1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 struct wb_completion { 40 atomic_t cnt; 41 }; 42 43 /* 44 * Passed into wb_writeback(), essentially a subset of writeback_control 45 */ 46 struct wb_writeback_work { 47 long nr_pages; 48 struct super_block *sb; 49 unsigned long *older_than_this; 50 enum writeback_sync_modes sync_mode; 51 unsigned int tagged_writepages:1; 52 unsigned int for_kupdate:1; 53 unsigned int range_cyclic:1; 54 unsigned int for_background:1; 55 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 56 unsigned int auto_free:1; /* free on completion */ 57 enum wb_reason reason; /* why was writeback initiated? */ 58 59 struct list_head list; /* pending work list */ 60 struct wb_completion *done; /* set if the caller waits */ 61 }; 62 63 /* 64 * If one wants to wait for one or more wb_writeback_works, each work's 65 * ->done should be set to a wb_completion defined using the following 66 * macro. Once all work items are issued with wb_queue_work(), the caller 67 * can wait for the completion of all using wb_wait_for_completion(). Work 68 * items which are waited upon aren't freed automatically on completion. 69 */ 70 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \ 71 struct wb_completion cmpl = { \ 72 .cnt = ATOMIC_INIT(1), \ 73 } 74 75 76 /* 77 * If an inode is constantly having its pages dirtied, but then the 78 * updates stop dirtytime_expire_interval seconds in the past, it's 79 * possible for the worst case time between when an inode has its 80 * timestamps updated and when they finally get written out to be two 81 * dirtytime_expire_intervals. We set the default to 12 hours (in 82 * seconds), which means most of the time inodes will have their 83 * timestamps written to disk after 12 hours, but in the worst case a 84 * few inodes might not their timestamps updated for 24 hours. 85 */ 86 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 87 88 static inline struct inode *wb_inode(struct list_head *head) 89 { 90 return list_entry(head, struct inode, i_io_list); 91 } 92 93 /* 94 * Include the creation of the trace points after defining the 95 * wb_writeback_work structure and inline functions so that the definition 96 * remains local to this file. 97 */ 98 #define CREATE_TRACE_POINTS 99 #include <trace/events/writeback.h> 100 101 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 102 103 static bool wb_io_lists_populated(struct bdi_writeback *wb) 104 { 105 if (wb_has_dirty_io(wb)) { 106 return false; 107 } else { 108 set_bit(WB_has_dirty_io, &wb->state); 109 WARN_ON_ONCE(!wb->avg_write_bandwidth); 110 atomic_long_add(wb->avg_write_bandwidth, 111 &wb->bdi->tot_write_bandwidth); 112 return true; 113 } 114 } 115 116 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 117 { 118 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 119 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 120 clear_bit(WB_has_dirty_io, &wb->state); 121 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 122 &wb->bdi->tot_write_bandwidth) < 0); 123 } 124 } 125 126 /** 127 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 128 * @inode: inode to be moved 129 * @wb: target bdi_writeback 130 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 131 * 132 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 133 * Returns %true if @inode is the first occupant of the !dirty_time IO 134 * lists; otherwise, %false. 135 */ 136 static bool inode_io_list_move_locked(struct inode *inode, 137 struct bdi_writeback *wb, 138 struct list_head *head) 139 { 140 assert_spin_locked(&wb->list_lock); 141 142 list_move(&inode->i_io_list, head); 143 144 /* dirty_time doesn't count as dirty_io until expiration */ 145 if (head != &wb->b_dirty_time) 146 return wb_io_lists_populated(wb); 147 148 wb_io_lists_depopulated(wb); 149 return false; 150 } 151 152 /** 153 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 154 * @inode: inode to be removed 155 * @wb: bdi_writeback @inode is being removed from 156 * 157 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 158 * clear %WB_has_dirty_io if all are empty afterwards. 159 */ 160 static void inode_io_list_del_locked(struct inode *inode, 161 struct bdi_writeback *wb) 162 { 163 assert_spin_locked(&wb->list_lock); 164 165 list_del_init(&inode->i_io_list); 166 wb_io_lists_depopulated(wb); 167 } 168 169 static void wb_wakeup(struct bdi_writeback *wb) 170 { 171 spin_lock_bh(&wb->work_lock); 172 if (test_bit(WB_registered, &wb->state)) 173 mod_delayed_work(bdi_wq, &wb->dwork, 0); 174 spin_unlock_bh(&wb->work_lock); 175 } 176 177 static void finish_writeback_work(struct bdi_writeback *wb, 178 struct wb_writeback_work *work) 179 { 180 struct wb_completion *done = work->done; 181 182 if (work->auto_free) 183 kfree(work); 184 if (done && atomic_dec_and_test(&done->cnt)) 185 wake_up_all(&wb->bdi->wb_waitq); 186 } 187 188 static void wb_queue_work(struct bdi_writeback *wb, 189 struct wb_writeback_work *work) 190 { 191 trace_writeback_queue(wb, work); 192 193 if (work->done) 194 atomic_inc(&work->done->cnt); 195 196 spin_lock_bh(&wb->work_lock); 197 198 if (test_bit(WB_registered, &wb->state)) { 199 list_add_tail(&work->list, &wb->work_list); 200 mod_delayed_work(bdi_wq, &wb->dwork, 0); 201 } else 202 finish_writeback_work(wb, work); 203 204 spin_unlock_bh(&wb->work_lock); 205 } 206 207 /** 208 * wb_wait_for_completion - wait for completion of bdi_writeback_works 209 * @bdi: bdi work items were issued to 210 * @done: target wb_completion 211 * 212 * Wait for one or more work items issued to @bdi with their ->done field 213 * set to @done, which should have been defined with 214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such 215 * work items are completed. Work items which are waited upon aren't freed 216 * automatically on completion. 217 */ 218 static void wb_wait_for_completion(struct backing_dev_info *bdi, 219 struct wb_completion *done) 220 { 221 atomic_dec(&done->cnt); /* put down the initial count */ 222 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt)); 223 } 224 225 #ifdef CONFIG_CGROUP_WRITEBACK 226 227 /* parameters for foreign inode detection, see wb_detach_inode() */ 228 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 229 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 230 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */ 231 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 232 233 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 234 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 235 /* each slot's duration is 2s / 16 */ 236 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 237 /* if foreign slots >= 8, switch */ 238 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 239 /* one round can affect upto 5 slots */ 240 241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 242 static struct workqueue_struct *isw_wq; 243 244 void __inode_attach_wb(struct inode *inode, struct page *page) 245 { 246 struct backing_dev_info *bdi = inode_to_bdi(inode); 247 struct bdi_writeback *wb = NULL; 248 249 if (inode_cgwb_enabled(inode)) { 250 struct cgroup_subsys_state *memcg_css; 251 252 if (page) { 253 memcg_css = mem_cgroup_css_from_page(page); 254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 255 } else { 256 /* must pin memcg_css, see wb_get_create() */ 257 memcg_css = task_get_css(current, memory_cgrp_id); 258 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 259 css_put(memcg_css); 260 } 261 } 262 263 if (!wb) 264 wb = &bdi->wb; 265 266 /* 267 * There may be multiple instances of this function racing to 268 * update the same inode. Use cmpxchg() to tell the winner. 269 */ 270 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 271 wb_put(wb); 272 } 273 EXPORT_SYMBOL_GPL(__inode_attach_wb); 274 275 /** 276 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 277 * @inode: inode of interest with i_lock held 278 * 279 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 280 * held on entry and is released on return. The returned wb is guaranteed 281 * to stay @inode's associated wb until its list_lock is released. 282 */ 283 static struct bdi_writeback * 284 locked_inode_to_wb_and_lock_list(struct inode *inode) 285 __releases(&inode->i_lock) 286 __acquires(&wb->list_lock) 287 { 288 while (true) { 289 struct bdi_writeback *wb = inode_to_wb(inode); 290 291 /* 292 * inode_to_wb() association is protected by both 293 * @inode->i_lock and @wb->list_lock but list_lock nests 294 * outside i_lock. Drop i_lock and verify that the 295 * association hasn't changed after acquiring list_lock. 296 */ 297 wb_get(wb); 298 spin_unlock(&inode->i_lock); 299 spin_lock(&wb->list_lock); 300 301 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 302 if (likely(wb == inode->i_wb)) { 303 wb_put(wb); /* @inode already has ref */ 304 return wb; 305 } 306 307 spin_unlock(&wb->list_lock); 308 wb_put(wb); 309 cpu_relax(); 310 spin_lock(&inode->i_lock); 311 } 312 } 313 314 /** 315 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 316 * @inode: inode of interest 317 * 318 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 319 * on entry. 320 */ 321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 322 __acquires(&wb->list_lock) 323 { 324 spin_lock(&inode->i_lock); 325 return locked_inode_to_wb_and_lock_list(inode); 326 } 327 328 struct inode_switch_wbs_context { 329 struct inode *inode; 330 struct bdi_writeback *new_wb; 331 332 struct rcu_head rcu_head; 333 struct work_struct work; 334 }; 335 336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 337 { 338 down_write(&bdi->wb_switch_rwsem); 339 } 340 341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 342 { 343 up_write(&bdi->wb_switch_rwsem); 344 } 345 346 static void inode_switch_wbs_work_fn(struct work_struct *work) 347 { 348 struct inode_switch_wbs_context *isw = 349 container_of(work, struct inode_switch_wbs_context, work); 350 struct inode *inode = isw->inode; 351 struct backing_dev_info *bdi = inode_to_bdi(inode); 352 struct address_space *mapping = inode->i_mapping; 353 struct bdi_writeback *old_wb = inode->i_wb; 354 struct bdi_writeback *new_wb = isw->new_wb; 355 XA_STATE(xas, &mapping->i_pages, 0); 356 struct page *page; 357 bool switched = false; 358 359 /* 360 * If @inode switches cgwb membership while sync_inodes_sb() is 361 * being issued, sync_inodes_sb() might miss it. Synchronize. 