdi_work *work, 78 struct wb_writeback_args *args) 79 { 80 INIT_RCU_HEAD(&work->rcu_head); 81 work->args = *args; 82 work->state = WS_USED; 83 } 84 85 /** 86 * writeback_in_progress - determine whether there is writeback in progress 87 * @bdi: the device's backing_dev_info structure. 88 * 89 * Determine whether there is writeback waiting to be handled against a 90 * backing device. 91 */ 92 int writeback_in_progress(struct backing_dev_info *bdi) 93 { 94 return !list_empty(&bdi->work_list); 95 } 96 97 static void bdi_work_clear(struct bdi_work *work) 98 { 99 clear_bit(WS_USED_B, &work->state); 100 smp_mb__after_clear_bit(); 101 /* 102 * work can have disappeared at this point. bit waitq functions 103 * should be able to tolerate this, provided bdi_sched_wait does 104 * not dereference it's pointer argument. 105 */ 106 wake_up_bit(&work->state, WS_USED_B); 107 } 108 109 static void bdi_work_free(struct rcu_head *head) 110 { 111 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head); 112 113 if (!bdi_work_on_stack(work)) 114 kfree(work); 115 else 116 bdi_work_clear(work); 117 } 118 119 static void wb_work_complete(struct bdi_work *work) 120 { 121 const enum writeback_sync_modes sync_mode = work->args.sync_mode; 122 int onstack = bdi_work_on_stack(work); 123 124 /* 125 * For allocated work, we can clear the done/seen bit right here. 126 * For on-stack work, we need to postpone both the clear and free 127 * to after the RCU grace period, since the stack could be invalidated 128 * as soon as bdi_work_clear() has done the wakeup. 129 */ 130 if (!onstack) 131 bdi_work_clear(work); 132 if (sync_mode == WB_SYNC_NONE || onstack) 133 call_rcu(&work->rcu_head, bdi_work_free); 134 } 135 136 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work) 137 { 138 /* 139 * The caller has retrieved the work arguments from this work, 140 * drop our reference. If this is the last ref, delete and free it 141 */ 142 if (atomic_dec_and_test(&work->pending)) { 143 struct backing_dev_info *bdi = wb->bdi; 144 145 spin_lock(&bdi->wb_lock); 146 list_del_rcu(&work->list); 147 spin_unlock(&bdi->wb_lock); 148 149 wb_work_complete(work); 150 } 151 } 152 153 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work) 154 { 155 work->seen = bdi->wb_mask; 156 BUG_ON(!work->seen); 157 atomic_set(&work->pending, bdi->wb_cnt); 158 BUG_ON(!bdi->wb_cnt); 159 160 /* 161 * list_add_tail_rcu() contains the necessary barriers to 162 * make sure the above stores are seen before the item is 163 * noticed on the list 164 */ 165 spin_lock(&bdi->wb_lock); 166 list_add_tail_rcu(&work->list, &bdi->work_list); 167 spin_unlock(&bdi->wb_lock); 168 169 /* 170 * If the default thread isn't there, make sure we add it. When 171 * it gets created and wakes up, we'll run this work. 172 */ 173 if (unlikely(list_empty_careful(&bdi->wb_list))) 174 wake_up_process(default_backing_dev_info.wb.task); 175 else { 176 struct bdi_writeback *wb = &bdi->wb; 177 178 if (wb->task) 179 wake_up_process(wb->task); 180 } 181 } 182 183 /* 184 * Used for on-stack allocated work items. The caller needs to wait until 185 * the wb threads have acked the work before it's safe to continue. 186 */ 187 static void bdi_wait_on_work_clear(struct bdi_work *work) 188 { 189 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait, 190 TASK_UNINTERRUPTIBLE); 191 } 192 193 static void bdi_alloc_queue_work(struct backing_dev_info *bdi, 194 struct wb_writeback_args *args) 195 { 196 struct bdi_work *work; 197 198 /* 199 * This is WB_SYNC_NONE writeback, so if allocation fails just 200 * wakeup the thread for old dirty data writeback 201 */ 202 work = kmalloc(sizeof(*work), GFP_ATOMIC); 203 if (work) { 204 bdi_work_init(work, args); 205 bdi_queue_work(bdi, work); 206 } else { 207 struct bdi_writeback *wb = &bdi->wb; 208 209 if (wb->task) 210 wake_up_process(wb->task); 211 } 212 } 213 214 /** 215 * bdi_sync_writeback - start and wait for writeback 216 * @bdi: the backing device to write from 217 * @sb: write inodes from this super_block 218 * 219 * Description: 220 * This does WB_SYNC_ALL data integrity writeback and waits for the 221 * IO to complete. Callers must hold the sb s_umount semaphore for 222 * reading, to avoid having the super disappear