xref: /linux/fs/fs-writeback.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 static unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 	assert_spin_locked(&inode->i_lock);
124 	WARN_ON_ONCE(inode->i_state & I_FREEING);
125 
126 	list_move(&inode->i_io_list, head);
127 
128 	/* dirty_time doesn't count as dirty_io until expiration */
129 	if (head != &wb->b_dirty_time)
130 		return wb_io_lists_populated(wb);
131 
132 	wb_io_lists_depopulated(wb);
133 	return false;
134 }
135 
136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138 	spin_lock_irq(&wb->work_lock);
139 	if (test_bit(WB_registered, &wb->state))
140 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 	spin_unlock_irq(&wb->work_lock);
142 }
143 
144 /*
145  * This function is used when the first inode for this wb is marked dirty. It
146  * wakes-up the corresponding bdi thread which should then take care of the
147  * periodic background write-out of dirty inodes. Since the write-out would
148  * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149  * set up a timer which wakes the bdi thread up later.
150  *
151  * Note, we wouldn't bother setting up the timer, but this function is on the
152  * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153  * by delaying the wake-up.
154  *
155  * We have to be careful not to postpone flush work if it is scheduled for
156  * earlier. Thus we use queue_delayed_work().
157  */
158 static void wb_wakeup_delayed(struct bdi_writeback *wb)
159 {
160 	unsigned long timeout;
161 
162 	timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163 	spin_lock_irq(&wb->work_lock);
164 	if (test_bit(WB_registered, &wb->state))
165 		queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166 	spin_unlock_irq(&wb->work_lock);
167 }
168 
169 static void finish_writeback_work(struct wb_writeback_work *work)
170 {
171 	struct wb_completion *done = work->done;
172 
173 	if (work->auto_free)
174 		kfree(work);
175 	if (done) {
176 		wait_queue_head_t *waitq = done->waitq;
177 
178 		/* @done can't be accessed after the following dec */
179 		if (atomic_dec_and_test(&done->cnt))
180 			wake_up_all(waitq);
181 	}
182 }
183 
184 static void wb_queue_work(struct bdi_writeback *wb,
185 			  struct wb_writeback_work *work)
186 {
187 	trace_writeback_queue(wb, work);
188 
189 	if (work->done)
190 		atomic_inc(&work->done->cnt);
191 
192 	spin_lock_irq(&wb->work_lock);
193 
194 	if (test_bit(WB_registered, &wb->state)) {
195 		list_add_tail(&work->list, &wb->work_list);
196 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
197 	} else
198 		finish_writeback_work(work);
199 
200 	spin_unlock_irq(&wb->work_lock);
201 }
202 
203 /**
204  * wb_wait_for_completion - wait for completion of bdi_writeback_works
205  * @done: target wb_completion
206  *
207  * Wait for one or more work items issued to @bdi with their ->done field
208  * set to @done, which should have been initialized with
209  * DEFINE_WB_COMPLETION().  This function returns after all such work items
210  * are completed.  Work items which are waited upon aren't freed
211  * automatically on completion.
212  */
213 void wb_wait_for_completion(struct wb_completion *done)
214 {
215 	atomic_dec(&done->cnt);		/* put down the initial count */
216 	wait_event(*done->waitq, !atomic_read(&done->cnt));
217 }
218 
219 #ifdef CONFIG_CGROUP_WRITEBACK
220 
221 /*
222  * Parameters for foreign inode detection, see wbc_detach_inode() to see
223  * how they're used.
224  *
225  * These paramters are inherently heuristical as the detection target
226  * itself is fuzzy.  All we want to do is detaching an inode from the
227  * current owner if it's being written to by some other cgroups too much.
228  *
229  * The current cgroup writeback is built on the assumption that multiple
230  * cgroups writing to the same inode concurrently is very rare and a mode
231  * of operation which isn't well supported.  As such, the goal is not
232  * taking too long when a different cgroup takes over an inode while
233  * avoiding too aggressive flip-flops from occasional foreign writes.
234  *
235  * We record, very roughly, 2s worth of IO time history and if more than
236  * half of that is foreign, trigger the switch.  The recording is quantized
237  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
238  * writes smaller than 1/8 of avg size are ignored.
239  */
240 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
241 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
242 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
243 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
244 
245 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
246 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
247 					/* each slot's duration is 2s / 16 */
248 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
249 					/* if foreign slots >= 8, switch */
250 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
251 					/* one round can affect upto 5 slots */
252 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
253 
254 /*
255  * Maximum inodes per isw.  A specific value has been chosen to make
256  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
257  */
258 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
259                                 / sizeof(struct inode *))
260 
261 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
262 static struct workqueue_struct *isw_wq;
263 
264 void __inode_attach_wb(struct inode *inode, struct folio *folio)
265 {
266 	struct backing_dev_info *bdi = inode_to_bdi(inode);
267 	struct bdi_writeback *wb = NULL;
268 
269 	if (inode_cgwb_enabled(inode)) {
270 		struct cgroup_subsys_state *memcg_css;
271 
272 		if (folio) {
273 			memcg_css = mem_cgroup_css_from_folio(folio);
274 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
275 		} else {
276 			/* must pin memcg_css, see wb_get_create() */
277 			memcg_css = task_get_css(current, memory_cgrp_id);
278 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
279 			css_put(memcg_css);
280 		}
281 	}
282 
283 	if (!wb)
284 		wb = &bdi->wb;
285 
286 	/*
287 	 * There may be multiple instances of this function racing to
288 	 * update the same inode.  Use cmpxchg() to tell the winner.
289 	 */
290 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
291 		wb_put(wb);
292 }
293 
294 /**
295  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
296  * @inode: inode of interest with i_lock held
297  * @wb: target bdi_writeback
298  *
299  * Remove the inode from wb's io lists and if necessarily put onto b_attached
300  * list.  Only inodes attached to cgwb's are kept on this list.
301  */
302 static void inode_cgwb_move_to_attached(struct inode *inode,
303 					struct bdi_writeback *wb)
304 {
305 	assert_spin_locked(&wb->list_lock);
306 	assert_spin_locked(&inode->i_lock);
307 	WARN_ON_ONCE(inode->i_state & I_FREEING);
308 
309 	inode->i_state &= ~I_SYNC_QUEUED;
310 	if (wb != &wb->bdi->wb)
311 		list_move(&inode->i_io_list, &wb->b_attached);
312 	else
313 		list_del_init(&inode->i_io_list);
314 	wb_io_lists_depopulated(wb);
315 }
316 
317 /**
318  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
319  * @inode: inode of interest with i_lock held
320  *
321  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
322  * held on entry and is released on return.  The returned wb is guaranteed
323  * to stay @inode's associated wb until its list_lock is released.
324  */
325 static struct bdi_writeback *
326 locked_inode_to_wb_and_lock_list(struct inode *inode)
327 	__releases(&inode->i_lock)
328 	__acquires(&wb->list_lock)
329 {
330 	while (true) {
331 		struct bdi_writeback *wb = inode_to_wb(inode);
332 
333 		/*
334 		 * inode_to_wb() association is protected by both
335 		 * @inode->i_lock and @wb->list_lock but list_lock nests
336 		 * outside i_lock.  Drop i_lock and verify that the
337 		 * association hasn't changed after acquiring list_lock.
338 		 */
339 		wb_get(wb);
340 		spin_unlock(&inode->i_lock);
341 		spin_lock(&wb->list_lock);
342 
343 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
344 		if (likely(wb == inode->i_wb)) {
345 			wb_put(wb);	/* @inode already has ref */
346 			return wb;
347 		}
348 
349 		spin_unlock(&wb->list_lock);
350 		wb_put(wb);
351 		cpu_relax();
352 		spin_lock(&inode->i_lock);
353 	}
354 }
355 
356 /**
357  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
358  * @inode: inode of interest
359  *
360  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
361  * on entry.
362  */
363 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
364 	__acquires(&wb->list_lock)
365 {
366 	spin_lock(&inode->i_lock);
367 	return locked_inode_to_wb_and_lock_list(inode);
368 }
369 
370 struct inode_switch_wbs_context {
371 	/* List of queued switching contexts for the wb */
372 	struct llist_node	list;
373 
374 	/*
375 	 * Multiple inodes can be switched at once.  The switching procedure
376 	 * consists of two parts, separated by a RCU grace period.  To make
377 	 * sure that the second part is executed for each inode gone through
378 	 * the first part, all inode pointers are placed into a NULL-terminated
379 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
380 	 * an inode could be left in a non-consistent state.
381 	 */
382 	struct inode		*inodes[];
383 };
384 
385 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
386 {
387 	down_write(&bdi->wb_switch_rwsem);
388 }
389 
390 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
391 {
392 	up_write(&bdi->wb_switch_rwsem);
393 }
394 
395 static bool inode_do_switch_wbs(struct inode *inode,
396 				struct bdi_writeback *old_wb,
397 				struct bdi_writeback *new_wb)
398 {
399 	struct address_space *mapping = inode->i_mapping;
400 	XA_STATE(xas, &mapping->i_pages, 0);
401 	struct folio *folio;
402 	bool switched = false;
403 
404 	spin_lock(&inode->i_lock);
405 	xa_lock_irq(&mapping->i_pages);
406 
407 	/*
408 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
409 	 * path owns the inode and we shouldn't modify ->i_io_list.
410 	 */
411 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
412 		goto skip_switch;
413 
414 	trace_inode_switch_wbs(inode, old_wb, new_wb);
415 
416 	/*
417 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
418 	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
419 	 * folios actually under writeback.
420 	 */
421 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
422 		if (folio_test_dirty(folio)) {
423 			long nr = folio_nr_pages(folio);
424 			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
425 			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
426 		}
427 	}
428 
429 	xas_set(&xas, 0);
430 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
431 		long nr = folio_nr_pages(folio);
432 		WARN_ON_ONCE(!folio_test_writeback(folio));
433 		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
434 		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
435 	}
436 
437 	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
438 		atomic_dec(&old_wb->writeback_inodes);
439 		atomic_inc(&new_wb->writeback_inodes);
440 	}
441 
442 	wb_get(new_wb);
443 
444 	/*
445 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
446 	 * the specific list @inode was on is ignored and the @inode is put on
447 	 * ->b_dirty which is always correct including from ->b_dirty_time.
448 	 * If the @inode was clean, it means it was on the b_attached list, so
449 	 * move it onto the b_attached list of @new_wb.
450 	 */
451 	if (!list_empty(&inode->i_io_list)) {
452 		inode->i_wb = new_wb;
453 
454 		if (inode->i_state & I_DIRTY_ALL) {
455 			/*
456 			 * We need to keep b_dirty list sorted by
457 			 * dirtied_time_when. However properly sorting the
458 			 * inode in the list gets too expensive when switching
459 			 * many inodes. So just attach inode at the end of the
460 			 * dirty list and clobber the dirtied_time_when.
461 			 */
462 			inode->dirtied_time_when = jiffies;
463 			inode_io_list_move_locked(inode, new_wb,
464 						  &new_wb->b_dirty);
465 		} else {
466 			inode_cgwb_move_to_attached(inode, new_wb);
467 		}
468 	} else {
469 		inode->i_wb = new_wb;
470 	}
471 
472 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
473 	inode->i_wb_frn_winner = 0;
474 	inode->i_wb_frn_avg_time = 0;
475 	inode->i_wb_frn_history = 0;
476 	switched = true;
477 skip_switch:
478 	/*
479 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
480 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
481 	 */
482 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
483 
484 	xa_unlock_irq(&mapping->i_pages);
485 	spin_unlock(&inode->i_lock);
486 
487 	return switched;
488 }
489 
490 static void process_inode_switch_wbs(struct bdi_writeback *new_wb,
491 				     struct inode_switch_wbs_context *isw)
492 {
493 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
494 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
495 	unsigned long nr_switched = 0;
496 	struct inode **inodep;
497 
498 	/*
499 	 * If @inode switches cgwb membership while sync_inodes_sb() is
500 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
501 	 */
502 	down_read(&bdi->wb_switch_rwsem);
503 
504 	inodep = isw->inodes;
505 	/*
506 	 * By the time control reaches here, RCU grace period has passed
507 	 * since I_WB_SWITCH assertion and all wb stat update transactions
508 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
509 	 * synchronizing against the i_pages lock.
