xref: /linux/fs/fs-writeback.c (revision 088e88be5a380cc4e81963a9a02815da465d144f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 struct wb_completion {
40 	atomic_t		cnt;
41 };
42 
43 /*
44  * Passed into wb_writeback(), essentially a subset of writeback_control
45  */
46 struct wb_writeback_work {
47 	long nr_pages;
48 	struct super_block *sb;
49 	unsigned long *older_than_this;
50 	enum writeback_sync_modes sync_mode;
51 	unsigned int tagged_writepages:1;
52 	unsigned int for_kupdate:1;
53 	unsigned int range_cyclic:1;
54 	unsigned int for_background:1;
55 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
56 	unsigned int auto_free:1;	/* free on completion */
57 	enum wb_reason reason;		/* why was writeback initiated? */
58 
59 	struct list_head list;		/* pending work list */
60 	struct wb_completion *done;	/* set if the caller waits */
61 };
62 
63 /*
64  * If one wants to wait for one or more wb_writeback_works, each work's
65  * ->done should be set to a wb_completion defined using the following
66  * macro.  Once all work items are issued with wb_queue_work(), the caller
67  * can wait for the completion of all using wb_wait_for_completion().  Work
68  * items which are waited upon aren't freed automatically on completion.
69  */
70 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
71 	struct wb_completion cmpl = {					\
72 		.cnt		= ATOMIC_INIT(1),			\
73 	}
74 
75 
76 /*
77  * If an inode is constantly having its pages dirtied, but then the
78  * updates stop dirtytime_expire_interval seconds in the past, it's
79  * possible for the worst case time between when an inode has its
80  * timestamps updated and when they finally get written out to be two
81  * dirtytime_expire_intervals.  We set the default to 12 hours (in
82  * seconds), which means most of the time inodes will have their
83  * timestamps written to disk after 12 hours, but in the worst case a
84  * few inodes might not their timestamps updated for 24 hours.
85  */
86 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87 
88 static inline struct inode *wb_inode(struct list_head *head)
89 {
90 	return list_entry(head, struct inode, i_io_list);
91 }
92 
93 /*
94  * Include the creation of the trace points after defining the
95  * wb_writeback_work structure and inline functions so that the definition
96  * remains local to this file.
97  */
98 #define CREATE_TRACE_POINTS
99 #include <trace/events/writeback.h>
100 
101 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102 
103 static bool wb_io_lists_populated(struct bdi_writeback *wb)
104 {
105 	if (wb_has_dirty_io(wb)) {
106 		return false;
107 	} else {
108 		set_bit(WB_has_dirty_io, &wb->state);
109 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
110 		atomic_long_add(wb->avg_write_bandwidth,
111 				&wb->bdi->tot_write_bandwidth);
112 		return true;
113 	}
114 }
115 
116 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117 {
118 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120 		clear_bit(WB_has_dirty_io, &wb->state);
121 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122 					&wb->bdi->tot_write_bandwidth) < 0);
123 	}
124 }
125 
126 /**
127  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
128  * @inode: inode to be moved
129  * @wb: target bdi_writeback
130  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
131  *
132  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
133  * Returns %true if @inode is the first occupant of the !dirty_time IO
134  * lists; otherwise, %false.
135  */
136 static bool inode_io_list_move_locked(struct inode *inode,
137 				      struct bdi_writeback *wb,
138 				      struct list_head *head)
139 {
140 	assert_spin_locked(&wb->list_lock);
141 
142 	list_move(&inode->i_io_list, head);
143 
144 	/* dirty_time doesn't count as dirty_io until expiration */
145 	if (head != &wb->b_dirty_time)
146 		return wb_io_lists_populated(wb);
147 
148 	wb_io_lists_depopulated(wb);
149 	return false;
150 }
151 
152 /**
153  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
154  * @inode: inode to be removed
155  * @wb: bdi_writeback @inode is being removed from
156  *
157  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158  * clear %WB_has_dirty_io if all are empty afterwards.
159  */
160 static void inode_io_list_del_locked(struct inode *inode,
161 				     struct bdi_writeback *wb)
162 {
163 	assert_spin_locked(&wb->list_lock);
164 
165 	list_del_init(&inode->i_io_list);
166 	wb_io_lists_depopulated(wb);
167 }
168 
169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171 	spin_lock_bh(&wb->work_lock);
172 	if (test_bit(WB_registered, &wb->state))
173 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 	spin_unlock_bh(&wb->work_lock);
175 }
176 
177 static void finish_writeback_work(struct bdi_writeback *wb,
178 				  struct wb_writeback_work *work)
179 {
180 	struct wb_completion *done = work->done;
181 
182 	if (work->auto_free)
183 		kfree(work);
184 	if (done && atomic_dec_and_test(&done->cnt))
185 		wake_up_all(&wb->bdi->wb_waitq);
186 }
187 
188 static void wb_queue_work(struct bdi_writeback *wb,
189 			  struct wb_writeback_work *work)
190 {
191 	trace_writeback_queue(wb, work);
192 
193 	if (work->done)
194 		atomic_inc(&work->done->cnt);
195 
196 	spin_lock_bh(&wb->work_lock);
197 
198 	if (test_bit(WB_registered, &wb->state)) {
199 		list_add_tail(&work->list, &wb->work_list);
200 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 	} else
202 		finish_writeback_work(wb, work);
203 
204 	spin_unlock_bh(&wb->work_lock);
205 }
206 
207 /**
208  * wb_wait_for_completion - wait for completion of bdi_writeback_works
209  * @bdi: bdi work items were issued to
210  * @done: target wb_completion
211  *
212  * Wait for one or more work items issued to @bdi with their ->done field
213  * set to @done, which should have been defined with
214  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
215  * work items are completed.  Work items which are waited upon aren't freed
216  * automatically on completion.
217  */
218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 				   struct wb_completion *done)
220 {
221 	atomic_dec(&done->cnt);		/* put down the initial count */
222 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224 
225 #ifdef CONFIG_CGROUP_WRITEBACK
226 
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
232 
233 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 					/* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
237 					/* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 					/* one round can affect upto 5 slots */
240 
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243 
244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246 	struct backing_dev_info *bdi = inode_to_bdi(inode);
247 	struct bdi_writeback *wb = NULL;
248 
249 	if (inode_cgwb_enabled(inode)) {
250 		struct cgroup_subsys_state *memcg_css;
251 
252 		if (page) {
253 			memcg_css = mem_cgroup_css_from_page(page);
254 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 		} else {
256 			/* must pin memcg_css, see wb_get_create() */
257 			memcg_css = task_get_css(current, memory_cgrp_id);
258 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 			css_put(memcg_css);
260 		}
261 	}
262 
263 	if (!wb)
264 		wb = &bdi->wb;
265 
266 	/*
267 	 * There may be multiple instances of this function racing to
268 	 * update the same inode.  Use cmpxchg() to tell the winner.
269 	 */
270 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 		wb_put(wb);
272 }
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
274 
275 /**
276  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277  * @inode: inode of interest with i_lock held
278  *
279  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
280  * held on entry and is released on return.  The returned wb is guaranteed
281  * to stay @inode's associated wb until its list_lock is released.
282  */
283 static struct bdi_writeback *
284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285 	__releases(&inode->i_lock)
286 	__acquires(&wb->list_lock)
287 {
288 	while (true) {
289 		struct bdi_writeback *wb = inode_to_wb(inode);
290 
291 		/*
292 		 * inode_to_wb() association is protected by both
293 		 * @inode->i_lock and @wb->list_lock but list_lock nests
294 		 * outside i_lock.  Drop i_lock and verify that the
295 		 * association hasn't changed after acquiring list_lock.
296 		 */
297 		wb_get(wb);
298 		spin_unlock(&inode->i_lock);
299 		spin_lock(&wb->list_lock);
300 
301 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
302 		if (likely(wb == inode->i_wb)) {
303 			wb_put(wb);	/* @inode already has ref */
304 			return wb;
305 		}
306 
307 		spin_unlock(&wb->list_lock);
308 		wb_put(wb);
309 		cpu_relax();
310 		spin_lock(&inode->i_lock);
311 	}
312 }
313 
314 /**
315  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316  * @inode: inode of interest
317  *
318  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319  * on entry.
320  */
321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322 	__acquires(&wb->list_lock)
323 {
324 	spin_lock(&inode->i_lock);
325 	return locked_inode_to_wb_and_lock_list(inode);
326 }
327 
328 struct inode_switch_wbs_context {
329 	struct inode		*inode;
330 	struct bdi_writeback	*new_wb;
331 
332 	struct rcu_head		rcu_head;
333 	struct work_struct	work;
334 };
335 
336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337 {
338 	down_write(&bdi->wb_switch_rwsem);
339 }
340 
341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343 	up_write(&bdi->wb_switch_rwsem);
344 }
345 
346 static void inode_switch_wbs_work_fn(struct work_struct *work)
347 {
348 	struct inode_switch_wbs_context *isw =
349 		container_of(work, struct inode_switch_wbs_context, work);
350 	struct inode *inode = isw->inode;
351 	struct backing_dev_info *bdi = inode_to_bdi(inode);
352 	struct address_space *mapping = inode->i_mapping;
353 	struct bdi_writeback *old_wb = inode->i_wb;
354 	struct bdi_writeback *new_wb = isw->new_wb;
355 	XA_STATE(xas, &mapping->i_pages, 0);
356 	struct page *page;
357 	bool switched = false;
358 
359 	/*
360 	 * If @inode switches cgwb membership while sync_inodes_sb() is
361 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
362 	 */
363 	down_read(&bdi->wb_switch_rwsem);
364 
365 	/*
366 	 * By the time control reaches here, RCU grace period has passed
367 	 * since I_WB_SWITCH assertion and all wb stat update transactions
368 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369 	 * synchronizing against the i_pages lock.
370 	 *
371 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372 	 * gives us exclusion against all wb related operations on @inode
373 	 * including IO list manipulations and stat updates.