before we are done. 223 */ 224 static void bdi_sync_writeback(struct backing_dev_info *bdi, 225 struct super_block *sb) 226 { 227 struct wb_writeback_args args = { 228 .sb = sb, 229 .sync_mode = WB_SYNC_ALL, 230 .nr_pages = LONG_MAX, 231 .range_cyclic = 0, 232 }; 233 struct bdi_work work; 234 235 bdi_work_init(&work, &args); 236 work.state |= WS_ONSTACK; 237 238 bdi_queue_work(bdi, &work); 239 bdi_wait_on_work_clear(&work); 240 } 241 242 /** 243 * bdi_start_writeback - start writeback 244 * @bdi: the backing device to write from 245 * @nr_pages: the number of pages to write 246 * 247 * Description: 248 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 249 * started when this function returns, we make no guarentees on 250 * completion. Caller need not hold sb s_umount semaphore. 251 * 252 */ 253 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb, 254 long nr_pages) 255 { 256 struct wb_writeback_args args = { 257 .sb = sb, 258 .sync_mode = WB_SYNC_NONE, 259 .nr_pages = nr_pages, 260 .range_cyclic = 1, 261 }; 262 263 /* 264 * We treat @nr_pages=0 as the special case to do background writeback, 265 * ie. to sync pages until the background dirty threshold is reached. 266 */ 267 if (!nr_pages) { 268 args.nr_pages = LONG_MAX; 269 args.for_background = 1; 270 } 271 272 bdi_alloc_queue_work(bdi, &args); 273 } 274 275 /* 276 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 277 * furthest end of its superblock's dirty-inode list. 278 * 279 * Before stamping the inode's ->dirtied_when, we check to see whether it is 280 * already the most-recently-dirtied inode on the b_dirty list. If that is 281 * the case then the inode must have been redirtied while it was being written 282 * out and we don't reset its dirtied_when. 283 */ 284 static void redirty_tail(struct inode *inode) 285 { 286 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 287 288 if (!list_empty(&wb->b_dirty)) { 289 struct inode *tail; 290 291 tail = list_entry(wb->b_dirty.next, struct inode, i_list); 292 if (time_before(inode->dirtied_when, tail->dirtied_when)) 293 inode->dirtied_when = jiffies; 294 } 295 list_move(&inode->i_list, &wb->b_dirty); 296 } 297 298 /* 299 * requeue inode for re-scanning after bdi->b_io list is exhausted. 300 */ 301 static void requeue_io(struct inode *inode) 302 { 303 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 304 305 list_move(&inode->i_list, &wb->b_more_io); 306 } 307 308 static void inode_sync_complete(struct inode *inode) 309 { 310 /* 311 * Prevent speculative execution through spin_unlock(&inode_lock); 312 */ 313 smp_mb(); 314 wake_up_bit(&inode->i_state, __I_SYNC); 315 } 316 317 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 318 { 319 bool ret = time_after(inode->dirtied_when, t); 320 #ifndef CONFIG_64BIT 321 /* 322 * For inodes being constantly redirtied, dirtied_when can get stuck. 323 * It _appears_ to be in the future, but is actually in distant past. 324 * This test is necessary to prevent such wrapped-around relative times 325 * from permanently stopping the whole bdi writeback. 326 */ 327 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 328 #endif 329 return ret; 330 } 331 332 /* 333 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 334 */ 335 static void move_expired_inodes(struct list_head *delaying_queue, 336 struct list_head *dispatch_queue, 337 unsigned long *older_than_this) 338 { 339 LIST_HEAD(tmp); 340 struct list_head *pos, *node; 341 struct super_block *sb = NULL; 342 struct inode *inode; 343 int do_sb_sort = 0; 344 345 while (!list_empty(delaying_queue)) { 346 inode = list_entry(delaying_queue->prev, struct inode, i_list); 347 if (older_than_this && 348 inode_dirtied_after(inode, *older_than_this)) 349 break; 350 if (sb && sb != inode->i_sb) 351 do_sb_sort = 1; 352 sb = inode->i_sb; 353 list_move(&inode->i_list, &tmp); 354 } 355 356 /* just one sb in list, splice to dispatch_queue and we're done */ 357 if (!do_sb_sort) { 358 list_splice(&tmp, dispatch_queue); 359 return; 360 } 361 362 /* Move inodes from one superblock together */ 363 while (!list_empty(&tmp)) { 364 inode = list_entry(tmp.prev, struct inode, i_list); 365 sb = inode->i_sb; 366 list_for_each_prev_safe(pos, node, &tmp) { 367 inode = list_entry(pos, struct inode, i_list); 368 if (inode->i_sb == sb) 369 list_move(&inode->i_list, dispatch_queue); 370 } 371 } 372 } 373 374 /* 375 * Queue all expired dirty inodes for io, eldest first. 