362 */ 363 down_read(&bdi->wb_switch_rwsem); 364 365 /* 366 * By the time control reaches here, RCU grace period has passed 367 * since I_WB_SWITCH assertion and all wb stat update transactions 368 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 369 * synchronizing against the i_pages lock. 370 * 371 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 372 * gives us exclusion against all wb related operations on @inode 373 * including IO list manipulations and stat updates. 374 */ 375 if (old_wb < new_wb) { 376 spin_lock(&old_wb->list_lock); 377 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 378 } else { 379 spin_lock(&new_wb->list_lock); 380 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 381 } 382 spin_lock(&inode->i_lock); 383 xa_lock_irq(&mapping->i_pages); 384 385 /* 386 * Once I_FREEING is visible under i_lock, the eviction path owns 387 * the inode and we shouldn't modify ->i_io_list. 388 */ 389 if (unlikely(inode->i_state & I_FREEING)) 390 goto skip_switch; 391 392 /* 393 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 394 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 395 * pages actually under writeback. 396 */ 397 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 398 if (PageDirty(page)) { 399 dec_wb_stat(old_wb, WB_RECLAIMABLE); 400 inc_wb_stat(new_wb, WB_RECLAIMABLE); 401 } 402 } 403 404 xas_set(&xas, 0); 405 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 406 WARN_ON_ONCE(!PageWriteback(page)); 407 dec_wb_stat(old_wb, WB_WRITEBACK); 408 inc_wb_stat(new_wb, WB_WRITEBACK); 409 } 410 411 wb_get(new_wb); 412 413 /* 414 * Transfer to @new_wb's IO list if necessary. The specific list 415 * @inode was on is ignored and the inode is put on ->b_dirty which 416 * is always correct including from ->b_dirty_time. The transfer 417 * preserves @inode->dirtied_when ordering. 418 */ 419 if (!list_empty(&inode->i_io_list)) { 420 struct inode *pos; 421 422 inode_io_list_del_locked(inode, old_wb); 423 inode->i_wb = new_wb; 424 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 425 if (time_after_eq(inode->dirtied_when, 426 pos->dirtied_when)) 427 break; 428 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 429 } else { 430 inode->i_wb = new_wb; 431 } 432 433 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 434 inode->i_wb_frn_winner = 0; 435 inode->i_wb_frn_avg_time = 0; 436 inode->i_wb_frn_history = 0; 437 switched = true; 438 skip_switch: 439 /* 440 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 441 * ensures that the new wb is visible if they see !I_WB_SWITCH. 442 */ 443 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 444 445 xa_unlock_irq(&mapping->i_pages); 446 spin_unlock(&inode->i_lock); 447 spin_unlock(&new_wb->list_lock); 448 spin_unlock(&old_wb->list_lock); 449 450 up_read(&bdi->wb_switch_rwsem); 451 452 if (switched) { 453 wb_wakeup(new_wb); 454 wb_put(old_wb); 455 } 456 wb_put(new_wb); 457 458 iput(inode); 459 kfree(isw); 460 461 atomic_dec(&isw_nr_in_flight); 462 } 463 464 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 465 { 466 struct inode_switch_wbs_context *isw = container_of(rcu_head, 467 struct inode_switch_wbs_context, rcu_head); 468 469 /* needs to grab bh-unsafe locks, bounce to work item */ 470 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 471 queue_work(isw_wq, &isw->work); 472 } 473 474 /** 475 * inode_switch_wbs - change the wb association of an inode 476 * @inode: target inode 477 * @new_wb_id: ID of the new wb 478 * 479 * Switch @inode's wb association to the wb identified by @new_wb_id. The 480 * switching is performed asynchronously and may fail silently. 481 */ 482 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 483 { 484 struct backing_dev_info *bdi = inode_to_bdi(inode); 485 struct cgroup_subsys_state *memcg_css; 486 struct inode_switch_wbs_context *isw; 487 488 /* noop if seems to be already in progress */ 489 if (inode->i_state & I_WB_SWITCH) 490 return; 491 492 /* 493 * Avoid starting new switches while sync_inodes_sb() is in 494 * progress. Otherwise, if the down_write protected issue path 495 * blocks heavily, we might end up starting a large number of 496 * switches which will block on the rwsem. 497 */ 498 if (!down_read_trylock(&bdi->wb_switch_rwsem)) 499 return; 500 501 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 502 if (!isw) 503 goto out_unlock; 504 505 /* find and pin the new wb */ 506 rcu_read_lock(); 507 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 508 if (memcg_css) 509 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 510 rcu_read_unlock(); 511 if (!isw->new_wb) 512 goto out_free; 513 514 /* while holding I_WB_SWITCH, no one else can update the association */ 515 spin_lock(&inode->i_lock); 516 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 517 inode->i_state & (I_WB_SWITCH | I_FREEING) || 518 inode_to_wb(inode) == isw->new_wb) { 519 spin_unlock(&inode->i_lock); 520 goto out_free; 521 } 522 inode->i_state |= I_WB_SWITCH; 523 __iget(inode); 524 spin_unlock(&inode->i_lock); 525 526 isw->inode = inode; 527 528 /* 529 * In addition to synchronizing among switchers, I_WB_SWITCH tells 530 * the RCU protected stat update paths to grab the i_page 531 * lock so that stat transfer can synchronize against them. 532 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 533 */ 534 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 535 536 atomic_inc(&isw_nr_in_flight); 537 538 goto out_unlock; 539 540 out_free: 541 if (isw->new_wb) 542 wb_put(isw->new_wb); 543 kfree(isw); 544 out_unlock: 545 up_read(&bdi->wb_switch_rwsem); 546 } 547 548 /** 549 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 550 * @wbc: writeback_control of interest 551 * @inode: target inode 552 * 553 * @inode is locked and about to be written back under the control of @wbc. 554 * Record @inode's writeback context into @wbc and unlock the i_lock. On 555 * writeback completion, wbc_detach_inode() should be called. This is used 556 * to track the cgroup writeback context. 557 */ 558 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 559 struct inode *inode) 560 { 561 if (!inode_cgwb_enabled(inode)) { 562 spin_unlock(&inode->i_lock); 563 return; 564 } 565 566 wbc->wb = inode_to_wb(inode); 567 wbc->inode = inode; 568 569 wbc->wb_id = wbc->wb->memcg_css->id; 570 wbc->wb_lcand_id = inode->i_wb_frn_winner; 571 wbc->wb_tcand_id = 0; 572 wbc->wb_bytes = 0; 573 wbc->wb_lcand_bytes = 0; 574 wbc->wb_tcand_bytes = 0; 575 576 wb_get(wbc->wb); 577 spin_unlock(&inode->i_lock); 578 579 /* 580 * A dying wb indicates that the memcg-blkcg mapping has changed 581 * and a new wb is already serving the memcg. Switch immediately. 582 */ 583 if (unlikely(wb_dying(wbc->wb))) 584 inode_switch_wbs(inode, wbc->wb_id); 585 } 586 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 587 588 /** 589 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 590 * @wbc: writeback_control of the just finished writeback 591 * 592 * To be called after a writeback attempt of an inode finishes and undoes 593 * wbc_attach_and_unlock_inode(). Can be called under any context. 594 * 595 * As concurrent write sharing of an inode is expected to be very rare and 596 * memcg only tracks page ownership on first-use basis severely confining 597 * the usefulness of such sharing, cgroup writeback tracks ownership 598 * per-inode. While the support for concurrent write sharing of an inode 599 * is deemed unnecessary, an inode being written to by different cgroups at 600 * different points in time is a lot more common, and, more importantly, 601 * charging only by first-use can too readily lead to grossly incorrect 602 * behaviors (single foreign page can lead to gigabytes of writeback to be 603 * incorrectly attributed). 604 * 605 * To resolve this issue, cgroup writeback detects the majority dirtier of 606 * an inode and transfers the ownership to it. To avoid unnnecessary 607 * oscillation, the detection mechanism keeps track of history and gives 608 * out the switch verdict only if the foreign usage pattern is stable over 609 * a certain amount of time and/or writeback attempts. 610 * 611 * On each writeback attempt, @wbc tries to detect the majority writer 612 * using Boyer-Moore majority vote algorithm. In addition to the byte 613 * count from the majority voting, it also counts the bytes written for the 614 * current wb and the last round's winner wb (max of last round's current 615 * wb, the winner from two rounds ago, and the last round's majority 616 * candidate). Keeping track of the historical winner helps the algorithm 617 * to semi-reliably detect the most active writer even when it's not the 618 * absolute majority. 619 * 620 * Once the winner of the round is determined, whether the winner is 621 * foreign or not and how much IO time the round consumed is recorded in 622 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 623 * over a certain threshold, the switch verdict is given. 