xref: /linux/fs/fs-writeback.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36 	long nr_pages;
37 	struct super_block *sb;
38 	enum writeback_sync_modes sync_mode;
39 	unsigned int for_kupdate:1;
40 	unsigned int range_cyclic:1;
41 	unsigned int for_background:1;
42 
43 	struct list_head list;		/* pending work list */
44 	struct completion *done;	/* set if the caller waits */
45 };
46 
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54 
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59 
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 	return test_bit(BDI_writeback_running, &bdi->state);
70 }
71 
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 	struct super_block *sb = inode->i_sb;
75 
76 	if (strcmp(sb->s_type->name, "bdev") == 0)
77 		return inode->i_mapping->backing_dev_info;
78 
79 	return sb->s_bdi;
80 }
81 
82 static void bdi_queue_work(struct backing_dev_info *bdi,
83 		struct wb_writeback_work *work)
84 {
85 	trace_writeback_queue(bdi, work);
86 
87 	spin_lock_bh(&bdi->wb_lock);
88 	list_add_tail(&work->list, &bdi->work_list);
89 	if (bdi->wb.task) {
90 		wake_up_process(bdi->wb.task);
91 	} else {
92 		/*
93 		 * The bdi thread isn't there, wake up the forker thread which
94 		 * will create and run it.
95 		 */
96 		trace_writeback_nothread(bdi, work);
97 		wake_up_process(default_backing_dev_info.wb.task);
98 	}
99 	spin_unlock_bh(&bdi->wb_lock);
100 }
101 
102 static void
103 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
104 		bool range_cyclic, bool for_background)
105 {
106 	struct wb_writeback_work *work;
107 
108 	/*
109 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
110 	 * wakeup the thread for old dirty data writeback
111 	 */
112 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
113 	if (!work) {
114 		if (bdi->wb.task) {
115 			trace_writeback_nowork(bdi);
116 			wake_up_process(bdi->wb.task);
117 		}
118 		return;
119 	}
120 
121 	work->sync_mode	= WB_SYNC_NONE;
122 	work->nr_pages	= nr_pages;
123 	work->range_cyclic = range_cyclic;
124 	work->for_background = for_background;
125 
126 	bdi_queue_work(bdi, work);
127 }
128 
129 /**
130  * bdi_start_writeback - start writeback
131  * @bdi: the backing device to write from
132  * @nr_pages: the number of pages to write
133  *
134  * Description:
135  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
136  *   started when this function returns, we make no guarentees on
137  *   completion. Caller need not hold sb s_umount semaphore.
138  *
139  */
140 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
141 {
142 	__bdi_start_writeback(bdi, nr_pages, true, false);
143 }
144 
145 /**
146  * bdi_start_background_writeback - start background writeback
147  * @bdi: the backing device to write from
148  *
149  * Description:
150  *   This does WB_SYNC_NONE background writeback. The IO is only
151  *   started when this function returns, we make no guarentees on
152  *   completion. Caller need not hold sb s_umount semaphore.
153  */
154 void bdi_start_background_writeback(struct backing_dev_info *bdi)
155 {
156 	__bdi_start_writeback(bdi, LONG_MAX, true, true);
157 }
158 
159 /*
160  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
161  * furthest end of its superblock's dirty-inode list.
162  *
163  * Before stamping the inode's ->dirtied_when, we check to see whether it is
164  * already the most-recently-dirtied inode on the b_dirty list.  If that is
165  * the case then the inode must have been redirtied while it was being written
166  * out and we don't reset its dirtied_when.
167  */
168 static void redirty_tail(struct inode *inode)
169 {
170 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
171 
172 	if (!list_empty(&wb->b_dirty)) {
173 		struct inode *tail;
174 
175 		tail = list_entry(wb->b_dirty.next, struct inode, i_list);
176 		if (time_before(inode->dirtied_when, tail->dirtied_when))
177 			inode->dirtied_when = jiffies;
178 	}
179 	list_move(&inode->i_list, &wb->b_dirty);
180 }
181 
182 /*
183  * requeue inode for re-scanning after bdi->b_io list is exhausted.
184  */
185 static void requeue_io(struct inode *inode)
186 {
187 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
188 
189 	list_move(&inode->i_list, &wb->b_more_io);
190 }
191 
192 static void inode_sync_complete(struct inode *inode)
193 {
194 	/*
195 	 * Prevent speculative execution through spin_unlock(&inode_lock);
196 	 */
197 	smp_mb();
198 	wake_up_bit(&inode->i_state, __I_SYNC);
199 }
200 
201 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
202 {
203 	bool ret = time_after(inode->dirtied_when, t);
204 #ifndef CONFIG_64BIT
205 	/*
206 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
207 	 * It _appears_ to be in the future, but is actually in distant past.
