1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 akpm@zip.com.au 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/spinlock.h> 18 #include <linux/sched.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/backing-dev.h> 24 #include <linux/buffer_head.h> 25 26 extern struct super_block *blockdev_superblock; 27 28 /** 29 * __mark_inode_dirty - internal function 30 * @inode: inode to mark 31 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 32 * Mark an inode as dirty. Callers should use mark_inode_dirty or 33 * mark_inode_dirty_sync. 34 * 35 * Put the inode on the super block's dirty list. 36 * 37 * CAREFUL! We mark it dirty unconditionally, but move it onto the 38 * dirty list only if it is hashed or if it refers to a blockdev. 39 * If it was not hashed, it will never be added to the dirty list 40 * even if it is later hashed, as it will have been marked dirty already. 41 * 42 * In short, make sure you hash any inodes _before_ you start marking 43 * them dirty. 44 * 45 * This function *must* be atomic for the I_DIRTY_PAGES case - 46 * set_page_dirty() is called under spinlock in several places. 47 * 48 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 49 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 50 * the kernel-internal blockdev inode represents the dirtying time of the 51 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 52 * page->mapping->host, so the page-dirtying time is recorded in the internal 53 * blockdev inode. 54 */ 55 void __mark_inode_dirty(struct inode *inode, int flags) 56 { 57 struct super_block *sb = inode->i_sb; 58 59 /* 60 * Don't do this for I_DIRTY_PAGES - that doesn't actually 61 * dirty the inode itself 62 */ 63 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 64 if (sb->s_op->dirty_inode) 65 sb->s_op->dirty_inode(inode); 66 } 67 68 /* 69 * make sure that changes are seen by all cpus before we test i_state 70 * -- mikulas 71 */ 72 smp_mb(); 73 74 /* avoid the locking if we can */ 75 if ((inode->i_state & flags) == flags) 76 return; 77 78 if (unlikely(block_dump)) { 79 struct dentry *dentry = NULL; 80 const char *name = "?"; 81 82 if (!list_empty(&inode->i_dentry)) { 83 dentry = list_entry(inode->i_dentry.next, 84 struct dentry, d_alias); 85 if (dentry && dentry->d_name.name) 86 name = (const char *) dentry->d_name.name; 87 } 88 89 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) 90 printk(KERN_DEBUG 91 "%s(%d): dirtied inode %lu (%s) on %s\n", 92 current->comm, current->pid, inode->i_ino, 93 name, inode->i_sb->s_id); 94 } 95 96 spin_lock(&inode_lock); 97 if ((inode->i_state & flags) != flags) { 98 const int was_dirty = inode->i_state & I_DIRTY; 99 100 inode->i_state |= flags; 101 102 /* 103 * If the inode is locked, just update its dirty state. 104 * The unlocker will place the inode on the appropriate 105 * superblock list, based upon its state. 106 */ 107 if (inode->i_state & I_LOCK) 108 goto out; 109 110 /* 111 * Only add valid (hashed) inodes to the superblock's 112 * dirty list. Add blockdev inodes as well. 113 */ 114 if (!S_ISBLK(inode->i_mode)) { 115 if (hlist_unhashed(&inode->i_hash)) 116 goto out; 117 } 118 if (inode->i_state & (I_FREEING|I_CLEAR)) 119 goto out; 120 121 /* 122 * If the inode was already on s_dirty or s_io, don't 123 * reposition it (that would break s_dirty time-ordering). 124 */ 125 if (!was_dirty) { 126 inode->dirtied_when = jiffies; 127 list_move(&inode->i_list, &sb->s_dirty); 128 } 129 } 130 out: 131 spin_unlock(&inode_lock); 132 } 133 134 EXPORT_SYMBOL(__mark_inode_dirty); 135 136 static int write_inode(struct inode *inode, int sync) 137 { 138 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 139 return inode->i_sb->s_op->write_inode(inode, sync); 140 return 0; 141 } 142 143 /* 144 * Write a single inode's dirty pages and inode data out to disk. 145 * If `wait' is set, wait on the writeout. 