624 */ 625 void wbc_detach_inode(struct writeback_control *wbc) 626 { 627 struct bdi_writeback *wb = wbc->wb; 628 struct inode *inode = wbc->inode; 629 unsigned long avg_time, max_bytes, max_time; 630 u16 history; 631 int max_id; 632 633 if (!wb) 634 return; 635 636 history = inode->i_wb_frn_history; 637 avg_time = inode->i_wb_frn_avg_time; 638 639 /* pick the winner of this round */ 640 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 641 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 642 max_id = wbc->wb_id; 643 max_bytes = wbc->wb_bytes; 644 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 645 max_id = wbc->wb_lcand_id; 646 max_bytes = wbc->wb_lcand_bytes; 647 } else { 648 max_id = wbc->wb_tcand_id; 649 max_bytes = wbc->wb_tcand_bytes; 650 } 651 652 /* 653 * Calculate the amount of IO time the winner consumed and fold it 654 * into the running average kept per inode. If the consumed IO 655 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 656 * deciding whether to switch or not. This is to prevent one-off 657 * small dirtiers from skewing the verdict. 658 */ 659 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 660 wb->avg_write_bandwidth); 661 if (avg_time) 662 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 663 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 664 else 665 avg_time = max_time; /* immediate catch up on first run */ 666 667 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 668 int slots; 669 670 /* 671 * The switch verdict is reached if foreign wb's consume 672 * more than a certain proportion of IO time in a 673 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 674 * history mask where each bit represents one sixteenth of 675 * the period. Determine the number of slots to shift into 676 * history from @max_time. 677 */ 678 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 679 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 680 history <<= slots; 681 if (wbc->wb_id != max_id) 682 history |= (1U << slots) - 1; 683 684 /* 685 * Switch if the current wb isn't the consistent winner. 686 * If there are multiple closely competing dirtiers, the 687 * inode may switch across them repeatedly over time, which 688 * is okay. The main goal is avoiding keeping an inode on 689 * the wrong wb for an extended period of time. 690 */ 691 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 692 inode_switch_wbs(inode, max_id); 693 } 694 695 /* 696 * Multiple instances of this function may race to update the 697 * following fields but we don't mind occassional inaccuracies. 698 */ 699 inode->i_wb_frn_winner = max_id; 700 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 701 inode->i_wb_frn_history = history; 702 703 wb_put(wbc->wb); 704 wbc->wb = NULL; 705 } 706 EXPORT_SYMBOL_GPL(wbc_detach_inode); 707 708 /** 709 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 710 * @wbc: writeback_control of the writeback in progress 711 * @page: page being written out 712 * @bytes: number of bytes being written out 713 * 714 * @bytes from @page are about to written out during the writeback 715 * controlled by @wbc. Keep the book for foreign inode detection. See 716 * wbc_detach_inode(). 717 */ 718 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 719 size_t bytes) 720 { 721 struct cgroup_subsys_state *css; 722 int id; 723 724 /* 725 * pageout() path doesn't attach @wbc to the inode being written 726 * out. This is intentional as we don't want the function to block 727 * behind a slow cgroup. Ultimately, we want pageout() to kick off 728 * regular writeback instead of writing things out itself. 729 */ 730 if (!wbc->wb || wbc->no_cgroup_owner) 731 return; 732 733 css = mem_cgroup_css_from_page(page); 734 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 735 if (!(css->flags & CSS_ONLINE)) 736 return; 737 738 id = css->id; 739 740 if (id == wbc->wb_id) { 741 wbc->wb_bytes += bytes; 742 return; 743 } 744 745 if (id == wbc->wb_lcand_id) 746 wbc->wb_lcand_bytes += bytes; 747 748 /* Boyer-Moore majority vote algorithm */ 749 if (!wbc->wb_tcand_bytes) 750 wbc->wb_tcand_id = id; 751 if (id == wbc->wb_tcand_id) 752 wbc->wb_tcand_bytes += bytes; 753 else 754 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 755 } 756 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 757 758 /** 759 * inode_congested - test whether an inode is congested 760 * @inode: inode to test for congestion (may be NULL) 761 * @cong_bits: mask of WB_[a]sync_congested bits to test 762 * 763 * Tests whether @inode is congested. @cong_bits is the mask of congestion 764 * bits to test and the return value is the mask of set bits. 765 * 766 * If cgroup writeback is enabled for @inode, the congestion state is 767 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 768 * associated with @inode is congested; otherwise, the root wb's congestion 769 * state is used. 770 * 771 * @inode is allowed to be NULL as this function is often called on 772 * mapping->host which is NULL for the swapper space. 773 */ 774 int inode_congested(struct inode *inode, int cong_bits) 775 { 776 /* 777 * Once set, ->i_wb never becomes NULL while the inode is alive. 778 * Start transaction iff ->i_wb is visible. 779 */ 780 if (inode && inode_to_wb_is_valid(inode)) { 781 struct bdi_writeback *wb; 782 struct wb_lock_cookie lock_cookie = {}; 783 bool congested; 784 785 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 786 congested = wb_congested(wb, cong_bits); 787 unlocked_inode_to_wb_end(inode, &lock_cookie); 788 return congested; 789 } 790 791 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 792 } 793 EXPORT_SYMBOL_GPL(inode_congested); 794 795 /** 796 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 797 * @wb: target bdi_writeback to split @nr_pages to 798 * @nr_pages: number of pages to write for the whole bdi 799 * 800 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 801 * relation to the total write bandwidth of all wb's w/ dirty inodes on 802 * @wb->bdi. 803 */ 804 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 805 { 806 unsigned long this_bw = wb->avg_write_bandwidth; 807 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 808 809 if (nr_pages == LONG_MAX) 810 return LONG_MAX; 811 812 /* 813 * This may be called on clean wb's and proportional distribution 814 * may not make sense, just use the original @nr_pages in those 815 * cases. In general, we wanna err on the side of writing more. 816 */ 817 if (!tot_bw || this_bw >= tot_bw) 818 return nr_pages; 819 else 820 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 821 } 822 823 /** 824 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 825 * @bdi: target backing_dev_info 826 * @base_work: wb_writeback_work to issue 827 * @skip_if_busy: skip wb's which already have writeback in progress 828 * 829 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 830 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 831 * distributed to the busy wbs according to each wb's proportion in the 832 * total active write bandwidth of @bdi. 833 */ 834 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 835 struct wb_writeback_work *base_work, 836 bool skip_if_busy) 837 { 838 struct bdi_writeback *last_wb = NULL; 839 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 840 struct bdi_writeback, bdi_node); 841 842 might_sleep(); 843 restart: 844 rcu_read_lock(); 845 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 846 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done); 847 struct wb_writeback_work fallback_work; 848 struct wb_writeback_work *work; 849 long nr_pages; 850 851 if (last_wb) { 852 wb_put(last_wb); 853 last_wb = NULL; 854 } 855 856 /* SYNC_ALL writes out I_DIRTY_TIME too */ 857 if (!wb_has_dirty_io(wb) && 858 (base_work->sync_mode == WB_SYNC_NONE || 859 list_empty(&wb->b_dirty_time))) 860 continue; 861 if (skip_if_busy && writeback_in_progress(wb)) 862 continue; 863 864 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 865 866 work = kmalloc(sizeof(*work), GFP_ATOMIC); 867 if (work) { 868 *work = *base_work; 869 work->nr_pages = nr_pages; 870 work->auto_free = 1; 871 wb_queue_work(wb, work); 872 continue; 873 } 874 875 /* alloc failed, execute synchronously using on-stack fallback */ 876 work = &fallback_work; 877 *work = *base_work; 878 work->nr_pages = nr_pages; 879 work->auto_free = 0; 880 work->done = &fallback_work_done; 881 882 wb_queue_work(wb, work); 883 884 /* 885 * Pin @wb so that it stays on @bdi->wb_list. This allows 886 * continuing iteration from @wb after dropping and 887 * regrabbing rcu read lock. 888 */ 889 wb_get(wb); 890 last_wb = wb; 891 892 rcu_read_unlock(); 893 wb_wait_for_completion(bdi, &fallback_work_done); 894 goto restart; 895 } 896 rcu_read_unlock(); 897 898 if (last_wb) 899 wb_put(last_wb); 900 } 901 902 /** 903 * cgroup_writeback_umount - flush inode wb switches for umount 904 * 905 * This function is called when a super_block is about to be destroyed and 906 * flushes in-flight inode wb switches. An inode wb switch goes through 907 * RCU and then workqueue, so the two need to be flushed in order to ensure 908 * that all previously scheduled switches are finished. As wb switches are 909 * rare occurrences and synchronize_rcu() can take a while, perform 910 * flushing iff wb switches are in flight. 911 */ 912 void cgroup_writeback_umount(void) 913 { 914 if (atomic_read(&isw_nr_in_flight)) { 915 /* 916 * Use rcu_barrier() to wait for all pending callbacks to 917 * ensure that all in-flight wb switches are in the workqueue. 