208 	 * This test is necessary to prevent such wrapped-around relative times
209 	 * from permanently stopping the whole bdi writeback.
210 	 */
211 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
212 #endif
213 	return ret;
214 }
215 
216 /*
217  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
218  */
219 static void move_expired_inodes(struct list_head *delaying_queue,
220 			       struct list_head *dispatch_queue,
221 				unsigned long *older_than_this)
222 {
223 	LIST_HEAD(tmp);
224 	struct list_head *pos, *node;
225 	struct super_block *sb = NULL;
226 	struct inode *inode;
227 	int do_sb_sort = 0;
228 
229 	while (!list_empty(delaying_queue)) {
230 		inode = list_entry(delaying_queue->prev, struct inode, i_list);
231 		if (older_than_this &&
232 		    inode_dirtied_after(inode, *older_than_this))
233 			break;
234 		if (sb && sb != inode->i_sb)
235 			do_sb_sort = 1;
236 		sb = inode->i_sb;
237 		list_move(&inode->i_list, &tmp);
238 	}
239 
240 	/* just one sb in list, splice to dispatch_queue and we're done */
241 	if (!do_sb_sort) {
242 		list_splice(&tmp, dispatch_queue);
243 		return;
244 	}
245 
246 	/* Move inodes from one superblock together */
247 	while (!list_empty(&tmp)) {
248 		inode = list_entry(tmp.prev, struct inode, i_list);
249 		sb = inode->i_sb;
250 		list_for_each_prev_safe(pos, node, &tmp) {
251 			inode = list_entry(pos, struct inode, i_list);
252 			if (inode->i_sb == sb)
253 				list_move(&inode->i_list, dispatch_queue);
254 		}
255 	}
256 }
257 
258 /*
259  * Queue all expired dirty inodes for io, eldest first.
260  * Before
261  *         newly dirtied     b_dirty    b_io    b_more_io
262  *         =============>    gf         edc     BA
263  * After
264  *         newly dirtied     b_dirty    b_io    b_more_io
265  *         =============>    g          fBAedc
266  *                                           |
267  *                                           +--> dequeue for IO
268  */
269 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
270 {
271 	list_splice_init(&wb->b_more_io, &wb->b_io);
272 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
273 }
274 
275 static int write_inode(struct inode *inode, struct writeback_control *wbc)
276 {
277 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
278 		return inode->i_sb->s_op->write_inode(inode, wbc);
279 	return 0;
280 }
281 
282 /*
283  * Wait for writeback on an inode to complete.
284  */
285 static void inode_wait_for_writeback(struct inode *inode)
286 {
287 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
288 	wait_queue_head_t *wqh;
289 
290 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
291 	 while (inode->i_state & I_SYNC) {
292 		spin_unlock(&inode_lock);
293 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
294 		spin_lock(&inode_lock);
295 	}
296 }
297 
298 /*
299  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
300  * caller has ref on the inode (either via __iget or via syscall against an fd)
301  * or the inode has I_WILL_FREE set (via generic_forget_inode)
302  *
303  * If `wait' is set, wait on the writeout.
304  *
305  * The whole writeout design is quite complex and fragile.  We want to avoid
306  * starvation of particular inodes when others are being redirtied, prevent
307  * livelocks, etc.
308  *
309  * Called under inode_lock.
310  */
311 static int
312 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
313 {
314 	struct address_space *mapping = inode->i_mapping;
315 	unsigned dirty;
316 	int ret;
317 
318 	if (!atomic_read(&inode->i_count))
319 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
320 	else
321 		WARN_ON(inode->i_state & I_WILL_FREE);
322 
323 	if (inode->i_state & I_SYNC) {
324 		/*
325 		 * If this inode is locked for writeback and we are not doing
326 		 * writeback-for-data-integrity, move it to b_more_io so that
327 		 * writeback can proceed with the other inodes on s_io.
328 		 *
329 		 * We'll have another go at writing back this inode when we
330 		 * completed a full scan of b_io.
331 		 */
332 		if (wbc->sync_mode != WB_SYNC_ALL) {
333 			requeue_io(inode);
334 			return 0;
335 		}
336 
337 		/*
338 		 * It's a data-integrity sync.  We must wait.
339 		 */
340 		inode_wait_for_writeback(inode);
341 	}
342 
343 	BUG_ON(inode->i_state & I_SYNC);
344 
345 	/* Set I_SYNC, reset I_DIRTY_PAGES */
346 	inode->i_state |= I_SYNC;
347 	inode->i_state &= ~I_DIRTY_PAGES;
348 	spin_unlock(&inode_lock);
349 
350 	ret = do_writepages(mapping, wbc);
351 
352 	/*
353 	 * Make sure to wait on the data before writing out the metadata.