374 	 */
375 	if (old_wb < new_wb) {
376 		spin_lock(&old_wb->list_lock);
377 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378 	} else {
379 		spin_lock(&new_wb->list_lock);
380 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381 	}
382 	spin_lock(&inode->i_lock);
383 	xa_lock_irq(&mapping->i_pages);
384 
385 	/*
386 	 * Once I_FREEING is visible under i_lock, the eviction path owns
387 	 * the inode and we shouldn't modify ->i_io_list.
388 	 */
389 	if (unlikely(inode->i_state & I_FREEING))
390 		goto skip_switch;
391 
392 	/*
393 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
394 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
395 	 * pages actually under writeback.
396 	 */
397 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
398 		if (PageDirty(page)) {
399 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
400 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
401 		}
402 	}
403 
404 	xas_set(&xas, 0);
405 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
406 		WARN_ON_ONCE(!PageWriteback(page));
407 		dec_wb_stat(old_wb, WB_WRITEBACK);
408 		inc_wb_stat(new_wb, WB_WRITEBACK);
409 	}
410 
411 	wb_get(new_wb);
412 
413 	/*
414 	 * Transfer to @new_wb's IO list if necessary.  The specific list
415 	 * @inode was on is ignored and the inode is put on ->b_dirty which
416 	 * is always correct including from ->b_dirty_time.  The transfer
417 	 * preserves @inode->dirtied_when ordering.
418 	 */
419 	if (!list_empty(&inode->i_io_list)) {
420 		struct inode *pos;
421 
422 		inode_io_list_del_locked(inode, old_wb);
423 		inode->i_wb = new_wb;
424 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
425 			if (time_after_eq(inode->dirtied_when,
426 					  pos->dirtied_when))
427 				break;
428 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
429 	} else {
430 		inode->i_wb = new_wb;
431 	}
432 
433 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
434 	inode->i_wb_frn_winner = 0;
435 	inode->i_wb_frn_avg_time = 0;
436 	inode->i_wb_frn_history = 0;
437 	switched = true;
438 skip_switch:
439 	/*
440 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
441 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
442 	 */
443 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
444 
445 	xa_unlock_irq(&mapping->i_pages);
446 	spin_unlock(&inode->i_lock);
447 	spin_unlock(&new_wb->list_lock);
448 	spin_unlock(&old_wb->list_lock);
449 
450 	up_read(&bdi->wb_switch_rwsem);
451 
452 	if (switched) {
453 		wb_wakeup(new_wb);
454 		wb_put(old_wb);
455 	}
456 	wb_put(new_wb);
457 
458 	iput(inode);
459 	kfree(isw);
460 
461 	atomic_dec(&isw_nr_in_flight);
462 }
463 
464 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
465 {
466 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
467 				struct inode_switch_wbs_context, rcu_head);
468 
469 	/* needs to grab bh-unsafe locks, bounce to work item */
470 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
471 	queue_work(isw_wq, &isw->work);
472 }
473 
474 /**
475  * inode_switch_wbs - change the wb association of an inode
476  * @inode: target inode
477  * @new_wb_id: ID of the new wb
478  *
479  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
480  * switching is performed asynchronously and may fail silently.
481  */
482 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
483 {
484 	struct backing_dev_info *bdi = inode_to_bdi(inode);
485 	struct cgroup_subsys_state *memcg_css;
486 	struct inode_switch_wbs_context *isw;
487 
488 	/* noop if seems to be already in progress */
489 	if (inode->i_state & I_WB_SWITCH)
490 		return;
491 
492 	/*
493 	 * Avoid starting new switches while sync_inodes_sb() is in
494 	 * progress.  Otherwise, if the down_write protected issue path
495 	 * blocks heavily, we might end up starting a large number of
496 	 * switches which will block on the rwsem.
497 	 */
498 	if (!down_read_trylock(&bdi->wb_switch_rwsem))
499 		return;
500 
501 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
502 	if (!isw)
503 		goto out_unlock;
504 
505 	/* find and pin the new wb */
506 	rcu_read_lock();
507 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
508 	if (memcg_css)
509 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
510 	rcu_read_unlock();
511 	if (!isw->new_wb)
512 		goto out_free;
513 
514 	/* while holding I_WB_SWITCH, no one else can update the association */
515 	spin_lock(&inode->i_lock);
516 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
517 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
518 	    inode_to_wb(inode) == isw->new_wb) {
519 		spin_unlock(&inode->i_lock);
520 		goto out_free;
521 	}
522 	inode->i_state |= I_WB_SWITCH;
523 	__iget(inode);
524 	spin_unlock(&inode->i_lock);
525 
526 	isw->inode = inode;
527 
528 	/*
529 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
530 	 * the RCU protected stat update paths to grab the i_page
531 	 * lock so that stat transfer can synchronize against them.
532 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
533 	 */
534 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
535 
536 	atomic_inc(&isw_nr_in_flight);
537 
538 	goto out_unlock;
539 
540 out_free:
541 	if (isw->new_wb)
542 		wb_put(isw->new_wb);
543 	kfree(isw);
544 out_unlock:
545 	up_read(&bdi->wb_switch_rwsem);
546 }
547 
548 /**
549  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
550  * @wbc: writeback_control of interest
551  * @inode: target inode
552  *
553  * @inode is locked and about to be written back under the control of @wbc.
554  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
555  * writeback completion, wbc_detach_inode() should be called.  This is used
556  * to track the cgroup writeback context.
557  */
558 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
559 				 struct inode *inode)
560 {
561 	if (!inode_cgwb_enabled(inode)) {
562 		spin_unlock(&inode->i_lock);
563 		return;
564 	}
565 
566 	wbc->wb = inode_to_wb(inode);
567 	wbc->inode = inode;
568 
569 	wbc->wb_id = wbc->wb->memcg_css->id;
570 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
571 	wbc->wb_tcand_id = 0;
572 	wbc->wb_bytes = 0;
573 	wbc->wb_lcand_bytes = 0;
574 	wbc->wb_tcand_bytes = 0;
575 
576 	wb_get(wbc->wb);
577 	spin_unlock(&inode->i_lock);
578 
579 	/*
580 	 * A dying wb indicates that the memcg-blkcg mapping has changed
581 	 * and a new wb is already serving the memcg.  Switch immediately.
582 	 */
583 	if (unlikely(wb_dying(wbc->wb)))
584 		inode_switch_wbs(inode, wbc->wb_id);
585 }
586 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
587 
588 /**
589  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
590  * @wbc: writeback_control of the just finished writeback
591  *
592  * To be called after a writeback attempt of an inode finishes and undoes
593  * wbc_attach_and_unlock_inode().  Can be called under any context.
594  *
595  * As concurrent write sharing of an inode is expected to be very rare and
596  * memcg only tracks page ownership on first-use basis severely confining
597  * the usefulness of such sharing, cgroup writeback tracks ownership
598  * per-inode.  While the support for concurrent write sharing of an inode
599  * is deemed unnecessary, an inode being written to by different cgroups at
600  * different points in time is a lot more common, and, more importantly,
601  * charging only by first-use can too readily lead to grossly incorrect
602  * behaviors (single foreign page can lead to gigabytes of writeback to be
603  * incorrectly attributed).
604  *
605  * To resolve this issue, cgroup writeback detects the majority dirtier of
606  * an inode and transfers the ownership to it.  To avoid unnnecessary
607  * oscillation, the detection mechanism keeps track of history and gives
608  * out the switch verdict only if the foreign usage pattern is stable over
609  * a certain amount of time and/or writeback attempts.
610  *
611  * On each writeback attempt, @wbc tries to detect the majority writer
612  * using Boyer-Moore majority vote algorithm.  In addition to the byte
613  * count from the majority voting, it also counts the bytes written for the
614  * current wb and the last round's winner wb (max of last round's current
615  * wb, the winner from two rounds ago, and the last round's majority
616  * candidate).  Keeping track of the historical winner helps the algorithm
617  * to semi-reliably detect the most active writer even when it's not the
618  * absolute majority.
619  *
620  * Once the winner of the round is determined, whether the winner is
621  * foreign or not and how much IO time the round consumed is recorded in
622  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
623  * over a certain threshold, the switch verdict is given.
624  */
625 void wbc_detach_inode(struct writeback_control *wbc)
626 {
627 	struct bdi_writeback *wb = wbc->wb;
628 	struct inode *inode = wbc->inode;
629 	unsigned long avg_time, max_bytes, max_time;
630 	u16 history;
631 	int max_id;
632 
633 	if (!wb)
634 		return;
635 
636 	history = inode->i_wb_frn_history;
637 	avg_time = inode->i_wb_frn_avg_time;
638 
639 	/* pick the winner of this round */
640 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
641 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
642 		max_id = wbc->wb_id;
643 		max_bytes = wbc->wb_bytes;
644 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
645 		max_id = wbc->wb_lcand_id;
646 		max_bytes = wbc->wb_lcand_bytes;
647 	} else {
648 		max_id = wbc->wb_tcand_id;
649 		max_bytes = wbc->wb_tcand_bytes;
650 	}
651 
652 	/*
653 	 * Calculate the amount of IO time the winner consumed and fold it
654 	 * into the running average kept per inode.  If the consumed IO
655 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
656 	 * deciding whether to switch or not.  This is to prevent one-off
657 	 * small dirtiers from skewing the verdict.
658 	 */
659 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
660 				wb->avg_write_bandwidth);
661 	if (avg_time)
662 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
663 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
664 	else
665 		avg_time = max_time;	/* immediate catch up on first run */
666 
667 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
668 		int slots;
669 
670 		/*
671 		 * The switch verdict is reached if foreign wb's consume
672 		 * more than a certain proportion of IO time in a
673 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
674 		 * history mask where each bit represents one sixteenth of
675 		 * the period.  Determine the number of slots to shift into
676 		 * history from @max_time.
677 		 */
678 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
679 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
680 		history <<= slots;
681 		if (wbc->wb_id != max_id)
682 			history |= (1U << slots) - 1;
683 
684 		/*
685 		 * Switch if the current wb isn't the consistent winner.
686 		 * If there are multiple closely competing dirtiers, the
687 		 * inode may switch across them repeatedly over time, which
688 		 * is okay.  The main goal is avoiding keeping an inode on
689 		 * the wrong wb for an extended period of time.
