xref: /linux/fs/fs-writeback.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/buffer_head.h>
28 #include "internal.h"
29 
30 #define inode_to_bdi(inode)	((inode)->i_mapping->backing_dev_info)
31 
32 /*
33  * We don't actually have pdflush, but this one is exported though /proc...
34  */
35 int nr_pdflush_threads;
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_args {
41 	long nr_pages;
42 	struct super_block *sb;
43 	enum writeback_sync_modes sync_mode;
44 	int for_kupdate:1;
45 	int range_cyclic:1;
46 	int for_background:1;
47 };
48 
49 /*
50  * Work items for the bdi_writeback threads
51  */
52 struct bdi_work {
53 	struct list_head list;		/* pending work list */
54 	struct rcu_head rcu_head;	/* for RCU free/clear of work */
55 
56 	unsigned long seen;		/* threads that have seen this work */
57 	atomic_t pending;		/* number of threads still to do work */
58 
59 	struct wb_writeback_args args;	/* writeback arguments */
60 
61 	unsigned long state;		/* flag bits, see WS_* */
62 };
63 
64 enum {
65 	WS_USED_B = 0,
66 	WS_ONSTACK_B,
67 };
68 
69 #define WS_USED (1 << WS_USED_B)
70 #define WS_ONSTACK (1 << WS_ONSTACK_B)
71 
72 static inline bool bdi_work_on_stack(struct bdi_work *work)
73 {
74 	return test_bit(WS_ONSTACK_B, &work->state);
75 }
76 
77 static inline void bdi_work_init(struct bdi_work *work,
78 				 struct wb_writeback_args *args)
79 {
80 	INIT_RCU_HEAD(&work->rcu_head);
81 	work->args = *args;
82 	work->state = WS_USED;
83 }
84 
85 /**
86  * writeback_in_progress - determine whether there is writeback in progress
87  * @bdi: the device's backing_dev_info structure.
88  *
89  * Determine whether there is writeback waiting to be handled against a
90  * backing device.
91  */
92 int writeback_in_progress(struct backing_dev_info *bdi)
93 {
94 	return !list_empty(&bdi->work_list);
95 }
96 
97 static void bdi_work_clear(struct bdi_work *work)
98 {
99 	clear_bit(WS_USED_B, &work->state);
100 	smp_mb__after_clear_bit();
101 	/*
102 	 * work can have disappeared at this point. bit waitq functions
103 	 * should be able to tolerate this, provided bdi_sched_wait does
104 	 * not dereference it's pointer argument.
105 	*/
106 	wake_up_bit(&work->state, WS_USED_B);
107 }
108 
109 static void bdi_work_free(struct rcu_head *head)
110 {
111 	struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
112 
113 	if (!bdi_work_on_stack(work))
114 		kfree(work);
115 	else
116 		bdi_work_clear(work);
117 }
118 
119 static void wb_work_complete(struct bdi_work *work)
120 {
121 	const enum writeback_sync_modes sync_mode = work->args.sync_mode;
122 	int onstack = bdi_work_on_stack(work);
123 
124 	/*
125 	 * For allocated work, we can clear the done/seen bit right here.
126 	 * For on-stack work, we need to postpone both the clear and free
127 	 * to after the RCU grace period, since the stack could be invalidated
128 	 * as soon as bdi_work_clear() has done the wakeup.
129 	 */
130 	if (!onstack)
131 		bdi_work_clear(work);
132 	if (sync_mode == WB_SYNC_NONE || onstack)
133 		call_rcu(&work->rcu_head, bdi_work_free);
134 }
135 
136 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
137 {
138 	/*
139 	 * The caller has retrieved the work arguments from this work,
140 	 * drop our reference. If this is the last ref, delete and free it
141 	 */
142 	if (atomic_dec_and_test(&work->pending)) {
143 		struct backing_dev_info *bdi = wb->bdi;
144 
145 		spin_lock(&bdi->wb_lock);
146 		list_del_rcu(&work->list);
147 		spin_unlock(&bdi->wb_lock);
148 
149 		wb_work_complete(work);
150 	}
151 }
152 
153 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
154 {
155 	work->seen = bdi->wb_mask;
156 	BUG_ON(!work->seen);
157 	atomic_set(&work->pending, bdi->wb_cnt);
158 	BUG_ON(!bdi->wb_cnt);
159 
160 	/*
161 	 * list_add_tail_rcu() contains the necessary barriers to
162 	 * make sure the above stores are seen before the item is
163 	 * noticed on the list
164 	 */
165 	spin_lock(&bdi->wb_lock);
166 	list_add_tail_rcu(&work->list, &bdi->work_list);
167 	spin_unlock(&bdi->wb_lock);
168 
169 	/*
170 	 * If the default thread isn't there, make sure we add it. When
171 	 * it gets created and wakes up, we'll run this work.