354 	 * This is important for filesystems that modify metadata on data
355 	 * I/O completion.
356 	 */
357 	if (wbc->sync_mode == WB_SYNC_ALL) {
358 		int err = filemap_fdatawait(mapping);
359 		if (ret == 0)
360 			ret = err;
361 	}
362 
363 	/*
364 	 * Some filesystems may redirty the inode during the writeback
365 	 * due to delalloc, clear dirty metadata flags right before
366 	 * write_inode()
367 	 */
368 	spin_lock(&inode_lock);
369 	dirty = inode->i_state & I_DIRTY;
370 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
371 	spin_unlock(&inode_lock);
372 	/* Don't write the inode if only I_DIRTY_PAGES was set */
373 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
374 		int err = write_inode(inode, wbc);
375 		if (ret == 0)
376 			ret = err;
377 	}
378 
379 	spin_lock(&inode_lock);
380 	inode->i_state &= ~I_SYNC;
381 	if (!(inode->i_state & I_FREEING)) {
382 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
383 			/*
384 			 * We didn't write back all the pages.  nfs_writepages()
385 			 * sometimes bales out without doing anything.
386 			 */
387 			inode->i_state |= I_DIRTY_PAGES;
388 			if (wbc->nr_to_write <= 0) {
389 				/*
390 				 * slice used up: queue for next turn
391 				 */
392 				requeue_io(inode);
393 			} else {
394 				/*
395 				 * Writeback blocked by something other than
396 				 * congestion. Delay the inode for some time to
397 				 * avoid spinning on the CPU (100% iowait)
398 				 * retrying writeback of the dirty page/inode
399 				 * that cannot be performed immediately.
400 				 */
401 				redirty_tail(inode);
402 			}
403 		} else if (inode->i_state & I_DIRTY) {
404 			/*
405 			 * Filesystems can dirty the inode during writeback
406 			 * operations, such as delayed allocation during
407 			 * submission or metadata updates after data IO
408 			 * completion.
409 			 */
410 			redirty_tail(inode);
411 		} else if (atomic_read(&inode->i_count)) {
412 			/*
413 			 * The inode is clean, inuse
414 			 */
415 			list_move(&inode->i_list, &inode_in_use);
416 		} else {
417 			/*
418 			 * The inode is clean, unused
419 			 */
420 			list_move(&inode->i_list, &inode_unused);
421 		}
422 	}
423 	inode_sync_complete(inode);
424 	return ret;
425 }
426 
427 /*
428  * For background writeback the caller does not have the sb pinned
429  * before calling writeback. So make sure that we do pin it, so it doesn't
430  * go away while we are writing inodes from it.
431  */
432 static bool pin_sb_for_writeback(struct super_block *sb)
433 {
434 	spin_lock(&sb_lock);
435 	if (list_empty(&sb->s_instances)) {
436 		spin_unlock(&sb_lock);
437 		return false;
438 	}
439 
440 	sb->s_count++;
441 	spin_unlock(&sb_lock);
442 
443 	if (down_read_trylock(&sb->s_umount)) {
444 		if (sb->s_root)
445 			return true;
446 		up_read(&sb->s_umount);
447 	}
448 
449 	put_super(sb);
450 	return false;
451 }
452 
453 /*
454  * Write a portion of b_io inodes which belong to @sb.
455  *
456  * If @only_this_sb is true, then find and write all such
457  * inodes. Otherwise write only ones which go sequentially
458  * in reverse order.
459  *
460  * Return 1, if the caller writeback routine should be
461  * interrupted. Otherwise return 0.
462  */
463 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
464 		struct writeback_control *wbc, bool only_this_sb)
465 {
466 	while (!list_empty(&wb->b_io)) {
467 		long pages_skipped;
468 		struct inode *inode = list_entry(wb->b_io.prev,
469 						 struct inode, i_list);
470 
471 		if (inode->i_sb != sb) {
472 			if (only_this_sb) {
473 				/*
474 				 * We only want to write back data for this
475 				 * superblock, move all inodes not belonging
476 				 * to it back onto the dirty list.
477 				 */
478 				redirty_tail(inode);
479 				continue;
480 			}
481 
482 			/*
483 			 * The inode belongs to a different superblock.
484 			 * Bounce back to the caller to unpin this and
485 			 * pin the next superblock.