690 		 */
691 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
692 			inode_switch_wbs(inode, max_id);
693 	}
694 
695 	/*
696 	 * Multiple instances of this function may race to update the
697 	 * following fields but we don't mind occassional inaccuracies.
698 	 */
699 	inode->i_wb_frn_winner = max_id;
700 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
701 	inode->i_wb_frn_history = history;
702 
703 	wb_put(wbc->wb);
704 	wbc->wb = NULL;
705 }
706 EXPORT_SYMBOL_GPL(wbc_detach_inode);
707 
708 /**
709  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
710  * @wbc: writeback_control of the writeback in progress
711  * @page: page being written out
712  * @bytes: number of bytes being written out
713  *
714  * @bytes from @page are about to written out during the writeback
715  * controlled by @wbc.  Keep the book for foreign inode detection.  See
716  * wbc_detach_inode().
717  */
718 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
719 			      size_t bytes)
720 {
721 	struct cgroup_subsys_state *css;
722 	int id;
723 
724 	/*
725 	 * pageout() path doesn't attach @wbc to the inode being written
726 	 * out.  This is intentional as we don't want the function to block
727 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
728 	 * regular writeback instead of writing things out itself.
729 	 */
730 	if (!wbc->wb || wbc->no_cgroup_owner)
731 		return;
732 
733 	css = mem_cgroup_css_from_page(page);
734 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
735 	if (!(css->flags & CSS_ONLINE))
736 		return;
737 
738 	id = css->id;
739 
740 	if (id == wbc->wb_id) {
741 		wbc->wb_bytes += bytes;
742 		return;
743 	}
744 
745 	if (id == wbc->wb_lcand_id)
746 		wbc->wb_lcand_bytes += bytes;
747 
748 	/* Boyer-Moore majority vote algorithm */
749 	if (!wbc->wb_tcand_bytes)
750 		wbc->wb_tcand_id = id;
751 	if (id == wbc->wb_tcand_id)
752 		wbc->wb_tcand_bytes += bytes;
753 	else
754 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
755 }
756 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
757 
758 /**
759  * inode_congested - test whether an inode is congested
760  * @inode: inode to test for congestion (may be NULL)
761  * @cong_bits: mask of WB_[a]sync_congested bits to test
762  *
763  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
764  * bits to test and the return value is the mask of set bits.
765  *
766  * If cgroup writeback is enabled for @inode, the congestion state is
767  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
768  * associated with @inode is congested; otherwise, the root wb's congestion
769  * state is used.
770  *
771  * @inode is allowed to be NULL as this function is often called on
772  * mapping->host which is NULL for the swapper space.
773  */
774 int inode_congested(struct inode *inode, int cong_bits)
775 {
776 	/*
777 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
778 	 * Start transaction iff ->i_wb is visible.
779 	 */
780 	if (inode && inode_to_wb_is_valid(inode)) {
781 		struct bdi_writeback *wb;
782 		struct wb_lock_cookie lock_cookie = {};
783 		bool congested;
784 
785 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
786 		congested = wb_congested(wb, cong_bits);
787 		unlocked_inode_to_wb_end(inode, &lock_cookie);
788 		return congested;
789 	}
790 
791 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
792 }
793 EXPORT_SYMBOL_GPL(inode_congested);
794 
795 /**
796  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
797  * @wb: target bdi_writeback to split @nr_pages to
798  * @nr_pages: number of pages to write for the whole bdi
799  *
800  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
801  * relation to the total write bandwidth of all wb's w/ dirty inodes on
802  * @wb->bdi.
803  */
804 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
805 {
806 	unsigned long this_bw = wb->avg_write_bandwidth;
807 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
808 
809 	if (nr_pages == LONG_MAX)
810 		return LONG_MAX;
811 
812 	/*
813 	 * This may be called on clean wb's and proportional distribution
814 	 * may not make sense, just use the original @nr_pages in those
815 	 * cases.  In general, we wanna err on the side of writing more.
816 	 */
817 	if (!tot_bw || this_bw >= tot_bw)
818 		return nr_pages;
819 	else
820 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
821 }
822 
823 /**
824  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
825  * @bdi: target backing_dev_info
826  * @base_work: wb_writeback_work to issue
827  * @skip_if_busy: skip wb's which already have writeback in progress
828  *
829  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
830  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
831  * distributed to the busy wbs according to each wb's proportion in the
832  * total active write bandwidth of @bdi.
833  */
834 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
835 				  struct wb_writeback_work *base_work,
836 				  bool skip_if_busy)
837 {
838 	struct bdi_writeback *last_wb = NULL;
839 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
840 					      struct bdi_writeback, bdi_node);
841 
842 	might_sleep();
843 restart:
844 	rcu_read_lock();
845 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
846 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
847 		struct wb_writeback_work fallback_work;
848 		struct wb_writeback_work *work;
849 		long nr_pages;
850 
851 		if (last_wb) {
852 			wb_put(last_wb);
853 			last_wb = NULL;
854 		}
855 
856 		/* SYNC_ALL writes out I_DIRTY_TIME too */
857 		if (!wb_has_dirty_io(wb) &&
858 		    (base_work->sync_mode == WB_SYNC_NONE ||
859 		     list_empty(&wb->b_dirty_time)))
860 			continue;
861 		if (skip_if_busy && writeback_in_progress(wb))
862 			continue;
863 
864 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
865 
866 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
867 		if (work) {
868 			*work = *base_work;
869 			work->nr_pages = nr_pages;
870 			work->auto_free = 1;
871 			wb_queue_work(wb, work);
872 			continue;
873 		}
874 
875 		/* alloc failed, execute synchronously using on-stack fallback */
876 		work = &fallback_work;
877 		*work = *base_work;
878 		work->nr_pages = nr_pages;
879 		work->auto_free = 0;
880 		work->done = &fallback_work_done;
881 
882 		wb_queue_work(wb, work);
883 
884 		/*
885 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
886 		 * continuing iteration from @wb after dropping and
887 		 * regrabbing rcu read lock.
888 		 */
889 		wb_get(wb);
890 		last_wb = wb;
891 
892 		rcu_read_unlock();
893 		wb_wait_for_completion(bdi, &fallback_work_done);
894 		goto restart;
895 	}
896 	rcu_read_unlock();
897 
898 	if (last_wb)
899 		wb_put(last_wb);
900 }
901 
902 /**
903  * cgroup_writeback_umount - flush inode wb switches for umount
904  *
905  * This function is called when a super_block is about to be destroyed and
906  * flushes in-flight inode wb switches.  An inode wb switch goes through
907  * RCU and then workqueue, so the two need to be flushed in order to ensure
908  * that all previously scheduled switches are finished.  As wb switches are
909  * rare occurrences and synchronize_rcu() can take a while, perform
910  * flushing iff wb switches are in flight.
911  */
912 void cgroup_writeback_umount(void)
913 {
914 	if (atomic_read(&isw_nr_in_flight)) {
915 		/*
916 		 * Use rcu_barrier() to wait for all pending callbacks to
917 		 * ensure that all in-flight wb switches are in the workqueue.
918 		 */
919 		rcu_barrier();
920 		flush_workqueue(isw_wq);
921 	}
922 }
923 
924 static int __init cgroup_writeback_init(void)
925 {
926 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
927 	if (!isw_wq)
928 		return -ENOMEM;
929 	return 0;
930 }
931 fs_initcall(cgroup_writeback_init);
932 
933 #else	/* CONFIG_CGROUP_WRITEBACK */
934 
935 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
936 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
937 
938 static struct bdi_writeback *
939 locked_inode_to_wb_and_lock_list(struct inode *inode)
940 	__releases(&inode->i_lock)
941 	__acquires(&wb->list_lock)
942 {
943 	struct bdi_writeback *wb = inode_to_wb(inode);
944 
945 	spin_unlock(&inode->i_lock);
946 	spin_lock(&wb->list_lock);
947 	return wb;
948 }
949 
950 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
951 	__acquires(&wb->list_lock)
952 {
953 	struct bdi_writeback *wb = inode_to_wb(inode);
954 
955 	spin_lock(&wb->list_lock);
956 	return wb;
957 }
958 
959 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
960 {
961 	return nr_pages;
962 }
963 
964 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
965 				  struct wb_writeback_work *base_work,
966 				  bool skip_if_busy)
967 {
968 	might_sleep();
969 
970 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
971 		base_work->auto_free = 0;
972 		wb_queue_work(&bdi->wb, base_work);
973 	}
974 }
975 
976 #endif	/* CONFIG_CGROUP_WRITEBACK */
977 
978 /*
979  * Add in the number of potentially dirty inodes, because each inode
980  * write can dirty pagecache in the underlying blockdev.
981  */
982 static unsigned long get_nr_dirty_pages(void)
983 {
984 	return global_node_page_state(NR_FILE_DIRTY) +
985 		global_node_page_state(NR_UNSTABLE_NFS) +
986 		get_nr_dirty_inodes();
987 }
988 
989 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
990 {
991 	if (!wb_has_dirty_io(wb))
992 		return;
993 
994 	/*
995 	 * All callers of this function want to start writeback of all
996 	 * dirty pages. Places like vmscan can call this at a very
997 	 * high frequency, causing pointless allocations of tons of
998 	 * work items and keeping the flusher threads busy retrieving
999 	 * that work. Ensure that we only allow one of them pending and
1000 	 * inflight at the time.
1001 	 */
1002 	if (test_bit(WB_start_all, &wb->state) ||
1003 	    test_and_set_bit(WB_start_all, &wb->state))
1004 		return;
1005 
1006 	wb->start_all_reason = reason;
1007 	wb_wakeup(wb);
1008 }
1009 
1010 /**
1011  * wb_start_background_writeback - start background writeback
1012  * @wb: bdi_writback to write from
1013  *
1014  * Description:
1015  *   This makes sure WB_SYNC_NONE background writeback happens. When
1016  *   this function returns, it is only guaranteed that for given wb
1017  *   some IO is happening if we are over background dirty threshold.
1018  *   Caller need not hold sb s_umount semaphore.