510 	 *
511 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
512 	 * gives us exclusion against all wb related operations on @inode
513 	 * including IO list manipulations and stat updates.
514 	 */
515 relock:
516 	if (old_wb < new_wb) {
517 		spin_lock(&old_wb->list_lock);
518 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
519 	} else {
520 		spin_lock(&new_wb->list_lock);
521 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
522 	}
523 
524 	while (*inodep) {
525 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
526 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
527 			nr_switched++;
528 		inodep++;
529 		if (*inodep && need_resched()) {
530 			spin_unlock(&new_wb->list_lock);
531 			spin_unlock(&old_wb->list_lock);
532 			cond_resched();
533 			goto relock;
534 		}
535 	}
536 
537 	spin_unlock(&new_wb->list_lock);
538 	spin_unlock(&old_wb->list_lock);
539 
540 	up_read(&bdi->wb_switch_rwsem);
541 
542 	if (nr_switched) {
543 		wb_wakeup(new_wb);
544 		wb_put_many(old_wb, nr_switched);
545 	}
546 
547 	for (inodep = isw->inodes; *inodep; inodep++)
548 		iput(*inodep);
549 	wb_put(new_wb);
550 	kfree(isw);
551 	atomic_dec(&isw_nr_in_flight);
552 }
553 
554 void inode_switch_wbs_work_fn(struct work_struct *work)
555 {
556 	struct bdi_writeback *new_wb = container_of(work, struct bdi_writeback,
557 						    switch_work);
558 	struct inode_switch_wbs_context *isw, *next_isw;
559 	struct llist_node *list;
560 
561 	/*
562 	 * Grab out reference to wb so that it cannot get freed under us
563 	 * after we process all the isw items.
564 	 */
565 	wb_get(new_wb);
566 	while (1) {
567 		list = llist_del_all(&new_wb->switch_wbs_ctxs);
568 		/* Nothing to do? */
569 		if (!list)
570 			break;
571 		/*
572 		 * In addition to synchronizing among switchers, I_WB_SWITCH
573 		 * tells the RCU protected stat update paths to grab the i_page
574 		 * lock so that stat transfer can synchronize against them.
575 		 * Let's continue after I_WB_SWITCH is guaranteed to be
576 		 * visible.
577 		 */
578 		synchronize_rcu();
579 
580 		llist_for_each_entry_safe(isw, next_isw, list, list)
581 			process_inode_switch_wbs(new_wb, isw);
582 	}
583 	wb_put(new_wb);
584 }
585 
586 static bool inode_prepare_wbs_switch(struct inode *inode,
587 				     struct bdi_writeback *new_wb)
588 {
589 	/*
590 	 * Paired with smp_mb() in cgroup_writeback_umount().
591 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
592 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
593 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
594 	 */
595 	smp_mb();
596 
597 	if (IS_DAX(inode))
598 		return false;
599 
600 	/* while holding I_WB_SWITCH, no one else can update the association */
601 	spin_lock(&inode->i_lock);
602 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
603 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
604 	    inode_to_wb(inode) == new_wb) {
605 		spin_unlock(&inode->i_lock);
606 		return false;
607 	}
608 	inode->i_state |= I_WB_SWITCH;
609 	__iget(inode);
610 	spin_unlock(&inode->i_lock);
611 
612 	return true;
613 }
614 
615 static void wb_queue_isw(struct bdi_writeback *wb,
616 			 struct inode_switch_wbs_context *isw)
617 {
618 	if (llist_add(&isw->list, &wb->switch_wbs_ctxs))
619 		queue_work(isw_wq, &wb->switch_work);
620 }
621 
622 /**
623  * inode_switch_wbs - change the wb association of an inode
624  * @inode: target inode
625  * @new_wb_id: ID of the new wb
626  *
627  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
628  * switching is performed asynchronously and may fail silently.
629  */
630 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
631 {
632 	struct backing_dev_info *bdi = inode_to_bdi(inode);
633 	struct cgroup_subsys_state *memcg_css;
634 	struct inode_switch_wbs_context *isw;
635 	struct bdi_writeback *new_wb = NULL;
636 
637 	/* noop if seems to be already in progress */
638 	if (inode->i_state & I_WB_SWITCH)
639 		return;
640 
641 	/* avoid queueing a new switch if too many are already in flight */
642 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
643 		return;
644 
645 	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
646 	if (!isw)
647 		return;
648 
649 	atomic_inc(&isw_nr_in_flight);
650 
651 	/* find and pin the new wb */
652 	rcu_read_lock();
653 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
654 	if (memcg_css && !css_tryget(memcg_css))
655 		memcg_css = NULL;
656 	rcu_read_unlock();
657 	if (!memcg_css)
658 		goto out_free;
659 
660 	new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
661 	css_put(memcg_css);
662 	if (!new_wb)
663 		goto out_free;
664 
665 	if (!inode_prepare_wbs_switch(inode, new_wb))
666 		goto out_free;
667 
668 	isw->inodes[0] = inode;
669 
670 	trace_inode_switch_wbs_queue(inode->i_wb, new_wb, 1);
671 	wb_queue_isw(new_wb, isw);
672 	return;
673 
674 out_free:
675 	atomic_dec(&isw_nr_in_flight);
676 	if (new_wb)
677 		wb_put(new_wb);
678 	kfree(isw);
679 }
680 
681 static bool isw_prepare_wbs_switch(struct bdi_writeback *new_wb,
682 				   struct inode_switch_wbs_context *isw,
683 				   struct list_head *list, int *nr)
684 {
685 	struct inode *inode;
686 
687 	list_for_each_entry(inode, list, i_io_list) {
688 		if (!inode_prepare_wbs_switch(inode, new_wb))
689 			continue;
690 
691 		isw->inodes[*nr] = inode;
692 		(*nr)++;
693 
694 		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
695 			return true;
696 	}
697 	return false;
698 }
699 
700 /**
701  * cleanup_offline_cgwb - detach associated inodes
702  * @wb: target wb
703  *
704  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
705  * to eventually release the dying @wb.  Returns %true if not all inodes were
706  * switched and the function has to be restarted.
707  */
708 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
709 {
710 	struct cgroup_subsys_state *memcg_css;
711 	struct inode_switch_wbs_context *isw;
712 	struct bdi_writeback *new_wb;
713 	int nr;
714 	bool restart = false;
715 
716 	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
717 		      GFP_KERNEL);
718 	if (!isw)
719 		return restart;
720 
721 	atomic_inc(&isw_nr_in_flight);
722 
723 	for (memcg_css = wb->memcg_css->parent; memcg_css;
724 	     memcg_css = memcg_css->parent) {
725 		new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
726 		if (new_wb)
727 			break;
728 	}
729 	if (unlikely(!new_wb))
730 		new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
731 
732 	nr = 0;
733 	spin_lock(&wb->list_lock);
734 	/*
735 	 * In addition to the inodes that have completed writeback, also switch
736 	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
737 	 * inodes won't be written back for a long time when lazytime is
738 	 * enabled, and thus pinning the dying cgwbs. It won't break the
739 	 * bandwidth restrictions, as writeback of inode metadata is not
740 	 * accounted for.
741 	 */
742 	restart = isw_prepare_wbs_switch(new_wb, isw, &wb->b_attached, &nr);
743 	if (!restart)
744 		restart = isw_prepare_wbs_switch(new_wb, isw, &wb->b_dirty_time,
745 						 &nr);
746 	spin_unlock(&wb->list_lock);
747 
748 	/* no attached inodes? bail out */
749 	if (nr == 0) {
750 		atomic_dec(&isw_nr_in_flight);
751 		wb_put(new_wb);
752 		kfree(isw);
753 		return restart;
754 	}
755 
756 	trace_inode_switch_wbs_queue(wb, new_wb, nr);
757 	wb_queue_isw(new_wb, isw);
758 
759 	return restart;
760 }
761 
762 /**
763  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
764  * @wbc: writeback_control of interest
765  * @inode: target inode
766  *
767  * @inode is locked and about to be written back under the control of @wbc.
768  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
769  * writeback completion, wbc_detach_inode() should be called.  This is used
770  * to track the cgroup writeback context.
771  */
772 static void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
773 		struct inode *inode)
774 	__releases(&inode->i_lock)
775 {
776 	if (!inode_cgwb_enabled(inode)) {
777 		spin_unlock(&inode->i_lock);
778 		return;
779 	}
780 
781 	wbc->wb = inode_to_wb(inode);
782 	wbc->inode = inode;
783 
784 	wbc->wb_id = wbc->wb->memcg_css->id;
785 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
786 	wbc->wb_tcand_id = 0;
787 	wbc->wb_bytes = 0;
788 	wbc->wb_lcand_bytes = 0;
789 	wbc->wb_tcand_bytes = 0;
790 
791 	wb_get(wbc->wb);
792 	spin_unlock(&inode->i_lock);
793 
794 	/*
795 	 * A dying wb indicates that either the blkcg associated with the
796 	 * memcg changed or the associated memcg is dying.  In the first
797 	 * case, a replacement wb should already be available and we should
798 	 * refresh the wb immediately.  In the second case, trying to
799 	 * refresh will keep failing.
800 	 */
801 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
802 		inode_switch_wbs(inode, wbc->wb_id);
803 }
804 
805 /**
806  * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
807  * @wbc: writeback_control of interest
808  * @inode: target inode
809  *
810  * This function is to be used by __filemap_fdatawrite_range(), which is an
811  * alternative entry point into writeback code, and first ensures @inode is
812  * associated with a bdi_writeback and attaches it to @wbc.
813  */
814 void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
815 		struct inode *inode)
816 {
817 	spin_lock(&inode->i_lock);
818 	inode_attach_wb(inode, NULL);
819 	wbc_attach_and_unlock_inode(wbc, inode);
820 }
821 EXPORT_SYMBOL_GPL(wbc_attach_fdatawrite_inode);
822 
823 /**
824  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
825  * @wbc: writeback_control of the just finished writeback
826  *
827  * To be called after a writeback attempt of an inode finishes and undoes
828  * wbc_attach_and_unlock_inode().  Can be called under any context.
829  *
830  * As concurrent write sharing of an inode is expected to be very rare and
831  * memcg only tracks page ownership on first-use basis severely confining
832  * the usefulness of such sharing, cgroup writeback tracks ownership
833  * per-inode.  While the support for concurrent write sharing of an inode
834  * is deemed unnecessary, an inode being written to by different cgroups at
835  * different points in time is a lot more common, and, more importantly,
836  * charging only by first-use can too readily lead to grossly incorrect
837  * behaviors (single foreign page can lead to gigabytes of writeback to be
838  * incorrectly attributed).
839  *
840  * To resolve this issue, cgroup writeback detects the majority dirtier of
841  * an inode and transfers the ownership to it.  To avoid unnecessary
842  * oscillation, the detection mechanism keeps track of history and gives
843  * out the switch verdict only if the foreign usage pattern is stable over
844  * a certain amount of time and/or writeback attempts.