486 			 */
487 			return 0;
488 		}
489 
490 		if (inode->i_state & (I_NEW | I_WILL_FREE)) {
491 			requeue_io(inode);
492 			continue;
493 		}
494 		/*
495 		 * Was this inode dirtied after sync_sb_inodes was called?
496 		 * This keeps sync from extra jobs and livelock.
497 		 */
498 		if (inode_dirtied_after(inode, wbc->wb_start))
499 			return 1;
500 
501 		BUG_ON(inode->i_state & I_FREEING);
502 		__iget(inode);
503 		pages_skipped = wbc->pages_skipped;
504 		writeback_single_inode(inode, wbc);
505 		if (wbc->pages_skipped != pages_skipped) {
506 			/*
507 			 * writeback is not making progress due to locked
508 			 * buffers.  Skip this inode for now.
509 			 */
510 			redirty_tail(inode);
511 		}
512 		spin_unlock(&inode_lock);
513 		iput(inode);
514 		cond_resched();
515 		spin_lock(&inode_lock);
516 		if (wbc->nr_to_write <= 0) {
517 			wbc->more_io = 1;
518 			return 1;
519 		}
520 		if (!list_empty(&wb->b_more_io))
521 			wbc->more_io = 1;
522 	}
523 	/* b_io is empty */
524 	return 1;
525 }
526 
527 void writeback_inodes_wb(struct bdi_writeback *wb,
528 		struct writeback_control *wbc)
529 {
530 	int ret = 0;
531 
532 	if (!wbc->wb_start)
533 		wbc->wb_start = jiffies; /* livelock avoidance */
534 	spin_lock(&inode_lock);
535 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
536 		queue_io(wb, wbc->older_than_this);
537 
538 	while (!list_empty(&wb->b_io)) {
539 		struct inode *inode = list_entry(wb->b_io.prev,
540 						 struct inode, i_list);
541 		struct super_block *sb = inode->i_sb;
542 
543 		if (!pin_sb_for_writeback(sb)) {
544 			requeue_io(inode);
545 			continue;
546 		}
547 		ret = writeback_sb_inodes(sb, wb, wbc, false);
548 		drop_super(sb);
549 
550 		if (ret)
551 			break;
552 	}
553 	spin_unlock(&inode_lock);
554 	/* Leave any unwritten inodes on b_io */
555 }
556 
557 static void __writeback_inodes_sb(struct super_block *sb,
558 		struct bdi_writeback *wb, struct writeback_control *wbc)
559 {
560 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
561 
562 	spin_lock(&inode_lock);
563 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
564 		queue_io(wb, wbc->older_than_this);
565 	writeback_sb_inodes(sb, wb, wbc, true);
566 	spin_unlock(&inode_lock);
567 }
568 
569 /*
570  * The maximum number of pages to writeout in a single bdi flush/kupdate
571  * operation.  We do this so we don't hold I_SYNC against an inode for
572  * enormous amounts of time, which would block a userspace task which has
573  * been forced to throttle against that inode.  Also, the code reevaluates
574  * the dirty each time it has written this many pages.
575  */
576 #define MAX_WRITEBACK_PAGES     1024
577 
578 static inline bool over_bground_thresh(void)
579 {
580 	unsigned long background_thresh, dirty_thresh;
581 
582 	global_dirty_limits(&background_thresh, &dirty_thresh);
583 
584 	return (global_page_state(NR_FILE_DIRTY) +
585 		global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
586 }
587 
588 /*
589  * Explicit flushing or periodic writeback of "old" data.
590  *
591  * Define "old": the first time one of an inode's pages is dirtied, we mark the
592  * dirtying-time in the inode's address_space.  So this periodic writeback code
593  * just walks the superblock inode list, writing back any inodes which are
594  * older than a specific point in time.
595  *
596  * Try to run once per dirty_writeback_interval.  But if a writeback event
597  * takes longer than a dirty_writeback_interval interval, then leave a
598  * one-second gap.
599  *
600  * older_than_this takes precedence over nr_to_write.  So we'll only write back
601  * all dirty pages if they are all attached to "old" mappings.