1019  */
1020 void wb_start_background_writeback(struct bdi_writeback *wb)
1021 {
1022 	/*
1023 	 * We just wake up the flusher thread. It will perform background
1024 	 * writeback as soon as there is no other work to do.
1025 	 */
1026 	trace_writeback_wake_background(wb);
1027 	wb_wakeup(wb);
1028 }
1029 
1030 /*
1031  * Remove the inode from the writeback list it is on.
1032  */
1033 void inode_io_list_del(struct inode *inode)
1034 {
1035 	struct bdi_writeback *wb;
1036 
1037 	wb = inode_to_wb_and_lock_list(inode);
1038 	inode_io_list_del_locked(inode, wb);
1039 	spin_unlock(&wb->list_lock);
1040 }
1041 
1042 /*
1043  * mark an inode as under writeback on the sb
1044  */
1045 void sb_mark_inode_writeback(struct inode *inode)
1046 {
1047 	struct super_block *sb = inode->i_sb;
1048 	unsigned long flags;
1049 
1050 	if (list_empty(&inode->i_wb_list)) {
1051 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1052 		if (list_empty(&inode->i_wb_list)) {
1053 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1054 			trace_sb_mark_inode_writeback(inode);
1055 		}
1056 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1057 	}
1058 }
1059 
1060 /*
1061  * clear an inode as under writeback on the sb
1062  */
1063 void sb_clear_inode_writeback(struct inode *inode)
1064 {
1065 	struct super_block *sb = inode->i_sb;
1066 	unsigned long flags;
1067 
1068 	if (!list_empty(&inode->i_wb_list)) {
1069 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1070 		if (!list_empty(&inode->i_wb_list)) {
1071 			list_del_init(&inode->i_wb_list);
1072 			trace_sb_clear_inode_writeback(inode);
1073 		}
1074 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1075 	}
1076 }
1077 
1078 /*
1079  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1080  * furthest end of its superblock's dirty-inode list.
1081  *
1082  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1083  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1084  * the case then the inode must have been redirtied while it was being written
1085  * out and we don't reset its dirtied_when.
1086  */
1087 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1088 {
1089 	if (!list_empty(&wb->b_dirty)) {
1090 		struct inode *tail;
1091 
1092 		tail = wb_inode(wb->b_dirty.next);
1093 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1094 			inode->dirtied_when = jiffies;
1095 	}
1096 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1097 }
1098 
1099 /*
1100  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1101  */
1102 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1103 {
1104 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1105 }
1106 
1107 static void inode_sync_complete(struct inode *inode)
1108 {
1109 	inode->i_state &= ~I_SYNC;
1110 	/* If inode is clean an unused, put it into LRU now... */
1111 	inode_add_lru(inode);
1112 	/* Waiters must see I_SYNC cleared before being woken up */
1113 	smp_mb();
1114 	wake_up_bit(&inode->i_state, __I_SYNC);
1115 }
1116 
1117 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1118 {
1119 	bool ret = time_after(inode->dirtied_when, t);
1120 #ifndef CONFIG_64BIT
1121 	/*
1122 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1123 	 * It _appears_ to be in the future, but is actually in distant past.
1124 	 * This test is necessary to prevent such wrapped-around relative times
1125 	 * from permanently stopping the whole bdi writeback.
1126 	 */
1127 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1128 #endif
1129 	return ret;
1130 }
1131 
1132 #define EXPIRE_DIRTY_ATIME 0x0001
1133 
1134 /*
1135  * Move expired (dirtied before work->older_than_this) dirty inodes from
1136  * @delaying_queue to @dispatch_queue.
1137  */
1138 static int move_expired_inodes(struct list_head *delaying_queue,
1139 			       struct list_head *dispatch_queue,
1140 			       int flags,
1141 			       struct wb_writeback_work *work)
1142 {
1143 	unsigned long *older_than_this = NULL;
1144 	unsigned long expire_time;
1145 	LIST_HEAD(tmp);
1146 	struct list_head *pos, *node;
1147 	struct super_block *sb = NULL;
1148 	struct inode *inode;
1149 	int do_sb_sort = 0;
1150 	int moved = 0;
1151 
1152 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1153 		older_than_this = work->older_than_this;
1154 	else if (!work->for_sync) {
1155 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1156 		older_than_this = &expire_time;
1157 	}
1158 	while (!list_empty(delaying_queue)) {
1159 		inode = wb_inode(delaying_queue->prev);
1160 		if (older_than_this &&
1161 		    inode_dirtied_after(inode, *older_than_this))
1162 			break;
1163 		list_move(&inode->i_io_list, &tmp);
1164 		moved++;
1165 		if (flags & EXPIRE_DIRTY_ATIME)
1166 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1167 		if (sb_is_blkdev_sb(inode->i_sb))
1168 			continue;
1169 		if (sb && sb != inode->i_sb)
1170 			do_sb_sort = 1;
1171 		sb = inode->i_sb;
1172 	}
1173 
1174 	/* just one sb in list, splice to dispatch_queue and we're done */
1175 	if (!do_sb_sort) {
1176 		list_splice(&tmp, dispatch_queue);
1177 		goto out;
1178 	}
1179 
1180 	/* Move inodes from one superblock together */
1181 	while (!list_empty(&tmp)) {
1182 		sb = wb_inode(tmp.prev)->i_sb;
1183 		list_for_each_prev_safe(pos, node, &tmp) {
1184 			inode = wb_inode(pos);
1185 			if (inode->i_sb == sb)
1186 				list_move(&inode->i_io_list, dispatch_queue);
1187 		}
1188 	}
1189 out:
1190 	return moved;
1191 }
1192 
1193 /*
1194  * Queue all expired dirty inodes for io, eldest first.
1195  * Before
1196  *         newly dirtied     b_dirty    b_io    b_more_io
1197  *         =============>    gf         edc     BA
1198  * After
1199  *         newly dirtied     b_dirty    b_io    b_more_io
1200  *         =============>    g          fBAedc
1201  *                                           |
1202  *                                           +--> dequeue for IO
1203  */
1204 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1205 {
1206 	int moved;
1207 
1208 	assert_spin_locked(&wb->list_lock);
1209 	list_splice_init(&wb->b_more_io, &wb->b_io);
1210 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1211 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1212 				     EXPIRE_DIRTY_ATIME, work);
1213 	if (moved)
1214 		wb_io_lists_populated(wb);
1215 	trace_writeback_queue_io(wb, work, moved);
1216 }
1217 
1218 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1219 {
1220 	int ret;
1221 
1222 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1223 		trace_writeback_write_inode_start(inode, wbc);
1224 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1225 		trace_writeback_write_inode(inode, wbc);
1226 		return ret;
1227 	}
1228 	return 0;
1229 }
1230 
1231 /*
1232  * Wait for writeback on an inode to complete. Called with i_lock held.
1233  * Caller must make sure inode cannot go away when we drop i_lock.
1234  */
1235 static void __inode_wait_for_writeback(struct inode *inode)
1236 	__releases(inode->i_lock)
1237 	__acquires(inode->i_lock)
1238 {
1239 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1240 	wait_queue_head_t *wqh;
1241 
1242 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1243 	while (inode->i_state & I_SYNC) {
1244 		spin_unlock(&inode->i_lock);
1245 		__wait_on_bit(wqh, &wq, bit_wait,
1246 			      TASK_UNINTERRUPTIBLE);
1247 		spin_lock(&inode->i_lock);
1248 	}
1249 }
1250 
1251 /*
1252  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1253  */
1254 void inode_wait_for_writeback(struct inode *inode)
1255 {
1256 	spin_lock(&inode->i_lock);
1257 	__inode_wait_for_writeback(inode);
1258 	spin_unlock(&inode->i_lock);
1259 }
1260 
1261 /*
1262  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1263  * held and drops it. It is aimed for callers not holding any inode reference
1264  * so once i_lock is dropped, inode can go away.
1265  */
1266 static void inode_sleep_on_writeback(struct inode *inode)
1267 	__releases(inode->i_lock)
1268 {
1269 	DEFINE_WAIT(wait);
1270 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1271 	int sleep;
1272 
1273 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1274 	sleep = inode->i_state & I_SYNC;
1275 	spin_unlock(&inode->i_lock);
1276 	if (sleep)
1277 		schedule();
1278 	finish_wait(wqh, &wait);
1279 }
1280 
1281 /*
1282  * Find proper writeback list for the inode depending on its current state and
1283  * possibly also change of its state while we were doing writeback.  Here we
1284  * handle things such as livelock prevention or fairness of writeback among
1285  * inodes. This function can be called only by flusher thread - noone else
1286  * processes all inodes in writeback lists and requeueing inodes behind flusher
1287  * thread's back can have unexpected consequences.
1288  */
1289 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1290 			  struct writeback_control *wbc)
1291 {
1292 	if (inode->i_state & I_FREEING)
1293 		return;
1294 
1295 	/*
1296 	 * Sync livelock prevention. Each inode is tagged and synced in one
1297 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1298 	 * the dirty time to prevent enqueue and sync it again.
1299 	 */
1300 	if ((inode->i_state & I_DIRTY) &&
1301 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1302 		inode->dirtied_when = jiffies;
1303 
1304 	if (wbc->pages_skipped) {
1305 		/*
1306 		 * writeback is not making progress due to locked
1307 		 * buffers. Skip this inode for now.
1308 		 */
1309 		redirty_tail(inode, wb);
1310 		return;
1311 	}
1312 
1313 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1314 		/*
1315 		 * We didn't write back all the pages.  nfs_writepages()
1316 		 * sometimes bales out without doing anything.
1317 		 */
1318 		if (wbc->nr_to_write <= 0) {
1319 			/* Slice used up. Queue for next turn. */
1320 			requeue_io(inode, wb);
1321 		} else {
1322 			/*
1323 			 * Writeback blocked by something other than
1324 			 * congestion. Delay the inode for some time to
1325 			 * avoid spinning on the CPU (100% iowait)
1326 			 * retrying writeback of the dirty page/inode
1327 			 * that cannot be performed immediately.