845  *
846  * On each writeback attempt, @wbc tries to detect the majority writer
847  * using Boyer-Moore majority vote algorithm.  In addition to the byte
848  * count from the majority voting, it also counts the bytes written for the
849  * current wb and the last round's winner wb (max of last round's current
850  * wb, the winner from two rounds ago, and the last round's majority
851  * candidate).  Keeping track of the historical winner helps the algorithm
852  * to semi-reliably detect the most active writer even when it's not the
853  * absolute majority.
854  *
855  * Once the winner of the round is determined, whether the winner is
856  * foreign or not and how much IO time the round consumed is recorded in
857  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
858  * over a certain threshold, the switch verdict is given.
859  */
860 void wbc_detach_inode(struct writeback_control *wbc)
861 {
862 	struct bdi_writeback *wb = wbc->wb;
863 	struct inode *inode = wbc->inode;
864 	unsigned long avg_time, max_bytes, max_time;
865 	u16 history;
866 	int max_id;
867 
868 	if (!wb)
869 		return;
870 
871 	history = inode->i_wb_frn_history;
872 	avg_time = inode->i_wb_frn_avg_time;
873 
874 	/* pick the winner of this round */
875 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
876 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
877 		max_id = wbc->wb_id;
878 		max_bytes = wbc->wb_bytes;
879 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
880 		max_id = wbc->wb_lcand_id;
881 		max_bytes = wbc->wb_lcand_bytes;
882 	} else {
883 		max_id = wbc->wb_tcand_id;
884 		max_bytes = wbc->wb_tcand_bytes;
885 	}
886 
887 	/*
888 	 * Calculate the amount of IO time the winner consumed and fold it
889 	 * into the running average kept per inode.  If the consumed IO
890 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
891 	 * deciding whether to switch or not.  This is to prevent one-off
892 	 * small dirtiers from skewing the verdict.
893 	 */
894 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
895 				wb->avg_write_bandwidth);
896 	if (avg_time)
897 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
898 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
899 	else
900 		avg_time = max_time;	/* immediate catch up on first run */
901 
902 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
903 		int slots;
904 
905 		/*
906 		 * The switch verdict is reached if foreign wb's consume
907 		 * more than a certain proportion of IO time in a
908 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
909 		 * history mask where each bit represents one sixteenth of
910 		 * the period.  Determine the number of slots to shift into
911 		 * history from @max_time.
912 		 */
913 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
914 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
915 		history <<= slots;
916 		if (wbc->wb_id != max_id)
917 			history |= (1U << slots) - 1;
918 
919 		if (history)
920 			trace_inode_foreign_history(inode, wbc, history);
921 
922 		/*
923 		 * Switch if the current wb isn't the consistent winner.
924 		 * If there are multiple closely competing dirtiers, the
925 		 * inode may switch across them repeatedly over time, which
926 		 * is okay.  The main goal is avoiding keeping an inode on
927 		 * the wrong wb for an extended period of time.
928 		 */
929 		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
930 			inode_switch_wbs(inode, max_id);
931 	}
932 
933 	/*
934 	 * Multiple instances of this function may race to update the
935 	 * following fields but we don't mind occassional inaccuracies.
936 	 */
937 	inode->i_wb_frn_winner = max_id;
938 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
939 	inode->i_wb_frn_history = history;
940 
941 	wb_put(wbc->wb);
942 	wbc->wb = NULL;
943 }
944 EXPORT_SYMBOL_GPL(wbc_detach_inode);
945 
946 /**
947  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
948  * @wbc: writeback_control of the writeback in progress
949  * @folio: folio being written out
950  * @bytes: number of bytes being written out
951  *
952  * @bytes from @folio are about to written out during the writeback
953  * controlled by @wbc.  Keep the book for foreign inode detection.  See
954  * wbc_detach_inode().
955  */
956 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio,
957 			      size_t bytes)
958 {
959 	struct cgroup_subsys_state *css;
960 	int id;
961 
962 	/*
963 	 * pageout() path doesn't attach @wbc to the inode being written
964 	 * out.  This is intentional as we don't want the function to block
965 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
966 	 * regular writeback instead of writing things out itself.
967 	 */
968 	if (!wbc->wb || wbc->no_cgroup_owner)
969 		return;
970 
971 	css = mem_cgroup_css_from_folio(folio);
972 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
973 	if (!(css->flags & CSS_ONLINE))
974 		return;
975 
976 	id = css->id;
977 
978 	if (id == wbc->wb_id) {
979 		wbc->wb_bytes += bytes;
980 		return;
981 	}
982 
983 	if (id == wbc->wb_lcand_id)
984 		wbc->wb_lcand_bytes += bytes;
985 
986 	/* Boyer-Moore majority vote algorithm */
987 	if (!wbc->wb_tcand_bytes)
988 		wbc->wb_tcand_id = id;
989 	if (id == wbc->wb_tcand_id)
990 		wbc->wb_tcand_bytes += bytes;
991 	else
992 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
993 }
994 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
995 
996 /**
997  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
998  * @wb: target bdi_writeback to split @nr_pages to
999  * @nr_pages: number of pages to write for the whole bdi
1000  *
1001  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
1002  * relation to the total write bandwidth of all wb's w/ dirty inodes on
1003  * @wb->bdi.
1004  */
1005 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1006 {
1007 	unsigned long this_bw = wb->avg_write_bandwidth;
1008 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
1009 
1010 	if (nr_pages == LONG_MAX)
1011 		return LONG_MAX;
1012 
1013 	/*
1014 	 * This may be called on clean wb's and proportional distribution
1015 	 * may not make sense, just use the original @nr_pages in those
1016 	 * cases.  In general, we wanna err on the side of writing more.
1017 	 */
1018 	if (!tot_bw || this_bw >= tot_bw)
1019 		return nr_pages;
1020 	else
1021 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
1022 }
1023 
1024 /**
1025  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
1026  * @bdi: target backing_dev_info
1027  * @base_work: wb_writeback_work to issue
1028  * @skip_if_busy: skip wb's which already have writeback in progress
1029  *
1030  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
1031  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
1032  * distributed to the busy wbs according to each wb's proportion in the
1033  * total active write bandwidth of @bdi.
1034  */
1035 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1036 				  struct wb_writeback_work *base_work,
1037 				  bool skip_if_busy)
1038 {
1039 	struct bdi_writeback *last_wb = NULL;
1040 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
1041 					      struct bdi_writeback, bdi_node);
1042 
1043 	might_sleep();
1044 restart:
1045 	rcu_read_lock();
1046 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
1047 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
1048 		struct wb_writeback_work fallback_work;
1049 		struct wb_writeback_work *work;
1050 		long nr_pages;
1051 
1052 		if (last_wb) {
1053 			wb_put(last_wb);
1054 			last_wb = NULL;
1055 		}
1056 
1057 		/* SYNC_ALL writes out I_DIRTY_TIME too */
1058 		if (!wb_has_dirty_io(wb) &&
1059 		    (base_work->sync_mode == WB_SYNC_NONE ||
1060 		     list_empty(&wb->b_dirty_time)))
1061 			continue;
1062 		if (skip_if_busy && writeback_in_progress(wb))
1063 			continue;
1064 
1065 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1066 
1067 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1068 		if (work) {
1069 			*work = *base_work;
1070 			work->nr_pages = nr_pages;
1071 			work->auto_free = 1;
1072 			wb_queue_work(wb, work);
1073 			continue;
1074 		}
1075 
1076 		/*
1077 		 * If wb_tryget fails, the wb has been shutdown, skip it.
1078 		 *
1079 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1080 		 * continuing iteration from @wb after dropping and
1081 		 * regrabbing rcu read lock.
1082 		 */
1083 		if (!wb_tryget(wb))
1084 			continue;
1085 
1086 		/* alloc failed, execute synchronously using on-stack fallback */
1087 		work = &fallback_work;
1088 		*work = *base_work;
1089 		work->nr_pages = nr_pages;
1090 		work->auto_free = 0;
1091 		work->done = &fallback_work_done;
1092 
1093 		wb_queue_work(wb, work);
1094 		last_wb = wb;
1095 
1096 		rcu_read_unlock();
1097 		wb_wait_for_completion(&fallback_work_done);
1098 		goto restart;
1099 	}
1100 	rcu_read_unlock();
1101 
1102 	if (last_wb)
1103 		wb_put(last_wb);
1104 }
1105 
1106 /**
1107  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1108  * @bdi_id: target bdi id
1109  * @memcg_id: target memcg css id
1110  * @reason: reason why some writeback work initiated
1111  * @done: target wb_completion
1112  *
1113  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1114  * with the specified parameters.
1115  */
1116 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1117 			   enum wb_reason reason, struct wb_completion *done)
1118 {
1119 	struct backing_dev_info *bdi;
1120 	struct cgroup_subsys_state *memcg_css;
1121 	struct bdi_writeback *wb;
1122 	struct wb_writeback_work *work;
1123 	unsigned long dirty;
1124 	int ret;
1125 
1126 	/* lookup bdi and memcg */
1127 	bdi = bdi_get_by_id(bdi_id);
1128 	if (!bdi)
1129 		return -ENOENT;
1130 
1131 	rcu_read_lock();
1132 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1133 	if (memcg_css && !css_tryget(memcg_css))
1134 		memcg_css = NULL;
1135 	rcu_read_unlock();
1136 	if (!memcg_css) {
1137 		ret = -ENOENT;
1138 		goto out_bdi_put;
1139 	}
1140 
1141 	/*
1142 	 * And find the associated wb.  If the wb isn't there already
1143 	 * there's nothing to flush, don't create one.
1144 	 */
1145 	wb = wb_get_lookup(bdi, memcg_css);
1146 	if (!wb) {
1147 		ret = -ENOENT;
1148 		goto out_css_put;
1149 	}
1150 
1151 	/*
1152 	 * The caller is attempting to write out most of
1153 	 * the currently dirty pages.  Let's take the current dirty page
1154 	 * count and inflate it by 25% which should be large enough to
1155 	 * flush out most dirty pages while avoiding getting livelocked by
1156 	 * concurrent dirtiers.
1157 	 *
1158 	 * BTW the memcg stats are flushed periodically and this is best-effort
1159 	 * estimation, so some potential error is ok.
1160 	 */
1161 	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1162 	dirty = dirty * 10 / 8;
1163 
1164 	/* issue the writeback work */
1165 	work = kzalloc(sizeof(*work), GFP_NOWAIT);
1166 	if (work) {
1167 		work->nr_pages = dirty;
1168 		work->sync_mode = WB_SYNC_NONE;
1169 		work->range_cyclic = 1;
1170 		work->reason = reason;
1171 		work->done = done;
1172 		work->auto_free = 1;
1173 		wb_queue_work(wb, work);
1174 		ret = 0;
1175 	} else {
1176 		ret = -ENOMEM;
1177 	}
1178 
1179 	wb_put(wb);
1180 out_css_put:
1181 	css_put(memcg_css);
1182 out_bdi_put:
1183 	bdi_put(bdi);
1184 	return ret;
1185 }
1186 
1187 /**
1188  * cgroup_writeback_umount - flush inode wb switches for umount
1189  * @sb: target super_block
1190  *
1191  * This function is called when a super_block is about to be destroyed and
1192  * flushes in-flight inode wb switches.  An inode wb switch goes through
1193  * RCU and then workqueue, so the two need to be flushed in order to ensure
1194  * that all previously scheduled switches are finished.  As wb switches are
1195  * rare occurrences and synchronize_rcu() can take a while, perform
1196  * flushing iff wb switches are in flight.
1197  */
1198 void cgroup_writeback_umount(struct super_block *sb)
1199 {
1200 
1201 	if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
1202 		return;
1203 
1204 	/*
1205 	 * SB_ACTIVE should be reliably cleared before checking
1206 	 * isw_nr_in_flight, see generic_shutdown_super().