918 */ 919 rcu_barrier(); 920 flush_workqueue(isw_wq); 921 } 922 } 923 924 static int __init cgroup_writeback_init(void) 925 { 926 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 927 if (!isw_wq) 928 return -ENOMEM; 929 return 0; 930 } 931 fs_initcall(cgroup_writeback_init); 932 933 #else /* CONFIG_CGROUP_WRITEBACK */ 934 935 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 936 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 937 938 static struct bdi_writeback * 939 locked_inode_to_wb_and_lock_list(struct inode *inode) 940 __releases(&inode->i_lock) 941 __acquires(&wb->list_lock) 942 { 943 struct bdi_writeback *wb = inode_to_wb(inode); 944 945 spin_unlock(&inode->i_lock); 946 spin_lock(&wb->list_lock); 947 return wb; 948 } 949 950 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 951 __acquires(&wb->list_lock) 952 { 953 struct bdi_writeback *wb = inode_to_wb(inode); 954 955 spin_lock(&wb->list_lock); 956 return wb; 957 } 958 959 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 960 { 961 return nr_pages; 962 } 963 964 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 965 struct wb_writeback_work *base_work, 966 bool skip_if_busy) 967 { 968 might_sleep(); 969 970 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 971 base_work->auto_free = 0; 972 wb_queue_work(&bdi->wb, base_work); 973 } 974 } 975 976 #endif /* CONFIG_CGROUP_WRITEBACK */ 977 978 /* 979 * Add in the number of potentially dirty inodes, because each inode 980 * write can dirty pagecache in the underlying blockdev. 981 */ 982 static unsigned long get_nr_dirty_pages(void) 983 { 984 return global_node_page_state(NR_FILE_DIRTY) + 985 global_node_page_state(NR_UNSTABLE_NFS) + 986 get_nr_dirty_inodes(); 987 } 988 989 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 990 { 991 if (!wb_has_dirty_io(wb)) 992 return; 993 994 /* 995 * All callers of this function want to start writeback of all 996 * dirty pages. Places like vmscan can call this at a very 997 * high frequency, causing pointless allocations of tons of 998 * work items and keeping the flusher threads busy retrieving 999 * that work. Ensure that we only allow one of them pending and 1000 * inflight at the time. 1001 */ 1002 if (test_bit(WB_start_all, &wb->state) || 1003 test_and_set_bit(WB_start_all, &wb->state)) 1004 return; 1005 1006 wb->start_all_reason = reason; 1007 wb_wakeup(wb); 1008 } 1009 1010 /** 1011 * wb_start_background_writeback - start background writeback 1012 * @wb: bdi_writback to write from 1013 * 1014 * Description: 1015 * This makes sure WB_SYNC_NONE background writeback happens. When 1016 * this function returns, it is only guaranteed that for given wb 1017 * some IO is happening if we are over background dirty threshold. 1018 * Caller need not hold sb s_umount semaphore. 1019 */ 1020 void wb_start_background_writeback(struct bdi_writeback *wb) 1021 { 1022 /* 1023 * We just wake up the flusher thread. It will perform background 1024 * writeback as soon as there is no other work to do. 1025 */ 1026 trace_writeback_wake_background(wb); 1027 wb_wakeup(wb); 1028 } 1029 1030 /* 1031 * Remove the inode from the writeback list it is on. 1032 */ 1033 void inode_io_list_del(struct inode *inode) 1034 { 1035 struct bdi_writeback *wb; 1036 1037 wb = inode_to_wb_and_lock_list(inode); 1038 inode_io_list_del_locked(inode, wb); 1039 spin_unlock(&wb->list_lock); 1040 } 1041 1042 /* 1043 * mark an inode as under writeback on the sb 1044 */ 1045 void sb_mark_inode_writeback(struct inode *inode) 1046 { 1047 struct super_block *sb = inode->i_sb; 1048 unsigned long flags; 1049 1050 if (list_empty(&inode->i_wb_list)) { 1051 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1052 if (list_empty(&inode->i_wb_list)) { 1053 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1054 trace_sb_mark_inode_writeback(inode); 1055 } 1056 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1057 } 1058 } 1059 1060 /* 1061 * clear an inode as under writeback on the sb 1062 */ 1063 void sb_clear_inode_writeback(struct inode *inode) 1064 { 1065 struct super_block *sb = inode->i_sb; 1066 unsigned long flags; 1067 1068 if (!list_empty(&inode->i_wb_list)) { 1069 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1070 if (!list_empty(&inode->i_wb_list)) { 1071 list_del_init(&inode->i_wb_list); 1072 trace_sb_clear_inode_writeback(inode); 1073 } 1074 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1075 } 1076 } 1077 1078 /* 1079 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1080 * furthest end of its superblock's dirty-inode list. 1081 * 1082 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1083 * already the most-recently-dirtied inode on the b_dirty list. If that is 1084 * the case then the inode must have been redirtied while it was being written 1085 * out and we don't reset its dirtied_when. 1086 */ 1087 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1088 { 1089 if (!list_empty(&wb->b_dirty)) { 1090 struct inode *tail; 1091 1092 tail = wb_inode(wb->b_dirty.next); 1093 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1094 inode->dirtied_when = jiffies; 1095 } 1096 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1097 } 1098 1099 /* 1100 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1101 */ 1102 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1103 { 1104 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1105 } 1106 1107 static void inode_sync_complete(struct inode *inode) 1108 { 1109 inode->i_state &= ~I_SYNC; 1110 /* If inode is clean an unused, put it into LRU now... */ 1111 inode_add_lru(inode); 1112 /* Waiters must see I_SYNC cleared before being woken up */ 1113 smp_mb(); 1114 wake_up_bit(&inode->i_state, __I_SYNC); 1115 } 1116 1117 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1118 { 1119 bool ret = time_after(inode->dirtied_when, t); 1120 #ifndef CONFIG_64BIT 1121 /* 1122 * For inodes being constantly redirtied, dirtied_when can get stuck. 1123 * It _appears_ to be in the future, but is actually in distant past. 1124 * This test is necessary to prevent such wrapped-around relative times 1125 * from permanently stopping the whole bdi writeback. 1126 */ 1127 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1128 #endif 1129 return ret; 1130 } 1131 1132 #define EXPIRE_DIRTY_ATIME 0x0001 1133 1134 /* 1135 * Move expired (dirtied before work->older_than_this) dirty inodes from 1136 * @delaying_queue to @dispatch_queue. 1137 */ 1138 static int move_expired_inodes(struct list_head *delaying_queue, 1139 struct list_head *dispatch_queue, 1140 int flags, 1141 struct wb_writeback_work *work) 1142 { 1143 unsigned long *older_than_this = NULL; 1144 unsigned long expire_time; 1145 LIST_HEAD(tmp); 1146 struct list_head *pos, *node; 1147 struct super_block *sb = NULL; 1148 struct inode *inode; 1149 int do_sb_sort = 0; 1150 int moved = 0; 1151 1152 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1153 older_than_this = work->older_than_this; 1154 else if (!work->for_sync) { 1155 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1156 older_than_this = &expire_time; 1157 } 1158 while (!list_empty(delaying_queue)) { 1159 inode = wb_inode(delaying_queue->prev); 1160 if (older_than_this && 1161 inode_dirtied_after(inode, *older_than_this)) 1162 break; 1163 list_move(&inode->i_io_list, &tmp); 1164 moved++; 1165 if (flags & EXPIRE_DIRTY_ATIME) 1166 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1167 if (sb_is_blkdev_sb(inode->i_sb)) 1168 continue; 1169 if (sb && sb != inode->i_sb) 1170 do_sb_sort = 1; 1171 sb = inode->i_sb; 1172 } 1173 1174 /* just one sb in list, splice to dispatch_queue and we're done */ 1175 if (!do_sb_sort) { 1176 list_splice(&tmp, dispatch_queue); 1177 goto out; 1178 } 1179 1180 /* Move inodes from one superblock together */ 1181 while (!list_empty(&tmp)) { 1182 sb = wb_inode(tmp.prev)->i_sb; 1183 list_for_each_prev_safe(pos, node, &tmp) { 1184 inode = wb_inode(pos); 1185 if (inode->i_sb == sb) 1186 list_move(&inode->i_io_list, dispatch_queue); 1187 } 1188 } 1189 out: 1190 return moved; 1191 } 1192 1193 /* 1194 * Queue all expired dirty inodes for io, eldest first. 1195 * Before 1196 * newly dirtied b_dirty b_io b_more_io 1197 * =============> gf edc BA 1198 * After 1199 * newly dirtied b_dirty b_io b_more_io 1200 * =============> g fBAedc 1201 * | 1202 * +--> dequeue for IO 1203 */ 1204 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1205 { 1206 int moved; 1207 1208 assert_spin_locked(&wb->list_lock); 1209 list_splice_init(&wb->b_more_io, &wb->b_io); 1210 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1211 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1212 EXPIRE_DIRTY_ATIME, work); 1213 if (moved) 1214 wb_io_lists_populated(wb); 1215 trace_writeback_queue_io(wb, work, moved); 1216 } 1217 1218 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1219 { 1220 int ret; 1221 1222 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1223 trace_writeback_write_inode_start(inode, wbc); 1224 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1225 trace_writeback_write_inode(inode, wbc); 1226 return ret; 1227 } 1228 return 0; 1229 } 1230 1231 /* 1232 * Wait for writeback on an inode to complete. Called with i_lock held. 1233 * Caller must make sure inode cannot go away when we drop i_lock. 1234 */ 1235 static void __inode_wait_for_writeback(struct inode *inode) 1236 __releases(inode->i_lock) 1237 __acquires(inode->i_lock) 1238 { 1239 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1240 wait_queue_head_t *wqh; 1241 1242 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1243 while (inode->i_state & I_SYNC) { 1244 spin_unlock(&inode->i_lock); 1245 __wait_on_bit(wqh, &wq, bit_wait, 1246 TASK_UNINTERRUPTIBLE); 1247 spin_lock(&inode->i_lock); 1248 } 1249 } 1250 1251 /* 1252 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1253 */ 1254 void inode_wait_for_writeback(struct inode *inode) 1255 { 1256 spin_lock(&inode->i_lock); 1257 __inode_wait_for_writeback(inode); 1258 spin_unlock(&inode->i_lock); 1259 } 1260 1261 /* 1262 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1263 * held and drops it. It is aimed for callers not holding any inode reference 1264 * so once i_lock is dropped, inode can go away. 1265 */ 1266 static void inode_sleep_on_writeback(struct inode *inode) 1267 __releases(inode->i_lock) 1268 { 1269 DEFINE_WAIT(wait); 1270 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1271 int sleep; 1272 1273 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1274 sleep = inode->i_state & I_SYNC; 1275 spin_unlock(&inode->i_lock); 1276 if (sleep) 1277 schedule(); 1278 finish_wait(wqh, &wait); 1279 } 1280 1281 /* 1282 * Find proper writeback list for the inode depending on its current state and 1283 * possibly also change of its state while we were doing writeback. Here we 1284 * handle things such as livelock prevention or fairness of writeback among 1285 * inodes. This function can be called only by flusher thread - noone else 1286 * processes all inodes in writeback lists and requeueing inodes behind flusher 1287 * thread's back can have unexpected consequences. 