1328 			 */
1329 			redirty_tail(inode, wb);
1330 		}
1331 	} else if (inode->i_state & I_DIRTY) {
1332 		/*
1333 		 * Filesystems can dirty the inode during writeback operations,
1334 		 * such as delayed allocation during submission or metadata
1335 		 * updates after data IO completion.
1336 		 */
1337 		redirty_tail(inode, wb);
1338 	} else if (inode->i_state & I_DIRTY_TIME) {
1339 		inode->dirtied_when = jiffies;
1340 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1341 	} else {
1342 		/* The inode is clean. Remove from writeback lists. */
1343 		inode_io_list_del_locked(inode, wb);
1344 	}
1345 }
1346 
1347 /*
1348  * Write out an inode and its dirty pages. Do not update the writeback list
1349  * linkage. That is left to the caller. The caller is also responsible for
1350  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1351  */
1352 static int
1353 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1354 {
1355 	struct address_space *mapping = inode->i_mapping;
1356 	long nr_to_write = wbc->nr_to_write;
1357 	unsigned dirty;
1358 	int ret;
1359 
1360 	WARN_ON(!(inode->i_state & I_SYNC));
1361 
1362 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1363 
1364 	ret = do_writepages(mapping, wbc);
1365 
1366 	/*
1367 	 * Make sure to wait on the data before writing out the metadata.
1368 	 * This is important for filesystems that modify metadata on data
1369 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1370 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1371 	 * inode metadata is written back correctly.
1372 	 */
1373 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1374 		int err = filemap_fdatawait(mapping);
1375 		if (ret == 0)
1376 			ret = err;
1377 	}
1378 
1379 	/*
1380 	 * Some filesystems may redirty the inode during the writeback
1381 	 * due to delalloc, clear dirty metadata flags right before
1382 	 * write_inode()
1383 	 */
1384 	spin_lock(&inode->i_lock);
1385 
1386 	dirty = inode->i_state & I_DIRTY;
1387 	if (inode->i_state & I_DIRTY_TIME) {
1388 		if ((dirty & I_DIRTY_INODE) ||
1389 		    wbc->sync_mode == WB_SYNC_ALL ||
1390 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1391 		    unlikely(time_after(jiffies,
1392 					(inode->dirtied_time_when +
1393 					 dirtytime_expire_interval * HZ)))) {
1394 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1395 			trace_writeback_lazytime(inode);
1396 		}
1397 	} else
1398 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1399 	inode->i_state &= ~dirty;
1400 
1401 	/*
1402 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1403 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1404 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1405 	 * inode.
1406 	 *
1407 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1408 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1409 	 * necessary.  This guarantees that either __mark_inode_dirty()
1410 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1411 	 */
1412 	smp_mb();
1413 
1414 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1415 		inode->i_state |= I_DIRTY_PAGES;
1416 
1417 	spin_unlock(&inode->i_lock);
1418 
1419 	if (dirty & I_DIRTY_TIME)
1420 		mark_inode_dirty_sync(inode);
1421 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1422 	if (dirty & ~I_DIRTY_PAGES) {
1423 		int err = write_inode(inode, wbc);
1424 		if (ret == 0)
1425 			ret = err;
1426 	}
1427 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1428 	return ret;
1429 }
1430 
1431 /*
1432  * Write out an inode's dirty pages. Either the caller has an active reference
1433  * on the inode or the inode has I_WILL_FREE set.
1434  *
1435  * This function is designed to be called for writing back one inode which
1436  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1437  * and does more profound writeback list handling in writeback_sb_inodes().
1438  */
1439 static int writeback_single_inode(struct inode *inode,
1440 				  struct writeback_control *wbc)
1441 {
1442 	struct bdi_writeback *wb;
1443 	int ret = 0;
1444 
1445 	spin_lock(&inode->i_lock);
1446 	if (!atomic_read(&inode->i_count))
1447 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1448 	else
1449 		WARN_ON(inode->i_state & I_WILL_FREE);
1450 
1451 	if (inode->i_state & I_SYNC) {
1452 		if (wbc->sync_mode != WB_SYNC_ALL)
1453 			goto out;
1454 		/*
1455 		 * It's a data-integrity sync. We must wait. Since callers hold
1456 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1457 		 * away under us.
1458 		 */
1459 		__inode_wait_for_writeback(inode);
1460 	}
1461 	WARN_ON(inode->i_state & I_SYNC);
1462 	/*
1463 	 * Skip inode if it is clean and we have no outstanding writeback in
1464 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1465 	 * function since flusher thread may be doing for example sync in
1466 	 * parallel and if we move the inode, it could get skipped. So here we
1467 	 * make sure inode is on some writeback list and leave it there unless
1468 	 * we have completely cleaned the inode.
1469 	 */
1470 	if (!(inode->i_state & I_DIRTY_ALL) &&
1471 	    (wbc->sync_mode != WB_SYNC_ALL ||
1472 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1473 		goto out;
1474 	inode->i_state |= I_SYNC;
1475 	wbc_attach_and_unlock_inode(wbc, inode);
1476 
1477 	ret = __writeback_single_inode(inode, wbc);
1478 
1479 	wbc_detach_inode(wbc);
1480 
1481 	wb = inode_to_wb_and_lock_list(inode);
1482 	spin_lock(&inode->i_lock);
1483 	/*
1484 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1485 	 * touch it. See comment above for explanation.
1486 	 */
1487 	if (!(inode->i_state & I_DIRTY_ALL))
1488 		inode_io_list_del_locked(inode, wb);
1489 	spin_unlock(&wb->list_lock);
1490 	inode_sync_complete(inode);
1491 out:
1492 	spin_unlock(&inode->i_lock);
1493 	return ret;
1494 }
1495 
1496 static long writeback_chunk_size(struct bdi_writeback *wb,
1497 				 struct wb_writeback_work *work)
1498 {
1499 	long pages;
1500 
1501 	/*
1502 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1503 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1504 	 * here avoids calling into writeback_inodes_wb() more than once.
1505 	 *
1506 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1507 	 *
1508 	 *      wb_writeback()
1509 	 *          writeback_sb_inodes()       <== called only once
1510 	 *              write_cache_pages()     <== called once for each inode
1511 	 *                   (quickly) tag currently dirty pages
1512 	 *                   (maybe slowly) sync all tagged pages
1513 	 */
1514 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1515 		pages = LONG_MAX;
1516 	else {
1517 		pages = min(wb->avg_write_bandwidth / 2,
1518 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1519 		pages = min(pages, work->nr_pages);
1520 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1521 				   MIN_WRITEBACK_PAGES);
1522 	}
1523 
1524 	return pages;
1525 }
1526 
1527 /*
1528  * Write a portion of b_io inodes which belong to @sb.
1529  *
1530  * Return the number of pages and/or inodes written.
1531  *
1532  * NOTE! This is called with wb->list_lock held, and will
1533  * unlock and relock that for each inode it ends up doing
1534  * IO for.
1535  */
1536 static long writeback_sb_inodes(struct super_block *sb,
1537 				struct bdi_writeback *wb,
1538 				struct wb_writeback_work *work)
1539 {
1540 	struct writeback_control wbc = {
1541 		.sync_mode		= work->sync_mode,
1542 		.tagged_writepages	= work->tagged_writepages,
1543 		.for_kupdate		= work->for_kupdate,
1544 		.for_background		= work->for_background,
1545 		.for_sync		= work->for_sync,
1546 		.range_cyclic		= work->range_cyclic,
1547 		.range_start		= 0,
1548 		.range_end		= LLONG_MAX,
1549 	};
1550 	unsigned long start_time = jiffies;
1551 	long write_chunk;
1552 	long wrote = 0;  /* count both pages and inodes */
1553 
1554 	while (!list_empty(&wb->b_io)) {
1555 		struct inode *inode = wb_inode(wb->b_io.prev);
1556 		struct bdi_writeback *tmp_wb;
1557 
1558 		if (inode->i_sb != sb) {
1559 			if (work->sb) {
1560 				/*
1561 				 * We only want to write back data for this
1562 				 * superblock, move all inodes not belonging
1563 				 * to it back onto the dirty list.
1564 				 */
1565 				redirty_tail(inode, wb);
1566 				continue;
1567 			}
1568 
1569 			/*
1570 			 * The inode belongs to a different superblock.
1571 			 * Bounce back to the caller to unpin this and
1572 			 * pin the next superblock.
1573 			 */
1574 			break;
1575 		}
1576 
1577 		/*
1578 		 * Don't bother with new inodes or inodes being freed, first
1579 		 * kind does not need periodic writeout yet, and for the latter
1580 		 * kind writeout is handled by the freer.
1581 		 */
1582 		spin_lock(&inode->i_lock);
1583 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1584 			spin_unlock(&inode->i_lock);
1585 			redirty_tail(inode, wb);
1586 			continue;
1587 		}
1588 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1589 			/*
1590 			 * If this inode is locked for writeback and we are not
1591 			 * doing writeback-for-data-integrity, move it to
1592 			 * b_more_io so that writeback can proceed with the
1593 			 * other inodes on s_io.
1594 			 *
1595 			 * We'll have another go at writing back this inode
1596 			 * when we completed a full scan of b_io.
1597 			 */
1598 			spin_unlock(&inode->i_lock);
1599 			requeue_io(inode, wb);
1600 			trace_writeback_sb_inodes_requeue(inode);
1601 			continue;
1602 		}
1603 		spin_unlock(&wb->list_lock);
1604 
1605 		/*
1606 		 * We already requeued the inode if it had I_SYNC set and we
1607 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1608 		 * WB_SYNC_ALL case.
1609 		 */
1610 		if (inode->i_state & I_SYNC) {
1611 			/* Wait for I_SYNC. This function drops i_lock... */
1612 			inode_sleep_on_writeback(inode);
1613 			/* Inode may be gone, start again */
1614 			spin_lock(&wb->list_lock);
1615 			continue;
1616 		}
1617 		inode->i_state |= I_SYNC;
1618 		wbc_attach_and_unlock_inode(&wbc, inode);
1619 
1620 		write_chunk = writeback_chunk_size(wb, work);
1621 		wbc.nr_to_write = write_chunk;
1622 		wbc.pages_skipped = 0;
1623 
1624 		/*
1625 		 * We use I_SYNC to pin the inode in memory. While it is set
1626 		 * evict_inode() will wait so the inode cannot be freed.