1207 	 */
1208 	smp_mb();
1209 
1210 	if (atomic_read(&isw_nr_in_flight)) {
1211 		/*
1212 		 * Use rcu_barrier() to wait for all pending callbacks to
1213 		 * ensure that all in-flight wb switches are in the workqueue.
1214 		 */
1215 		rcu_barrier();
1216 		flush_workqueue(isw_wq);
1217 	}
1218 }
1219 
1220 static int __init cgroup_writeback_init(void)
1221 {
1222 	isw_wq = alloc_workqueue("inode_switch_wbs", WQ_PERCPU, 0);
1223 	if (!isw_wq)
1224 		return -ENOMEM;
1225 	return 0;
1226 }
1227 fs_initcall(cgroup_writeback_init);
1228 
1229 #else	/* CONFIG_CGROUP_WRITEBACK */
1230 
1231 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1232 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1233 
1234 static void inode_cgwb_move_to_attached(struct inode *inode,
1235 					struct bdi_writeback *wb)
1236 {
1237 	assert_spin_locked(&wb->list_lock);
1238 	assert_spin_locked(&inode->i_lock);
1239 	WARN_ON_ONCE(inode->i_state & I_FREEING);
1240 
1241 	inode->i_state &= ~I_SYNC_QUEUED;
1242 	list_del_init(&inode->i_io_list);
1243 	wb_io_lists_depopulated(wb);
1244 }
1245 
1246 static struct bdi_writeback *
1247 locked_inode_to_wb_and_lock_list(struct inode *inode)
1248 	__releases(&inode->i_lock)
1249 	__acquires(&wb->list_lock)
1250 {
1251 	struct bdi_writeback *wb = inode_to_wb(inode);
1252 
1253 	spin_unlock(&inode->i_lock);
1254 	spin_lock(&wb->list_lock);
1255 	return wb;
1256 }
1257 
1258 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1259 	__acquires(&wb->list_lock)
1260 {
1261 	struct bdi_writeback *wb = inode_to_wb(inode);
1262 
1263 	spin_lock(&wb->list_lock);
1264 	return wb;
1265 }
1266 
1267 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1268 {
1269 	return nr_pages;
1270 }
1271 
1272 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1273 				  struct wb_writeback_work *base_work,
1274 				  bool skip_if_busy)
1275 {
1276 	might_sleep();
1277 
1278 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1279 		base_work->auto_free = 0;
1280 		wb_queue_work(&bdi->wb, base_work);
1281 	}
1282 }
1283 
1284 static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
1285 					       struct inode *inode)
1286 	__releases(&inode->i_lock)
1287 {
1288 	spin_unlock(&inode->i_lock);
1289 }
1290 
1291 #endif	/* CONFIG_CGROUP_WRITEBACK */
1292 
1293 /*
1294  * Add in the number of potentially dirty inodes, because each inode
1295  * write can dirty pagecache in the underlying blockdev.
1296  */
1297 static unsigned long get_nr_dirty_pages(void)
1298 {
1299 	return global_node_page_state(NR_FILE_DIRTY) +
1300 		get_nr_dirty_inodes();
1301 }
1302 
1303 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1304 {
1305 	if (!wb_has_dirty_io(wb))
1306 		return;
1307 
1308 	/*
1309 	 * All callers of this function want to start writeback of all
1310 	 * dirty pages. Places like vmscan can call this at a very
1311 	 * high frequency, causing pointless allocations of tons of
1312 	 * work items and keeping the flusher threads busy retrieving
1313 	 * that work. Ensure that we only allow one of them pending and
1314 	 * inflight at the time.
1315 	 */
1316 	if (test_bit(WB_start_all, &wb->state) ||
1317 	    test_and_set_bit(WB_start_all, &wb->state))
1318 		return;
1319 
1320 	wb->start_all_reason = reason;
1321 	wb_wakeup(wb);
1322 }
1323 
1324 /**
1325  * wb_start_background_writeback - start background writeback
1326  * @wb: bdi_writback to write from
1327  *
1328  * Description:
1329  *   This makes sure WB_SYNC_NONE background writeback happens. When
1330  *   this function returns, it is only guaranteed that for given wb
1331  *   some IO is happening if we are over background dirty threshold.
1332  *   Caller need not hold sb s_umount semaphore.
1333  */
1334 void wb_start_background_writeback(struct bdi_writeback *wb)
1335 {
1336 	/*
1337 	 * We just wake up the flusher thread. It will perform background
1338 	 * writeback as soon as there is no other work to do.
1339 	 */
1340 	trace_writeback_wake_background(wb);
1341 	wb_wakeup(wb);
1342 }
1343 
1344 /*
1345  * Remove the inode from the writeback list it is on.
1346  */
1347 void inode_io_list_del(struct inode *inode)
1348 {
1349 	struct bdi_writeback *wb;
1350 
1351 	wb = inode_to_wb_and_lock_list(inode);
1352 	spin_lock(&inode->i_lock);
1353 
1354 	inode->i_state &= ~I_SYNC_QUEUED;
1355 	list_del_init(&inode->i_io_list);
1356 	wb_io_lists_depopulated(wb);
1357 
1358 	spin_unlock(&inode->i_lock);
1359 	spin_unlock(&wb->list_lock);
1360 }
1361 EXPORT_SYMBOL(inode_io_list_del);
1362 
1363 /*
1364  * mark an inode as under writeback on the sb
1365  */
1366 void sb_mark_inode_writeback(struct inode *inode)
1367 {
1368 	struct super_block *sb = inode->i_sb;
1369 	unsigned long flags;
1370 
1371 	if (list_empty(&inode->i_wb_list)) {
1372 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1373 		if (list_empty(&inode->i_wb_list)) {
1374 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1375 			trace_sb_mark_inode_writeback(inode);
1376 		}
1377 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1378 	}
1379 }
1380 
1381 /*
1382  * clear an inode as under writeback on the sb
1383  */
1384 void sb_clear_inode_writeback(struct inode *inode)
1385 {
1386 	struct super_block *sb = inode->i_sb;
1387 	unsigned long flags;
1388 
1389 	if (!list_empty(&inode->i_wb_list)) {
1390 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1391 		if (!list_empty(&inode->i_wb_list)) {
1392 			list_del_init(&inode->i_wb_list);
1393 			trace_sb_clear_inode_writeback(inode);
1394 		}
1395 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1396 	}
1397 }
1398 
1399 /*
1400  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1401  * furthest end of its superblock's dirty-inode list.
1402  *
1403  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1404  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1405  * the case then the inode must have been redirtied while it was being written
1406  * out and we don't reset its dirtied_when.
1407  */
1408 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1409 {
1410 	assert_spin_locked(&inode->i_lock);
1411 
1412 	inode->i_state &= ~I_SYNC_QUEUED;
1413 	/*
1414 	 * When the inode is being freed just don't bother with dirty list
1415 	 * tracking. Flush worker will ignore this inode anyway and it will
1416 	 * trigger assertions in inode_io_list_move_locked().
1417 	 */
1418 	if (inode->i_state & I_FREEING) {
1419 		list_del_init(&inode->i_io_list);
1420 		wb_io_lists_depopulated(wb);
1421 		return;
1422 	}
1423 	if (!list_empty(&wb->b_dirty)) {
1424 		struct inode *tail;
1425 
1426 		tail = wb_inode(wb->b_dirty.next);
1427 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1428 			inode->dirtied_when = jiffies;
1429 	}
1430 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1431 }
1432 
1433 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1434 {
1435 	spin_lock(&inode->i_lock);
1436 	redirty_tail_locked(inode, wb);
1437 	spin_unlock(&inode->i_lock);
1438 }
1439 
1440 /*
1441  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1442  */
1443 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1444 {
1445 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1446 }
1447 
1448 static void inode_sync_complete(struct inode *inode)
1449 {
1450 	assert_spin_locked(&inode->i_lock);
1451 
1452 	inode->i_state &= ~I_SYNC;
1453 	/* If inode is clean an unused, put it into LRU now... */
1454 	inode_add_lru(inode);
1455 	/* Called with inode->i_lock which ensures memory ordering. */
1456 	inode_wake_up_bit(inode, __I_SYNC);
1457 }
1458 
1459 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1460 {
1461 	bool ret = time_after(inode->dirtied_when, t);
1462 #ifndef CONFIG_64BIT
1463 	/*
1464 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1465 	 * It _appears_ to be in the future, but is actually in distant past.
1466 	 * This test is necessary to prevent such wrapped-around relative times
1467 	 * from permanently stopping the whole bdi writeback.
1468 	 */
1469 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1470 #endif
1471 	return ret;
1472 }
1473 
1474 /*
1475  * Move expired (dirtied before dirtied_before) dirty inodes from
1476  * @delaying_queue to @dispatch_queue.
1477  */
1478 static int move_expired_inodes(struct list_head *delaying_queue,
1479 			       struct list_head *dispatch_queue,
1480 			       unsigned long dirtied_before)
1481 {
1482 	LIST_HEAD(tmp);
1483 	struct list_head *pos, *node;
1484 	struct super_block *sb = NULL;
1485 	struct inode *inode;
1486 	int do_sb_sort = 0;
1487 	int moved = 0;
1488 
1489 	while (!list_empty(delaying_queue)) {
1490 		inode = wb_inode(delaying_queue->prev);
1491 		if (inode_dirtied_after(inode, dirtied_before))
1492 			break;
1493 		spin_lock(&inode->i_lock);
1494 		list_move(&inode->i_io_list, &tmp);
1495 		moved++;
1496 		inode->i_state |= I_SYNC_QUEUED;
1497 		spin_unlock(&inode->i_lock);
1498 		if (sb_is_blkdev_sb(inode->i_sb))
1499 			continue;
1500 		if (sb && sb != inode->i_sb)
1501 			do_sb_sort = 1;
1502 		sb = inode->i_sb;
1503 	}
1504 
1505 	/* just one sb in list, splice to dispatch_queue and we're done */
1506 	if (!do_sb_sort) {
1507 		list_splice(&tmp, dispatch_queue);
1508 		goto out;
1509 	}
1510 
1511 	/*
1512 	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1513 	 * we don't take inode->i_lock here because it is just a pointless overhead.
1514 	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1515 	 * fully under our control.
1516 	 */
1517 	while (!list_empty(&tmp)) {
1518 		sb = wb_inode(tmp.prev)->i_sb;
1519 		list_for_each_prev_safe(pos, node, &tmp) {
1520 			inode = wb_inode(pos);
1521 			if (inode->i_sb == sb)
1522 				list_move(&inode->i_io_list, dispatch_queue);
1523 		}
1524 	}
1525 out:
1526 	return moved;
1527 }
1528 
1529 /*
1530  * Queue all expired dirty inodes for io, eldest first.
1531  * Before
1532  *         newly dirtied     b_dirty    b_io    b_more_io
1533  *         =============>    gf         edc     BA
1534  * After
1535  *         newly dirtied     b_dirty    b_io    b_more_io
1536  *         =============>    g          fBAedc
1537  *                                           |
1538  *                                           +--> dequeue for IO
1539  */
1540 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1541 		     unsigned long dirtied_before)
1542 {
1543 	int moved;
1544 	unsigned long time_expire_jif = dirtied_before;
1545 
1546 	assert_spin_locked(&wb->list_lock);
1547 	list_splice_init(&wb->b_more_io, &wb->b_io);
1548 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1549 	if (!work->for_sync)
1550 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1551 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1552 				     time_expire_jif);
1553 	if (moved)
1554 		wb_io_lists_populated(wb);
1555 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1556 }
1557 
1558 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1559 {
1560 	int ret;
1561 
1562 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1563 		trace_writeback_write_inode_start(inode, wbc);
1564 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1565 		trace_writeback_write_inode(inode, wbc);
1566 		return ret;
1567 	}
1568 	return 0;
1569 }
1570 
1571 /*
1572  * Wait for writeback on an inode to complete. Called with i_lock held.