146 * 147 * The whole writeout design is quite complex and fragile. We want to avoid 148 * starvation of particular inodes when others are being redirtied, prevent 149 * livelocks, etc. 150 * 151 * Called under inode_lock. 152 */ 153 static int 154 __sync_single_inode(struct inode *inode, struct writeback_control *wbc) 155 { 156 unsigned dirty; 157 struct address_space *mapping = inode->i_mapping; 158 struct super_block *sb = inode->i_sb; 159 int wait = wbc->sync_mode == WB_SYNC_ALL; 160 int ret; 161 162 BUG_ON(inode->i_state & I_LOCK); 163 164 /* Set I_LOCK, reset I_DIRTY */ 165 dirty = inode->i_state & I_DIRTY; 166 inode->i_state |= I_LOCK; 167 inode->i_state &= ~I_DIRTY; 168 169 spin_unlock(&inode_lock); 170 171 ret = do_writepages(mapping, wbc); 172 173 /* Don't write the inode if only I_DIRTY_PAGES was set */ 174 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 175 int err = write_inode(inode, wait); 176 if (ret == 0) 177 ret = err; 178 } 179 180 if (wait) { 181 int err = filemap_fdatawait(mapping); 182 if (ret == 0) 183 ret = err; 184 } 185 186 spin_lock(&inode_lock); 187 inode->i_state &= ~I_LOCK; 188 if (!(inode->i_state & I_FREEING)) { 189 if (!(inode->i_state & I_DIRTY) && 190 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 191 /* 192 * We didn't write back all the pages. nfs_writepages() 193 * sometimes bales out without doing anything. Redirty 194 * the inode. It is still on sb->s_io. 195 */ 196 if (wbc->for_kupdate) { 197 /* 198 * For the kupdate function we leave the inode 199 * at the head of sb_dirty so it will get more 200 * writeout as soon as the queue becomes 201 * uncongested. 202 */ 203 inode->i_state |= I_DIRTY_PAGES; 204 list_move_tail(&inode->i_list, &sb->s_dirty); 205 } else { 206 /* 207 * Otherwise fully redirty the inode so that 208 * other inodes on this superblock will get some 209 * writeout. Otherwise heavy writing to one 210 * file would indefinitely suspend writeout of 211 * all the other files. 212 */ 213 inode->i_state |= I_DIRTY_PAGES; 214 inode->dirtied_when = jiffies; 215 list_move(&inode->i_list, &sb->s_dirty); 216 } 217 } else if (inode->i_state & I_DIRTY) { 218 /* 219 * Someone redirtied the inode while were writing back 220 * the pages. 221 */ 222 list_move(&inode->i_list, &sb->s_dirty); 223 } else if (atomic_read(&inode->i_count)) { 224 /* 225 * The inode is clean, inuse 226 */ 227 list_move(&inode->i_list, &inode_in_use); 228 } else { 229 /* 230 * The inode is clean, unused 231 */ 232 list_move(&inode->i_list, &inode_unused); 233 } 234 } 235 wake_up_inode(inode); 236 return ret; 237 } 238 239 /* 240 * Write out an inode's dirty pages. Called under inode_lock. Either the 241 * caller has ref on the inode (either via __iget or via syscall against an fd) 242 * or the inode has I_WILL_FREE set (via generic_forget_inode) 243 */ 244 static int 245 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 246 { 247 wait_queue_head_t *wqh; 248 249 if (!atomic_read(&inode->i_count)) 250 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 251 else 252 WARN_ON(inode->i_state & I_WILL_FREE); 253 254 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_LOCK)) { 255 list_move(&inode->i_list, &inode->i_sb->s_dirty); 256 return 0; 257 } 258 259 /* 260 * It's a data-integrity sync. We must wait. 261 */ 262 if (inode->i_state & I_LOCK) { 263 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LOCK); 264 265 wqh = bit_waitqueue(&inode->i_state, __I_LOCK); 266 do { 267 spin_unlock(&inode_lock); 268 __wait_on_bit(wqh, &wq, inode_wait, 269 TASK_UNINTERRUPTIBLE); 270 spin_lock(&inode_lock); 271 } while (inode->i_state & I_LOCK); 272 } 273 return __sync_single_inode(inode, wbc); 274 } 275 276 /* 277 * Write out a superblock's list of dirty inodes. A wait will be performed 278 * upon no inodes, all inodes or the final one, depending upon sync_mode. 279 * 280 * If older_than_this is non-NULL, then only write out inodes which 281 * had their first dirtying at a time earlier than *older_than_this. 282 * 283 * If we're a pdlfush thread, then implement pdflush collision avoidance 284 * against the entire list. 285 * 286 * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so 287 * that it can be located for waiting on in __writeback_single_inode(). 288 * 289 * Called under inode_lock. 290 * 291 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 292 * This function assumes that the blockdev superblock's inodes are backed by 293 * a variety of queues, so all inodes are searched. For other superblocks, 294 * assume that all inodes are backed by the same queue. 