376 */ 377 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 378 { 379 list_splice_init(&wb->b_more_io, wb->b_io.prev); 380 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 381 } 382 383 static int write_inode(struct inode *inode, int sync) 384 { 385 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 386 return inode->i_sb->s_op->write_inode(inode, sync); 387 return 0; 388 } 389 390 /* 391 * Wait for writeback on an inode to complete. 392 */ 393 static void inode_wait_for_writeback(struct inode *inode) 394 { 395 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 396 wait_queue_head_t *wqh; 397 398 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 399 do { 400 spin_unlock(&inode_lock); 401 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 402 spin_lock(&inode_lock); 403 } while (inode->i_state & I_SYNC); 404 } 405 406 /* 407 * Write out an inode's dirty pages. Called under inode_lock. Either the 408 * caller has ref on the inode (either via __iget or via syscall against an fd) 409 * or the inode has I_WILL_FREE set (via generic_forget_inode) 410 * 411 * If `wait' is set, wait on the writeout. 412 * 413 * The whole writeout design is quite complex and fragile. We want to avoid 414 * starvation of particular inodes when others are being redirtied, prevent 415 * livelocks, etc. 416 * 417 * Called under inode_lock. 418 */ 419 static int 420 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 421 { 422 struct address_space *mapping = inode->i_mapping; 423 int wait = wbc->sync_mode == WB_SYNC_ALL; 424 unsigned dirty; 425 int ret; 426 427 if (!atomic_read(&inode->i_count)) 428 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 429 else 430 WARN_ON(inode->i_state & I_WILL_FREE); 431 432 if (inode->i_state & I_SYNC) { 433 /* 434 * If this inode is locked for writeback and we are not doing 435 * writeback-for-data-integrity, move it to b_more_io so that 436 * writeback can proceed with the other inodes on s_io. 437 * 438 * We'll have another go at writing back this inode when we 439 * completed a full scan of b_io. 440 */ 441 if (!wait) { 442 requeue_io(inode); 443 return 0; 444 } 445 446 /* 447 * It's a data-integrity sync. We must wait. 448 */ 449 inode_wait_for_writeback(inode); 450 } 451 452 BUG_ON(inode->i_state & I_SYNC); 453 454 /* Set I_SYNC, reset I_DIRTY */ 455 dirty = inode->i_state & I_DIRTY; 456 inode->i_state |= I_SYNC; 457 inode->i_state &= ~I_DIRTY; 458 459 spin_unlock(&inode_lock); 460 461 ret = do_writepages(mapping, wbc); 462 463 /* Don't write the inode if only I_DIRTY_PAGES was set */ 464 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 465 int err = write_inode(inode, wait); 466 if (ret == 0) 467 ret = err; 468 } 469 470 if (wait) { 471 int err = filemap_fdatawait(mapping); 472 if (ret == 0) 473 ret = err; 474 } 475 476 spin_lock(&inode_lock); 477 inode->i_state &= ~I_SYNC; 478 if (!(inode->i_state & (I_FREEING | I_CLEAR))) { 479 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) { 480 /* 481 * More pages get dirtied by a fast dirtier. 482 */ 483 goto select_queue; 484 } else if (inode->i_state & I_DIRTY) { 485 /* 486 * At least XFS will redirty the inode during the 487 * writeback (delalloc) and on io completion (isize). 488 */ 489 redirty_tail(inode); 490 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 491 /* 492 * We didn't write back all the pages. nfs_writepages() 493 * sometimes bales out without doing anything. Redirty 494 * the inode; Move it from b_io onto b_more_io/b_dirty. 495 */ 496 /* 497 * akpm: if the caller was the kupdate function we put 498 * this inode at the head of b_dirty so it gets first 499 * consideration. Otherwise, move it to the tail, for 500 * the reasons described there. I'm not really sure 501 * how much sense this makes. Presumably I had a good 502 * reasons for doing it this way, and I'd rather not 503 * muck with it at present. 504 */ 505 if (wbc->for_kupdate) { 506 /* 507 * For the kupdate function we move the inode 508 * to b_more_io so it will get more writeout as 509 * soon as the queue becomes uncongested. 