1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 static unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 assert_spin_locked(&inode->i_lock); 124 WARN_ON_ONCE(inode->i_state & I_FREEING); 125 126 list_move(&inode->i_io_list, head); 127 128 /* dirty_time doesn't count as dirty_io until expiration */ 129 if (head != &wb->b_dirty_time) 130 return wb_io_lists_populated(wb); 131 132 wb_io_lists_depopulated(wb); 133 return false; 134 } 135 136 static void wb_wakeup(struct bdi_writeback *wb) 137 { 138 spin_lock_irq(&wb->work_lock); 139 if (test_bit(WB_registered, &wb->state)) 140 mod_delayed_work(bdi_wq, &wb->dwork, 0); 141 spin_unlock_irq(&wb->work_lock); 142 } 143 144 /* 145 * This function is used when the first inode for this wb is marked dirty. It 146 * wakes-up the corresponding bdi thread which should then take care of the 147 * periodic background write-out of dirty inodes. Since the write-out would 148 * starts only 'dirty_writeback_interval' centisecs from now anyway, we just 149 * set up a timer which wakes the bdi thread up later. 150 * 151 * Note, we wouldn't bother setting up the timer, but this function is on the 152 * fast-path (used by '__mark_inode_dirty()'), so we save few context switches 153 * by delaying the wake-up. 154 * 155 * We have to be careful not to postpone flush work if it is scheduled for 156 * earlier. Thus we use queue_delayed_work(). 157 */ 158 static void wb_wakeup_delayed(struct bdi_writeback *wb) 159 { 160 unsigned long timeout; 161 162 timeout = msecs_to_jiffies(dirty_writeback_interval * 10); 163 spin_lock_irq(&wb->work_lock); 164 if (test_bit(WB_registered, &wb->state)) 165 queue_delayed_work(bdi_wq, &wb->dwork, timeout); 166 spin_unlock_irq(&wb->work_lock); 167 } 168 169 static void finish_writeback_work(struct wb_writeback_work *work) 170 { 171 struct wb_completion *done = work->done; 172 173 if (work->auto_free) 174 kfree(work); 175 if (done) { 176 wait_queue_head_t *waitq = done->waitq; 177 178 /* @done can't be accessed after the following dec */ 179 if (atomic_dec_and_test(&done->cnt)) 180 wake_up_all(waitq); 181 } 182 } 183 184 static void wb_queue_work(struct bdi_writeback *wb, 185 struct wb_writeback_work *work) 186 { 187 trace_writeback_queue(wb, work); 188 189 if (work->done) 190 atomic_inc(&work->done->cnt); 191 192 spin_lock_irq(&wb->work_lock); 193 194 if (test_bit(WB_registered, &wb->state)) { 195 list_add_tail(&work->list, &wb->work_list); 196 mod_delayed_work(bdi_wq, &wb->dwork, 0); 197 } else 198 finish_writeback_work(work); 199 200 spin_unlock_irq(&wb->work_lock); 201 } 202 203 /** 204 * wb_wait_for_completion - wait for completion of bdi_writeback_works 205 * @done: target wb_completion 206 * 207 * Wait for one or more work items issued to @bdi with their ->done field 208 * set to @done, which should have been initialized with 209 * DEFINE_WB_COMPLETION(). This function returns after all such work items 210 * are completed. Work items which are waited upon aren't freed 211 * automatically on completion. 212 */ 213 void wb_wait_for_completion(struct wb_completion *done) 214 { 215 atomic_dec(&done->cnt); /* put down the initial count */ 216 wait_event(*done->waitq, !atomic_read(&done->cnt)); 217 } 218 219 #ifdef CONFIG_CGROUP_WRITEBACK 220 221 /* 222 * Parameters for foreign inode detection, see wbc_detach_inode() to see 223 * how they're used. 224 * 225 * These paramters are inherently heuristical as the detection target 226 * itself is fuzzy. All we want to do is detaching an inode from the 227 * current owner if it's being written to by some other cgroups too much. 228 * 229 * The current cgroup writeback is built on the assumption that multiple 230 * cgroups writing to the same inode concurrently is very rare and a mode 231 * of operation which isn't well supported. As such, the goal is not 232 * taking too long when a different cgroup takes over an inode while 233 * avoiding too aggressive flip-flops from occasional foreign writes. 234 * 235 * We record, very roughly, 2s worth of IO time history and if more than 236 * half of that is foreign, trigger the switch. The recording is quantized 237 * to 16 slots. To avoid tiny writes from swinging the decision too much, 238 * writes smaller than 1/8 of avg size are ignored. 