602  */
603 static long wb_writeback(struct bdi_writeback *wb,
604 			 struct wb_writeback_work *work)
605 {
606 	struct writeback_control wbc = {
607 		.sync_mode		= work->sync_mode,
608 		.older_than_this	= NULL,
609 		.for_kupdate		= work->for_kupdate,
610 		.for_background		= work->for_background,
611 		.range_cyclic		= work->range_cyclic,
612 	};
613 	unsigned long oldest_jif;
614 	long wrote = 0;
615 	struct inode *inode;
616 
617 	if (wbc.for_kupdate) {
618 		wbc.older_than_this = &oldest_jif;
619 		oldest_jif = jiffies -
620 				msecs_to_jiffies(dirty_expire_interval * 10);
621 	}
622 	if (!wbc.range_cyclic) {
623 		wbc.range_start = 0;
624 		wbc.range_end = LLONG_MAX;
625 	}
626 
627 	wbc.wb_start = jiffies; /* livelock avoidance */
628 	for (;;) {
629 		/*
630 		 * Stop writeback when nr_pages has been consumed
631 		 */
632 		if (work->nr_pages <= 0)
633 			break;
634 
635 		/*
636 		 * For background writeout, stop when we are below the
637 		 * background dirty threshold
638 		 */
639 		if (work->for_background && !over_bground_thresh())
640 			break;
641 
642 		wbc.more_io = 0;
643 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
644 		wbc.pages_skipped = 0;
645 
646 		trace_wbc_writeback_start(&wbc, wb->bdi);
647 		if (work->sb)
648 			__writeback_inodes_sb(work->sb, wb, &wbc);
649 		else
650 			writeback_inodes_wb(wb, &wbc);
651 		trace_wbc_writeback_written(&wbc, wb->bdi);
652 
653 		work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
654 		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
655 
656 		/*
657 		 * If we consumed everything, see if we have more
658 		 */
659 		if (wbc.nr_to_write <= 0)
660 			continue;
661 		/*
662 		 * Didn't write everything and we don't have more IO, bail
663 		 */
664 		if (!wbc.more_io)
665 			break;
666 		/*
667 		 * Did we write something? Try for more
668 		 */
669 		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
670 			continue;
671 		/*
672 		 * Nothing written. Wait for some inode to
673 		 * become available for writeback. Otherwise
674 		 * we'll just busyloop.
675 		 */
676 		spin_lock(&inode_lock);
677 		if (!list_empty(&wb->b_more_io))  {
678 			inode = list_entry(wb->b_more_io.prev,
679 						struct inode, i_list);
680 			trace_wbc_writeback_wait(&wbc, wb->bdi);
681 			inode_wait_for_writeback(inode);
682 		}
683 		spin_unlock(&inode_lock);
684 	}
685 
686 	return wrote;
687 }
688 
689 /*
690  * Return the next wb_writeback_work struct that hasn't been processed yet.
691  */
692 static struct wb_writeback_work *
693 get_next_work_item(struct backing_dev_info *bdi)
694 {
695 	struct wb_writeback_work *work = NULL;
696 
697 	spin_lock_bh(&bdi->wb_lock);
698 	if (!list_empty(&bdi->work_list)) {
699 		work = list_entry(bdi->work_list.next,
700 				  struct wb_writeback_work, list);
701 		list_del_init(&work->list);
702 	}
703 	spin_unlock_bh(&bdi->wb_lock);
704 	return work;
705 }
706 
707 static long wb_check_old_data_flush(struct bdi_writeback *wb)
708 {
709 	unsigned long expired;
710 	long nr_pages;
711 
712 	/*
713 	 * When set to zero, disable periodic writeback
714 	 */
715 	if (!dirty_writeback_interval)
716 		return 0;
717 
718 	expired = wb->last_old_flush +
719 			msecs_to_jiffies(dirty_writeback_interval * 10);
720 	if (time_before(jiffies, expired))
721 		return 0;
722 
723 	wb->last_old_flush = jiffies;
724 	nr_pages = global_page_state(NR_FILE_DIRTY) +
725 			global_page_state(NR_UNSTABLE_NFS) +
726 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
727 
728 	if (nr_pages) {
729 		struct wb_writeback_work work = {
730 			.nr_pages	= nr_pages,
731 			.sync_mode	= WB_SYNC_NONE,
732 			.for_kupdate	= 1,
733 			.range_cyclic	= 1,
734 		};
735 
736 		return wb_writeback(wb, &work);
737 	}
738 
739 	return 0;
740 }
741 
742 /*
743  * Retrieve work items and do the writeback they describe
744  */
745 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
746 {
747 	struct backing_dev_info *bdi = wb->bdi;
748 	struct wb_writeback_work *work;
749 	long wrote = 0;
750 
751 	set_bit(BDI_writeback_running, &wb->bdi->state);
752 	while ((work = get_next_work_item(bdi)) != NULL) {
753 		/*
754 		 * Override sync mode, in case we must wait for completion
755 		 * because this thread is exiting now.
756 		 */
757 		if (force_wait)
758 			work->sync_mode = WB_SYNC_ALL;
759 
760 		trace_writeback_exec(bdi, work);
761 
762 		wrote += wb_writeback(wb, work);
763 
764 		/*
765 		 * Notify the caller of completion if this is a synchronous
766 		 * work item, otherwise just free it.