172 	 */
173 	if (unlikely(list_empty_careful(&bdi->wb_list)))
174 		wake_up_process(default_backing_dev_info.wb.task);
175 	else {
176 		struct bdi_writeback *wb = &bdi->wb;
177 
178 		if (wb->task)
179 			wake_up_process(wb->task);
180 	}
181 }
182 
183 /*
184  * Used for on-stack allocated work items. The caller needs to wait until
185  * the wb threads have acked the work before it's safe to continue.
186  */
187 static void bdi_wait_on_work_clear(struct bdi_work *work)
188 {
189 	wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
190 		    TASK_UNINTERRUPTIBLE);
191 }
192 
193 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
194 				 struct wb_writeback_args *args)
195 {
196 	struct bdi_work *work;
197 
198 	/*
199 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
200 	 * wakeup the thread for old dirty data writeback
201 	 */
202 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
203 	if (work) {
204 		bdi_work_init(work, args);
205 		bdi_queue_work(bdi, work);
206 	} else {
207 		struct bdi_writeback *wb = &bdi->wb;
208 
209 		if (wb->task)
210 			wake_up_process(wb->task);
211 	}
212 }
213 
214 /**
215  * bdi_sync_writeback - start and wait for writeback
216  * @bdi: the backing device to write from
217  * @sb: write inodes from this super_block
218  *
219  * Description:
220  *   This does WB_SYNC_ALL data integrity writeback and waits for the
221  *   IO to complete. Callers must hold the sb s_umount semaphore for
222  *   reading, to avoid having the super disappear before we are done.
223  */
224 static void bdi_sync_writeback(struct backing_dev_info *bdi,
225 			       struct super_block *sb)
226 {
227 	struct wb_writeback_args args = {
228 		.sb		= sb,
229 		.sync_mode	= WB_SYNC_ALL,
230 		.nr_pages	= LONG_MAX,
231 		.range_cyclic	= 0,
232 	};
233 	struct bdi_work work;
234 
235 	bdi_work_init(&work, &args);
236 	work.state |= WS_ONSTACK;
237 
238 	bdi_queue_work(bdi, &work);
239 	bdi_wait_on_work_clear(&work);
240 }
241 
242 /**
243  * bdi_start_writeback - start writeback
244  * @bdi: the backing device to write from
245  * @nr_pages: the number of pages to write
246  *
247  * Description:
248  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
249  *   started when this function returns, we make no guarentees on
250  *   completion. Caller need not hold sb s_umount semaphore.
251  *
252  */
253 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
254 			 long nr_pages)
255 {
256 	struct wb_writeback_args args = {
257 		.sb		= sb,
258 		.sync_mode	= WB_SYNC_NONE,
259 		.nr_pages	= nr_pages,
260 		.range_cyclic	= 1,
261 	};
262 
263 	/*
264 	 * We treat @nr_pages=0 as the special case to do background writeback,
265 	 * ie. to sync pages until the background dirty threshold is reached.
266 	 */
267 	if (!nr_pages) {
268 		args.nr_pages = LONG_MAX;
269 		args.for_background = 1;
270 	}
271 
272 	bdi_alloc_queue_work(bdi, &args);
273 }
274 
275 /*
276  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
277  * furthest end of its superblock's dirty-inode list.
278  *
279  * Before stamping the inode's ->dirtied_when, we check to see whether it is
280  * already the most-recently-dirtied inode on the b_dirty list.  If that is
281  * the case then the inode must have been redirtied while it was being written
282  * out and we don't reset its dirtied_when.
283  */
284 static void redirty_tail(struct inode *inode)
285 {
286 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
287 
288 	if (!list_empty(&wb->b_dirty)) {
289 		struct inode *tail;
290 
291 		tail = list_entry(wb->b_dirty.next, struct inode, i_list);
292 		if (time_before(inode->dirtied_when, tail->dirtied_when))
293 			inode->dirtied_when = jiffies;
294 	}
295 	list_move(&inode->i_list, &wb->b_dirty);
296 }
297 
298 /*
299  * requeue inode for re-scanning after bdi->b_io list is exhausted.
300  */
301 static void requeue_io(struct inode *inode)
302 {
303 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
304 
305 	list_move(&inode->i_list, &wb->b_more_io);
306 }
307 
308 static void inode_sync_complete(struct inode *inode)
309 {
310 	/*
311 	 * Prevent speculative execution through spin_unlock(&inode_lock);
312 	 */
313 	smp_mb();
314 	wake_up_bit(&inode->i_state, __I_SYNC);
315 }
316 
317 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
318 {
319 	bool ret = time_after(inode->dirtied_when, t);
320 #ifndef CONFIG_64BIT
321 	/*
322 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
323 	 * It _appears_ to be in the future, but is actually in distant past.
324 	 * This test is necessary to prevent such wrapped-around relative times
325 	 * from permanently stopping the whole bdi writeback.