1627 		 */
1628 		__writeback_single_inode(inode, &wbc);
1629 
1630 		wbc_detach_inode(&wbc);
1631 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1632 		wrote += write_chunk - wbc.nr_to_write;
1633 
1634 		if (need_resched()) {
1635 			/*
1636 			 * We're trying to balance between building up a nice
1637 			 * long list of IOs to improve our merge rate, and
1638 			 * getting those IOs out quickly for anyone throttling
1639 			 * in balance_dirty_pages().  cond_resched() doesn't
1640 			 * unplug, so get our IOs out the door before we
1641 			 * give up the CPU.
1642 			 */
1643 			blk_flush_plug(current);
1644 			cond_resched();
1645 		}
1646 
1647 		/*
1648 		 * Requeue @inode if still dirty.  Be careful as @inode may
1649 		 * have been switched to another wb in the meantime.
1650 		 */
1651 		tmp_wb = inode_to_wb_and_lock_list(inode);
1652 		spin_lock(&inode->i_lock);
1653 		if (!(inode->i_state & I_DIRTY_ALL))
1654 			wrote++;
1655 		requeue_inode(inode, tmp_wb, &wbc);
1656 		inode_sync_complete(inode);
1657 		spin_unlock(&inode->i_lock);
1658 
1659 		if (unlikely(tmp_wb != wb)) {
1660 			spin_unlock(&tmp_wb->list_lock);
1661 			spin_lock(&wb->list_lock);
1662 		}
1663 
1664 		/*
1665 		 * bail out to wb_writeback() often enough to check
1666 		 * background threshold and other termination conditions.
1667 		 */
1668 		if (wrote) {
1669 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1670 				break;
1671 			if (work->nr_pages <= 0)
1672 				break;
1673 		}
1674 	}
1675 	return wrote;
1676 }
1677 
1678 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1679 				  struct wb_writeback_work *work)
1680 {
1681 	unsigned long start_time = jiffies;
1682 	long wrote = 0;
1683 
1684 	while (!list_empty(&wb->b_io)) {
1685 		struct inode *inode = wb_inode(wb->b_io.prev);
1686 		struct super_block *sb = inode->i_sb;
1687 
1688 		if (!trylock_super(sb)) {
1689 			/*
1690 			 * trylock_super() may fail consistently due to
1691 			 * s_umount being grabbed by someone else. Don't use
1692 			 * requeue_io() to avoid busy retrying the inode/sb.
1693 			 */
1694 			redirty_tail(inode, wb);
1695 			continue;
1696 		}
1697 		wrote += writeback_sb_inodes(sb, wb, work);
1698 		up_read(&sb->s_umount);
1699 
1700 		/* refer to the same tests at the end of writeback_sb_inodes */
1701 		if (wrote) {
1702 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1703 				break;
1704 			if (work->nr_pages <= 0)
1705 				break;
1706 		}
1707 	}
1708 	/* Leave any unwritten inodes on b_io */
1709 	return wrote;
1710 }
1711 
1712 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1713 				enum wb_reason reason)
1714 {
1715 	struct wb_writeback_work work = {
1716 		.nr_pages	= nr_pages,
1717 		.sync_mode	= WB_SYNC_NONE,
1718 		.range_cyclic	= 1,
1719 		.reason		= reason,
1720 	};
1721 	struct blk_plug plug;
1722 
1723 	blk_start_plug(&plug);
1724 	spin_lock(&wb->list_lock);
1725 	if (list_empty(&wb->b_io))
1726 		queue_io(wb, &work);
1727 	__writeback_inodes_wb(wb, &work);
1728 	spin_unlock(&wb->list_lock);
1729 	blk_finish_plug(&plug);
1730 
1731 	return nr_pages - work.nr_pages;
1732 }
1733 
1734 /*
1735  * Explicit flushing or periodic writeback of "old" data.
1736  *
1737  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1738  * dirtying-time in the inode's address_space.  So this periodic writeback code
1739  * just walks the superblock inode list, writing back any inodes which are
1740  * older than a specific point in time.
1741  *
1742  * Try to run once per dirty_writeback_interval.  But if a writeback event
1743  * takes longer than a dirty_writeback_interval interval, then leave a
1744  * one-second gap.
1745  *
1746  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1747  * all dirty pages if they are all attached to "old" mappings.
1748  */
1749 static long wb_writeback(struct bdi_writeback *wb,
1750 			 struct wb_writeback_work *work)
1751 {
1752 	unsigned long wb_start = jiffies;
1753 	long nr_pages = work->nr_pages;
1754 	unsigned long oldest_jif;
1755 	struct inode *inode;
1756 	long progress;
1757 	struct blk_plug plug;
1758 
1759 	oldest_jif = jiffies;
1760 	work->older_than_this = &oldest_jif;
1761 
1762 	blk_start_plug(&plug);
1763 	spin_lock(&wb->list_lock);
1764 	for (;;) {
1765 		/*
1766 		 * Stop writeback when nr_pages has been consumed
1767 		 */
1768 		if (work->nr_pages <= 0)
1769 			break;
1770 
1771 		/*
1772 		 * Background writeout and kupdate-style writeback may
1773 		 * run forever. Stop them if there is other work to do
1774 		 * so that e.g. sync can proceed. They'll be restarted
1775 		 * after the other works are all done.
1776 		 */
1777 		if ((work->for_background || work->for_kupdate) &&
1778 		    !list_empty(&wb->work_list))
1779 			break;
1780 
1781 		/*
1782 		 * For background writeout, stop when we are below the
1783 		 * background dirty threshold
1784 		 */
1785 		if (work->for_background && !wb_over_bg_thresh(wb))
1786 			break;
1787 
1788 		/*
1789 		 * Kupdate and background works are special and we want to
1790 		 * include all inodes that need writing. Livelock avoidance is
1791 		 * handled by these works yielding to any other work so we are
1792 		 * safe.
1793 		 */
1794 		if (work->for_kupdate) {
1795 			oldest_jif = jiffies -
1796 				msecs_to_jiffies(dirty_expire_interval * 10);
1797 		} else if (work->for_background)
1798 			oldest_jif = jiffies;
1799 
1800 		trace_writeback_start(wb, work);
1801 		if (list_empty(&wb->b_io))
1802 			queue_io(wb, work);
1803 		if (work->sb)
1804 			progress = writeback_sb_inodes(work->sb, wb, work);
1805 		else
1806 			progress = __writeback_inodes_wb(wb, work);
1807 		trace_writeback_written(wb, work);
1808 
1809 		wb_update_bandwidth(wb, wb_start);
1810 
1811 		/*
1812 		 * Did we write something? Try for more
1813 		 *
1814 		 * Dirty inodes are moved to b_io for writeback in batches.
1815 		 * The completion of the current batch does not necessarily
1816 		 * mean the overall work is done. So we keep looping as long
1817 		 * as made some progress on cleaning pages or inodes.
1818 		 */
1819 		if (progress)
1820 			continue;
1821 		/*
1822 		 * No more inodes for IO, bail
1823 		 */
1824 		if (list_empty(&wb->b_more_io))
1825 			break;
1826 		/*
1827 		 * Nothing written. Wait for some inode to
1828 		 * become available for writeback. Otherwise
1829 		 * we'll just busyloop.
1830 		 */
1831 		trace_writeback_wait(wb, work);
1832 		inode = wb_inode(wb->b_more_io.prev);
1833 		spin_lock(&inode->i_lock);
1834 		spin_unlock(&wb->list_lock);
1835 		/* This function drops i_lock... */
1836 		inode_sleep_on_writeback(inode);
1837 		spin_lock(&wb->list_lock);
1838 	}
1839 	spin_unlock(&wb->list_lock);
1840 	blk_finish_plug(&plug);
1841 
1842 	return nr_pages - work->nr_pages;
1843 }
1844 
1845 /*
1846  * Return the next wb_writeback_work struct that hasn't been processed yet.
1847  */
1848 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1849 {
1850 	struct wb_writeback_work *work = NULL;
1851 
1852 	spin_lock_bh(&wb->work_lock);
1853 	if (!list_empty(&wb->work_list)) {
1854 		work = list_entry(wb->work_list.next,
1855 				  struct wb_writeback_work, list);
1856 		list_del_init(&work->list);
1857 	}
1858 	spin_unlock_bh(&wb->work_lock);
1859 	return work;
1860 }
1861 
1862 static long wb_check_background_flush(struct bdi_writeback *wb)
1863 {
1864 	if (wb_over_bg_thresh(wb)) {
1865 
1866 		struct wb_writeback_work work = {
1867 			.nr_pages	= LONG_MAX,
1868 			.sync_mode	= WB_SYNC_NONE,
1869 			.for_background	= 1,
1870 			.range_cyclic	= 1,
1871 			.reason		= WB_REASON_BACKGROUND,
1872 		};
1873 
1874 		return wb_writeback(wb, &work);
1875 	}
1876 
1877 	return 0;
1878 }
1879 
1880 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1881 {
1882 	unsigned long expired;
1883 	long nr_pages;
1884 
1885 	/*
1886 	 * When set to zero, disable periodic writeback
1887 	 */
1888 	if (!dirty_writeback_interval)
1889 		return 0;
1890 
1891 	expired = wb->last_old_flush +
1892 			msecs_to_jiffies(dirty_writeback_interval * 10);
1893 	if (time_before(jiffies, expired))
1894 		return 0;
1895 
1896 	wb->last_old_flush = jiffies;
1897 	nr_pages = get_nr_dirty_pages();
1898 
1899 	if (nr_pages) {
1900 		struct wb_writeback_work work = {
1901 			.nr_pages	= nr_pages,
1902 			.sync_mode	= WB_SYNC_NONE,
1903 			.for_kupdate	= 1,
1904 			.range_cyclic	= 1,
1905 			.reason		= WB_REASON_PERIODIC,
1906 		};
1907 
1908 		return wb_writeback(wb, &work);
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 static long wb_check_start_all(struct bdi_writeback *wb)
1915 {
1916 	long nr_pages;
1917 
1918 	if (!test_bit(WB_start_all, &wb->state))
1919 		return 0;
1920 
1921 	nr_pages = get_nr_dirty_pages();
1922 	if (nr_pages) {
1923 		struct wb_writeback_work work = {
1924 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
1925 			.sync_mode	= WB_SYNC_NONE,
1926 			.range_cyclic	= 1,
1927 			.reason		= wb->start_all_reason,
1928 		};
1929 
1930 		nr_pages = wb_writeback(wb, &work);
1931 	}
1932 
1933 	clear_bit(WB_start_all, &wb->state);
1934 	return nr_pages;
1935 }
1936 
1937 
1938 /*
1939  * Retrieve work items and do the writeback they describe
1940  */
1941 static long wb_do_writeback(struct bdi_writeback *wb)
1942 {
1943 	struct wb_writeback_work *work;
1944 	long wrote = 0;
1945 
1946 	set_bit(WB_writeback_running, &wb->state);
1947 	while ((work = get_next_work_item(wb)) != NULL) {
1948 		trace_writeback_exec(wb, work);
1949 		wrote += wb_writeback(wb, work);
1950 		finish_writeback_work(wb, work);
1951 	}
1952 
1953 	/*
1954 	 * Check for a flush-everything request
1955 	 */
1956 	wrote += wb_check_start_all(wb);
1957 
1958 	/*
1959 	 * Check for periodic writeback, kupdated() style
1960 	 */
1961 	wrote += wb_check_old_data_flush(wb);
1962 	wrote += wb_check_background_flush(wb);
1963 	clear_bit(WB_writeback_running, &wb->state);
1964 
1965 	return wrote;
1966 }
1967 
1968 /*
1969  * Handle writeback of dirty data for the device backed by this bdi. Also
1970  * reschedules periodically and does kupdated style flushing.