510 */ 511 inode->i_state |= I_DIRTY_PAGES; 512 select_queue: 513 if (wbc->nr_to_write <= 0) { 514 /* 515 * slice used up: queue for next turn 516 */ 517 requeue_io(inode); 518 } else { 519 /* 520 * somehow blocked: retry later 521 */ 522 redirty_tail(inode); 523 } 524 } else { 525 /* 526 * Otherwise fully redirty the inode so that 527 * other inodes on this superblock will get some 528 * writeout. Otherwise heavy writing to one 529 * file would indefinitely suspend writeout of 530 * all the other files. 531 */ 532 inode->i_state |= I_DIRTY_PAGES; 533 redirty_tail(inode); 534 } 535 } else if (atomic_read(&inode->i_count)) { 536 /* 537 * The inode is clean, inuse 538 */ 539 list_move(&inode->i_list, &inode_in_use); 540 } else { 541 /* 542 * The inode is clean, unused 543 */ 544 list_move(&inode->i_list, &inode_unused); 545 } 546 } 547 inode_sync_complete(inode); 548 return ret; 549 } 550 551 static void unpin_sb_for_writeback(struct super_block **psb) 552 { 553 struct super_block *sb = *psb; 554 555 if (sb) { 556 up_read(&sb->s_umount); 557 put_super(sb); 558 *psb = NULL; 559 } 560 } 561 562 /* 563 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned 564 * before calling writeback. So make sure that we do pin it, so it doesn't 565 * go away while we are writing inodes from it. 566 * 567 * Returns 0 if the super was successfully pinned (or pinning wasn't needed), 568 * 1 if we failed. 569 */ 570 static int pin_sb_for_writeback(struct writeback_control *wbc, 571 struct inode *inode, struct super_block **psb) 572 { 573 struct super_block *sb = inode->i_sb; 574 575 /* 576 * If this sb is already pinned, nothing more to do. If not and 577 * *psb is non-NULL, unpin the old one first 578 */ 579 if (sb == *psb) 580 return 0; 581 else if (*psb) 582 unpin_sb_for_writeback(psb); 583 584 /* 585 * Caller must already hold the ref for this 586 */ 587 if (wbc->sync_mode == WB_SYNC_ALL) { 588 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 589 return 0; 590 } 591 592 spin_lock(&sb_lock); 593 sb->s_count++; 594 if (down_read_trylock(&sb->s_umount)) { 595 if (sb->s_root) { 596 spin_unlock(&sb_lock); 597 goto pinned; 598 } 599 /* 600 * umounted, drop rwsem again and fall through to failure 601 */ 602 up_read(&sb->s_umount); 603 } 604 605 sb->s_count--; 606 spin_unlock(&sb_lock); 607 return 1; 608 pinned: 609 *psb = sb; 610 return 0; 611 } 612 613 static void writeback_inodes_wb(struct bdi_writeback *wb, 614 struct writeback_control *wbc) 615 { 616 struct super_block *sb = wbc->sb, *pin_sb = NULL; 617 const unsigned long start = jiffies; /* livelock avoidance */ 618 619 spin_lock(&inode_lock); 620 621 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 622 queue_io(wb, wbc->older_than_this); 623 624 while (!list_empty(&wb->b_io)) { 625 struct inode *inode = list_entry(wb->b_io.prev, 626 struct inode, i_list); 627 long pages_skipped; 628 629 /* 630 * super block given and doesn't match, skip this inode 631 */ 632 if (sb && sb != inode->i_sb) { 633 redirty_tail(inode); 634 continue; 635 } 636 637 if (inode->i_state & (I_NEW | I_WILL_FREE)) { 638 requeue_io(inode); 639 continue; 640 } 641 642 /* 643 * Was this inode dirtied after sync_sb_inodes was called? 644 * This keeps sync from extra jobs and livelock. 645 */ 646 if (inode_dirtied_after(inode, start)) 647 break; 648 649 if (pin_sb_for_writeback(wbc, inode, &pin_sb)) { 650 requeue_io(inode); 651 continue; 652 } 653 654 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR)); 655 __iget(inode); 656 pages_skipped = wbc->pages_skipped; 657 writeback_single_inode(inode, wbc); 658 if (wbc->pages_skipped != pages_skipped) { 659 /* 660 * writeback is not making progress due to locked 661 * buffers. Skip this inode for now. 662 */ 663 redirty_tail(inode); 664 } 665 spin_unlock(&inode_lock); 666 iput(inode); 667 cond_resched(); 668 spin_lock(&inode_lock); 669 if (wbc->nr_to_write <= 0) { 670 wbc->more_io = 1; 671 break; 672 } 673 if (!list_empty(&wb->b_more_io)) 674 wbc->more_io = 1; 675 } 676 677 unpin_sb_for_writeback(&pin_sb); 678 679 spin_unlock(&inode_lock); 680 /* Leave any unwritten inodes on b_io */ 681 } 682 683 void writeback_inodes_wbc(struct writeback_control *wbc) 684 { 685 struct backing_dev_info *bdi = wbc->bdi; 686 687 writeback_inodes_wb(&bdi->wb, wbc); 688 } 689 690 /* 691 * The maximum number of pages to writeout in a single bdi flush/kupdate 692 * operation. We do this so we don't hold I_SYNC against an inode for 693 * enormous amounts of time, which would block a userspace task which has 694 * been forced to throttle against that inode. Also, the code reevaluates 695 * the dirty each time it has written this many pages. 