326 	 */
327 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
328 #endif
329 	return ret;
330 }
331 
332 /*
333  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
334  */
335 static void move_expired_inodes(struct list_head *delaying_queue,
336 			       struct list_head *dispatch_queue,
337 				unsigned long *older_than_this)
338 {
339 	LIST_HEAD(tmp);
340 	struct list_head *pos, *node;
341 	struct super_block *sb = NULL;
342 	struct inode *inode;
343 	int do_sb_sort = 0;
344 
345 	while (!list_empty(delaying_queue)) {
346 		inode = list_entry(delaying_queue->prev, struct inode, i_list);
347 		if (older_than_this &&
348 		    inode_dirtied_after(inode, *older_than_this))
349 			break;
350 		if (sb && sb != inode->i_sb)
351 			do_sb_sort = 1;
352 		sb = inode->i_sb;
353 		list_move(&inode->i_list, &tmp);
354 	}
355 
356 	/* just one sb in list, splice to dispatch_queue and we're done */
357 	if (!do_sb_sort) {
358 		list_splice(&tmp, dispatch_queue);
359 		return;
360 	}
361 
362 	/* Move inodes from one superblock together */
363 	while (!list_empty(&tmp)) {
364 		inode = list_entry(tmp.prev, struct inode, i_list);
365 		sb = inode->i_sb;
366 		list_for_each_prev_safe(pos, node, &tmp) {
367 			inode = list_entry(pos, struct inode, i_list);
368 			if (inode->i_sb == sb)
369 				list_move(&inode->i_list, dispatch_queue);
370 		}
371 	}
372 }
373 
374 /*
375  * Queue all expired dirty inodes for io, eldest first.
376  */
377 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
378 {
379 	list_splice_init(&wb->b_more_io, wb->b_io.prev);
380 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
381 }
382 
383 static int write_inode(struct inode *inode, int sync)
384 {
385 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
386 		return inode->i_sb->s_op->write_inode(inode, sync);
387 	return 0;
388 }
389 
390 /*
391  * Wait for writeback on an inode to complete.
392  */
393 static void inode_wait_for_writeback(struct inode *inode)
394 {
395 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
396 	wait_queue_head_t *wqh;
397 
398 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
399 	do {
400 		spin_unlock(&inode_lock);
401 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
402 		spin_lock(&inode_lock);
403 	} while (inode->i_state & I_SYNC);
404 }
405 
406 /*
407  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
408  * caller has ref on the inode (either via __iget or via syscall against an fd)
409  * or the inode has I_WILL_FREE set (via generic_forget_inode)
410  *
411  * If `wait' is set, wait on the writeout.
412  *
413  * The whole writeout design is quite complex and fragile.  We want to avoid
414  * starvation of particular inodes when others are being redirtied, prevent
415  * livelocks, etc.
416  *
417  * Called under inode_lock.
418  */
419 static int
420 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
421 {
422 	struct address_space *mapping = inode->i_mapping;
423 	int wait = wbc->sync_mode == WB_SYNC_ALL;
424 	unsigned dirty;
425 	int ret;
426 
427 	if (!atomic_read(&inode->i_count))
428 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
429 	else
430 		WARN_ON(inode->i_state & I_WILL_FREE);
431 
432 	if (inode->i_state & I_SYNC) {
433 		/*
434 		 * If this inode is locked for writeback and we are not doing
435 		 * writeback-for-data-integrity, move it to b_more_io so that
436 		 * writeback can proceed with the other inodes on s_io.
437 		 *
438 		 * We'll have another go at writing back this inode when we
439 		 * completed a full scan of b_io.
440 		 */
441 		if (!wait) {
442 			requeue_io(inode);
443 			return 0;
444 		}
445 
446 		/*
447 		 * It's a data-integrity sync.  We must wait.
448 		 */
449 		inode_wait_for_writeback(inode);
450 	}
451 
452 	BUG_ON(inode->i_state & I_SYNC);
453 
454 	/* Set I_SYNC, reset I_DIRTY */
455 	dirty = inode->i_state & I_DIRTY;
456 	inode->i_state |= I_SYNC;
457 	inode->i_state &= ~I_DIRTY;
458 
459 	spin_unlock(&inode_lock);
460 
461 	ret = do_writepages(mapping, wbc);
462 
463 	/* Don't write the inode if only I_DIRTY_PAGES was set */
464 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
465 		int err = write_inode(inode, wait);
466 		if (ret == 0)
467 			ret = err;
468 	}
469 
470 	if (wait) {
471 		int err = filemap_fdatawait(mapping);
472 		if (ret == 0)
473 			ret = err;
474 	}
475 
476 	spin_lock(&inode_lock);
477 	inode->i_state &= ~I_SYNC;
478 	if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
479 		if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
480 			/*
481 			 * More pages get dirtied by a fast dirtier.
482 			 */
483 			goto select_queue;
484 		} else if (inode->i_state & I_DIRTY) {
485 			/*
486 			 * At least XFS will redirty the inode during the
487 			 * writeback (delalloc) and on io completion (isize).