1971  */
1972 void wb_workfn(struct work_struct *work)
1973 {
1974 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1975 						struct bdi_writeback, dwork);
1976 	long pages_written;
1977 
1978 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1979 	current->flags |= PF_SWAPWRITE;
1980 
1981 	if (likely(!current_is_workqueue_rescuer() ||
1982 		   !test_bit(WB_registered, &wb->state))) {
1983 		/*
1984 		 * The normal path.  Keep writing back @wb until its
1985 		 * work_list is empty.  Note that this path is also taken
1986 		 * if @wb is shutting down even when we're running off the
1987 		 * rescuer as work_list needs to be drained.
1988 		 */
1989 		do {
1990 			pages_written = wb_do_writeback(wb);
1991 			trace_writeback_pages_written(pages_written);
1992 		} while (!list_empty(&wb->work_list));
1993 	} else {
1994 		/*
1995 		 * bdi_wq can't get enough workers and we're running off
1996 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1997 		 * enough for efficient IO.
1998 		 */
1999 		pages_written = writeback_inodes_wb(wb, 1024,
2000 						    WB_REASON_FORKER_THREAD);
2001 		trace_writeback_pages_written(pages_written);
2002 	}
2003 
2004 	if (!list_empty(&wb->work_list))
2005 		wb_wakeup(wb);
2006 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2007 		wb_wakeup_delayed(wb);
2008 
2009 	current->flags &= ~PF_SWAPWRITE;
2010 }
2011 
2012 /*
2013  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2014  * write back the whole world.
2015  */
2016 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2017 					 enum wb_reason reason)
2018 {
2019 	struct bdi_writeback *wb;
2020 
2021 	if (!bdi_has_dirty_io(bdi))
2022 		return;
2023 
2024 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2025 		wb_start_writeback(wb, reason);
2026 }
2027 
2028 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2029 				enum wb_reason reason)
2030 {
2031 	rcu_read_lock();
2032 	__wakeup_flusher_threads_bdi(bdi, reason);
2033 	rcu_read_unlock();
2034 }
2035 
2036 /*
2037  * Wakeup the flusher threads to start writeback of all currently dirty pages
2038  */
2039 void wakeup_flusher_threads(enum wb_reason reason)
2040 {
2041 	struct backing_dev_info *bdi;
2042 
2043 	/*
2044 	 * If we are expecting writeback progress we must submit plugged IO.
2045 	 */
2046 	if (blk_needs_flush_plug(current))
2047 		blk_schedule_flush_plug(current);
2048 
2049 	rcu_read_lock();
2050 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2051 		__wakeup_flusher_threads_bdi(bdi, reason);
2052 	rcu_read_unlock();
2053 }
2054 
2055 /*
2056  * Wake up bdi's periodically to make sure dirtytime inodes gets
2057  * written back periodically.  We deliberately do *not* check the
2058  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2059  * kernel to be constantly waking up once there are any dirtytime
2060  * inodes on the system.  So instead we define a separate delayed work
2061  * function which gets called much more rarely.  (By default, only
2062  * once every 12 hours.)
2063  *
2064  * If there is any other write activity going on in the file system,
2065  * this function won't be necessary.  But if the only thing that has
2066  * happened on the file system is a dirtytime inode caused by an atime
2067  * update, we need this infrastructure below to make sure that inode
2068  * eventually gets pushed out to disk.
2069  */
2070 static void wakeup_dirtytime_writeback(struct work_struct *w);
2071 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2072 
2073 static void wakeup_dirtytime_writeback(struct work_struct *w)
2074 {
2075 	struct backing_dev_info *bdi;
2076 
2077 	rcu_read_lock();
2078 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2079 		struct bdi_writeback *wb;
2080 
2081 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2082 			if (!list_empty(&wb->b_dirty_time))
2083 				wb_wakeup(wb);
2084 	}
2085 	rcu_read_unlock();
2086 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2087 }
2088 
2089 static int __init start_dirtytime_writeback(void)
2090 {
2091 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2092 	return 0;
2093 }
2094 __initcall(start_dirtytime_writeback);
2095 
2096 int dirtytime_interval_handler(struct ctl_table *table, int write,
2097 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2098 {
2099 	int ret;
2100 
2101 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2102 	if (ret == 0 && write)
2103 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2104 	return ret;
2105 }
2106 
2107 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2108 {
2109 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2110 		struct dentry *dentry;
2111 		const char *name = "?";
2112 
2113 		dentry = d_find_alias(inode);
2114 		if (dentry) {
2115 			spin_lock(&dentry->d_lock);
2116 			name = (const char *) dentry->d_name.name;
2117 		}
2118 		printk(KERN_DEBUG
2119 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2120 		       current->comm, task_pid_nr(current), inode->i_ino,
2121 		       name, inode->i_sb->s_id);
2122 		if (dentry) {
2123 			spin_unlock(&dentry->d_lock);
2124 			dput(dentry);
2125 		}
2126 	}
2127 }
2128 
2129 /**
2130  * __mark_inode_dirty -	internal function
2131  *
2132  * @inode: inode to mark
2133  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2134  *
2135  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2136  * mark_inode_dirty_sync.
2137  *
2138  * Put the inode on the super block's dirty list.
2139  *
2140  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2141  * dirty list only if it is hashed or if it refers to a blockdev.
2142  * If it was not hashed, it will never be added to the dirty list
2143  * even if it is later hashed, as it will have been marked dirty already.
2144  *
2145  * In short, make sure you hash any inodes _before_ you start marking
2146  * them dirty.
2147  *
2148  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2149  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2150  * the kernel-internal blockdev inode represents the dirtying time of the
2151  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2152  * page->mapping->host, so the page-dirtying time is recorded in the internal
2153  * blockdev inode.
2154  */
2155 void __mark_inode_dirty(struct inode *inode, int flags)
2156 {
2157 	struct super_block *sb = inode->i_sb;
2158 	int dirtytime;
2159 
2160 	trace_writeback_mark_inode_dirty(inode, flags);
2161 
2162 	/*
2163 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2164 	 * dirty the inode itself
2165 	 */
2166 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2167 		trace_writeback_dirty_inode_start(inode, flags);
2168 
2169 		if (sb->s_op->dirty_inode)
2170 			sb->s_op->dirty_inode(inode, flags);
2171 
2172 		trace_writeback_dirty_inode(inode, flags);
2173 	}
2174 	if (flags & I_DIRTY_INODE)
2175 		flags &= ~I_DIRTY_TIME;
2176 	dirtytime = flags & I_DIRTY_TIME;
2177 
2178 	/*
2179 	 * Paired with smp_mb() in __writeback_single_inode() for the
2180 	 * following lockless i_state test.  See there for details.
2181 	 */
2182 	smp_mb();
2183 
2184 	if (((inode->i_state & flags) == flags) ||
2185 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2186 		return;
2187 
2188 	if (unlikely(block_dump))
2189 		block_dump___mark_inode_dirty(inode);
2190 
2191 	spin_lock(&inode->i_lock);
2192 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2193 		goto out_unlock_inode;
2194 	if ((inode->i_state & flags) != flags) {
2195 		const int was_dirty = inode->i_state & I_DIRTY;
2196 
2197 		inode_attach_wb(inode, NULL);
2198 
2199 		if (flags & I_DIRTY_INODE)
2200 			inode->i_state &= ~I_DIRTY_TIME;
2201 		inode->i_state |= flags;
2202 
2203 		/*
2204 		 * If the inode is being synced, just update its dirty state.
2205 		 * The unlocker will place the inode on the appropriate
2206 		 * superblock list, based upon its state.
2207 		 */
2208 		if (inode->i_state & I_SYNC)
2209 			goto out_unlock_inode;
2210 
2211 		/*
2212 		 * Only add valid (hashed) inodes to the superblock's
2213 		 * dirty list.  Add blockdev inodes as well.
2214 		 */
2215 		if (!S_ISBLK(inode->i_mode)) {
2216 			if (inode_unhashed(inode))
2217 				goto out_unlock_inode;
2218 		}
2219 		if (inode->i_state & I_FREEING)
2220 			goto out_unlock_inode;
2221 
2222 		/*
2223 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2224 		 * reposition it (that would break b_dirty time-ordering).