295 * 296 * FIXME: this linear search could get expensive with many fileystems. But 297 * how to fix? We need to go from an address_space to all inodes which share 298 * a queue with that address_space. (Easy: have a global "dirty superblocks" 299 * list). 300 * 301 * The inodes to be written are parked on sb->s_io. They are moved back onto 302 * sb->s_dirty as they are selected for writing. This way, none can be missed 303 * on the writer throttling path, and we get decent balancing between many 304 * throttled threads: we don't want them all piling up on __wait_on_inode. 305 */ 306 static void 307 sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc) 308 { 309 const unsigned long start = jiffies; /* livelock avoidance */ 310 311 if (!wbc->for_kupdate || list_empty(&sb->s_io)) 312 list_splice_init(&sb->s_dirty, &sb->s_io); 313 314 while (!list_empty(&sb->s_io)) { 315 struct inode *inode = list_entry(sb->s_io.prev, 316 struct inode, i_list); 317 struct address_space *mapping = inode->i_mapping; 318 struct backing_dev_info *bdi = mapping->backing_dev_info; 319 long pages_skipped; 320 321 if (!bdi_cap_writeback_dirty(bdi)) { 322 list_move(&inode->i_list, &sb->s_dirty); 323 if (sb == blockdev_superblock) { 324 /* 325 * Dirty memory-backed blockdev: the ramdisk 326 * driver does this. Skip just this inode 327 */ 328 continue; 329 } 330 /* 331 * Dirty memory-backed inode against a filesystem other 332 * than the kernel-internal bdev filesystem. Skip the 333 * entire superblock. 334 */ 335 break; 336 } 337 338 if (wbc->nonblocking && bdi_write_congested(bdi)) { 339 wbc->encountered_congestion = 1; 340 if (sb != blockdev_superblock) 341 break; /* Skip a congested fs */ 342 list_move(&inode->i_list, &sb->s_dirty); 343 continue; /* Skip a congested blockdev */ 344 } 345 346 if (wbc->bdi && bdi != wbc->bdi) { 347 if (sb != blockdev_superblock) 348 break; /* fs has the wrong queue */ 349 list_move(&inode->i_list, &sb->s_dirty); 350 continue; /* blockdev has wrong queue */ 351 } 352 353 /* Was this inode dirtied after sync_sb_inodes was called? */ 354 if (time_after(inode->dirtied_when, start)) 355 break; 356 357 /* Was this inode dirtied too recently? */ 358 if (wbc->older_than_this && time_after(inode->dirtied_when, 359 *wbc->older_than_this)) 360 break; 361 362 /* Is another pdflush already flushing this queue? */ 363 if (current_is_pdflush() && !writeback_acquire(bdi)) 364 break; 365 366 BUG_ON(inode->i_state & I_FREEING); 367 __iget(inode); 368 pages_skipped = wbc->pages_skipped; 369 __writeback_single_inode(inode, wbc); 370 if (wbc->sync_mode == WB_SYNC_HOLD) { 371 inode->dirtied_when = jiffies; 372 list_move(&inode->i_list, &sb->s_dirty); 373 } 374 if (current_is_pdflush()) 375 writeback_release(bdi); 376 if (wbc->pages_skipped != pages_skipped) { 377 /* 378 * writeback is not making progress due to locked 379 * buffers. Skip this inode for now. 380 */ 381 list_move(&inode->i_list, &sb->s_dirty); 382 } 383 spin_unlock(&inode_lock); 384 iput(inode); 385 cond_resched(); 386 spin_lock(&inode_lock); 387 if (wbc->nr_to_write <= 0) 388 break; 389 } 390 return; /* Leave any unwritten inodes on s_io */ 391 } 392 393 /* 394 * Start writeback of dirty pagecache data against all unlocked inodes. 395 * 396 * Note: 397 * We don't need to grab a reference to superblock here. If it has non-empty 398 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed 399 * past sync_inodes_sb() until both the ->s_dirty and ->s_io lists are 400 * empty. Since __sync_single_inode() regains inode_lock before it finally moves 401 * inode from superblock lists we are OK. 402 * 403 * If `older_than_this' is non-zero then only flush inodes which have a 404 * flushtime older than *older_than_this. 405 * 406 * If `bdi' is non-zero then we will scan the first inode against each 407 * superblock until we find the matching ones. One group will be the dirty 408 * inodes against a filesystem. Then when we hit the dummy blockdev superblock, 409 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not 410 * super-efficient but we're about to do a ton of I/O... 411 */ 412 void 413 writeback_inodes(struct writeback_control *wbc) 414 { 415 struct super_block *sb; 416 417 might_sleep(); 418 spin_lock(&sb_lock); 419 restart: 420 sb = sb_entry(super_blocks.prev); 421 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) { 422 if (!list_empty(&sb->s_dirty) || !list_empty(&sb->s_io)) { 423 /* we're making our own get_super here */ 424 sb->s_count++; 425 spin_unlock(&sb_lock); 426 /* 427 * If we can't get the readlock, there's no sense in 428 * waiting around, most of the time the FS is going to 429 * be unmounted by the time it is released. 