488 			 */
489 			redirty_tail(inode);
490 		} else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
491 			/*
492 			 * We didn't write back all the pages.  nfs_writepages()
493 			 * sometimes bales out without doing anything. Redirty
494 			 * the inode; Move it from b_io onto b_more_io/b_dirty.
495 			 */
496 			/*
497 			 * akpm: if the caller was the kupdate function we put
498 			 * this inode at the head of b_dirty so it gets first
499 			 * consideration.  Otherwise, move it to the tail, for
500 			 * the reasons described there.  I'm not really sure
501 			 * how much sense this makes.  Presumably I had a good
502 			 * reasons for doing it this way, and I'd rather not
503 			 * muck with it at present.
504 			 */
505 			if (wbc->for_kupdate) {
506 				/*
507 				 * For the kupdate function we move the inode
508 				 * to b_more_io so it will get more writeout as
509 				 * soon as the queue becomes uncongested.
510 				 */
511 				inode->i_state |= I_DIRTY_PAGES;
512 select_queue:
513 				if (wbc->nr_to_write <= 0) {
514 					/*
515 					 * slice used up: queue for next turn
516 					 */
517 					requeue_io(inode);
518 				} else {
519 					/*
520 					 * somehow blocked: retry later
521 					 */
522 					redirty_tail(inode);
523 				}
524 			} else {
525 				/*
526 				 * Otherwise fully redirty the inode so that
527 				 * other inodes on this superblock will get some
528 				 * writeout.  Otherwise heavy writing to one
529 				 * file would indefinitely suspend writeout of
530 				 * all the other files.
531 				 */
532 				inode->i_state |= I_DIRTY_PAGES;
533 				redirty_tail(inode);
534 			}
535 		} else if (atomic_read(&inode->i_count)) {
536 			/*
537 			 * The inode is clean, inuse
538 			 */
539 			list_move(&inode->i_list, &inode_in_use);
540 		} else {
541 			/*
542 			 * The inode is clean, unused
543 			 */
544 			list_move(&inode->i_list, &inode_unused);
545 		}
546 	}
547 	inode_sync_complete(inode);
548 	return ret;
549 }
550 
551 static void unpin_sb_for_writeback(struct super_block **psb)
552 {
553 	struct super_block *sb = *psb;
554 
555 	if (sb) {
556 		up_read(&sb->s_umount);
557 		put_super(sb);
558 		*psb = NULL;
559 	}
560 }
561 
562 /*
563  * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
564  * before calling writeback. So make sure that we do pin it, so it doesn't
565  * go away while we are writing inodes from it.
566  *
567  * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
568  * 1 if we failed.
569  */
570 static int pin_sb_for_writeback(struct writeback_control *wbc,
571 				struct inode *inode, struct super_block **psb)
572 {
573 	struct super_block *sb = inode->i_sb;
574 
575 	/*
576 	 * If this sb is already pinned, nothing more to do. If not and
577 	 * *psb is non-NULL, unpin the old one first
578 	 */
579 	if (sb == *psb)
580 		return 0;
581 	else if (*psb)
582 		unpin_sb_for_writeback(psb);
583 
584 	/*
585 	 * Caller must already hold the ref for this
586 	 */
587 	if (wbc->sync_mode == WB_SYNC_ALL) {
588 		WARN_ON(!rwsem_is_locked(&sb->s_umount));
589 		return 0;
590 	}
591 
592 	spin_lock(&sb_lock);
593 	sb->s_count++;
594 	if (down_read_trylock(&sb->s_umount)) {
595 		if (sb->s_root) {
596 			spin_unlock(&sb_lock);
597 			goto pinned;
598 		}
599 		/*
600 		 * umounted, drop rwsem again and fall through to failure
601 		 */
602 		up_read(&sb->s_umount);
603 	}
604 
605 	sb->s_count--;
606 	spin_unlock(&sb_lock);
607 	return 1;
608 pinned:
609 	*psb = sb;
610 	return 0;
611 }
612 
613 static void writeback_inodes_wb(struct bdi_writeback *wb,
614 				struct writeback_control *wbc)
615 {
616 	struct super_block *sb = wbc->sb, *pin_sb = NULL;
617 	const unsigned long start = jiffies;	/* livelock avoidance */
618 
619 	spin_lock(&inode_lock);
620 
621 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
622 		queue_io(wb, wbc->older_than_this);
623 
624 	while (!list_empty(&wb->b_io)) {
625 		struct inode *inode = list_entry(wb->b_io.prev,
626 						struct inode, i_list);
627 		long pages_skipped;
628 
629 		/*
630 		 * super block given and doesn't match, skip this inode
631 		 */
632 		if (sb && sb != inode->i_sb) {
633 			redirty_tail(inode);
634 			continue;
635 		}
636 
637 		if (inode->i_state & (I_NEW | I_WILL_FREE)) {
638 			requeue_io(inode);
639 			continue;
640 		}
641 
642 		/*
643 		 * Was this inode dirtied after sync_sb_inodes was called?
644 		 * This keeps sync from extra jobs and livelock.