767 		 */
768 		if (work->done)
769 			complete(work->done);
770 		else
771 			kfree(work);
772 	}
773 
774 	/*
775 	 * Check for periodic writeback, kupdated() style
776 	 */
777 	wrote += wb_check_old_data_flush(wb);
778 	clear_bit(BDI_writeback_running, &wb->bdi->state);
779 
780 	return wrote;
781 }
782 
783 /*
784  * Handle writeback of dirty data for the device backed by this bdi. Also
785  * wakes up periodically and does kupdated style flushing.
786  */
787 int bdi_writeback_thread(void *data)
788 {
789 	struct bdi_writeback *wb = data;
790 	struct backing_dev_info *bdi = wb->bdi;
791 	long pages_written;
792 
793 	current->flags |= PF_FLUSHER | PF_SWAPWRITE;
794 	set_freezable();
795 	wb->last_active = jiffies;
796 
797 	/*
798 	 * Our parent may run at a different priority, just set us to normal
799 	 */
800 	set_user_nice(current, 0);
801 
802 	trace_writeback_thread_start(bdi);
803 
804 	while (!kthread_should_stop()) {
805 		/*
806 		 * Remove own delayed wake-up timer, since we are already awake
807 		 * and we'll take care of the preriodic write-back.
808 		 */
809 		del_timer(&wb->wakeup_timer);
810 
811 		pages_written = wb_do_writeback(wb, 0);
812 
813 		trace_writeback_pages_written(pages_written);
814 
815 		if (pages_written)
816 			wb->last_active = jiffies;
817 
818 		set_current_state(TASK_INTERRUPTIBLE);
819 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
820 			__set_current_state(TASK_RUNNING);
821 			continue;
822 		}
823 
824 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
825 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
826 		else {
827 			/*
828 			 * We have nothing to do, so can go sleep without any
829 			 * timeout and save power. When a work is queued or
830 			 * something is made dirty - we will be woken up.
831 			 */
832 			schedule();
833 		}
834 
835 		try_to_freeze();
836 	}
837 
838 	/* Flush any work that raced with us exiting */
839 	if (!list_empty(&bdi->work_list))
840 		wb_do_writeback(wb, 1);
841 
842 	trace_writeback_thread_stop(bdi);
843 	return 0;
844 }
845 
846 
847 /*
848  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
849  * the whole world.
850  */
851 void wakeup_flusher_threads(long nr_pages)
852 {
853 	struct backing_dev_info *bdi;
854 
855 	if (!nr_pages) {
856 		nr_pages = global_page_state(NR_FILE_DIRTY) +
857 				global_page_state(NR_UNSTABLE_NFS);
858 	}
859 
860 	rcu_read_lock();
861 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
862 		if (!bdi_has_dirty_io(bdi))
863 			continue;
864 		__bdi_start_writeback(bdi, nr_pages, false, false);
865 	}
866 	rcu_read_unlock();
867 }
868 
869 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
870 {
871 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
872 		struct dentry *dentry;
873 		const char *name = "?";
874 
875 		dentry = d_find_alias(inode);
876 		if (dentry) {
877 			spin_lock(&dentry->d_lock);
878 			name = (const char *) dentry->d_name.name;
879 		}
880 		printk(KERN_DEBUG
881 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
882 		       current->comm, task_pid_nr(current), inode->i_ino,
883 		       name, inode->i_sb->s_id);
884 		if (dentry) {
885 			spin_unlock(&dentry->d_lock);
886 			dput(dentry);
887 		}
888 	}
889 }
890 
891 /**
892  *	__mark_inode_dirty -	internal function
893  *	@inode: inode to mark
894  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
895  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
896  *  	mark_inode_dirty_sync.
897  *
898  * Put the inode on the super block's dirty list.
899  *
900  * CAREFUL! We mark it dirty unconditionally, but move it onto the
901  * dirty list only if it is hashed or if it refers to a blockdev.
902  * If it was not hashed, it will never be added to the dirty list
903  * even if it is later hashed, as it will have been marked dirty already.
904  *
905  * In short, make sure you hash any inodes _before_ you start marking
906  * them dirty.
907  *
908  * This function *must* be atomic for the I_DIRTY_PAGES case -
909  * set_page_dirty() is called under spinlock in several places.
910  *
911  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
912  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
913  * the kernel-internal blockdev inode represents the dirtying time of the
914  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
915  * page->mapping->host, so the page-dirtying time is recorded in the internal
916  * blockdev inode.