239 */ 240 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 241 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 242 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 243 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 244 245 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 246 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 247 /* each slot's duration is 2s / 16 */ 248 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 249 /* if foreign slots >= 8, switch */ 250 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 251 /* one round can affect upto 5 slots */ 252 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 253 254 /* 255 * Maximum inodes per isw. A specific value has been chosen to make 256 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 257 */ 258 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 259 / sizeof(struct inode *)) 260 261 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 262 static struct workqueue_struct *isw_wq; 263 264 void __inode_attach_wb(struct inode *inode, struct folio *folio) 265 { 266 struct backing_dev_info *bdi = inode_to_bdi(inode); 267 struct bdi_writeback *wb = NULL; 268 269 if (inode_cgwb_enabled(inode)) { 270 struct cgroup_subsys_state *memcg_css; 271 272 if (folio) { 273 memcg_css = mem_cgroup_css_from_folio(folio); 274 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 275 } else { 276 /* must pin memcg_css, see wb_get_create() */ 277 memcg_css = task_get_css(current, memory_cgrp_id); 278 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 279 css_put(memcg_css); 280 } 281 } 282 283 if (!wb) 284 wb = &bdi->wb; 285 286 /* 287 * There may be multiple instances of this function racing to 288 * update the same inode. Use cmpxchg() to tell the winner. 289 */ 290 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 291 wb_put(wb); 292 } 293 294 /** 295 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 296 * @inode: inode of interest with i_lock held 297 * @wb: target bdi_writeback 298 * 299 * Remove the inode from wb's io lists and if necessarily put onto b_attached 300 * list. Only inodes attached to cgwb's are kept on this list. 301 */ 302 static void inode_cgwb_move_to_attached(struct inode *inode, 303 struct bdi_writeback *wb) 304 { 305 assert_spin_locked(&wb->list_lock); 306 assert_spin_locked(&inode->i_lock); 307 WARN_ON_ONCE(inode->i_state & I_FREEING); 308 309 inode->i_state &= ~I_SYNC_QUEUED; 310 if (wb != &wb->bdi->wb) 311 list_move(&inode->i_io_list, &wb->b_attached); 312 else 313 list_del_init(&inode->i_io_list); 314 wb_io_lists_depopulated(wb); 315 } 316 317 /** 318 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 319 * @inode: inode of interest with i_lock held 320 * 321 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 322 * held on entry and is released on return. The returned wb is guaranteed 323 * to stay @inode's associated wb until its list_lock is released. 324 */ 325 static struct bdi_writeback * 326 locked_inode_to_wb_and_lock_list(struct inode *inode) 327 __releases(&inode->i_lock) 328 __acquires(&wb->list_lock) 329 { 330 while (true) { 331 struct bdi_writeback *wb = inode_to_wb(inode); 332 333 /* 334 * inode_to_wb() association is protected by both 335 * @inode->i_lock and @wb->list_lock but list_lock nests 336 * outside i_lock. Drop i_lock and verify that the 337 * association hasn't changed after acquiring list_lock. 338 */ 339 wb_get(wb); 340 spin_unlock(&inode->i_lock); 341 spin_lock(&wb->list_lock); 342 343 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 344 if (likely(wb == inode->i_wb)) { 345 wb_put(wb); /* @inode already has ref */ 346 return wb; 347 } 348 349 spin_unlock(&wb->list_lock); 350 wb_put(wb); 351 cpu_relax(); 352 spin_lock(&inode->i_lock); 353 } 354 } 355 356 /** 357 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 358 * @inode: inode of interest 359 * 360 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 361 * on entry. 