645 		 */
646 		if (inode_dirtied_after(inode, start))
647 			break;
648 
649 		if (pin_sb_for_writeback(wbc, inode, &pin_sb)) {
650 			requeue_io(inode);
651 			continue;
652 		}
653 
654 		BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
655 		__iget(inode);
656 		pages_skipped = wbc->pages_skipped;
657 		writeback_single_inode(inode, wbc);
658 		if (wbc->pages_skipped != pages_skipped) {
659 			/*
660 			 * writeback is not making progress due to locked
661 			 * buffers.  Skip this inode for now.
662 			 */
663 			redirty_tail(inode);
664 		}
665 		spin_unlock(&inode_lock);
666 		iput(inode);
667 		cond_resched();
668 		spin_lock(&inode_lock);
669 		if (wbc->nr_to_write <= 0) {
670 			wbc->more_io = 1;
671 			break;
672 		}
673 		if (!list_empty(&wb->b_more_io))
674 			wbc->more_io = 1;
675 	}
676 
677 	unpin_sb_for_writeback(&pin_sb);
678 
679 	spin_unlock(&inode_lock);
680 	/* Leave any unwritten inodes on b_io */
681 }
682 
683 void writeback_inodes_wbc(struct writeback_control *wbc)
684 {
685 	struct backing_dev_info *bdi = wbc->bdi;
686 
687 	writeback_inodes_wb(&bdi->wb, wbc);
688 }
689 
690 /*
691  * The maximum number of pages to writeout in a single bdi flush/kupdate
692  * operation.  We do this so we don't hold I_SYNC against an inode for
693  * enormous amounts of time, which would block a userspace task which has
694  * been forced to throttle against that inode.  Also, the code reevaluates
695  * the dirty each time it has written this many pages.
696  */
697 #define MAX_WRITEBACK_PAGES     1024
698 
699 static inline bool over_bground_thresh(void)
700 {
701 	unsigned long background_thresh, dirty_thresh;
702 
703 	get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
704 
705 	return (global_page_state(NR_FILE_DIRTY) +
706 		global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
707 }
708 
709 /*
710  * Explicit flushing or periodic writeback of "old" data.
711  *
712  * Define "old": the first time one of an inode's pages is dirtied, we mark the
713  * dirtying-time in the inode's address_space.  So this periodic writeback code
714  * just walks the superblock inode list, writing back any inodes which are
715  * older than a specific point in time.
716  *
717  * Try to run once per dirty_writeback_interval.  But if a writeback event
718  * takes longer than a dirty_writeback_interval interval, then leave a
719  * one-second gap.
720  *
721  * older_than_this takes precedence over nr_to_write.  So we'll only write back
722  * all dirty pages if they are all attached to "old" mappings.
723  */
724 static long wb_writeback(struct bdi_writeback *wb,
725 			 struct wb_writeback_args *args)
726 {
727 	struct writeback_control wbc = {
728 		.bdi			= wb->bdi,
729 		.sb			= args->sb,
730 		.sync_mode		= args->sync_mode,
731 		.older_than_this	= NULL,
732 		.for_kupdate		= args->for_kupdate,
733 		.for_background		= args->for_background,
734 		.range_cyclic		= args->range_cyclic,
735 	};
736 	unsigned long oldest_jif;
737 	long wrote = 0;
738 	struct inode *inode;
739 
740 	if (wbc.for_kupdate) {
741 		wbc.older_than_this = &oldest_jif;
742 		oldest_jif = jiffies -
743 				msecs_to_jiffies(dirty_expire_interval * 10);
744 	}
745 	if (!wbc.range_cyclic) {
746 		wbc.range_start = 0;
747 		wbc.range_end = LLONG_MAX;
748 	}
749 
750 	for (;;) {
751 		/*
752 		 * Stop writeback when nr_pages has been consumed
753 		 */
754 		if (args->nr_pages <= 0)
755 			break;
756 
757 		/*
758 		 * For background writeout, stop when we are below the
759 		 * background dirty threshold
760 		 */
761 		if (args->for_background && !over_bground_thresh())
762 			break;
763 
764 		wbc.more_io = 0;
765 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
766 		wbc.pages_skipped = 0;
767 		writeback_inodes_wb(wb, &wbc);
768 		args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
769 		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
770 
771 		/*
772 		 * If we consumed everything, see if we have more
773 		 */
774 		if (wbc.nr_to_write <= 0)
775 			continue;
776 		/*
777 		 * Didn't write everything and we don't have more IO, bail
778 		 */
779 		if (!wbc.more_io)
780 			break;
781 		/*
782 		 * Did we write something? Try for more
783 		 */
784 		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
785 			continue;
786 		/*
787 		 * Nothing written. Wait for some inode to
788 		 * become available for writeback. Otherwise
789 		 * we'll just busyloop.