430 */ 431 if (down_read_trylock(&sb->s_umount)) { 432 if (sb->s_root) { 433 spin_lock(&inode_lock); 434 sync_sb_inodes(sb, wbc); 435 spin_unlock(&inode_lock); 436 } 437 up_read(&sb->s_umount); 438 } 439 spin_lock(&sb_lock); 440 if (__put_super_and_need_restart(sb)) 441 goto restart; 442 } 443 if (wbc->nr_to_write <= 0) 444 break; 445 } 446 spin_unlock(&sb_lock); 447 } 448 449 /* 450 * writeback and wait upon the filesystem's dirty inodes. The caller will 451 * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is 452 * used to park the written inodes on sb->s_dirty for the wait pass. 453 * 454 * A finite limit is set on the number of pages which will be written. 455 * To prevent infinite livelock of sys_sync(). 456 * 457 * We add in the number of potentially dirty inodes, because each inode write 458 * can dirty pagecache in the underlying blockdev. 459 */ 460 void sync_inodes_sb(struct super_block *sb, int wait) 461 { 462 struct writeback_control wbc = { 463 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD, 464 .range_start = 0, 465 .range_end = LLONG_MAX, 466 }; 467 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 468 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 469 470 wbc.nr_to_write = nr_dirty + nr_unstable + 471 (inodes_stat.nr_inodes - inodes_stat.nr_unused) + 472 nr_dirty + nr_unstable; 473 wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */ 474 spin_lock(&inode_lock); 475 sync_sb_inodes(sb, &wbc); 476 spin_unlock(&inode_lock); 477 } 478 479 /* 480 * Rather lame livelock avoidance. 481 */ 482 static void set_sb_syncing(int val) 483 { 484 struct super_block *sb; 485 spin_lock(&sb_lock); 486 sb = sb_entry(super_blocks.prev); 487 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) { 488 sb->s_syncing = val; 489 } 490 spin_unlock(&sb_lock); 491 } 492 493 /** 494 * sync_inodes - writes all inodes to disk 495 * @wait: wait for completion 496 * 497 * sync_inodes() goes through each super block's dirty inode list, writes the 498 * inodes out, waits on the writeout and puts the inodes back on the normal 499 * list. 500 * 501 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle 502 * part of the sync functions is that the blockdev "superblock" is processed 503 * last. This is because the write_inode() function of a typical fs will 504 * perform no I/O, but will mark buffers in the blockdev mapping as dirty. 505 * What we want to do is to perform all that dirtying first, and then write 506 * back all those inode blocks via the blockdev mapping in one sweep. So the 507 * additional (somewhat redundant) sync_blockdev() calls here are to make 508 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with 509 * outstanding dirty inodes, the writeback goes block-at-a-time within the 510 * filesystem's write_inode(). This is extremely slow. 511 */ 512 static void __sync_inodes(int wait) 513 { 514 struct super_block *sb; 515 516 spin_lock(&sb_lock); 517 restart: 518 list_for_each_entry(sb, &super_blocks, s_list) { 519 if (sb->s_syncing) 520 continue; 521 sb->s_syncing = 1; 522 sb->s_count++; 523 spin_unlock(&sb_lock); 524 down_read(&sb->s_umount); 525 if (sb->s_root) { 526 sync_inodes_sb(sb, wait); 527 sync_blockdev(sb->s_bdev); 528 } 529 up_read(&sb->s_umount); 530 spin_lock(&sb_lock); 531 if (__put_super_and_need_restart(sb)) 532 goto restart; 533 } 534 spin_unlock(&sb_lock); 535 } 536 537 void sync_inodes(int wait) 538 { 539 set_sb_syncing(0); 540 __sync_inodes(0); 541 542 if (wait) { 543 set_sb_syncing(0); 544 __sync_inodes(1); 545 } 546 } 547 548 /** 549 * write_inode_now - write an inode to disk 550 * @inode: inode to write to disk 551 * @sync: whether the write should be synchronous or not 552 * 553 * This function commits an inode to disk immediately if it is dirty. This is 554 * primarily needed by knfsd. 