696 */ 697 #define MAX_WRITEBACK_PAGES 1024 698 699 static inline bool over_bground_thresh(void) 700 { 701 unsigned long background_thresh, dirty_thresh; 702 703 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 704 705 return (global_page_state(NR_FILE_DIRTY) + 706 global_page_state(NR_UNSTABLE_NFS) >= background_thresh); 707 } 708 709 /* 710 * Explicit flushing or periodic writeback of "old" data. 711 * 712 * Define "old": the first time one of an inode's pages is dirtied, we mark the 713 * dirtying-time in the inode's address_space. So this periodic writeback code 714 * just walks the superblock inode list, writing back any inodes which are 715 * older than a specific point in time. 716 * 717 * Try to run once per dirty_writeback_interval. But if a writeback event 718 * takes longer than a dirty_writeback_interval interval, then leave a 719 * one-second gap. 720 * 721 * older_than_this takes precedence over nr_to_write. So we'll only write back 722 * all dirty pages if they are all attached to "old" mappings. 723 */ 724 static long wb_writeback(struct bdi_writeback *wb, 725 struct wb_writeback_args *args) 726 { 727 struct writeback_control wbc = { 728 .bdi = wb->bdi, 729 .sb = args->sb, 730 .sync_mode = args->sync_mode, 731 .older_than_this = NULL, 732 .for_kupdate = args->for_kupdate, 733 .for_background = args->for_background, 734 .range_cyclic = args->range_cyclic, 735 }; 736 unsigned long oldest_jif; 737 long wrote = 0; 738 struct inode *inode; 739 740 if (wbc.for_kupdate) { 741 wbc.older_than_this = &oldest_jif; 742 oldest_jif = jiffies - 743 msecs_to_jiffies(dirty_expire_interval * 10); 744 } 745 if (!wbc.range_cyclic) { 746 wbc.range_start = 0; 747 wbc.range_end = LLONG_MAX; 748 } 749 750 for (;;) { 751 /* 752 * Stop writeback when nr_pages has been consumed 753 */ 754 if (args->nr_pages <= 0) 755 break; 756 757 /* 758 * For background writeout, stop when we are below the 759 * background dirty threshold 760 */ 761 if (args->for_background && !over_bground_thresh()) 762 break; 763 764 wbc.more_io = 0; 765 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 766 wbc.pages_skipped = 0; 767 writeback_inodes_wb(wb, &wbc); 768 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 769 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write; 770 771 /* 772 * If we consumed everything, see if we have more 773 */ 774 if (wbc.nr_to_write <= 0) 775 continue; 776 /* 777 * Didn't write everything and we don't have more IO, bail 778 */ 779 if (!wbc.more_io) 780 break; 781 /* 782 * Did we write something? Try for more 783 */ 784 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES) 785 continue; 786 /* 787 * Nothing written. Wait for some inode to 788 * become available for writeback. Otherwise 789 * we'll just busyloop. 790 */ 791 spin_lock(&inode_lock); 792 if (!list_empty(&wb->b_more_io)) { 793 inode = list_entry(wb->b_more_io.prev, 794 struct inode, i_list); 795 inode_wait_for_writeback(inode); 796 } 797 spin_unlock(&inode_lock); 798 } 799 800 return wrote; 801 } 802 803 /* 804 * Return the next bdi_work struct that hasn't been processed by this 805 * wb thread yet. ->seen is initially set for each thread that exists 806 * for this device, when a thread first notices a piece of work it 807 * clears its bit. Depending on writeback type, the thread will notify 808 * completion on either receiving the work (WB_SYNC_NONE) or after 809 * it is done (WB_SYNC_ALL). 