1573  * Caller must make sure inode cannot go away when we drop i_lock.
1574  */
1575 void inode_wait_for_writeback(struct inode *inode)
1576 {
1577 	struct wait_bit_queue_entry wqe;
1578 	struct wait_queue_head *wq_head;
1579 
1580 	assert_spin_locked(&inode->i_lock);
1581 
1582 	if (!(inode->i_state & I_SYNC))
1583 		return;
1584 
1585 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1586 	for (;;) {
1587 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1588 		/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1589 		if (!(inode->i_state & I_SYNC))
1590 			break;
1591 		spin_unlock(&inode->i_lock);
1592 		schedule();
1593 		spin_lock(&inode->i_lock);
1594 	}
1595 	finish_wait(wq_head, &wqe.wq_entry);
1596 }
1597 
1598 /*
1599  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1600  * held and drops it. It is aimed for callers not holding any inode reference
1601  * so once i_lock is dropped, inode can go away.
1602  */
1603 static void inode_sleep_on_writeback(struct inode *inode)
1604 	__releases(inode->i_lock)
1605 {
1606 	struct wait_bit_queue_entry wqe;
1607 	struct wait_queue_head *wq_head;
1608 	bool sleep;
1609 
1610 	assert_spin_locked(&inode->i_lock);
1611 
1612 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1613 	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1614 	/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1615 	sleep = !!(inode->i_state & I_SYNC);
1616 	spin_unlock(&inode->i_lock);
1617 	if (sleep)
1618 		schedule();
1619 	finish_wait(wq_head, &wqe.wq_entry);
1620 }
1621 
1622 /*
1623  * Find proper writeback list for the inode depending on its current state and
1624  * possibly also change of its state while we were doing writeback.  Here we
1625  * handle things such as livelock prevention or fairness of writeback among
1626  * inodes. This function can be called only by flusher thread - noone else
1627  * processes all inodes in writeback lists and requeueing inodes behind flusher
1628  * thread's back can have unexpected consequences.
1629  */
1630 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1631 			  struct writeback_control *wbc,
1632 			  unsigned long dirtied_before)
1633 {
1634 	if (inode->i_state & I_FREEING)
1635 		return;
1636 
1637 	/*
1638 	 * Sync livelock prevention. Each inode is tagged and synced in one
1639 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1640 	 * the dirty time to prevent enqueue and sync it again.
1641 	 */
1642 	if ((inode->i_state & I_DIRTY) &&
1643 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1644 		inode->dirtied_when = jiffies;
1645 
1646 	if (wbc->pages_skipped) {
1647 		/*
1648 		 * Writeback is not making progress due to locked buffers.
1649 		 * Skip this inode for now. Although having skipped pages
1650 		 * is odd for clean inodes, it can happen for some
1651 		 * filesystems so handle that gracefully.
1652 		 */
1653 		if (inode->i_state & I_DIRTY_ALL)
1654 			redirty_tail_locked(inode, wb);
1655 		else
1656 			inode_cgwb_move_to_attached(inode, wb);
1657 		return;
1658 	}
1659 
1660 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1661 		/*
1662 		 * We didn't write back all the pages.  nfs_writepages()
1663 		 * sometimes bales out without doing anything.
1664 		 */
1665 		if (wbc->nr_to_write <= 0 &&
1666 		    !inode_dirtied_after(inode, dirtied_before)) {
1667 			/* Slice used up. Queue for next turn. */
1668 			requeue_io(inode, wb);
1669 		} else {
1670 			/*
1671 			 * Writeback blocked by something other than
1672 			 * congestion. Delay the inode for some time to
1673 			 * avoid spinning on the CPU (100% iowait)
1674 			 * retrying writeback of the dirty page/inode
1675 			 * that cannot be performed immediately.
1676 			 */
1677 			redirty_tail_locked(inode, wb);
1678 		}
1679 	} else if (inode->i_state & I_DIRTY) {
1680 		/*
1681 		 * Filesystems can dirty the inode during writeback operations,
1682 		 * such as delayed allocation during submission or metadata
1683 		 * updates after data IO completion.
1684 		 */
1685 		redirty_tail_locked(inode, wb);
1686 	} else if (inode->i_state & I_DIRTY_TIME) {
1687 		inode->dirtied_when = jiffies;
1688 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1689 		inode->i_state &= ~I_SYNC_QUEUED;
1690 	} else {
1691 		/* The inode is clean. Remove from writeback lists. */
1692 		inode_cgwb_move_to_attached(inode, wb);
1693 	}
1694 }
1695 
1696 /*
1697  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1698  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1699  *
1700  * This doesn't remove the inode from the writeback list it is on, except
1701  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1702  * expiration.  The caller is otherwise responsible for writeback list handling.
1703  *
1704  * The caller is also responsible for setting the I_SYNC flag beforehand and
1705  * calling inode_sync_complete() to clear it afterwards.
1706  */
1707 static int
1708 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1709 {
1710 	struct address_space *mapping = inode->i_mapping;
1711 	long nr_to_write = wbc->nr_to_write;
1712 	unsigned dirty;
1713 	int ret;
1714 
1715 	WARN_ON(!(inode->i_state & I_SYNC));
1716 
1717 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1718 
1719 	ret = do_writepages(mapping, wbc);
1720 
1721 	/*
1722 	 * Make sure to wait on the data before writing out the metadata.
1723 	 * This is important for filesystems that modify metadata on data
1724 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1725 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1726 	 * inode metadata is written back correctly.
1727 	 */
1728 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1729 		int err = filemap_fdatawait(mapping);
1730 		if (ret == 0)
1731 			ret = err;
1732 	}
1733 
1734 	/*
1735 	 * If the inode has dirty timestamps and we need to write them, call
1736 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1737 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1738 	 */
1739 	if ((inode->i_state & I_DIRTY_TIME) &&
1740 	    (wbc->sync_mode == WB_SYNC_ALL ||
1741 	     time_after(jiffies, inode->dirtied_time_when +
1742 			dirtytime_expire_interval * HZ))) {
1743 		trace_writeback_lazytime(inode);
1744 		mark_inode_dirty_sync(inode);
1745 	}
1746 
1747 	/*
1748 	 * Get and clear the dirty flags from i_state.  This needs to be done
1749 	 * after calling writepages because some filesystems may redirty the
1750 	 * inode during writepages due to delalloc.  It also needs to be done
1751 	 * after handling timestamp expiration, as that may dirty the inode too.
1752 	 */
1753 	spin_lock(&inode->i_lock);
1754 	dirty = inode->i_state & I_DIRTY;
1755 	inode->i_state &= ~dirty;
1756 
1757 	/*
1758 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1759 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1760 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1761 	 * inode.
1762 	 *
1763 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1764 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1765 	 * necessary.  This guarantees that either __mark_inode_dirty()
1766 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1767 	 */
1768 	smp_mb();
1769 
1770 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1771 		inode->i_state |= I_DIRTY_PAGES;
1772 	else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1773 		if (!(inode->i_state & I_DIRTY_PAGES)) {
1774 			inode->i_state &= ~I_PINNING_NETFS_WB;
1775 			wbc->unpinned_netfs_wb = true;
1776 			dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1777 		}
1778 	}
1779 
1780 	spin_unlock(&inode->i_lock);
1781 
1782 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1783 	if (dirty & ~I_DIRTY_PAGES) {
1784 		int err = write_inode(inode, wbc);
1785 		if (ret == 0)
1786 			ret = err;
1787 	}
1788 	wbc->unpinned_netfs_wb = false;
1789 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1790 	return ret;
1791 }
1792 
1793 /*
1794  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1795  * the regular batched writeback done by the flusher threads in
1796  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1797  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1798  *
1799  * To prevent the inode from going away, either the caller must have a reference
1800  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1801  */
1802 static int writeback_single_inode(struct inode *inode,
1803 				  struct writeback_control *wbc)
1804 {
1805 	struct bdi_writeback *wb;
1806 	int ret = 0;
1807 
1808 	spin_lock(&inode->i_lock);
1809 	if (!icount_read(inode))
1810 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1811 	else
1812 		WARN_ON(inode->i_state & I_WILL_FREE);
1813 
1814 	if (inode->i_state & I_SYNC) {
1815 		/*
1816 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1817 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1818 		 * must wait for the existing writeback to complete, then do
1819 		 * writeback again if there's anything left.
1820 		 */
1821 		if (wbc->sync_mode != WB_SYNC_ALL)
1822 			goto out;
1823 		inode_wait_for_writeback(inode);
1824 	}
1825 	WARN_ON(inode->i_state & I_SYNC);
1826 	/*
1827 	 * If the inode is already fully clean, then there's nothing to do.
1828 	 *
1829 	 * For data-integrity syncs we also need to check whether any pages are
1830 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1831 	 * there are any such pages, we'll need to wait for them.
1832 	 */
1833 	if (!(inode->i_state & I_DIRTY_ALL) &&
1834 	    (wbc->sync_mode != WB_SYNC_ALL ||
1835 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1836 		goto out;
1837 	inode->i_state |= I_SYNC;
1838 	wbc_attach_and_unlock_inode(wbc, inode);
1839 
1840 	ret = __writeback_single_inode(inode, wbc);
1841 
1842 	wbc_detach_inode(wbc);
1843 
1844 	wb = inode_to_wb_and_lock_list(inode);
1845 	spin_lock(&inode->i_lock);
1846 	/*
1847 	 * If the inode is freeing, its i_io_list shoudn't be updated
1848 	 * as it can be finally deleted at this moment.
1849 	 */
1850 	if (!(inode->i_state & I_FREEING)) {
1851 		/*
1852 		 * If the inode is now fully clean, then it can be safely
1853 		 * removed from its writeback list (if any). Otherwise the
1854 		 * flusher threads are responsible for the writeback lists.
1855 		 */
1856 		if (!(inode->i_state & I_DIRTY_ALL))
1857 			inode_cgwb_move_to_attached(inode, wb);
1858 		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1859 			if ((inode->i_state & I_DIRTY))
1860 				redirty_tail_locked(inode, wb);
1861 			else if (inode->i_state & I_DIRTY_TIME) {
1862 				inode->dirtied_when = jiffies;
1863 				inode_io_list_move_locked(inode,
1864 							  wb,
1865 							  &wb->b_dirty_time);
1866 			}
1867 		}
1868 	}
1869 
1870 	spin_unlock(&wb->list_lock);
1871 	inode_sync_complete(inode);
1872 out:
1873 	spin_unlock(&inode->i_lock);
1874 	return ret;
1875 }
1876 
1877 static long writeback_chunk_size(struct bdi_writeback *wb,
1878 				 struct wb_writeback_work *work)
1879 {
1880 	long pages;
1881 
1882 	/*
1883 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1884 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1885 	 * here avoids calling into writeback_inodes_wb() more than once.
1886 	 *
1887 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1888 	 *
1889 	 *      wb_writeback()
1890 	 *          writeback_sb_inodes()       <== called only once
1891 	 *              write_cache_pages()     <== called once for each inode
1892 	 *                   (quickly) tag currently dirty pages
1893 	 *                   (maybe slowly) sync all tagged pages
1894 	 */
1895 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1896 		pages = LONG_MAX;
1897 	else {
1898 		pages = min(wb->avg_write_bandwidth / 2,
1899 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1900 		pages = min(pages, work->nr_pages);
1901 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1902 				   MIN_WRITEBACK_PAGES);
1903 	}
1904 
1905 	return pages;
1906 }
1907 
1908 /*
1909  * Write a portion of b_io inodes which belong to @sb.