1288 */ 1289 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1290 struct writeback_control *wbc) 1291 { 1292 if (inode->i_state & I_FREEING) 1293 return; 1294 1295 /* 1296 * Sync livelock prevention. Each inode is tagged and synced in one 1297 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1298 * the dirty time to prevent enqueue and sync it again. 1299 */ 1300 if ((inode->i_state & I_DIRTY) && 1301 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1302 inode->dirtied_when = jiffies; 1303 1304 if (wbc->pages_skipped) { 1305 /* 1306 * writeback is not making progress due to locked 1307 * buffers. Skip this inode for now. 1308 */ 1309 redirty_tail(inode, wb); 1310 return; 1311 } 1312 1313 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1314 /* 1315 * We didn't write back all the pages. nfs_writepages() 1316 * sometimes bales out without doing anything. 1317 */ 1318 if (wbc->nr_to_write <= 0) { 1319 /* Slice used up. Queue for next turn. */ 1320 requeue_io(inode, wb); 1321 } else { 1322 /* 1323 * Writeback blocked by something other than 1324 * congestion. Delay the inode for some time to 1325 * avoid spinning on the CPU (100% iowait) 1326 * retrying writeback of the dirty page/inode 1327 * that cannot be performed immediately. 1328 */ 1329 redirty_tail(inode, wb); 1330 } 1331 } else if (inode->i_state & I_DIRTY) { 1332 /* 1333 * Filesystems can dirty the inode during writeback operations, 1334 * such as delayed allocation during submission or metadata 1335 * updates after data IO completion. 1336 */ 1337 redirty_tail(inode, wb); 1338 } else if (inode->i_state & I_DIRTY_TIME) { 1339 inode->dirtied_when = jiffies; 1340 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1341 } else { 1342 /* The inode is clean. Remove from writeback lists. */ 1343 inode_io_list_del_locked(inode, wb); 1344 } 1345 } 1346 1347 /* 1348 * Write out an inode and its dirty pages. Do not update the writeback list 1349 * linkage. That is left to the caller. The caller is also responsible for 1350 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1351 */ 1352 static int 1353 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1354 { 1355 struct address_space *mapping = inode->i_mapping; 1356 long nr_to_write = wbc->nr_to_write; 1357 unsigned dirty; 1358 int ret; 1359 1360 WARN_ON(!(inode->i_state & I_SYNC)); 1361 1362 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1363 1364 ret = do_writepages(mapping, wbc); 1365 1366 /* 1367 * Make sure to wait on the data before writing out the metadata. 1368 * This is important for filesystems that modify metadata on data 1369 * I/O completion. We don't do it for sync(2) writeback because it has a 1370 * separate, external IO completion path and ->sync_fs for guaranteeing 1371 * inode metadata is written back correctly. 1372 */ 1373 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1374 int err = filemap_fdatawait(mapping); 1375 if (ret == 0) 1376 ret = err; 1377 } 1378 1379 /* 1380 * Some filesystems may redirty the inode during the writeback 1381 * due to delalloc, clear dirty metadata flags right before 1382 * write_inode() 1383 */ 1384 spin_lock(&inode->i_lock); 1385 1386 dirty = inode->i_state & I_DIRTY; 1387 if (inode->i_state & I_DIRTY_TIME) { 1388 if ((dirty & I_DIRTY_INODE) || 1389 wbc->sync_mode == WB_SYNC_ALL || 1390 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1391 unlikely(time_after(jiffies, 1392 (inode->dirtied_time_when + 1393 dirtytime_expire_interval * HZ)))) { 1394 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1395 trace_writeback_lazytime(inode); 1396 } 1397 } else 1398 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1399 inode->i_state &= ~dirty; 1400 1401 /* 1402 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1403 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1404 * either they see the I_DIRTY bits cleared or we see the dirtied 1405 * inode. 1406 * 1407 * I_DIRTY_PAGES is always cleared together above even if @mapping 1408 * still has dirty pages. The flag is reinstated after smp_mb() if 1409 * necessary. This guarantees that either __mark_inode_dirty() 1410 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1411 */ 1412 smp_mb(); 1413 1414 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1415 inode->i_state |= I_DIRTY_PAGES; 1416 1417 spin_unlock(&inode->i_lock); 1418 1419 if (dirty & I_DIRTY_TIME) 1420 mark_inode_dirty_sync(inode); 1421 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1422 if (dirty & ~I_DIRTY_PAGES) { 1423 int err = write_inode(inode, wbc); 1424 if (ret == 0) 1425 ret = err; 1426 } 1427 trace_writeback_single_inode(inode, wbc, nr_to_write); 1428 return ret; 1429 } 1430 1431 /* 1432 * Write out an inode's dirty pages. Either the caller has an active reference 1433 * on the inode or the inode has I_WILL_FREE set. 1434 * 1435 * This function is designed to be called for writing back one inode which 1436 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1437 * and does more profound writeback list handling in writeback_sb_inodes(). 1438 */ 1439 static int writeback_single_inode(struct inode *inode, 1440 struct writeback_control *wbc) 1441 { 1442 struct bdi_writeback *wb; 1443 int ret = 0; 1444 1445 spin_lock(&inode->i_lock); 1446 if (!atomic_read(&inode->i_count)) 1447 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1448 else 1449 WARN_ON(inode->i_state & I_WILL_FREE); 1450 1451 if (inode->i_state & I_SYNC) { 1452 if (wbc->sync_mode != WB_SYNC_ALL) 1453 goto out; 1454 /* 1455 * It's a data-integrity sync. We must wait. Since callers hold 1456 * inode reference or inode has I_WILL_FREE set, it cannot go 1457 * away under us. 1458 */ 1459 __inode_wait_for_writeback(inode); 1460 } 1461 WARN_ON(inode->i_state & I_SYNC); 1462 /* 1463 * Skip inode if it is clean and we have no outstanding writeback in 1464 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1465 * function since flusher thread may be doing for example sync in 1466 * parallel and if we move the inode, it could get skipped. So here we 1467 * make sure inode is on some writeback list and leave it there unless 1468 * we have completely cleaned the inode. 1469 */ 1470 if (!(inode->i_state & I_DIRTY_ALL) && 1471 (wbc->sync_mode != WB_SYNC_ALL || 1472 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1473 goto out; 1474 inode->i_state |= I_SYNC; 1475 wbc_attach_and_unlock_inode(wbc, inode); 1476 1477 ret = __writeback_single_inode(inode, wbc); 1478 1479 wbc_detach_inode(wbc); 1480 1481 wb = inode_to_wb_and_lock_list(inode); 1482 spin_lock(&inode->i_lock); 1483 /* 1484 * If inode is clean, remove it from writeback lists. Otherwise don't 1485 * touch it. See comment above for explanation. 1486 */ 1487 if (!(inode->i_state & I_DIRTY_ALL)) 1488 inode_io_list_del_locked(inode, wb); 1489 spin_unlock(&wb->list_lock); 1490 inode_sync_complete(inode); 1491 out: 1492 spin_unlock(&inode->i_lock); 1493 return ret; 1494 } 1495 1496 static long writeback_chunk_size(struct bdi_writeback *wb, 1497 struct wb_writeback_work *work) 1498 { 1499 long pages; 1500 1501 /* 1502 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1503 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1504 * here avoids calling into writeback_inodes_wb() more than once. 1505 * 1506 * The intended call sequence for WB_SYNC_ALL writeback is: 1507 * 1508 * wb_writeback() 1509 * writeback_sb_inodes() <== called only once 1510 * write_cache_pages() <== called once for each inode 1511 * (quickly) tag currently dirty pages 1512 * (maybe slowly) sync all tagged pages 1513 */ 1514 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1515 pages = LONG_MAX; 1516 else { 1517 pages = min(wb->avg_write_bandwidth / 2, 1518 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1519 pages = min(pages, work->nr_pages); 1520 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1521 MIN_WRITEBACK_PAGES); 1522 } 1523 1524 return pages; 1525 } 1526 1527 /* 1528 * Write a portion of b_io inodes which belong to @sb. 1529 * 1530 * Return the number of pages and/or inodes written. 1531 * 1532 * NOTE! This is called with wb->list_lock held, and will 1533 * unlock and relock that for each inode it ends up doing 1534 * IO for. 1535 */ 1536 static long writeback_sb_inodes(struct super_block *sb, 1537 struct bdi_writeback *wb, 1538 struct wb_writeback_work *work) 1539 { 1540 struct writeback_control wbc = { 1541 .sync_mode = work->sync_mode, 1542 .tagged_writepages = work->tagged_writepages, 1543 .for_kupdate = work->for_kupdate, 1544 .for_background = work->for_background, 1545 .for_sync = work->for_sync, 1546 .range_cyclic = work->range_cyclic, 1547 .range_start = 0, 1548 .range_end = LLONG_MAX, 1549 }; 1550 unsigned long start_time = jiffies; 1551 long write_chunk; 1552 long wrote = 0; /* count both pages and inodes */ 1553 1554 while (!list_empty(&wb->b_io)) { 1555 struct inode *inode = wb_inode(wb->b_io.prev); 1556 struct bdi_writeback *tmp_wb; 1557 1558 if (inode->i_sb != sb) { 1559 if (work->sb) { 1560 /* 1561 * We only want to write back data for this 1562 * superblock, move all inodes not belonging 1563 * to it back onto the dirty list. 1564 */ 1565 redirty_tail(inode, wb); 1566 continue; 1567 } 1568 1569 /* 1570 * The inode belongs to a different superblock. 