362 */ 363 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 364 __acquires(&wb->list_lock) 365 { 366 spin_lock(&inode->i_lock); 367 return locked_inode_to_wb_and_lock_list(inode); 368 } 369 370 struct inode_switch_wbs_context { 371 /* List of queued switching contexts for the wb */ 372 struct llist_node list; 373 374 /* 375 * Multiple inodes can be switched at once. The switching procedure 376 * consists of two parts, separated by a RCU grace period. To make 377 * sure that the second part is executed for each inode gone through 378 * the first part, all inode pointers are placed into a NULL-terminated 379 * array embedded into struct inode_switch_wbs_context. Otherwise 380 * an inode could be left in a non-consistent state. 381 */ 382 struct inode *inodes[]; 383 }; 384 385 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 386 { 387 down_write(&bdi->wb_switch_rwsem); 388 } 389 390 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 391 { 392 up_write(&bdi->wb_switch_rwsem); 393 } 394 395 static bool inode_do_switch_wbs(struct inode *inode, 396 struct bdi_writeback *old_wb, 397 struct bdi_writeback *new_wb) 398 { 399 struct address_space *mapping = inode->i_mapping; 400 XA_STATE(xas, &mapping->i_pages, 0); 401 struct folio *folio; 402 bool switched = false; 403 404 spin_lock(&inode->i_lock); 405 xa_lock_irq(&mapping->i_pages); 406 407 /* 408 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 409 * path owns the inode and we shouldn't modify ->i_io_list. 410 */ 411 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 412 goto skip_switch; 413 414 trace_inode_switch_wbs(inode, old_wb, new_wb); 415 416 /* 417 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 418 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to 419 * folios actually under writeback. 420 */ 421 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 422 if (folio_test_dirty(folio)) { 423 long nr = folio_nr_pages(folio); 424 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); 425 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); 426 } 427 } 428 429 xas_set(&xas, 0); 430 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 431 long nr = folio_nr_pages(folio); 432 WARN_ON_ONCE(!folio_test_writeback(folio)); 433 wb_stat_mod(old_wb, WB_WRITEBACK, -nr); 434 wb_stat_mod(new_wb, WB_WRITEBACK, nr); 435 } 436 437 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 438 atomic_dec(&old_wb->writeback_inodes); 439 atomic_inc(&new_wb->writeback_inodes); 440 } 441 442 wb_get(new_wb); 443 444 /* 445 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 446 * the specific list @inode was on is ignored and the @inode is put on 447 * ->b_dirty which is always correct including from ->b_dirty_time. 448 * If the @inode was clean, it means it was on the b_attached list, so 449 * move it onto the b_attached list of @new_wb. 450 */ 451 if (!list_empty(&inode->i_io_list)) { 452 inode->i_wb = new_wb; 453 454 if (inode->i_state & I_DIRTY_ALL) { 455 /* 456 * We need to keep b_dirty list sorted by 457 * dirtied_time_when. However properly sorting the 458 * inode in the list gets too expensive when switching 459 * many inodes. So just attach inode at the end of the 460 * dirty list and clobber the dirtied_time_when. 461 */ 462 inode->dirtied_time_when = jiffies; 463 inode_io_list_move_locked(inode, new_wb, 464 &new_wb->b_dirty); 465 } else { 466 inode_cgwb_move_to_attached(inode, new_wb); 467 } 468 } else { 469 inode->i_wb = new_wb; 470 } 471 472 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 473 inode->i_wb_frn_winner = 0; 474 inode->i_wb_frn_avg_time = 0; 475 inode->i_wb_frn_history = 0; 476 switched = true; 477 skip_switch: 478 /* 479 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 480 * ensures that the new wb is visible if they see !I_WB_SWITCH. 481 */ 482 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 483 484 xa_unlock_irq(&mapping->i_pages); 485 spin_unlock(&inode->i_lock); 486 487 return switched; 488 } 489 490 static void process_inode_switch_wbs(struct bdi_writeback *new_wb, 491 struct inode_switch_wbs_context *isw) 492 { 493 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 494 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 495 unsigned long nr_switched = 0; 496 struct inode **inodep; 497 498 /* 499 * If @inode switches cgwb membership while sync_inodes_sb() is 500 * being issued, sync_inodes_sb() might miss it. Synchronize. 