1910  *
1911  * Return the number of pages and/or inodes written.
1912  *
1913  * NOTE! This is called with wb->list_lock held, and will
1914  * unlock and relock that for each inode it ends up doing
1915  * IO for.
1916  */
1917 static long writeback_sb_inodes(struct super_block *sb,
1918 				struct bdi_writeback *wb,
1919 				struct wb_writeback_work *work)
1920 {
1921 	struct writeback_control wbc = {
1922 		.sync_mode		= work->sync_mode,
1923 		.tagged_writepages	= work->tagged_writepages,
1924 		.for_kupdate		= work->for_kupdate,
1925 		.for_background		= work->for_background,
1926 		.for_sync		= work->for_sync,
1927 		.range_cyclic		= work->range_cyclic,
1928 		.range_start		= 0,
1929 		.range_end		= LLONG_MAX,
1930 	};
1931 	unsigned long start_time = jiffies;
1932 	long write_chunk;
1933 	long total_wrote = 0;  /* count both pages and inodes */
1934 	unsigned long dirtied_before = jiffies;
1935 
1936 	if (work->for_kupdate)
1937 		dirtied_before = jiffies -
1938 			msecs_to_jiffies(dirty_expire_interval * 10);
1939 
1940 	while (!list_empty(&wb->b_io)) {
1941 		struct inode *inode = wb_inode(wb->b_io.prev);
1942 		struct bdi_writeback *tmp_wb;
1943 		long wrote;
1944 
1945 		if (inode->i_sb != sb) {
1946 			if (work->sb) {
1947 				/*
1948 				 * We only want to write back data for this
1949 				 * superblock, move all inodes not belonging
1950 				 * to it back onto the dirty list.
1951 				 */
1952 				redirty_tail(inode, wb);
1953 				continue;
1954 			}
1955 
1956 			/*
1957 			 * The inode belongs to a different superblock.
1958 			 * Bounce back to the caller to unpin this and
1959 			 * pin the next superblock.
1960 			 */
1961 			break;
1962 		}
1963 
1964 		/*
1965 		 * Don't bother with new inodes or inodes being freed, first
1966 		 * kind does not need periodic writeout yet, and for the latter
1967 		 * kind writeout is handled by the freer.
1968 		 */
1969 		spin_lock(&inode->i_lock);
1970 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1971 			redirty_tail_locked(inode, wb);
1972 			spin_unlock(&inode->i_lock);
1973 			continue;
1974 		}
1975 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1976 			/*
1977 			 * If this inode is locked for writeback and we are not
1978 			 * doing writeback-for-data-integrity, move it to
1979 			 * b_more_io so that writeback can proceed with the
1980 			 * other inodes on s_io.
1981 			 *
1982 			 * We'll have another go at writing back this inode
1983 			 * when we completed a full scan of b_io.
1984 			 */
1985 			requeue_io(inode, wb);
1986 			spin_unlock(&inode->i_lock);
1987 			trace_writeback_sb_inodes_requeue(inode);
1988 			continue;
1989 		}
1990 		spin_unlock(&wb->list_lock);
1991 
1992 		/*
1993 		 * We already requeued the inode if it had I_SYNC set and we
1994 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1995 		 * WB_SYNC_ALL case.
1996 		 */
1997 		if (inode->i_state & I_SYNC) {
1998 			/* Wait for I_SYNC. This function drops i_lock... */
1999 			inode_sleep_on_writeback(inode);
2000 			/* Inode may be gone, start again */
2001 			spin_lock(&wb->list_lock);
2002 			continue;
2003 		}
2004 		inode->i_state |= I_SYNC;
2005 		wbc_attach_and_unlock_inode(&wbc, inode);
2006 
2007 		write_chunk = writeback_chunk_size(wb, work);
2008 		wbc.nr_to_write = write_chunk;
2009 		wbc.pages_skipped = 0;
2010 
2011 		/*
2012 		 * We use I_SYNC to pin the inode in memory. While it is set
2013 		 * evict_inode() will wait so the inode cannot be freed.
2014 		 */
2015 		__writeback_single_inode(inode, &wbc);
2016 
2017 		wbc_detach_inode(&wbc);
2018 		work->nr_pages -= write_chunk - wbc.nr_to_write;
2019 		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
2020 		wrote = wrote < 0 ? 0 : wrote;
2021 		total_wrote += wrote;
2022 
2023 		if (need_resched()) {
2024 			/*
2025 			 * We're trying to balance between building up a nice
2026 			 * long list of IOs to improve our merge rate, and
2027 			 * getting those IOs out quickly for anyone throttling
2028 			 * in balance_dirty_pages().  cond_resched() doesn't
2029 			 * unplug, so get our IOs out the door before we
2030 			 * give up the CPU.
2031 			 */
2032 			blk_flush_plug(current->plug, false);
2033 			cond_resched();
2034 		}
2035 
2036 		/*
2037 		 * Requeue @inode if still dirty.  Be careful as @inode may
2038 		 * have been switched to another wb in the meantime.
2039 		 */
2040 		tmp_wb = inode_to_wb_and_lock_list(inode);
2041 		spin_lock(&inode->i_lock);
2042 		if (!(inode->i_state & I_DIRTY_ALL))
2043 			total_wrote++;
2044 		requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
2045 		inode_sync_complete(inode);
2046 		spin_unlock(&inode->i_lock);
2047 
2048 		if (unlikely(tmp_wb != wb)) {
2049 			spin_unlock(&tmp_wb->list_lock);
2050 			spin_lock(&wb->list_lock);
2051 		}
2052 
2053 		/*
2054 		 * bail out to wb_writeback() often enough to check
2055 		 * background threshold and other termination conditions.
2056 		 */
2057 		if (total_wrote) {
2058 			if (time_is_before_jiffies(start_time + HZ / 10UL))
2059 				break;
2060 			if (work->nr_pages <= 0)
2061 				break;
2062 		}
2063 	}
2064 	return total_wrote;
2065 }
2066 
2067 static long __writeback_inodes_wb(struct bdi_writeback *wb,
2068 				  struct wb_writeback_work *work)
2069 {
2070 	unsigned long start_time = jiffies;
2071 	long wrote = 0;
2072 
2073 	while (!list_empty(&wb->b_io)) {
2074 		struct inode *inode = wb_inode(wb->b_io.prev);
2075 		struct super_block *sb = inode->i_sb;
2076 
2077 		if (!super_trylock_shared(sb)) {
2078 			/*
2079 			 * super_trylock_shared() may fail consistently due to
2080 			 * s_umount being grabbed by someone else. Don't use
2081 			 * requeue_io() to avoid busy retrying the inode/sb.
2082 			 */
2083 			redirty_tail(inode, wb);
2084 			continue;
2085 		}
2086 		wrote += writeback_sb_inodes(sb, wb, work);
2087 		up_read(&sb->s_umount);
2088 
2089 		/* refer to the same tests at the end of writeback_sb_inodes */
2090 		if (wrote) {
2091 			if (time_is_before_jiffies(start_time + HZ / 10UL))
2092 				break;
2093 			if (work->nr_pages <= 0)
2094 				break;
2095 		}
2096 	}
2097 	/* Leave any unwritten inodes on b_io */
2098 	return wrote;
2099 }
2100 
2101 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2102 				enum wb_reason reason)
2103 {
2104 	struct wb_writeback_work work = {
2105 		.nr_pages	= nr_pages,
2106 		.sync_mode	= WB_SYNC_NONE,
2107 		.range_cyclic	= 1,
2108 		.reason		= reason,
2109 	};
2110 	struct blk_plug plug;
2111 
2112 	blk_start_plug(&plug);
2113 	spin_lock(&wb->list_lock);
2114 	if (list_empty(&wb->b_io))
2115 		queue_io(wb, &work, jiffies);
2116 	__writeback_inodes_wb(wb, &work);
2117 	spin_unlock(&wb->list_lock);
2118 	blk_finish_plug(&plug);
2119 
2120 	return nr_pages - work.nr_pages;
2121 }
2122 
2123 /*
2124  * Explicit flushing or periodic writeback of "old" data.
2125  *
2126  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2127  * dirtying-time in the inode's address_space.  So this periodic writeback code
2128  * just walks the superblock inode list, writing back any inodes which are
2129  * older than a specific point in time.
2130  *
2131  * Try to run once per dirty_writeback_interval.  But if a writeback event
2132  * takes longer than a dirty_writeback_interval interval, then leave a
2133  * one-second gap.
2134  *
2135  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2136  * all dirty pages if they are all attached to "old" mappings.
2137  */
2138 static long wb_writeback(struct bdi_writeback *wb,
2139 			 struct wb_writeback_work *work)
2140 {
2141 	long nr_pages = work->nr_pages;
2142 	unsigned long dirtied_before = jiffies;
2143 	struct inode *inode;
2144 	long progress;
2145 	struct blk_plug plug;
2146 	bool queued = false;
2147 
2148 	blk_start_plug(&plug);
2149 	for (;;) {
2150 		/*
2151 		 * Stop writeback when nr_pages has been consumed
2152 		 */
2153 		if (work->nr_pages <= 0)
2154 			break;
2155 
2156 		/*
2157 		 * Background writeout and kupdate-style writeback may
2158 		 * run forever. Stop them if there is other work to do
2159 		 * so that e.g. sync can proceed. They'll be restarted
2160 		 * after the other works are all done.
2161 		 */
2162 		if ((work->for_background || work->for_kupdate) &&
2163 		    !list_empty(&wb->work_list))
2164 			break;
2165 
2166 		/*
2167 		 * For background writeout, stop when we are below the
2168 		 * background dirty threshold
2169 		 */
2170 		if (work->for_background && !wb_over_bg_thresh(wb))
2171 			break;
2172 
2173 
2174 		spin_lock(&wb->list_lock);
2175 
2176 		trace_writeback_start(wb, work);
2177 		if (list_empty(&wb->b_io)) {
2178 			/*
2179 			 * Kupdate and background works are special and we want
2180 			 * to include all inodes that need writing. Livelock
2181 			 * avoidance is handled by these works yielding to any
2182 			 * other work so we are safe.
2183 			 */
2184 			if (work->for_kupdate) {
2185 				dirtied_before = jiffies -
2186 					msecs_to_jiffies(dirty_expire_interval *
2187 							 10);
2188 			} else if (work->for_background)
2189 				dirtied_before = jiffies;
2190 
2191 			queue_io(wb, work, dirtied_before);
2192 			queued = true;
2193 		}
2194 		if (work->sb)
2195 			progress = writeback_sb_inodes(work->sb, wb, work);
2196 		else
2197 			progress = __writeback_inodes_wb(wb, work);
2198 		trace_writeback_written(wb, work);
2199 
2200 		/*
2201 		 * Did we write something? Try for more
2202 		 *
2203 		 * Dirty inodes are moved to b_io for writeback in batches.
2204 		 * The completion of the current batch does not necessarily
2205 		 * mean the overall work is done. So we keep looping as long
2206 		 * as made some progress on cleaning pages or inodes.
2207 		 */
2208 		if (progress || !queued) {
2209 			spin_unlock(&wb->list_lock);
2210 			continue;
2211 		}
2212 
2213 		/*
2214 		 * No more inodes for IO, bail
2215 		 */
2216 		if (list_empty(&wb->b_more_io)) {
2217 			spin_unlock(&wb->list_lock);
2218 			break;
2219 		}
2220 
2221 		/*
2222 		 * Nothing written. Wait for some inode to
2223 		 * become available for writeback. Otherwise
2224 		 * we'll just busyloop.