555 * 556 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 557 */ 558 int write_inode_now(struct inode *inode, int sync) 559 { 560 int ret; 561 struct writeback_control wbc = { 562 .nr_to_write = LONG_MAX, 563 .sync_mode = WB_SYNC_ALL, 564 .range_start = 0, 565 .range_end = LLONG_MAX, 566 }; 567 568 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 569 wbc.nr_to_write = 0; 570 571 might_sleep(); 572 spin_lock(&inode_lock); 573 ret = __writeback_single_inode(inode, &wbc); 574 spin_unlock(&inode_lock); 575 if (sync) 576 wait_on_inode(inode); 577 return ret; 578 } 579 EXPORT_SYMBOL(write_inode_now); 580 581 /** 582 * sync_inode - write an inode and its pages to disk. 583 * @inode: the inode to sync 584 * @wbc: controls the writeback mode 585 * 586 * sync_inode() will write an inode and its pages to disk. It will also 587 * correctly update the inode on its superblock's dirty inode lists and will 588 * update inode->i_state. 589 * 590 * The caller must have a ref on the inode. 591 */ 592 int sync_inode(struct inode *inode, struct writeback_control *wbc) 593 { 594 int ret; 595 596 spin_lock(&inode_lock); 597 ret = __writeback_single_inode(inode, wbc); 598 spin_unlock(&inode_lock); 599 return ret; 600 } 601 EXPORT_SYMBOL(sync_inode); 602 603 /** 604 * generic_osync_inode - flush all dirty data for a given inode to disk 605 * @inode: inode to write 606 * @mapping: the address_space that should be flushed 607 * @what: what to write and wait upon 608 * 609 * This can be called by file_write functions for files which have the 610 * O_SYNC flag set, to flush dirty writes to disk. 611 * 612 * @what is a bitmask, specifying which part of the inode's data should be 613 * written and waited upon. 614 * 615 * OSYNC_DATA: i_mapping's dirty data 616 * OSYNC_METADATA: the buffers at i_mapping->private_list 617 * OSYNC_INODE: the inode itself 618 */ 619 620 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what) 621 { 622 int err = 0; 623 int need_write_inode_now = 0; 624 int err2; 625 626 if (what & OSYNC_DATA) 627 err = filemap_fdatawrite(mapping); 628 if (what & (OSYNC_METADATA|OSYNC_DATA)) { 629 err2 = sync_mapping_buffers(mapping); 630 if (!err) 631 err = err2; 632 } 633 if (what & OSYNC_DATA) { 634 err2 = filemap_fdatawait(mapping); 635 if (!err) 636 err = err2; 637 } 638 639 spin_lock(&inode_lock); 640 if ((inode->i_state & I_DIRTY) && 641 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC))) 642 need_write_inode_now = 1; 643 spin_unlock(&inode_lock); 644 645 if (need_write_inode_now) { 646 err2 = write_inode_now(inode, 1); 647 if (!err) 648 err = err2; 649 } 650 else 651 wait_on_inode(inode); 652 653 return err; 654 } 655 656 EXPORT_SYMBOL(generic_osync_inode); 657 658 /** 659 * writeback_acquire: attempt to get exclusive writeback access to a device 660 * @bdi: the device's backing_dev_info structure 661 * 662 * It is a waste of resources to have more than one pdflush thread blocked on 663 * a single request queue. Exclusion at the request_queue level is obtained 664 * via a flag in the request_queue's backing_dev_info.state. 665 * 666 * Non-request_queue-backed address_spaces will share default_backing_dev_info, 667 * unless they implement their own. Which is somewhat inefficient, as this 668 * may prevent concurrent writeback against multiple devices. 669 */ 670 int writeback_acquire(struct backing_dev_info *bdi) 671 { 672 return !test_and_set_bit(BDI_pdflush, &bdi->state); 673 } 674 675 /** 676 * writeback_in_progress: determine whether there is writeback in progress 677 * @bdi: the device's backing_dev_info structure. 678 * 679 * Determine whether there is writeback in progress against a backing device. 680 */ 681 int writeback_in_progress(struct backing_dev_info *bdi) 682 { 683 return test_bit(BDI_pdflush, &bdi->state); 684 } 685 686 /** 687 * writeback_release: relinquish exclusive writeback access against a device. 688 * @bdi: the device's backing_dev_info structure 689 */ 690 void writeback_release(struct backing_dev_info *bdi) 691 { 692 BUG_ON(!writeback_in_progress(bdi)); 693 clear_bit(BDI_pdflush, &bdi->state); 694 } 695