790 		 */
791 		spin_lock(&inode_lock);
792 		if (!list_empty(&wb->b_more_io))  {
793 			inode = list_entry(wb->b_more_io.prev,
794 						struct inode, i_list);
795 			inode_wait_for_writeback(inode);
796 		}
797 		spin_unlock(&inode_lock);
798 	}
799 
800 	return wrote;
801 }
802 
803 /*
804  * Return the next bdi_work struct that hasn't been processed by this
805  * wb thread yet. ->seen is initially set for each thread that exists
806  * for this device, when a thread first notices a piece of work it
807  * clears its bit. Depending on writeback type, the thread will notify
808  * completion on either receiving the work (WB_SYNC_NONE) or after
809  * it is done (WB_SYNC_ALL).
810  */
811 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
812 					   struct bdi_writeback *wb)
813 {
814 	struct bdi_work *work, *ret = NULL;
815 
816 	rcu_read_lock();
817 
818 	list_for_each_entry_rcu(work, &bdi->work_list, list) {
819 		if (!test_bit(wb->nr, &work->seen))
820 			continue;
821 		clear_bit(wb->nr, &work->seen);
822 
823 		ret = work;
824 		break;
825 	}
826 
827 	rcu_read_unlock();
828 	return ret;
829 }
830 
831 static long wb_check_old_data_flush(struct bdi_writeback *wb)
832 {
833 	unsigned long expired;
834 	long nr_pages;
835 
836 	expired = wb->last_old_flush +
837 			msecs_to_jiffies(dirty_writeback_interval * 10);
838 	if (time_before(jiffies, expired))
839 		return 0;
840 
841 	wb->last_old_flush = jiffies;
842 	nr_pages = global_page_state(NR_FILE_DIRTY) +
843 			global_page_state(NR_UNSTABLE_NFS) +
844 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
845 
846 	if (nr_pages) {
847 		struct wb_writeback_args args = {
848 			.nr_pages	= nr_pages,
849 			.sync_mode	= WB_SYNC_NONE,
850 			.for_kupdate	= 1,
851 			.range_cyclic	= 1,
852 		};
853 
854 		return wb_writeback(wb, &args);
855 	}
856 
857 	return 0;
858 }
859 
860 /*
861  * Retrieve work items and do the writeback they describe
862  */
863 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
864 {
865 	struct backing_dev_info *bdi = wb->bdi;
866 	struct bdi_work *work;
867 	long wrote = 0;
868 
869 	while ((work = get_next_work_item(bdi, wb)) != NULL) {
870 		struct wb_writeback_args args = work->args;
871 
872 		/*
873 		 * Override sync mode, in case we must wait for completion
874 		 */
875 		if (force_wait)
876 			work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
877 
878 		/*
879 		 * If this isn't a data integrity operation, just notify
880 		 * that we have seen this work and we are now starting it.
881 		 */
882 		if (args.sync_mode == WB_SYNC_NONE)
883 			wb_clear_pending(wb, work);
884 
885 		wrote += wb_writeback(wb, &args);
886 
887 		/*
888 		 * This is a data integrity writeback, so only do the
889 		 * notification when we have completed the work.
890 		 */
891 		if (args.sync_mode == WB_SYNC_ALL)
892 			wb_clear_pending(wb, work);
893 	}
894 
895 	/*
896 	 * Check for periodic writeback, kupdated() style
897 	 */
898 	wrote += wb_check_old_data_flush(wb);
899 
900 	return wrote;
901 }
902 
903 /*
904  * Handle writeback of dirty data for the device backed by this bdi. Also
905  * wakes up periodically and does kupdated style flushing.
906  */
907 int bdi_writeback_task(struct bdi_writeback *wb)
908 {
909 	unsigned long last_active = jiffies;
910 	unsigned long wait_jiffies = -1UL;
911 	long pages_written;
912 
913 	while (!kthread_should_stop()) {
914 		pages_written = wb_do_writeback(wb, 0);
915 
916 		if (pages_written)
917 			last_active = jiffies;
918 		else if (wait_jiffies != -1UL) {
919 			unsigned long max_idle;
920 
921 			/*
922 			 * Longest period of inactivity that we tolerate. If we
923 			 * see dirty data again later, the task will get
924 			 * recreated automatically.
925 			 */
926 			max_idle = max(5UL * 60 * HZ, wait_jiffies);
927 			if (time_after(jiffies, max_idle + last_active))
928 				break;
929 		}
930 
931 		wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
932 		schedule_timeout_interruptible(wait_jiffies);
933 		try_to_freeze();
934 	}
935 
936 	return 0;
937 }
938 
939 /*
940  * Schedule writeback for all backing devices. This does WB_SYNC_NONE
941  * writeback, for integrity writeback see bdi_sync_writeback().
942  */
943 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
944 {
945 	struct wb_writeback_args args = {
946 		.sb		= sb,
947 		.nr_pages	= nr_pages,
948 		.sync_mode	= WB_SYNC_NONE,
949 	};
950 	struct backing_dev_info *bdi;
951 
952 	rcu_read_lock();
953 
954 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
955 		if (!bdi_has_dirty_io(bdi))
956 			continue;
957 
958 		bdi_alloc_queue_work(bdi, &args);
959 	}
960 
961 	rcu_read_unlock();
962 }
963 
964 /*
965  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
966  * the whole world.