917  */
918 void __mark_inode_dirty(struct inode *inode, int flags)
919 {
920 	struct super_block *sb = inode->i_sb;
921 	struct backing_dev_info *bdi = NULL;
922 	bool wakeup_bdi = false;
923 
924 	/*
925 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
926 	 * dirty the inode itself
927 	 */
928 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
929 		if (sb->s_op->dirty_inode)
930 			sb->s_op->dirty_inode(inode);
931 	}
932 
933 	/*
934 	 * make sure that changes are seen by all cpus before we test i_state
935 	 * -- mikulas
936 	 */
937 	smp_mb();
938 
939 	/* avoid the locking if we can */
940 	if ((inode->i_state & flags) == flags)
941 		return;
942 
943 	if (unlikely(block_dump))
944 		block_dump___mark_inode_dirty(inode);
945 
946 	spin_lock(&inode_lock);
947 	if ((inode->i_state & flags) != flags) {
948 		const int was_dirty = inode->i_state & I_DIRTY;
949 
950 		inode->i_state |= flags;
951 
952 		/*
953 		 * If the inode is being synced, just update its dirty state.
954 		 * The unlocker will place the inode on the appropriate
955 		 * superblock list, based upon its state.
956 		 */
957 		if (inode->i_state & I_SYNC)
958 			goto out;
959 
960 		/*
961 		 * Only add valid (hashed) inodes to the superblock's
962 		 * dirty list.  Add blockdev inodes as well.
963 		 */
964 		if (!S_ISBLK(inode->i_mode)) {
965 			if (hlist_unhashed(&inode->i_hash))
966 				goto out;
967 		}
968 		if (inode->i_state & I_FREEING)
969 			goto out;
970 
971 		/*
972 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
973 		 * reposition it (that would break b_dirty time-ordering).
974 		 */
975 		if (!was_dirty) {
976 			bdi = inode_to_bdi(inode);
977 
978 			if (bdi_cap_writeback_dirty(bdi)) {
979 				WARN(!test_bit(BDI_registered, &bdi->state),
980 				     "bdi-%s not registered\n", bdi->name);
981 
982 				/*
983 				 * If this is the first dirty inode for this
984 				 * bdi, we have to wake-up the corresponding
985 				 * bdi thread to make sure background
986 				 * write-back happens later.
987 				 */
988 				if (!wb_has_dirty_io(&bdi->wb))
989 					wakeup_bdi = true;
990 			}
991 
992 			inode->dirtied_when = jiffies;
993 			list_move(&inode->i_list, &bdi->wb.b_dirty);
994 		}
995 	}
996 out:
997 	spin_unlock(&inode_lock);
998 
999 	if (wakeup_bdi)
1000 		bdi_wakeup_thread_delayed(bdi);
1001 }
1002 EXPORT_SYMBOL(__mark_inode_dirty);
1003 
1004 /*
1005  * Write out a superblock's list of dirty inodes.  A wait will be performed
1006  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1007  *
1008  * If older_than_this is non-NULL, then only write out inodes which
1009  * had their first dirtying at a time earlier than *older_than_this.
1010  *
1011  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1012  * This function assumes that the blockdev superblock's inodes are backed by
1013  * a variety of queues, so all inodes are searched.  For other superblocks,
1014  * assume that all inodes are backed by the same queue.
1015  *
1016  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1017  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1018  * on the writer throttling path, and we get decent balancing between many
1019  * throttled threads: we don't want them all piling up on inode_sync_wait.
1020  */
1021 static void wait_sb_inodes(struct super_block *sb)
1022 {
1023 	struct inode *inode, *old_inode = NULL;
1024 
1025 	/*
1026 	 * We need to be protected against the filesystem going from
1027 	 * r/o to r/w or vice versa.
1028 	 */
1029 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1030 
1031 	spin_lock(&inode_lock);
1032 
1033 	/*
1034 	 * Data integrity sync. Must wait for all pages under writeback,
1035 	 * because there may have been pages dirtied before our sync
1036 	 * call, but which had writeout started before we write it out.
1037 	 * In which case, the inode may not be on the dirty list, but
1038 	 * we still have to wait for that writeout.
1039 	 */
1040 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1041 		struct address_space *mapping;
1042 
1043 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1044 			continue;
1045 		mapping = inode->i_mapping;
1046 		if (mapping->nrpages == 0)
1047 			continue;
1048 		__iget(inode);
1049 		spin_unlock(&inode_lock);
1050 		/*
1051 		 * We hold a reference to 'inode' so it couldn't have
1052 		 * been removed from s_inodes list while we dropped the
1053 		 * inode_lock.  We cannot iput the inode now as we can
1054 		 * be holding the last reference and we cannot iput it
1055 		 * under inode_lock. So we keep the reference and iput
1056 		 * it later.