1571 * Bounce back to the caller to unpin this and 1572 * pin the next superblock. 1573 */ 1574 break; 1575 } 1576 1577 /* 1578 * Don't bother with new inodes or inodes being freed, first 1579 * kind does not need periodic writeout yet, and for the latter 1580 * kind writeout is handled by the freer. 1581 */ 1582 spin_lock(&inode->i_lock); 1583 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1584 spin_unlock(&inode->i_lock); 1585 redirty_tail(inode, wb); 1586 continue; 1587 } 1588 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1589 /* 1590 * If this inode is locked for writeback and we are not 1591 * doing writeback-for-data-integrity, move it to 1592 * b_more_io so that writeback can proceed with the 1593 * other inodes on s_io. 1594 * 1595 * We'll have another go at writing back this inode 1596 * when we completed a full scan of b_io. 1597 */ 1598 spin_unlock(&inode->i_lock); 1599 requeue_io(inode, wb); 1600 trace_writeback_sb_inodes_requeue(inode); 1601 continue; 1602 } 1603 spin_unlock(&wb->list_lock); 1604 1605 /* 1606 * We already requeued the inode if it had I_SYNC set and we 1607 * are doing WB_SYNC_NONE writeback. So this catches only the 1608 * WB_SYNC_ALL case. 1609 */ 1610 if (inode->i_state & I_SYNC) { 1611 /* Wait for I_SYNC. This function drops i_lock... */ 1612 inode_sleep_on_writeback(inode); 1613 /* Inode may be gone, start again */ 1614 spin_lock(&wb->list_lock); 1615 continue; 1616 } 1617 inode->i_state |= I_SYNC; 1618 wbc_attach_and_unlock_inode(&wbc, inode); 1619 1620 write_chunk = writeback_chunk_size(wb, work); 1621 wbc.nr_to_write = write_chunk; 1622 wbc.pages_skipped = 0; 1623 1624 /* 1625 * We use I_SYNC to pin the inode in memory. While it is set 1626 * evict_inode() will wait so the inode cannot be freed. 1627 */ 1628 __writeback_single_inode(inode, &wbc); 1629 1630 wbc_detach_inode(&wbc); 1631 work->nr_pages -= write_chunk - wbc.nr_to_write; 1632 wrote += write_chunk - wbc.nr_to_write; 1633 1634 if (need_resched()) { 1635 /* 1636 * We're trying to balance between building up a nice 1637 * long list of IOs to improve our merge rate, and 1638 * getting those IOs out quickly for anyone throttling 1639 * in balance_dirty_pages(). cond_resched() doesn't 1640 * unplug, so get our IOs out the door before we 1641 * give up the CPU. 1642 */ 1643 blk_flush_plug(current); 1644 cond_resched(); 1645 } 1646 1647 /* 1648 * Requeue @inode if still dirty. Be careful as @inode may 1649 * have been switched to another wb in the meantime. 1650 */ 1651 tmp_wb = inode_to_wb_and_lock_list(inode); 1652 spin_lock(&inode->i_lock); 1653 if (!(inode->i_state & I_DIRTY_ALL)) 1654 wrote++; 1655 requeue_inode(inode, tmp_wb, &wbc); 1656 inode_sync_complete(inode); 1657 spin_unlock(&inode->i_lock); 1658 1659 if (unlikely(tmp_wb != wb)) { 1660 spin_unlock(&tmp_wb->list_lock); 1661 spin_lock(&wb->list_lock); 1662 } 1663 1664 /* 1665 * bail out to wb_writeback() often enough to check 1666 * background threshold and other termination conditions. 1667 */ 1668 if (wrote) { 1669 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1670 break; 1671 if (work->nr_pages <= 0) 1672 break; 1673 } 1674 } 1675 return wrote; 1676 } 1677 1678 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1679 struct wb_writeback_work *work) 1680 { 1681 unsigned long start_time = jiffies; 1682 long wrote = 0; 1683 1684 while (!list_empty(&wb->b_io)) { 1685 struct inode *inode = wb_inode(wb->b_io.prev); 1686 struct super_block *sb = inode->i_sb; 1687 1688 if (!trylock_super(sb)) { 1689 /* 1690 * trylock_super() may fail consistently due to 1691 * s_umount being grabbed by someone else. Don't use 1692 * requeue_io() to avoid busy retrying the inode/sb. 1693 */ 1694 redirty_tail(inode, wb); 1695 continue; 1696 } 1697 wrote += writeback_sb_inodes(sb, wb, work); 1698 up_read(&sb->s_umount); 1699 1700 /* refer to the same tests at the end of writeback_sb_inodes */ 1701 if (wrote) { 1702 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1703 break; 1704 if (work->nr_pages <= 0) 1705 break; 1706 } 1707 } 1708 /* Leave any unwritten inodes on b_io */ 1709 return wrote; 1710 } 1711 1712 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1713 enum wb_reason reason) 1714 { 1715 struct wb_writeback_work work = { 1716 .nr_pages = nr_pages, 1717 .sync_mode = WB_SYNC_NONE, 1718 .range_cyclic = 1, 1719 .reason = reason, 1720 }; 1721 struct blk_plug plug; 1722 1723 blk_start_plug(&plug); 1724 spin_lock(&wb->list_lock); 1725 if (list_empty(&wb->b_io)) 1726 queue_io(wb, &work); 1727 __writeback_inodes_wb(wb, &work); 1728 spin_unlock(&wb->list_lock); 1729 blk_finish_plug(&plug); 1730 1731 return nr_pages - work.nr_pages; 1732 } 1733 1734 /* 1735 * Explicit flushing or periodic writeback of "old" data. 1736 * 1737 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1738 * dirtying-time in the inode's address_space. So this periodic writeback code 1739 * just walks the superblock inode list, writing back any inodes which are 1740 * older than a specific point in time. 1741 * 1742 * Try to run once per dirty_writeback_interval. But if a writeback event 1743 * takes longer than a dirty_writeback_interval interval, then leave a 1744 * one-second gap. 1745 * 1746 * older_than_this takes precedence over nr_to_write. So we'll only write back 1747 * all dirty pages if they are all attached to "old" mappings. 1748 */ 1749 static long wb_writeback(struct bdi_writeback *wb, 1750 struct wb_writeback_work *work) 1751 { 1752 unsigned long wb_start = jiffies; 1753 long nr_pages = work->nr_pages; 1754 unsigned long oldest_jif; 1755 struct inode *inode; 1756 long progress; 1757 struct blk_plug plug; 1758 1759 oldest_jif = jiffies; 1760 work->older_than_this = &oldest_jif; 1761 1762 blk_start_plug(&plug); 1763 spin_lock(&wb->list_lock); 1764 for (;;) { 1765 /* 1766 * Stop writeback when nr_pages has been consumed 1767 */ 1768 if (work->nr_pages <= 0) 1769 break; 1770 1771 /* 1772 * Background writeout and kupdate-style writeback may 1773 * run forever. Stop them if there is other work to do 1774 * so that e.g. sync can proceed. They'll be restarted 1775 * after the other works are all done. 1776 */ 1777 if ((work->for_background || work->for_kupdate) && 1778 !list_empty(&wb->work_list)) 1779 break; 1780 1781 /* 1782 * For background writeout, stop when we are below the 1783 * background dirty threshold 1784 */ 1785 if (work->for_background && !wb_over_bg_thresh(wb)) 1786 break; 1787 1788 /* 1789 * Kupdate and background works are special and we want to 1790 * include all inodes that need writing. Livelock avoidance is 1791 * handled by these works yielding to any other work so we are 1792 * safe. 1793 */ 1794 if (work->for_kupdate) { 1795 oldest_jif = jiffies - 1796 msecs_to_jiffies(dirty_expire_interval * 10); 1797 } else if (work->for_background) 1798 oldest_jif = jiffies; 1799 1800 trace_writeback_start(wb, work); 1801 if (list_empty(&wb->b_io)) 1802 queue_io(wb, work); 1803 if (work->sb) 1804 progress = writeback_sb_inodes(work->sb, wb, work); 1805 else 1806 progress = __writeback_inodes_wb(wb, work); 1807 trace_writeback_written(wb, work); 1808 1809 wb_update_bandwidth(wb, wb_start); 1810 1811 /* 1812 * Did we write something? Try for more 1813 * 1814 * Dirty inodes are moved to b_io for writeback in batches. 1815 * The completion of the current batch does not necessarily 1816 * mean the overall work is done. So we keep looping as long 1817 * as made some progress on cleaning pages or inodes. 1818 */ 1819 if (progress) 1820 continue; 1821 /* 1822 * No more inodes for IO, bail 1823 */ 1824 if (list_empty(&wb->b_more_io)) 1825 break; 1826 /* 1827 * Nothing written. Wait for some inode to 1828 * become available for writeback. Otherwise 1829 * we'll just busyloop. 1830 */ 1831 trace_writeback_wait(wb, work); 1832 inode = wb_inode(wb->b_more_io.prev); 1833 spin_lock(&inode->i_lock); 1834 spin_unlock(&wb->list_lock); 1835 /* This function drops i_lock... */ 1836 inode_sleep_on_writeback(inode); 1837 spin_lock(&wb->list_lock); 1838 } 1839 spin_unlock(&wb->list_lock); 1840 blk_finish_plug(&plug); 1841 1842 return nr_pages - work->nr_pages; 1843 } 1844 1845 /* 1846 * Return the next wb_writeback_work struct that hasn't been processed yet. 1847 */ 1848 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1849 { 1850 struct wb_writeback_work *work = NULL; 1851 1852 spin_lock_bh(&wb->work_lock); 1853 if (!list_empty(&wb->work_list)) { 1854 work = list_entry(wb->work_list.next, 1855 struct wb_writeback_work, list); 1856 list_del_init(&work->list); 1857 } 1858 spin_unlock_bh(&wb->work_lock); 1859 return work; 1860 } 1861 1862 static long wb_check_background_flush(struct bdi_writeback *wb) 1863 { 1864 if (wb_over_bg_thresh(wb)) { 1865 1866 struct wb_writeback_work work = { 1867 .nr_pages = LONG_MAX, 1868 .sync_mode = WB_SYNC_NONE, 1869 .for_background = 1, 1870 .range_cyclic = 1, 1871 .reason = WB_REASON_BACKGROUND, 1872 }; 1873 1874 return wb_writeback(wb, &work); 1875 } 1876 1877 return 0; 1878 } 1879 1880 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1881 { 1882 unsigned long expired; 1883 long nr_pages; 1884 1885 /* 1886 * When set to zero, disable periodic writeback 1887 */ 1888 if (!dirty_writeback_interval) 1889 return 0; 1890 1891 expired = wb->last_old_flush + 1892 msecs_to_jiffies(dirty_writeback_interval * 10); 1893 if (time_before(jiffies, expired)) 1894 return 0; 1895 1896 wb->last_old_flush = jiffies; 1897 nr_pages = get_nr_dirty_pages(); 1898 1899 if (nr_pages) { 1900 struct wb_writeback_work work = { 1901 .nr_pages = nr_pages, 1902 .sync_mode = WB_SYNC_NONE, 1903 .for_kupdate = 1, 1904 .range_cyclic = 1, 1905 .reason = WB_REASON_PERIODIC, 1906 }; 1907 1908 return wb_writeback(wb, &work); 1909 } 1910 1911 return 0; 1912 } 1913 1914 static long wb_check_start_all(struct bdi_writeback *wb) 1915 { 1916 long nr_pages; 1917 1918 if (!test_bit(WB_start_all, &wb->state)) 1919 return 0; 1920 1921 nr_pages = get_nr_dirty_pages(); 1922 if (nr_pages) { 1923 struct wb_writeback_work work = { 1924 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 1925 .sync_mode = WB_SYNC_NONE, 1926 .range_cyclic = 1, 1927 .reason = wb->start_all_reason, 1928 }; 1929 1930 nr_pages = wb_writeback(wb, &work); 1931 } 1932 1933 clear_bit(WB_start_all, &wb->state); 1934 return nr_pages; 1935 } 1936 1937 1938 /* 1939 * Retrieve work items and do the writeback they describe 1940 */ 1941 static long wb_do_writeback(struct bdi_writeback *wb) 1942 { 1943 struct wb_writeback_work *work; 1944 long wrote = 0; 1945 1946 set_bit(WB_writeback_running, &wb->state); 1947 while ((work = get_next_work_item(wb)) != NULL) { 1948 trace_writeback_exec(wb, work); 1949 wrote += wb_writeback(wb, work); 1950 finish_writeback_work(wb, work); 1951 } 1952 1953 /* 1954 * Check for a flush-everything request 1955 */ 1956 wrote += wb_check_start_all(wb); 1957 1958 /* 1959 * Check for periodic writeback, kupdated() style 1960 */ 1961 wrote += wb_check_old_data_flush(wb); 1962 wrote += wb_check_background_flush(wb); 1963 clear_bit(WB_writeback_running, &wb->state); 1964 1965 return wrote; 1966 } 1967 1968 /* 1969 * Handle writeback of dirty data for the device backed by this bdi. Also 1970 * reschedules periodically and does kupdated style flushing. 1971 */ 1972 void wb_workfn(struct work_struct *work) 1973 { 1974 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1975 struct bdi_writeback, dwork); 1976 long pages_written; 1977 1978 set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); 1979 current->flags |= PF_SWAPWRITE; 1980 1981 if (likely(!current_is_workqueue_rescuer() || 1982 !test_bit(WB_registered, &wb->state))) { 1983 /* 1984 * The normal path. Keep writing back @wb until its 1985 * work_list is empty. Note that this path is also taken 1986 * if @wb is shutting down even when we're running off the 1987 * rescuer as work_list needs to be drained. 1988 */ 1989 do { 1990 pages_written = wb_do_writeback(wb); 1991 trace_writeback_pages_written(pages_written); 1992 } while (!list_empty(&wb->work_list)); 1993 } else { 1994 /* 1995 * bdi_wq can't get enough workers and we're running off 1996 * the emergency worker. Don't hog it. Hopefully, 1024 is 1997 * enough for efficient IO. 1998 */ 1999 pages_written = writeback_inodes_wb(wb, 1024, 2000 WB_REASON_FORKER_THREAD); 2001 trace_writeback_pages_written(pages_written); 2002 } 2003 2004 if (!list_empty(&wb->work_list)) 2005 wb_wakeup(wb); 2006 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2007 wb_wakeup_delayed(wb); 2008 2009 current->flags &= ~PF_SWAPWRITE; 2010 } 2011 2012 /* 2013 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2014 * write back the whole world. 2015 */ 2016 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2017 enum wb_reason reason) 2018 { 2019 struct bdi_writeback *wb; 2020 2021 if (!bdi_has_dirty_io(bdi)) 2022 return; 2023 2024 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2025 wb_start_writeback(wb, reason); 2026 } 2027 2028 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2029 enum wb_reason reason) 2030 { 2031 rcu_read_lock(); 2032 __wakeup_flusher_threads_bdi(bdi, reason); 2033 rcu_read_unlock(); 2034 } 2035 2036 /* 2037 * Wakeup the flusher threads to start writeback of all currently dirty pages 2038 */ 2039 void wakeup_flusher_threads(enum wb_reason reason) 2040 { 2041 struct backing_dev_info *bdi; 2042 2043 /* 2044 * If we are expecting writeback progress we must submit plugged IO. 2045 */ 2046 if (blk_needs_flush_plug(current)) 2047 blk_schedule_flush_plug(current); 2048 2049 rcu_read_lock(); 2050 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2051 __wakeup_flusher_threads_bdi(bdi, reason); 2052 rcu_read_unlock(); 2053 } 2054 2055 /* 2056 * Wake up bdi's periodically to make sure dirtytime inodes gets 2057 * written back periodically. We deliberately do *not* check the 2058 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2059 * kernel to be constantly waking up once there are any dirtytime 2060 * inodes on the system. So instead we define a separate delayed work 2061 * function which gets called much more rarely. (By default, only 2062 * once every 12 hours.) 2063 * 2064 * If there is any other write activity going on in the file system, 2065 * this function won't be necessary. But if the only thing that has 2066 * happened on the file system is a dirtytime inode caused by an atime 2067 * update, we need this infrastructure below to make sure that inode 2068 * eventually gets pushed out to disk. 2069 */ 2070 static void wakeup_dirtytime_writeback(struct work_struct *w); 2071 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2072 2073 static void wakeup_dirtytime_writeback(struct work_struct *w) 2074 { 2075 struct backing_dev_info *bdi; 2076 2077 rcu_read_lock(); 2078 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2079 struct bdi_writeback *wb; 2080 2081 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2082 if (!list_empty(&wb->b_dirty_time)) 2083 wb_wakeup(wb); 2084 } 2085 rcu_read_unlock(); 2086 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2087 } 2088 2089 static int __init start_dirtytime_writeback(void) 2090 { 2091 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2092 return 0; 2093 } 2094 __initcall(start_dirtytime_writeback); 2095 2096 int dirtytime_interval_handler(struct ctl_table *table, int write, 2097 void __user *buffer, size_t *lenp, loff_t *ppos) 2098 { 2099 int ret; 2100 2101 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2102 if (ret == 0 && write) 2103 mod_delayed_work(system_wq, &dirtytime_work, 0); 2104 return ret; 2105 } 2106 2107 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2108 { 2109 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2110 struct dentry *dentry; 2111 const char *name = "?"; 2112 2113 dentry = d_find_alias(inode); 2114 if (dentry) { 2115 spin_lock(&dentry->d_lock); 2116 name = (const char *) dentry->d_name.name; 2117 } 2118 printk(KERN_DEBUG 2119 "%s(%d): dirtied inode %lu (%s) on %s\n", 2120 current->comm, task_pid_nr(current), inode->i_ino, 2121 name, inode->i_sb->s_id); 2122 if (dentry) { 2123 spin_unlock(&dentry->d_lock); 2124 dput(dentry); 2125 } 2126 } 2127 } 2128 2129 /** 2130 * __mark_inode_dirty - internal function 2131 * 2132 * @inode: inode to mark 2133 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2134 * 2135 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2136 * mark_inode_dirty_sync. 2137 * 2138 * Put the inode on the super block's dirty list. 2139 * 2140 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2141 * dirty list only if it is hashed or if it refers to a blockdev. 2142 * If it was not hashed, it will never be added to the dirty list 2143 * even if it is later hashed, as it will have been marked dirty already. 2144 * 2145 * In short, make sure you hash any inodes _before_ you start marking 2146 * them dirty. 2147 * 2148 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2149 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2150 * the kernel-internal blockdev inode represents the dirtying time of the 2151 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2152 * page->mapping->host, so the page-dirtying time is recorded in the internal 2153 * blockdev inode. 2154 */ 2155 void __mark_inode_dirty(struct inode *inode, int flags) 2156 { 2157 struct super_block *sb = inode->i_sb; 2158 int dirtytime; 2159 2160 trace_writeback_mark_inode_dirty(inode, flags); 2161 2162 /* 2163 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2164 * dirty the inode itself 2165 */ 2166 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) { 2167 trace_writeback_dirty_inode_start(inode, flags); 2168 2169 if (sb->s_op->dirty_inode) 2170 sb->s_op->dirty_inode(inode, flags); 2171 2172 trace_writeback_dirty_inode(inode, flags); 2173 } 2174 if (flags & I_DIRTY_INODE) 2175 flags &= ~I_DIRTY_TIME; 2176 dirtytime = flags & I_DIRTY_TIME; 2177 2178 /* 2179 * Paired with smp_mb() in __writeback_single_inode() for the 2180 * following lockless i_state test. See there for details. 2181 */ 2182 smp_mb(); 2183 2184 if (((inode->i_state & flags) == flags) || 2185 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2186 return; 2187 2188 if (unlikely(block_dump)) 2189 block_dump___mark_inode_dirty(inode); 2190 2191 spin_lock(&inode->i_lock); 2192 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2193 goto out_unlock_inode; 2194 if ((inode->i_state & flags) != flags) { 2195 const int was_dirty = inode->i_state & I_DIRTY; 2196 2197 inode_attach_wb(inode, NULL); 2198 2199 if (flags & I_DIRTY_INODE) 2200 inode->i_state &= ~I_DIRTY_TIME; 2201 inode->i_state |= flags; 2202 2203 /* 2204 * If the inode is being synced, just update its dirty state. 2205 * The unlocker will place the inode on the appropriate 2206 * superblock list, based upon its state. 2207 */ 2208 if (inode->i_state & I_SYNC) 2209 goto out_unlock_inode; 2210 2211 /* 2212 * Only add valid (hashed) inodes to the superblock's 2213 * dirty list. Add blockdev inodes as well. 2214 */ 2215 if (!S_ISBLK(inode->i_mode)) { 2216 if (inode_unhashed(inode)) 2217 goto out_unlock_inode; 2218 } 2219 if (inode->i_state & I_FREEING) 2220 goto out_unlock_inode; 2221 2222 /* 2223 * If the inode was already on b_dirty/b_io/b_more_io, don't 2224 * reposition it (that would break b_dirty time-ordering). 