2225 		 */
2226 		trace_writeback_wait(wb, work);
2227 		inode = wb_inode(wb->b_more_io.prev);
2228 		spin_lock(&inode->i_lock);
2229 		spin_unlock(&wb->list_lock);
2230 		/* This function drops i_lock... */
2231 		inode_sleep_on_writeback(inode);
2232 	}
2233 	blk_finish_plug(&plug);
2234 
2235 	return nr_pages - work->nr_pages;
2236 }
2237 
2238 /*
2239  * Return the next wb_writeback_work struct that hasn't been processed yet.
2240  */
2241 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2242 {
2243 	struct wb_writeback_work *work = NULL;
2244 
2245 	spin_lock_irq(&wb->work_lock);
2246 	if (!list_empty(&wb->work_list)) {
2247 		work = list_entry(wb->work_list.next,
2248 				  struct wb_writeback_work, list);
2249 		list_del_init(&work->list);
2250 	}
2251 	spin_unlock_irq(&wb->work_lock);
2252 	return work;
2253 }
2254 
2255 static long wb_check_background_flush(struct bdi_writeback *wb)
2256 {
2257 	if (wb_over_bg_thresh(wb)) {
2258 
2259 		struct wb_writeback_work work = {
2260 			.nr_pages	= LONG_MAX,
2261 			.sync_mode	= WB_SYNC_NONE,
2262 			.for_background	= 1,
2263 			.range_cyclic	= 1,
2264 			.reason		= WB_REASON_BACKGROUND,
2265 		};
2266 
2267 		return wb_writeback(wb, &work);
2268 	}
2269 
2270 	return 0;
2271 }
2272 
2273 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2274 {
2275 	unsigned long expired;
2276 	long nr_pages;
2277 
2278 	/*
2279 	 * When set to zero, disable periodic writeback
2280 	 */
2281 	if (!dirty_writeback_interval)
2282 		return 0;
2283 
2284 	expired = wb->last_old_flush +
2285 			msecs_to_jiffies(dirty_writeback_interval * 10);
2286 	if (time_before(jiffies, expired))
2287 		return 0;
2288 
2289 	wb->last_old_flush = jiffies;
2290 	nr_pages = get_nr_dirty_pages();
2291 
2292 	if (nr_pages) {
2293 		struct wb_writeback_work work = {
2294 			.nr_pages	= nr_pages,
2295 			.sync_mode	= WB_SYNC_NONE,
2296 			.for_kupdate	= 1,
2297 			.range_cyclic	= 1,
2298 			.reason		= WB_REASON_PERIODIC,
2299 		};
2300 
2301 		return wb_writeback(wb, &work);
2302 	}
2303 
2304 	return 0;
2305 }
2306 
2307 static long wb_check_start_all(struct bdi_writeback *wb)
2308 {
2309 	long nr_pages;
2310 
2311 	if (!test_bit(WB_start_all, &wb->state))
2312 		return 0;
2313 
2314 	nr_pages = get_nr_dirty_pages();
2315 	if (nr_pages) {
2316 		struct wb_writeback_work work = {
2317 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2318 			.sync_mode	= WB_SYNC_NONE,
2319 			.range_cyclic	= 1,
2320 			.reason		= wb->start_all_reason,
2321 		};
2322 
2323 		nr_pages = wb_writeback(wb, &work);
2324 	}
2325 
2326 	clear_bit(WB_start_all, &wb->state);
2327 	return nr_pages;
2328 }
2329 
2330 
2331 /*
2332  * Retrieve work items and do the writeback they describe
2333  */
2334 static long wb_do_writeback(struct bdi_writeback *wb)
2335 {
2336 	struct wb_writeback_work *work;
2337 	long wrote = 0;
2338 
2339 	set_bit(WB_writeback_running, &wb->state);
2340 	while ((work = get_next_work_item(wb)) != NULL) {
2341 		trace_writeback_exec(wb, work);
2342 		wrote += wb_writeback(wb, work);
2343 		finish_writeback_work(work);
2344 	}
2345 
2346 	/*
2347 	 * Check for a flush-everything request
2348 	 */
2349 	wrote += wb_check_start_all(wb);
2350 
2351 	/*
2352 	 * Check for periodic writeback, kupdated() style
2353 	 */
2354 	wrote += wb_check_old_data_flush(wb);
2355 	wrote += wb_check_background_flush(wb);
2356 	clear_bit(WB_writeback_running, &wb->state);
2357 
2358 	return wrote;
2359 }
2360 
2361 /*
2362  * Handle writeback of dirty data for the device backed by this bdi. Also
2363  * reschedules periodically and does kupdated style flushing.
2364  */
2365 void wb_workfn(struct work_struct *work)
2366 {
2367 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2368 						struct bdi_writeback, dwork);
2369 	long pages_written;
2370 
2371 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2372 
2373 	if (likely(!current_is_workqueue_rescuer() ||
2374 		   !test_bit(WB_registered, &wb->state))) {
2375 		/*
2376 		 * The normal path.  Keep writing back @wb until its
2377 		 * work_list is empty.  Note that this path is also taken
2378 		 * if @wb is shutting down even when we're running off the
2379 		 * rescuer as work_list needs to be drained.
2380 		 */
2381 		do {
2382 			pages_written = wb_do_writeback(wb);
2383 			trace_writeback_pages_written(pages_written);
2384 		} while (!list_empty(&wb->work_list));
2385 	} else {
2386 		/*
2387 		 * bdi_wq can't get enough workers and we're running off
2388 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2389 		 * enough for efficient IO.
2390 		 */
2391 		pages_written = writeback_inodes_wb(wb, 1024,
2392 						    WB_REASON_FORKER_THREAD);
2393 		trace_writeback_pages_written(pages_written);
2394 	}
2395 
2396 	if (!list_empty(&wb->work_list))
2397 		wb_wakeup(wb);
2398 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2399 		wb_wakeup_delayed(wb);
2400 }
2401 
2402 /*
2403  * Start writeback of all dirty pages on this bdi.
2404  */
2405 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2406 					 enum wb_reason reason)
2407 {
2408 	struct bdi_writeback *wb;
2409 
2410 	if (!bdi_has_dirty_io(bdi))
2411 		return;
2412 
2413 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2414 		wb_start_writeback(wb, reason);
2415 }
2416 
2417 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2418 				enum wb_reason reason)
2419 {
2420 	rcu_read_lock();
2421 	__wakeup_flusher_threads_bdi(bdi, reason);
2422 	rcu_read_unlock();
2423 }
2424 
2425 /*
2426  * Wakeup the flusher threads to start writeback of all currently dirty pages
2427  */
2428 void wakeup_flusher_threads(enum wb_reason reason)
2429 {
2430 	struct backing_dev_info *bdi;
2431 
2432 	/*
2433 	 * If we are expecting writeback progress we must submit plugged IO.
2434 	 */
2435 	blk_flush_plug(current->plug, true);
2436 
2437 	rcu_read_lock();
2438 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2439 		__wakeup_flusher_threads_bdi(bdi, reason);
2440 	rcu_read_unlock();
2441 }
2442 
2443 /*
2444  * Wake up bdi's periodically to make sure dirtytime inodes gets
2445  * written back periodically.  We deliberately do *not* check the
2446  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2447  * kernel to be constantly waking up once there are any dirtytime
2448  * inodes on the system.  So instead we define a separate delayed work
2449  * function which gets called much more rarely.  (By default, only
2450  * once every 12 hours.)
2451  *
2452  * If there is any other write activity going on in the file system,
2453  * this function won't be necessary.  But if the only thing that has
2454  * happened on the file system is a dirtytime inode caused by an atime
2455  * update, we need this infrastructure below to make sure that inode
2456  * eventually gets pushed out to disk.
2457  */
2458 static void wakeup_dirtytime_writeback(struct work_struct *w);
2459 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2460 
2461 static void wakeup_dirtytime_writeback(struct work_struct *w)
2462 {
2463 	struct backing_dev_info *bdi;
2464 
2465 	rcu_read_lock();
2466 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2467 		struct bdi_writeback *wb;
2468 
2469 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2470 			if (!list_empty(&wb->b_dirty_time))
2471 				wb_wakeup(wb);
2472 	}
2473 	rcu_read_unlock();
2474 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2475 }
2476 
2477 static int dirtytime_interval_handler(const struct ctl_table *table, int write,
2478 			       void *buffer, size_t *lenp, loff_t *ppos)
2479 {
2480 	int ret;
2481 
2482 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2483 	if (ret == 0 && write)
2484 		mod_delayed_work(system_percpu_wq, &dirtytime_work, 0);
2485 	return ret;
2486 }
2487 
2488 static const struct ctl_table vm_fs_writeback_table[] = {
2489 	{
2490 		.procname	= "dirtytime_expire_seconds",
2491 		.data		= &dirtytime_expire_interval,
2492 		.maxlen		= sizeof(dirtytime_expire_interval),
2493 		.mode		= 0644,
2494 		.proc_handler	= dirtytime_interval_handler,
2495 		.extra1		= SYSCTL_ZERO,
2496 	},
2497 };
2498 
2499 static int __init start_dirtytime_writeback(void)
2500 {
2501 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2502 	register_sysctl_init("vm", vm_fs_writeback_table);
2503 	return 0;
2504 }
2505 __initcall(start_dirtytime_writeback);
2506 
2507 /**
2508  * __mark_inode_dirty -	internal function to mark an inode dirty
2509  *
2510  * @inode: inode to mark
2511  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2512  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2513  *	   with I_DIRTY_PAGES.
2514  *
2515  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2516  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2517  *
2518  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2519  * instead of calling this directly.
2520  *
2521  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2522  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2523  * even if they are later hashed, as they will have been marked dirty already.
2524  *
2525  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2526  *
2527  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2528  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2529  * the kernel-internal blockdev inode represents the dirtying time of the
2530  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2531  * page->mapping->host, so the page-dirtying time is recorded in the internal
2532  * blockdev inode.
2533  */
2534 void __mark_inode_dirty(struct inode *inode, int flags)
2535 {
2536 	struct super_block *sb = inode->i_sb;
2537 	int dirtytime = 0;
2538 	struct bdi_writeback *wb = NULL;
2539 
2540 	trace_writeback_mark_inode_dirty(inode, flags);
2541 
2542 	if (flags & I_DIRTY_INODE) {
2543 		/*
2544 		 * Inode timestamp update will piggback on this dirtying.
2545 		 * We tell ->dirty_inode callback that timestamps need to
2546 		 * be updated by setting I_DIRTY_TIME in flags.
2547 		 */
2548 		if (inode->i_state & I_DIRTY_TIME) {
2549 			spin_lock(&inode->i_lock);
2550 			if (inode->i_state & I_DIRTY_TIME) {
2551 				inode->i_state &= ~I_DIRTY_TIME;
2552 				flags |= I_DIRTY_TIME;
2553 			}
2554 			spin_unlock(&inode->i_lock);
2555 		}
2556 
2557 		/*
2558 		 * Notify the filesystem about the inode being dirtied, so that
2559 		 * (if needed) it can update on-disk fields and journal the
2560 		 * inode.  This is only needed when the inode itself is being
2561 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2562 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2563 		 */
2564 		trace_writeback_dirty_inode_start(inode, flags);
2565 		if (sb->s_op->dirty_inode)
2566 			sb->s_op->dirty_inode(inode,
2567 				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2568 		trace_writeback_dirty_inode(inode, flags);
2569 
2570 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2571 		flags &= ~I_DIRTY_TIME;
2572 	} else {
2573 		/*
2574 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2575 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2576 		 * in one call to __mark_inode_dirty().)