810 */ 811 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi, 812 struct bdi_writeback *wb) 813 { 814 struct bdi_work *work, *ret = NULL; 815 816 rcu_read_lock(); 817 818 list_for_each_entry_rcu(work, &bdi->work_list, list) { 819 if (!test_bit(wb->nr, &work->seen)) 820 continue; 821 clear_bit(wb->nr, &work->seen); 822 823 ret = work; 824 break; 825 } 826 827 rcu_read_unlock(); 828 return ret; 829 } 830 831 static long wb_check_old_data_flush(struct bdi_writeback *wb) 832 { 833 unsigned long expired; 834 long nr_pages; 835 836 expired = wb->last_old_flush + 837 msecs_to_jiffies(dirty_writeback_interval * 10); 838 if (time_before(jiffies, expired)) 839 return 0; 840 841 wb->last_old_flush = jiffies; 842 nr_pages = global_page_state(NR_FILE_DIRTY) + 843 global_page_state(NR_UNSTABLE_NFS) + 844 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 845 846 if (nr_pages) { 847 struct wb_writeback_args args = { 848 .nr_pages = nr_pages, 849 .sync_mode = WB_SYNC_NONE, 850 .for_kupdate = 1, 851 .range_cyclic = 1, 852 }; 853 854 return wb_writeback(wb, &args); 855 } 856 857 return 0; 858 } 859 860 /* 861 * Retrieve work items and do the writeback they describe 862 */ 863 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 864 { 865 struct backing_dev_info *bdi = wb->bdi; 866 struct bdi_work *work; 867 long wrote = 0; 868 869 while ((work = get_next_work_item(bdi, wb)) != NULL) { 870 struct wb_writeback_args args = work->args; 871 872 /* 873 * Override sync mode, in case we must wait for completion 874 */ 875 if (force_wait) 876 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL; 877 878 /* 879 * If this isn't a data integrity operation, just notify 880 * that we have seen this work and we are now starting it. 881 */ 882 if (args.sync_mode == WB_SYNC_NONE) 883 wb_clear_pending(wb, work); 884 885 wrote += wb_writeback(wb, &args); 886 887 /* 888 * This is a data integrity writeback, so only do the 889 * notification when we have completed the work. 890 */ 891 if (args.sync_mode == WB_SYNC_ALL) 892 wb_clear_pending(wb, work); 893 } 894 895 /* 896 * Check for periodic writeback, kupdated() style 897 */ 898 wrote += wb_check_old_data_flush(wb); 899 900 return wrote; 901 } 902 903 /* 904 * Handle writeback of dirty data for the device backed by this bdi. Also 905 * wakes up periodically and does kupdated style flushing. 906 */ 907 int bdi_writeback_task(struct bdi_writeback *wb) 908 { 909 unsigned long last_active = jiffies; 910 unsigned long wait_jiffies = -1UL; 911 long pages_written; 912 913 while (!kthread_should_stop()) { 914 pages_written = wb_do_writeback(wb, 0); 915 916 if (pages_written) 917 last_active = jiffies; 918 else if (wait_jiffies != -1UL) { 919 unsigned long max_idle; 920 921 /* 922 * Longest period of inactivity that we tolerate. If we 923 * see dirty data again later, the task will get 924 * recreated automatically. 925 */ 926 max_idle = max(5UL * 60 * HZ, wait_jiffies); 927 if (time_after(jiffies, max_idle + last_active)) 928 break; 929 } 930 931 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10); 932 schedule_timeout_interruptible(wait_jiffies); 933 try_to_freeze(); 934 } 935 936 return 0; 937 } 938 939 /* 940 * Schedule writeback for all backing devices. This does WB_SYNC_NONE 941 * writeback, for integrity writeback see bdi_sync_writeback(). 942 */ 943 static void bdi_writeback_all(struct super_block *sb, long nr_pages) 944 { 945 struct wb_writeback_args args = { 946 .sb = sb, 947 .nr_pages = nr_pages, 948 .sync_mode = WB_SYNC_NONE, 949 }; 950 struct backing_dev_info *bdi; 951 952 rcu_read_lock(); 953 954 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 955 if (!bdi_has_dirty_io(bdi)) 956 continue; 957 958 bdi_alloc_queue_work(bdi, &args); 959 } 960 961 rcu_read_unlock(); 962 } 963 964 /* 965 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 966 * the whole world. 967 */ 968 void wakeup_flusher_threads(long nr_pages) 969 { 970 if (nr_pages == 0) 971 nr_pages = global_page_state(NR_FILE_DIRTY) + 972 global_page_state(NR_UNSTABLE_NFS); 973 bdi_writeback_all(NULL, nr_pages); 974 } 975 976 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 977 { 978 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 979 struct dentry *dentry; 980 const char *name = "?"; 981 982 dentry = d_find_alias(inode); 983 if (dentry) { 984 spin_lock(&dentry->d_lock); 985 name = (const char *) dentry->d_name.name; 986 } 987 printk(KERN_DEBUG 988 "%s(%d): dirtied inode %lu (%s) on %s\n", 989 current->comm, task_pid_nr(current), inode->i_ino, 990 name, inode->i_sb->s_id); 991 if (dentry) { 992 spin_unlock(&dentry->d_lock); 993 dput(dentry); 994 } 995 } 996 } 997 998 /** 999 * __mark_inode_dirty - internal function 1000 * @inode: inode to mark 1001 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1002 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1003 * mark_inode_dirty_sync. 1004 * 1005 * Put the inode on the super block's dirty list. 1006 * 1007 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1008 * dirty list only if it is hashed or if it refers to a blockdev. 