1057 		 */
1058 		iput(old_inode);
1059 		old_inode = inode;
1060 
1061 		filemap_fdatawait(mapping);
1062 
1063 		cond_resched();
1064 
1065 		spin_lock(&inode_lock);
1066 	}
1067 	spin_unlock(&inode_lock);
1068 	iput(old_inode);
1069 }
1070 
1071 /**
1072  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1073  * @sb: the superblock
1074  *
1075  * Start writeback on some inodes on this super_block. No guarantees are made
1076  * on how many (if any) will be written, and this function does not wait
1077  * for IO completion of submitted IO. The number of pages submitted is
1078  * returned.
1079  */
1080 void writeback_inodes_sb(struct super_block *sb)
1081 {
1082 	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1083 	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1084 	DECLARE_COMPLETION_ONSTACK(done);
1085 	struct wb_writeback_work work = {
1086 		.sb		= sb,
1087 		.sync_mode	= WB_SYNC_NONE,
1088 		.done		= &done,
1089 	};
1090 
1091 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1092 
1093 	work.nr_pages = nr_dirty + nr_unstable +
1094 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
1095 
1096 	bdi_queue_work(sb->s_bdi, &work);
1097 	wait_for_completion(&done);
1098 }
1099 EXPORT_SYMBOL(writeback_inodes_sb);
1100 
1101 /**
1102  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1103  * @sb: the superblock
1104  *
1105  * Invoke writeback_inodes_sb if no writeback is currently underway.
1106  * Returns 1 if writeback was started, 0 if not.
1107  */
1108 int writeback_inodes_sb_if_idle(struct super_block *sb)
1109 {
1110 	if (!writeback_in_progress(sb->s_bdi)) {
1111 		down_read(&sb->s_umount);
1112 		writeback_inodes_sb(sb);
1113 		up_read(&sb->s_umount);
1114 		return 1;
1115 	} else
1116 		return 0;
1117 }
1118 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1119 
1120 /**
1121  * sync_inodes_sb	-	sync sb inode pages
1122  * @sb: the superblock
1123  *
1124  * This function writes and waits on any dirty inode belonging to this
1125  * super_block. The number of pages synced is returned.
1126  */
1127 void sync_inodes_sb(struct super_block *sb)
1128 {
1129 	DECLARE_COMPLETION_ONSTACK(done);
1130 	struct wb_writeback_work work = {
1131 		.sb		= sb,
1132 		.sync_mode	= WB_SYNC_ALL,
1133 		.nr_pages	= LONG_MAX,
1134 		.range_cyclic	= 0,
1135 		.done		= &done,
1136 	};
1137 
1138 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1139 
1140 	bdi_queue_work(sb->s_bdi, &work);
1141 	wait_for_completion(&done);
1142 
1143 	wait_sb_inodes(sb);
1144 }
1145 EXPORT_SYMBOL(sync_inodes_sb);
1146 
1147 /**
1148  * write_inode_now	-	write an inode to disk
1149  * @inode: inode to write to disk
1150  * @sync: whether the write should be synchronous or not
1151  *
1152  * This function commits an inode to disk immediately if it is dirty. This is
1153  * primarily needed by knfsd.
1154  *
1155  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1156  */
1157 int write_inode_now(struct inode *inode, int sync)
1158 {
1159 	int ret;
1160 	struct writeback_control wbc = {
1161 		.nr_to_write = LONG_MAX,
1162 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1163 		.range_start = 0,
1164 		.range_end = LLONG_MAX,
1165 	};
1166 
1167 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1168 		wbc.nr_to_write = 0;
1169 
1170 	might_sleep();
1171 	spin_lock(&inode_lock);
1172 	ret = writeback_single_inode(inode, &wbc);
1173 	spin_unlock(&inode_lock);
1174 	if (sync)
1175 		inode_sync_wait(inode);
1176 	return ret;
1177 }
1178 EXPORT_SYMBOL(write_inode_now);
1179 
1180 /**
1181  * sync_inode - write an inode and its pages to disk.
1182  * @inode: the inode to sync
1183  * @wbc: controls the writeback mode
1184  *
1185  * sync_inode() will write an inode and its pages to disk.  It will also
1186  * correctly update the inode on its superblock's dirty inode lists and will
1187  * update inode->i_state.
1188  *
1189  * The caller must have a ref on the inode.
1190  */
1191 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1192 {
1193 	int ret;
1194 
1195 	spin_lock(&inode_lock);
1196 	ret = writeback_single_inode(inode, wbc);
1197 	spin_unlock(&inode_lock);
1198 	return ret;
1199 }
1200 EXPORT_SYMBOL(sync_inode);
1201