2577 		 */
2578 		dirtytime = flags & I_DIRTY_TIME;
2579 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2580 	}
2581 
2582 	/*
2583 	 * Paired with smp_mb() in __writeback_single_inode() for the
2584 	 * following lockless i_state test.  See there for details.
2585 	 */
2586 	smp_mb();
2587 
2588 	if ((inode->i_state & flags) == flags)
2589 		return;
2590 
2591 	spin_lock(&inode->i_lock);
2592 	if ((inode->i_state & flags) != flags) {
2593 		const int was_dirty = inode->i_state & I_DIRTY;
2594 
2595 		inode_attach_wb(inode, NULL);
2596 
2597 		inode->i_state |= flags;
2598 
2599 		/*
2600 		 * Grab inode's wb early because it requires dropping i_lock and we
2601 		 * need to make sure following checks happen atomically with dirty
2602 		 * list handling so that we don't move inodes under flush worker's
2603 		 * hands.
2604 		 */
2605 		if (!was_dirty) {
2606 			wb = locked_inode_to_wb_and_lock_list(inode);
2607 			spin_lock(&inode->i_lock);
2608 		}
2609 
2610 		/*
2611 		 * If the inode is queued for writeback by flush worker, just
2612 		 * update its dirty state. Once the flush worker is done with
2613 		 * the inode it will place it on the appropriate superblock
2614 		 * list, based upon its state.
2615 		 */
2616 		if (inode->i_state & I_SYNC_QUEUED)
2617 			goto out_unlock;
2618 
2619 		/*
2620 		 * Only add valid (hashed) inodes to the superblock's
2621 		 * dirty list.  Add blockdev inodes as well.
2622 		 */
2623 		if (!S_ISBLK(inode->i_mode)) {
2624 			if (inode_unhashed(inode))
2625 				goto out_unlock;
2626 		}
2627 		if (inode->i_state & I_FREEING)
2628 			goto out_unlock;
2629 
2630 		/*
2631 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2632 		 * reposition it (that would break b_dirty time-ordering).
2633 		 */
2634 		if (!was_dirty) {
2635 			struct list_head *dirty_list;
2636 			bool wakeup_bdi = false;
2637 
2638 			inode->dirtied_when = jiffies;
2639 			if (dirtytime)
2640 				inode->dirtied_time_when = jiffies;
2641 
2642 			if (inode->i_state & I_DIRTY)
2643 				dirty_list = &wb->b_dirty;
2644 			else
2645 				dirty_list = &wb->b_dirty_time;
2646 
2647 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2648 							       dirty_list);
2649 
2650 			/*
2651 			 * If this is the first dirty inode for this bdi,
2652 			 * we have to wake-up the corresponding bdi thread
2653 			 * to make sure background write-back happens
2654 			 * later.
2655 			 */
2656 			if (wakeup_bdi &&
2657 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2658 				wb_wakeup_delayed(wb);
2659 
2660 			spin_unlock(&wb->list_lock);
2661 			spin_unlock(&inode->i_lock);
2662 			trace_writeback_dirty_inode_enqueue(inode);
2663 
2664 			return;
2665 		}
2666 	}
2667 out_unlock:
2668 	if (wb)
2669 		spin_unlock(&wb->list_lock);
2670 	spin_unlock(&inode->i_lock);
2671 }
2672 EXPORT_SYMBOL(__mark_inode_dirty);
2673 
2674 /*
2675  * The @s_sync_lock is used to serialise concurrent sync operations
2676  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2677  * Concurrent callers will block on the s_sync_lock rather than doing contending
2678  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2679  * has been issued up to the time this function is enter is guaranteed to be
2680  * completed by the time we have gained the lock and waited for all IO that is
2681  * in progress regardless of the order callers are granted the lock.
2682  */
2683 static void wait_sb_inodes(struct super_block *sb)
2684 {
2685 	LIST_HEAD(sync_list);
2686 
2687 	/*
2688 	 * We need to be protected against the filesystem going from
2689 	 * r/o to r/w or vice versa.
2690 	 */
2691 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2692 
2693 	mutex_lock(&sb->s_sync_lock);
2694 
2695 	/*
2696 	 * Splice the writeback list onto a temporary list to avoid waiting on
2697 	 * inodes that have started writeback after this point.
2698 	 *
2699 	 * Use rcu_read_lock() to keep the inodes around until we have a
2700 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2701 	 * the local list because inodes can be dropped from either by writeback
2702 	 * completion.
2703 	 */
2704 	rcu_read_lock();
2705 	spin_lock_irq(&sb->s_inode_wblist_lock);
2706 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2707 
2708 	/*
2709 	 * Data integrity sync. Must wait for all pages under writeback, because
2710 	 * there may have been pages dirtied before our sync call, but which had
2711 	 * writeout started before we write it out.  In which case, the inode
2712 	 * may not be on the dirty list, but we still have to wait for that
2713 	 * writeout.
2714 	 */
2715 	while (!list_empty(&sync_list)) {
2716 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2717 						       i_wb_list);
2718 		struct address_space *mapping = inode->i_mapping;
2719 
2720 		/*
2721 		 * Move each inode back to the wb list before we drop the lock
2722 		 * to preserve consistency between i_wb_list and the mapping
2723 		 * writeback tag. Writeback completion is responsible to remove
2724 		 * the inode from either list once the writeback tag is cleared.
2725 		 */
2726 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2727 
2728 		/*
2729 		 * The mapping can appear untagged while still on-list since we
2730 		 * do not have the mapping lock. Skip it here, wb completion
2731 		 * will remove it.
2732 		 */
2733 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2734 			continue;
2735 
2736 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2737 
2738 		spin_lock(&inode->i_lock);
2739 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2740 			spin_unlock(&inode->i_lock);
2741 
2742 			spin_lock_irq(&sb->s_inode_wblist_lock);
2743 			continue;
2744 		}
2745 		__iget(inode);
2746 		spin_unlock(&inode->i_lock);
2747 		rcu_read_unlock();
2748 
2749 		/*
2750 		 * We keep the error status of individual mapping so that
2751 		 * applications can catch the writeback error using fsync(2).
2752 		 * See filemap_fdatawait_keep_errors() for details.
2753 		 */
2754 		filemap_fdatawait_keep_errors(mapping);
2755 
2756 		cond_resched();
2757 
2758 		iput(inode);
2759 
2760 		rcu_read_lock();
2761 		spin_lock_irq(&sb->s_inode_wblist_lock);
2762 	}
2763 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2764 	rcu_read_unlock();
2765 	mutex_unlock(&sb->s_sync_lock);
2766 }
2767 
2768 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2769 				     enum wb_reason reason, bool skip_if_busy)
2770 {
2771 	struct backing_dev_info *bdi = sb->s_bdi;
2772 	DEFINE_WB_COMPLETION(done, bdi);
2773 	struct wb_writeback_work work = {
2774 		.sb			= sb,
2775 		.sync_mode		= WB_SYNC_NONE,
2776 		.tagged_writepages	= 1,
2777 		.done			= &done,
2778 		.nr_pages		= nr,
2779 		.reason			= reason,
2780 	};
2781 
2782 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2783 		return;
2784 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2785 
2786 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2787 	wb_wait_for_completion(&done);
2788 }
2789 
2790 /**
2791  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2792  * @sb: the superblock
2793  * @nr: the number of pages to write
2794  * @reason: reason why some writeback work initiated
2795  *
2796  * Start writeback on some inodes on this super_block. No guarantees are made
2797  * on how many (if any) will be written, and this function does not wait
2798  * for IO completion of submitted IO.
2799  */
2800 void writeback_inodes_sb_nr(struct super_block *sb,
2801 			    unsigned long nr,
2802 			    enum wb_reason reason)
2803 {
2804 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2805 }
2806 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2807 
2808 /**
2809  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2810  * @sb: the superblock
2811  * @reason: reason why some writeback work was initiated
2812  *
2813  * Start writeback on some inodes on this super_block. No guarantees are made
2814  * on how many (if any) will be written, and this function does not wait
2815  * for IO completion of submitted IO.
2816  */
2817 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2818 {
2819 	writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2820 }
2821 EXPORT_SYMBOL(writeback_inodes_sb);
2822 
2823 /**
2824  * try_to_writeback_inodes_sb - try to start writeback if none underway
2825  * @sb: the superblock
2826  * @reason: reason why some writeback work was initiated
2827  *
2828  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2829  */
2830 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2831 {
2832 	if (!down_read_trylock(&sb->s_umount))
2833 		return;
2834 
2835 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2836 	up_read(&sb->s_umount);
2837 }
2838 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2839 
2840 /**
2841  * sync_inodes_sb	-	sync sb inode pages
2842  * @sb: the superblock
2843  *
2844  * This function writes and waits on any dirty inode belonging to this
2845  * super_block.
2846  */
2847 void sync_inodes_sb(struct super_block *sb)
2848 {
2849 	struct backing_dev_info *bdi = sb->s_bdi;
2850 	DEFINE_WB_COMPLETION(done, bdi);
2851 	struct wb_writeback_work work = {
2852 		.sb		= sb,
2853 		.sync_mode	= WB_SYNC_ALL,
2854 		.nr_pages	= LONG_MAX,
2855 		.range_cyclic	= 0,
2856 		.done		= &done,
2857 		.reason		= WB_REASON_SYNC,
2858 		.for_sync	= 1,
2859 	};
2860 
2861 	/*
2862 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2863 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2864 	 * bdi_has_dirty() need to be written out too.
2865 	 */
2866 	if (bdi == &noop_backing_dev_info)
2867 		return;
2868 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2869 
2870 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2871 	bdi_down_write_wb_switch_rwsem(bdi);
2872 	bdi_split_work_to_wbs(bdi, &work, false);
2873 	wb_wait_for_completion(&done);
2874 	bdi_up_write_wb_switch_rwsem(bdi);
2875 
2876 	wait_sb_inodes(sb);
2877 }
2878 EXPORT_SYMBOL(sync_inodes_sb);
2879 
2880 /**
2881  * write_inode_now	-	write an inode to disk
2882  * @inode: inode to write to disk
2883  * @sync: whether the write should be synchronous or not
2884  *
2885  * This function commits an inode to disk immediately if it is dirty. This is
2886  * primarily needed by knfsd.
2887  *
2888  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2889  */
2890 int write_inode_now(struct inode *inode, int sync)
2891 {
2892 	struct writeback_control wbc = {
2893 		.nr_to_write = LONG_MAX,
2894 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2895 		.range_start = 0,
2896 		.range_end = LLONG_MAX,
2897 	};
2898 
2899 	if (!mapping_can_writeback(inode->i_mapping))
2900 		wbc.nr_to_write = 0;
2901 
2902 	might_sleep();
2903 	return writeback_single_inode(inode, &wbc);
2904 }
2905 EXPORT_SYMBOL(write_inode_now);
2906 
2907 /**
2908  * sync_inode_metadata - write an inode to disk
2909  * @inode: the inode to sync
2910  * @wait: wait for I/O to complete.
2911  *
2912  * Write an inode to disk and adjust its dirty state after completion.
2913  *
2914  * Note: only writes the actual inode, no associated data or other metadata.
2915  */
2916 int sync_inode_metadata(struct inode *inode, int wait)
2917 {
2918 	struct writeback_control wbc = {
2919 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2920 		.nr_to_write = 0, /* metadata-only */
2921 	};
2922 
2923 	return writeback_single_inode(inode, &wbc);
2924 }
2925 EXPORT_SYMBOL(sync_inode_metadata);
2926