1009 * If it was not hashed, it will never be added to the dirty list 1010 * even if it is later hashed, as it will have been marked dirty already. 1011 * 1012 * In short, make sure you hash any inodes _before_ you start marking 1013 * them dirty. 1014 * 1015 * This function *must* be atomic for the I_DIRTY_PAGES case - 1016 * set_page_dirty() is called under spinlock in several places. 1017 * 1018 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1019 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1020 * the kernel-internal blockdev inode represents the dirtying time of the 1021 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1022 * page->mapping->host, so the page-dirtying time is recorded in the internal 1023 * blockdev inode. 1024 */ 1025 void __mark_inode_dirty(struct inode *inode, int flags) 1026 { 1027 struct super_block *sb = inode->i_sb; 1028 1029 /* 1030 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1031 * dirty the inode itself 1032 */ 1033 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1034 if (sb->s_op->dirty_inode) 1035 sb->s_op->dirty_inode(inode); 1036 } 1037 1038 /* 1039 * make sure that changes are seen by all cpus before we test i_state 1040 * -- mikulas 1041 */ 1042 smp_mb(); 1043 1044 /* avoid the locking if we can */ 1045 if ((inode->i_state & flags) == flags) 1046 return; 1047 1048 if (unlikely(block_dump)) 1049 block_dump___mark_inode_dirty(inode); 1050 1051 spin_lock(&inode_lock); 1052 if ((inode->i_state & flags) != flags) { 1053 const int was_dirty = inode->i_state & I_DIRTY; 1054 1055 inode->i_state |= flags; 1056 1057 /* 1058 * If the inode is being synced, just update its dirty state. 1059 * The unlocker will place the inode on the appropriate 1060 * superblock list, based upon its state. 1061 */ 1062 if (inode->i_state & I_SYNC) 1063 goto out; 1064 1065 /* 1066 * Only add valid (hashed) inodes to the superblock's 1067 * dirty list. Add blockdev inodes as well. 1068 */ 1069 if (!S_ISBLK(inode->i_mode)) { 1070 if (hlist_unhashed(&inode->i_hash)) 1071 goto out; 1072 } 1073 if (inode->i_state & (I_FREEING|I_CLEAR)) 1074 goto out; 1075 1076 /* 1077 * If the inode was already on b_dirty/b_io/b_more_io, don't 1078 * reposition it (that would break b_dirty time-ordering). 1079 */ 1080 if (!was_dirty) { 1081 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1082 struct backing_dev_info *bdi = wb->bdi; 1083 1084 if (bdi_cap_writeback_dirty(bdi) && 1085 !test_bit(BDI_registered, &bdi->state)) { 1086 WARN_ON(1); 1087 printk(KERN_ERR "bdi-%s not registered\n", 1088 bdi->name); 1089 } 1090 1091 inode->dirtied_when = jiffies; 1092 list_move(&inode->i_list, &wb->b_dirty); 1093 } 1094 } 1095 out: 1096 spin_unlock(&inode_lock); 1097 } 1098 EXPORT_SYMBOL(__mark_inode_dirty); 1099 1100 /* 1101 * Write out a superblock's list of dirty inodes. A wait will be performed 1102 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1103 * 1104 * If older_than_this is non-NULL, then only write out inodes which 1105 * had their first dirtying at a time earlier than *older_than_this. 1106 * 1107 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1108 * This function assumes that the blockdev superblock's inodes are backed by 1109 * a variety of queues, so all inodes are searched. For other superblocks, 1110 * assume that all inodes are backed by the same queue. 1111 * 1112 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1113 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1114 * on the writer throttling path, and we get decent balancing between many 1115 * throttled threads: we don't want them all piling up on inode_sync_wait. 1116 */ 1117 static void wait_sb_inodes(struct super_block *sb) 1118 { 1119 struct inode *inode, *old_inode = NULL; 1120 1121 /* 1122 * We need to be protected against the filesystem going from 1123 * r/o to r/w or vice versa. 