967  */
968 void wakeup_flusher_threads(long nr_pages)
969 {
970 	if (nr_pages == 0)
971 		nr_pages = global_page_state(NR_FILE_DIRTY) +
972 				global_page_state(NR_UNSTABLE_NFS);
973 	bdi_writeback_all(NULL, nr_pages);
974 }
975 
976 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
977 {
978 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
979 		struct dentry *dentry;
980 		const char *name = "?";
981 
982 		dentry = d_find_alias(inode);
983 		if (dentry) {
984 			spin_lock(&dentry->d_lock);
985 			name = (const char *) dentry->d_name.name;
986 		}
987 		printk(KERN_DEBUG
988 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
989 		       current->comm, task_pid_nr(current), inode->i_ino,
990 		       name, inode->i_sb->s_id);
991 		if (dentry) {
992 			spin_unlock(&dentry->d_lock);
993 			dput(dentry);
994 		}
995 	}
996 }
997 
998 /**
999  *	__mark_inode_dirty -	internal function
1000  *	@inode: inode to mark
1001  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1002  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1003  *  	mark_inode_dirty_sync.
1004  *
1005  * Put the inode on the super block's dirty list.
1006  *
1007  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1008  * dirty list only if it is hashed or if it refers to a blockdev.
1009  * If it was not hashed, it will never be added to the dirty list
1010  * even if it is later hashed, as it will have been marked dirty already.
1011  *
1012  * In short, make sure you hash any inodes _before_ you start marking
1013  * them dirty.
1014  *
1015  * This function *must* be atomic for the I_DIRTY_PAGES case -
1016  * set_page_dirty() is called under spinlock in several places.
1017  *
1018  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1019  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1020  * the kernel-internal blockdev inode represents the dirtying time of the
1021  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1022  * page->mapping->host, so the page-dirtying time is recorded in the internal
1023  * blockdev inode.
1024  */
1025 void __mark_inode_dirty(struct inode *inode, int flags)
1026 {
1027 	struct super_block *sb = inode->i_sb;
1028 
1029 	/*
1030 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1031 	 * dirty the inode itself
1032 	 */
1033 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1034 		if (sb->s_op->dirty_inode)
1035 			sb->s_op->dirty_inode(inode);
1036 	}
1037 
1038 	/*
1039 	 * make sure that changes are seen by all cpus before we test i_state
1040 	 * -- mikulas
1041 	 */
1042 	smp_mb();
1043 
1044 	/* avoid the locking if we can */
1045 	if ((inode->i_state & flags) == flags)
1046 		return;
1047 
1048 	if (unlikely(block_dump))
1049 		block_dump___mark_inode_dirty(inode);
1050 
1051 	spin_lock(&inode_lock);
1052 	if ((inode->i_state & flags) != flags) {
1053 		const int was_dirty = inode->i_state & I_DIRTY;
1054 
1055 		inode->i_state |= flags;
1056 
1057 		/*
1058 		 * If the inode is being synced, just update its dirty state.
1059 		 * The unlocker will place the inode on the appropriate
1060 		 * superblock list, based upon its state.
1061 		 */
1062 		if (inode->i_state & I_SYNC)
1063 			goto out;
1064 
1065 		/*
1066 		 * Only add valid (hashed) inodes to the superblock's
1067 		 * dirty list.  Add blockdev inodes as well.
1068 		 */
1069 		if (!S_ISBLK(inode->i_mode)) {
1070 			if (hlist_unhashed(&inode->i_hash))
1071 				goto out;
1072 		}
1073 		if (inode->i_state & (I_FREEING|I_CLEAR))
1074 			goto out;
1075 
1076 		/*
1077 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1078 		 * reposition it (that would break b_dirty time-ordering).
1079 		 */
1080 		if (!was_dirty) {
1081 			struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1082 			struct backing_dev_info *bdi = wb->bdi;
1083 
1084 			if (bdi_cap_writeback_dirty(bdi) &&
1085 			    !test_bit(BDI_registered, &bdi->state)) {
1086 				WARN_ON(1);
1087 				printk(KERN_ERR "bdi-%s not registered\n",
1088 								bdi->name);
1089 			}
1090 
1091 			inode->dirtied_when = jiffies;
1092 			list_move(&inode->i_list, &wb->b_dirty);
1093 		}
1094 	}
1095 out:
1096 	spin_unlock(&inode_lock);
1097 }
1098 EXPORT_SYMBOL(__mark_inode_dirty);
1099 
1100 /*
1101  * Write out a superblock's list of dirty inodes.  A wait will be performed
1102  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1103  *
1104  * If older_than_this is non-NULL, then only write out inodes which
1105  * had their first dirtying at a time earlier than *older_than_this.