2225 		 */
2226 		if (!was_dirty) {
2227 			struct bdi_writeback *wb;
2228 			struct list_head *dirty_list;
2229 			bool wakeup_bdi = false;
2230 
2231 			wb = locked_inode_to_wb_and_lock_list(inode);
2232 
2233 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2234 			     !test_bit(WB_registered, &wb->state),
2235 			     "bdi-%s not registered\n", wb->bdi->name);
2236 
2237 			inode->dirtied_when = jiffies;
2238 			if (dirtytime)
2239 				inode->dirtied_time_when = jiffies;
2240 
2241 			if (inode->i_state & I_DIRTY)
2242 				dirty_list = &wb->b_dirty;
2243 			else
2244 				dirty_list = &wb->b_dirty_time;
2245 
2246 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2247 							       dirty_list);
2248 
2249 			spin_unlock(&wb->list_lock);
2250 			trace_writeback_dirty_inode_enqueue(inode);
2251 
2252 			/*
2253 			 * If this is the first dirty inode for this bdi,
2254 			 * we have to wake-up the corresponding bdi thread
2255 			 * to make sure background write-back happens
2256 			 * later.
2257 			 */
2258 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2259 				wb_wakeup_delayed(wb);
2260 			return;
2261 		}
2262 	}
2263 out_unlock_inode:
2264 	spin_unlock(&inode->i_lock);
2265 }
2266 EXPORT_SYMBOL(__mark_inode_dirty);
2267 
2268 /*
2269  * The @s_sync_lock is used to serialise concurrent sync operations
2270  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2271  * Concurrent callers will block on the s_sync_lock rather than doing contending
2272  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2273  * has been issued up to the time this function is enter is guaranteed to be
2274  * completed by the time we have gained the lock and waited for all IO that is
2275  * in progress regardless of the order callers are granted the lock.
2276  */
2277 static void wait_sb_inodes(struct super_block *sb)
2278 {
2279 	LIST_HEAD(sync_list);
2280 
2281 	/*
2282 	 * We need to be protected against the filesystem going from
2283 	 * r/o to r/w or vice versa.
2284 	 */
2285 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2286 
2287 	mutex_lock(&sb->s_sync_lock);
2288 
2289 	/*
2290 	 * Splice the writeback list onto a temporary list to avoid waiting on
2291 	 * inodes that have started writeback after this point.
2292 	 *
2293 	 * Use rcu_read_lock() to keep the inodes around until we have a
2294 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2295 	 * the local list because inodes can be dropped from either by writeback
2296 	 * completion.
2297 	 */
2298 	rcu_read_lock();
2299 	spin_lock_irq(&sb->s_inode_wblist_lock);
2300 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2301 
2302 	/*
2303 	 * Data integrity sync. Must wait for all pages under writeback, because
2304 	 * there may have been pages dirtied before our sync call, but which had
2305 	 * writeout started before we write it out.  In which case, the inode
2306 	 * may not be on the dirty list, but we still have to wait for that
2307 	 * writeout.
2308 	 */
2309 	while (!list_empty(&sync_list)) {
2310 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2311 						       i_wb_list);
2312 		struct address_space *mapping = inode->i_mapping;
2313 
2314 		/*
2315 		 * Move each inode back to the wb list before we drop the lock
2316 		 * to preserve consistency between i_wb_list and the mapping
2317 		 * writeback tag. Writeback completion is responsible to remove
2318 		 * the inode from either list once the writeback tag is cleared.
2319 		 */
2320 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2321 
2322 		/*
2323 		 * The mapping can appear untagged while still on-list since we
2324 		 * do not have the mapping lock. Skip it here, wb completion
2325 		 * will remove it.
2326 		 */
2327 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2328 			continue;
2329 
2330 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2331 
2332 		spin_lock(&inode->i_lock);
2333 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2334 			spin_unlock(&inode->i_lock);
2335 
2336 			spin_lock_irq(&sb->s_inode_wblist_lock);
2337 			continue;
2338 		}
2339 		__iget(inode);
2340 		spin_unlock(&inode->i_lock);
2341 		rcu_read_unlock();
2342 
2343 		/*
2344 		 * We keep the error status of individual mapping so that
2345 		 * applications can catch the writeback error using fsync(2).
2346 		 * See filemap_fdatawait_keep_errors() for details.
2347 		 */
2348 		filemap_fdatawait_keep_errors(mapping);
2349 
2350 		cond_resched();
2351 
2352 		iput(inode);
2353 
2354 		rcu_read_lock();
2355 		spin_lock_irq(&sb->s_inode_wblist_lock);
2356 	}
2357 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2358 	rcu_read_unlock();
2359 	mutex_unlock(&sb->s_sync_lock);
2360 }
2361 
2362 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2363 				     enum wb_reason reason, bool skip_if_busy)
2364 {
2365 	DEFINE_WB_COMPLETION_ONSTACK(done);
2366 	struct wb_writeback_work work = {
2367 		.sb			= sb,
2368 		.sync_mode		= WB_SYNC_NONE,
2369 		.tagged_writepages	= 1,
2370 		.done			= &done,
2371 		.nr_pages		= nr,
2372 		.reason			= reason,
2373 	};
2374 	struct backing_dev_info *bdi = sb->s_bdi;
2375 
2376 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2377 		return;
2378 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2379 
2380 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2381 	wb_wait_for_completion(bdi, &done);
2382 }
2383 
2384 /**
2385  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2386  * @sb: the superblock
2387  * @nr: the number of pages to write
2388  * @reason: reason why some writeback work initiated
2389  *
2390  * Start writeback on some inodes on this super_block. No guarantees are made
2391  * on how many (if any) will be written, and this function does not wait
2392  * for IO completion of submitted IO.
2393  */
2394 void writeback_inodes_sb_nr(struct super_block *sb,
2395 			    unsigned long nr,
2396 			    enum wb_reason reason)
2397 {
2398 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2399 }
2400 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2401 
2402 /**
2403  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2404  * @sb: the superblock
2405  * @reason: reason why some writeback work was initiated
2406  *
2407  * Start writeback on some inodes on this super_block. No guarantees are made
2408  * on how many (if any) will be written, and this function does not wait
2409  * for IO completion of submitted IO.
2410  */
2411 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2412 {
2413 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2414 }
2415 EXPORT_SYMBOL(writeback_inodes_sb);
2416 
2417 /**
2418  * try_to_writeback_inodes_sb - try to start writeback if none underway
2419  * @sb: the superblock
2420  * @reason: reason why some writeback work was initiated
2421  *
2422  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2423  */
2424 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2425 {
2426 	if (!down_read_trylock(&sb->s_umount))
2427 		return;
2428 
2429 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2430 	up_read(&sb->s_umount);
2431 }
2432 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2433 
2434 /**
2435  * sync_inodes_sb	-	sync sb inode pages
2436  * @sb: the superblock
2437  *
2438  * This function writes and waits on any dirty inode belonging to this
2439  * super_block.
2440  */
2441 void sync_inodes_sb(struct super_block *sb)
2442 {
2443 	DEFINE_WB_COMPLETION_ONSTACK(done);
2444 	struct wb_writeback_work work = {
2445 		.sb		= sb,
2446 		.sync_mode	= WB_SYNC_ALL,
2447 		.nr_pages	= LONG_MAX,
2448 		.range_cyclic	= 0,
2449 		.done		= &done,
2450 		.reason		= WB_REASON_SYNC,
2451 		.for_sync	= 1,
2452 	};
2453 	struct backing_dev_info *bdi = sb->s_bdi;
2454 
2455 	/*
2456 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2457 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2458 	 * bdi_has_dirty() need to be written out too.
2459 	 */
2460 	if (bdi == &noop_backing_dev_info)
2461 		return;
2462 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2463 
2464 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2465 	bdi_down_write_wb_switch_rwsem(bdi);
2466 	bdi_split_work_to_wbs(bdi, &work, false);
2467 	wb_wait_for_completion(bdi, &done);
2468 	bdi_up_write_wb_switch_rwsem(bdi);
2469 
2470 	wait_sb_inodes(sb);
2471 }
2472 EXPORT_SYMBOL(sync_inodes_sb);
2473 
2474 /**
2475  * write_inode_now	-	write an inode to disk
2476  * @inode: inode to write to disk
2477  * @sync: whether the write should be synchronous or not
2478  *
2479  * This function commits an inode to disk immediately if it is dirty. This is
2480  * primarily needed by knfsd.
2481  *
2482  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2483  */
2484 int write_inode_now(struct inode *inode, int sync)
2485 {
2486 	struct writeback_control wbc = {
2487 		.nr_to_write = LONG_MAX,
2488 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2489 		.range_start = 0,
2490 		.range_end = LLONG_MAX,
2491 	};
2492 
2493 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2494 		wbc.nr_to_write = 0;
2495 
2496 	might_sleep();
2497 	return writeback_single_inode(inode, &wbc);
2498 }
2499 EXPORT_SYMBOL(write_inode_now);
2500 
2501 /**
2502  * sync_inode - write an inode and its pages to disk.
2503  * @inode: the inode to sync
2504  * @wbc: controls the writeback mode
2505  *
2506  * sync_inode() will write an inode and its pages to disk.  It will also
2507  * correctly update the inode on its superblock's dirty inode lists and will
2508  * update inode->i_state.
2509  *
2510  * The caller must have a ref on the inode.
2511  */
2512 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2513 {
2514 	return writeback_single_inode(inode, wbc);
2515 }
2516 EXPORT_SYMBOL(sync_inode);
2517 
2518 /**
2519  * sync_inode_metadata - write an inode to disk
2520  * @inode: the inode to sync
2521  * @wait: wait for I/O to complete.
2522  *
2523  * Write an inode to disk and adjust its dirty state after completion.
2524  *
2525  * Note: only writes the actual inode, no associated data or other metadata.
2526  */
2527 int sync_inode_metadata(struct inode *inode, int wait)
2528 {
2529 	struct writeback_control wbc = {
2530 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2531 		.nr_to_write = 0, /* metadata-only */
2532 	};
2533 
2534 	return sync_inode(inode, &wbc);
2535 }
2536 EXPORT_SYMBOL(sync_inode_metadata);
2537