2225 */ 2226 if (!was_dirty) { 2227 struct bdi_writeback *wb; 2228 struct list_head *dirty_list; 2229 bool wakeup_bdi = false; 2230 2231 wb = locked_inode_to_wb_and_lock_list(inode); 2232 2233 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2234 !test_bit(WB_registered, &wb->state), 2235 "bdi-%s not registered\n", wb->bdi->name); 2236 2237 inode->dirtied_when = jiffies; 2238 if (dirtytime) 2239 inode->dirtied_time_when = jiffies; 2240 2241 if (inode->i_state & I_DIRTY) 2242 dirty_list = &wb->b_dirty; 2243 else 2244 dirty_list = &wb->b_dirty_time; 2245 2246 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2247 dirty_list); 2248 2249 spin_unlock(&wb->list_lock); 2250 trace_writeback_dirty_inode_enqueue(inode); 2251 2252 /* 2253 * If this is the first dirty inode for this bdi, 2254 * we have to wake-up the corresponding bdi thread 2255 * to make sure background write-back happens 2256 * later. 2257 */ 2258 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2259 wb_wakeup_delayed(wb); 2260 return; 2261 } 2262 } 2263 out_unlock_inode: 2264 spin_unlock(&inode->i_lock); 2265 } 2266 EXPORT_SYMBOL(__mark_inode_dirty); 2267 2268 /* 2269 * The @s_sync_lock is used to serialise concurrent sync operations 2270 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2271 * Concurrent callers will block on the s_sync_lock rather than doing contending 2272 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2273 * has been issued up to the time this function is enter is guaranteed to be 2274 * completed by the time we have gained the lock and waited for all IO that is 2275 * in progress regardless of the order callers are granted the lock. 2276 */ 2277 static void wait_sb_inodes(struct super_block *sb) 2278 { 2279 LIST_HEAD(sync_list); 2280 2281 /* 2282 * We need to be protected against the filesystem going from 2283 * r/o to r/w or vice versa. 2284 */ 2285 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2286 2287 mutex_lock(&sb->s_sync_lock); 2288 2289 /* 2290 * Splice the writeback list onto a temporary list to avoid waiting on 2291 * inodes that have started writeback after this point. 2292 * 2293 * Use rcu_read_lock() to keep the inodes around until we have a 2294 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2295 * the local list because inodes can be dropped from either by writeback 2296 * completion. 2297 */ 2298 rcu_read_lock(); 2299 spin_lock_irq(&sb->s_inode_wblist_lock); 2300 list_splice_init(&sb->s_inodes_wb, &sync_list); 2301 2302 /* 2303 * Data integrity sync. Must wait for all pages under writeback, because 2304 * there may have been pages dirtied before our sync call, but which had 2305 * writeout started before we write it out. In which case, the inode 2306 * may not be on the dirty list, but we still have to wait for that 2307 * writeout. 2308 */ 2309 while (!list_empty(&sync_list)) { 2310 struct inode *inode = list_first_entry(&sync_list, struct inode, 2311 i_wb_list); 2312 struct address_space *mapping = inode->i_mapping; 2313 2314 /* 2315 * Move each inode back to the wb list before we drop the lock 2316 * to preserve consistency between i_wb_list and the mapping 2317 * writeback tag. Writeback completion is responsible to remove 2318 * the inode from either list once the writeback tag is cleared. 2319 */ 2320 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2321 2322 /* 2323 * The mapping can appear untagged while still on-list since we 2324 * do not have the mapping lock. Skip it here, wb completion 2325 * will remove it. 2326 */ 2327 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2328 continue; 2329 2330 spin_unlock_irq(&sb->s_inode_wblist_lock); 2331 2332 spin_lock(&inode->i_lock); 2333 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2334 spin_unlock(&inode->i_lock); 2335 2336 spin_lock_irq(&sb->s_inode_wblist_lock); 2337 continue; 2338 } 2339 __iget(inode); 2340 spin_unlock(&inode->i_lock); 2341 rcu_read_unlock(); 2342 2343 /* 2344 * We keep the error status of individual mapping so that 2345 * applications can catch the writeback error using fsync(2). 2346 * See filemap_fdatawait_keep_errors() for details. 2347 */ 2348 filemap_fdatawait_keep_errors(mapping); 2349 2350 cond_resched(); 2351 2352 iput(inode); 2353 2354 rcu_read_lock(); 2355 spin_lock_irq(&sb->s_inode_wblist_lock); 2356 } 2357 spin_unlock_irq(&sb->s_inode_wblist_lock); 2358 rcu_read_unlock(); 2359 mutex_unlock(&sb->s_sync_lock); 2360 } 2361 2362 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2363 enum wb_reason reason, bool skip_if_busy) 2364 { 2365 DEFINE_WB_COMPLETION_ONSTACK(done); 2366 struct wb_writeback_work work = { 2367 .sb = sb, 2368 .sync_mode = WB_SYNC_NONE, 2369 .tagged_writepages = 1, 2370 .done = &done, 2371 .nr_pages = nr, 2372 .reason = reason, 2373 }; 2374 struct backing_dev_info *bdi = sb->s_bdi; 2375 2376 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2377 return; 2378 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2379 2380 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2381 wb_wait_for_completion(bdi, &done); 2382 } 2383 2384 /** 2385 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2386 * @sb: the superblock 2387 * @nr: the number of pages to write 2388 * @reason: reason why some writeback work initiated 2389 * 2390 * Start writeback on some inodes on this super_block. No guarantees are made 2391 * on how many (if any) will be written, and this function does not wait 2392 * for IO completion of submitted IO. 2393 */ 2394 void writeback_inodes_sb_nr(struct super_block *sb, 2395 unsigned long nr, 2396 enum wb_reason reason) 2397 { 2398 __writeback_inodes_sb_nr(sb, nr, reason, false); 2399 } 2400 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2401 2402 /** 2403 * writeback_inodes_sb - writeback dirty inodes from given super_block 2404 * @sb: the superblock 2405 * @reason: reason why some writeback work was initiated 2406 * 2407 * Start writeback on some inodes on this super_block. No guarantees are made 2408 * on how many (if any) will be written, and this function does not wait 2409 * for IO completion of submitted IO. 2410 */ 2411 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2412 { 2413 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2414 } 2415 EXPORT_SYMBOL(writeback_inodes_sb); 2416 2417 /** 2418 * try_to_writeback_inodes_sb - try to start writeback if none underway 2419 * @sb: the superblock 2420 * @reason: reason why some writeback work was initiated 2421 * 2422 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2423 */ 2424 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2425 { 2426 if (!down_read_trylock(&sb->s_umount)) 2427 return; 2428 2429 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2430 up_read(&sb->s_umount); 2431 } 2432 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2433 2434 /** 2435 * sync_inodes_sb - sync sb inode pages 2436 * @sb: the superblock 2437 * 2438 * This function writes and waits on any dirty inode belonging to this 2439 * super_block. 2440 */ 2441 void sync_inodes_sb(struct super_block *sb) 2442 { 2443 DEFINE_WB_COMPLETION_ONSTACK(done); 2444 struct wb_writeback_work work = { 2445 .sb = sb, 2446 .sync_mode = WB_SYNC_ALL, 2447 .nr_pages = LONG_MAX, 2448 .range_cyclic = 0, 2449 .done = &done, 2450 .reason = WB_REASON_SYNC, 2451 .for_sync = 1, 2452 }; 2453 struct backing_dev_info *bdi = sb->s_bdi; 2454 2455 /* 2456 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2457 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2458 * bdi_has_dirty() need to be written out too. 2459 */ 2460 if (bdi == &noop_backing_dev_info) 2461 return; 2462 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2463 2464 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2465 bdi_down_write_wb_switch_rwsem(bdi); 2466 bdi_split_work_to_wbs(bdi, &work, false); 2467 wb_wait_for_completion(bdi, &done); 2468 bdi_up_write_wb_switch_rwsem(bdi); 2469 2470 wait_sb_inodes(sb); 2471 } 2472 EXPORT_SYMBOL(sync_inodes_sb); 2473 2474 /** 2475 * write_inode_now - write an inode to disk 2476 * @inode: inode to write to disk 2477 * @sync: whether the write should be synchronous or not 2478 * 2479 * This function commits an inode to disk immediately if it is dirty. This is 2480 * primarily needed by knfsd. 2481 * 2482 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2483 */ 2484 int write_inode_now(struct inode *inode, int sync) 2485 { 2486 struct writeback_control wbc = { 2487 .nr_to_write = LONG_MAX, 2488 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2489 .range_start = 0, 2490 .range_end = LLONG_MAX, 2491 }; 2492 2493 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2494 wbc.nr_to_write = 0; 2495 2496 might_sleep(); 2497 return writeback_single_inode(inode, &wbc); 2498 } 2499 EXPORT_SYMBOL(write_inode_now); 2500 2501 /** 2502 * sync_inode - write an inode and its pages to disk. 2503 * @inode: the inode to sync 2504 * @wbc: controls the writeback mode 2505 * 2506 * sync_inode() will write an inode and its pages to disk. It will also 2507 * correctly update the inode on its superblock's dirty inode lists and will 2508 * update inode->i_state. 2509 * 2510 * The caller must have a ref on the inode. 2511 */ 2512 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2513 { 2514 return writeback_single_inode(inode, wbc); 2515 } 2516 EXPORT_SYMBOL(sync_inode); 2517 2518 /** 2519 * sync_inode_metadata - write an inode to disk 2520 * @inode: the inode to sync 2521 * @wait: wait for I/O to complete. 2522 * 2523 * Write an inode to disk and adjust its dirty state after completion. 2524 * 2525 * Note: only writes the actual inode, no associated data or other metadata. 2526 */ 2527 int sync_inode_metadata(struct inode *inode, int wait) 2528 { 2529 struct writeback_control wbc = { 2530 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2531 .nr_to_write = 0, /* metadata-only */ 2532 }; 2533 2534 return sync_inode(inode, &wbc); 2535 } 2536 EXPORT_SYMBOL(sync_inode_metadata); 2537