1106  *
1107  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1108  * This function assumes that the blockdev superblock's inodes are backed by
1109  * a variety of queues, so all inodes are searched.  For other superblocks,
1110  * assume that all inodes are backed by the same queue.
1111  *
1112  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1113  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1114  * on the writer throttling path, and we get decent balancing between many
1115  * throttled threads: we don't want them all piling up on inode_sync_wait.
1116  */
1117 static void wait_sb_inodes(struct super_block *sb)
1118 {
1119 	struct inode *inode, *old_inode = NULL;
1120 
1121 	/*
1122 	 * We need to be protected against the filesystem going from
1123 	 * r/o to r/w or vice versa.
1124 	 */
1125 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1126 
1127 	spin_lock(&inode_lock);
1128 
1129 	/*
1130 	 * Data integrity sync. Must wait for all pages under writeback,
1131 	 * because there may have been pages dirtied before our sync
1132 	 * call, but which had writeout started before we write it out.
1133 	 * In which case, the inode may not be on the dirty list, but
1134 	 * we still have to wait for that writeout.
1135 	 */
1136 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1137 		struct address_space *mapping;
1138 
1139 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1140 			continue;
1141 		mapping = inode->i_mapping;
1142 		if (mapping->nrpages == 0)
1143 			continue;
1144 		__iget(inode);
1145 		spin_unlock(&inode_lock);
1146 		/*
1147 		 * We hold a reference to 'inode' so it couldn't have
1148 		 * been removed from s_inodes list while we dropped the
1149 		 * inode_lock.  We cannot iput the inode now as we can
1150 		 * be holding the last reference and we cannot iput it
1151 		 * under inode_lock. So we keep the reference and iput
1152 		 * it later.
1153 		 */
1154 		iput(old_inode);
1155 		old_inode = inode;
1156 
1157 		filemap_fdatawait(mapping);
1158 
1159 		cond_resched();
1160 
1161 		spin_lock(&inode_lock);
1162 	}
1163 	spin_unlock(&inode_lock);
1164 	iput(old_inode);
1165 }
1166 
1167 /**
1168  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1169  * @sb: the superblock
1170  *
1171  * Start writeback on some inodes on this super_block. No guarantees are made
1172  * on how many (if any) will be written, and this function does not wait
1173  * for IO completion of submitted IO. The number of pages submitted is
1174  * returned.
1175  */
1176 void writeback_inodes_sb(struct super_block *sb)
1177 {
1178 	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1179 	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1180 	long nr_to_write;
1181 
1182 	nr_to_write = nr_dirty + nr_unstable +
1183 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
1184 
1185 	bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
1186 }
1187 EXPORT_SYMBOL(writeback_inodes_sb);
1188 
1189 /**
1190  * sync_inodes_sb	-	sync sb inode pages
1191  * @sb: the superblock
1192  *
1193  * This function writes and waits on any dirty inode belonging to this
1194  * super_block. The number of pages synced is returned.
1195  */
1196 void sync_inodes_sb(struct super_block *sb)
1197 {
1198 	bdi_sync_writeback(sb->s_bdi, sb);
1199 	wait_sb_inodes(sb);
1200 }
1201 EXPORT_SYMBOL(sync_inodes_sb);
1202 
1203 /**
1204  * write_inode_now	-	write an inode to disk
1205  * @inode: inode to write to disk
1206  * @sync: whether the write should be synchronous or not
1207  *
1208  * This function commits an inode to disk immediately if it is dirty. This is
1209  * primarily needed by knfsd.
1210  *
1211  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1212  */
1213 int write_inode_now(struct inode *inode, int sync)
1214 {
1215 	int ret;
1216 	struct writeback_control wbc = {
1217 		.nr_to_write = LONG_MAX,
1218 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1219 		.range_start = 0,
1220 		.range_end = LLONG_MAX,
1221 	};
1222 
1223 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1224 		wbc.nr_to_write = 0;
1225 
1226 	might_sleep();
1227 	spin_lock(&inode_lock);
1228 	ret = writeback_single_inode(inode, &wbc);
1229 	spin_unlock(&inode_lock);
1230 	if (sync)
1231 		inode_sync_wait(inode);
1232 	return ret;
1233 }
1234 EXPORT_SYMBOL(write_inode_now);
1235 
1236 /**
1237  * sync_inode - write an inode and its pages to disk.
1238  * @inode: the inode to sync
1239  * @wbc: controls the writeback mode
1240  *
1241  * sync_inode() will write an inode and its pages to disk.  It will also
1242  * correctly update the inode on its superblock's dirty inode lists and will
1243  * update inode->i_state.
1244  *
1245  * The caller must have a ref on the inode.
1246  */
1247 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1248 {
1249 	int ret;
1250 
1251 	spin_lock(&inode_lock);
1252 	ret = writeback_single_inode(inode, wbc);
1253 	spin_unlock(&inode_lock);
1254 	return ret;
1255 }
1256 EXPORT_SYMBOL(sync_inode);
1257