1124 */ 1125 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1126 1127 spin_lock(&inode_lock); 1128 1129 /* 1130 * Data integrity sync. Must wait for all pages under writeback, 1131 * because there may have been pages dirtied before our sync 1132 * call, but which had writeout started before we write it out. 1133 * In which case, the inode may not be on the dirty list, but 1134 * we still have to wait for that writeout. 1135 */ 1136 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1137 struct address_space *mapping; 1138 1139 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW)) 1140 continue; 1141 mapping = inode->i_mapping; 1142 if (mapping->nrpages == 0) 1143 continue; 1144 __iget(inode); 1145 spin_unlock(&inode_lock); 1146 /* 1147 * We hold a reference to 'inode' so it couldn't have 1148 * been removed from s_inodes list while we dropped the 1149 * inode_lock. We cannot iput the inode now as we can 1150 * be holding the last reference and we cannot iput it 1151 * under inode_lock. So we keep the reference and iput 1152 * it later. 1153 */ 1154 iput(old_inode); 1155 old_inode = inode; 1156 1157 filemap_fdatawait(mapping); 1158 1159 cond_resched(); 1160 1161 spin_lock(&inode_lock); 1162 } 1163 spin_unlock(&inode_lock); 1164 iput(old_inode); 1165 } 1166 1167 /** 1168 * writeback_inodes_sb - writeback dirty inodes from given super_block 1169 * @sb: the superblock 1170 * 1171 * Start writeback on some inodes on this super_block. No guarantees are made 1172 * on how many (if any) will be written, and this function does not wait 1173 * for IO completion of submitted IO. The number of pages submitted is 1174 * returned. 1175 */ 1176 void writeback_inodes_sb(struct super_block *sb) 1177 { 1178 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 1179 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 1180 long nr_to_write; 1181 1182 nr_to_write = nr_dirty + nr_unstable + 1183 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 1184 1185 bdi_start_writeback(sb->s_bdi, sb, nr_to_write); 1186 } 1187 EXPORT_SYMBOL(writeback_inodes_sb); 1188 1189 /** 1190 * sync_inodes_sb - sync sb inode pages 1191 * @sb: the superblock 1192 * 1193 * This function writes and waits on any dirty inode belonging to this 1194 * super_block. The number of pages synced is returned. 1195 */ 1196 void sync_inodes_sb(struct super_block *sb) 1197 { 1198 bdi_sync_writeback(sb->s_bdi, sb); 1199 wait_sb_inodes(sb); 1200 } 1201 EXPORT_SYMBOL(sync_inodes_sb); 1202 1203 /** 1204 * write_inode_now - write an inode to disk 1205 * @inode: inode to write to disk 1206 * @sync: whether the write should be synchronous or not 1207 * 1208 * This function commits an inode to disk immediately if it is dirty. This is 1209 * primarily needed by knfsd. 1210 * 1211 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1212 */ 1213 int write_inode_now(struct inode *inode, int sync) 1214 { 1215 int ret; 1216 struct writeback_control wbc = { 1217 .nr_to_write = LONG_MAX, 1218 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1219 .range_start = 0, 1220 .range_end = LLONG_MAX, 1221 }; 1222 1223 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1224 wbc.nr_to_write = 0; 1225 1226 might_sleep(); 1227 spin_lock(&inode_lock); 1228 ret = writeback_single_inode(inode, &wbc); 1229 spin_unlock(&inode_lock); 1230 if (sync) 1231 inode_sync_wait(inode); 1232 return ret; 1233 } 1234 EXPORT_SYMBOL(write_inode_now); 1235 1236 /** 1237 * sync_inode - write an inode and its pages to disk. 1238 * @inode: the inode to sync 1239 * @wbc: controls the writeback mode 1240 * 1241 * sync_inode() will write an inode and its pages to disk. It will also 1242 * correctly update the inode on its superblock's dirty inode lists and will 1243 * update inode->i_state. 1244 * 1245 * The caller must have a ref on the inode. 1246 */ 1247 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1248 { 1249 int ret; 1250 1251 spin_lock(&inode_lock); 1252 ret = writeback_single_inode(inode, wbc); 1253 spin_unlock(&inode_lock); 1254 return ret; 1255 } 1256 EXPORT_SYMBOL(sync_inode); 1257