501 */ 502 down_read(&bdi->wb_switch_rwsem); 503 504 inodep = isw->inodes; 505 /* 506 * By the time control reaches here, RCU grace period has passed 507 * since I_WB_SWITCH assertion and all wb stat update transactions 508 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 509 * synchronizing against the i_pages lock. 510 * 511 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 512 * gives us exclusion against all wb related operations on @inode 513 * including IO list manipulations and stat updates. 514 */ 515 relock: 516 if (old_wb < new_wb) { 517 spin_lock(&old_wb->list_lock); 518 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 519 } else { 520 spin_lock(&new_wb->list_lock); 521 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 522 } 523 524 while (*inodep) { 525 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 526 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 527 nr_switched++; 528 inodep++; 529 if (*inodep && need_resched()) { 530 spin_unlock(&new_wb->list_lock); 531 spin_unlock(&old_wb->list_lock); 532 cond_resched(); 533 goto relock; 534 } 535 } 536 537 spin_unlock(&new_wb->list_lock); 538 spin_unlock(&old_wb->list_lock); 539 540 up_read(&bdi->wb_switch_rwsem); 541 542 if (nr_switched) { 543 wb_wakeup(new_wb); 544 wb_put_many(old_wb, nr_switched); 545 } 546 547 for (inodep = isw->inodes; *inodep; inodep++) 548 iput(*inodep); 549 wb_put(new_wb); 550 kfree(isw); 551 atomic_dec(&isw_nr_in_flight); 552 } 553 554 void inode_switch_wbs_work_fn(struct work_struct *work) 555 { 556 struct bdi_writeback *new_wb = container_of(work, struct bdi_writeback, 557 switch_work); 558 struct inode_switch_wbs_context *isw, *next_isw; 559 struct llist_node *list; 560 561 /* 562 * Grab out reference to wb so that it cannot get freed under us 563 * after we process all the isw items. 564 */ 565 wb_get(new_wb); 566 while (1) { 567 list = llist_del_all(&new_wb->switch_wbs_ctxs); 568 /* Nothing to do? */ 569 if (!list) 570 break; 571 /* 572 * In addition to synchronizing among switchers, I_WB_SWITCH 573 * tells the RCU protected stat update paths to grab the i_page 574 * lock so that stat transfer can synchronize against them. 575 * Let's continue after I_WB_SWITCH is guaranteed to be 576 * visible. 577 */ 578 synchronize_rcu(); 579 580 llist_for_each_entry_safe(isw, next_isw, list, list) 581 process_inode_switch_wbs(new_wb, isw); 582 } 583 wb_put(new_wb); 584 } 585 586 static bool inode_prepare_wbs_switch(struct inode *inode, 587 struct bdi_writeback *new_wb) 588 { 589 /* 590 * Paired with smp_mb() in cgroup_writeback_umount(). 591 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 592 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 593 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 594 */ 595 smp_mb(); 596 597 if (IS_DAX(inode)) 598 return false; 599 600 /* while holding I_WB_SWITCH, no one else can update the association */ 601 spin_lock(&inode->i_lock); 602 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 603 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 604 inode_to_wb(inode) == new_wb) { 605 spin_unlock(&inode->i_lock); 606 return false; 607 } 608 inode->i_state |= I_WB_SWITCH; 609 __iget(inode); 610 spin_unlock(&inode->i_lock); 611 612 return true; 613 } 614 615 static void wb_queue_isw(struct bdi_writeback *wb, 616 struct inode_switch_wbs_context *isw) 617 { 618 if (llist_add(&isw->list, &wb->switch_wbs_ctxs)) 619 queue_work(isw_wq, &wb->switch_work); 620 } 621 622 /** 623 * inode_switch_wbs - change the wb association of an inode 624 * @inode: target inode 625 * @new_wb_id: ID of the new wb 626 * 627 * Switch @inode's wb association to the wb identified by @new_wb_id. The 628 * switching is performed asynchronously and may fail silently. 629 */ 630 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 631 { 632 struct backing_dev_info *bdi = inode_to_bdi(inode); 633 struct cgroup_subsys_state *memcg_css; 634 struct inode_switch_wbs_context *isw; 635 struct bdi_writeback *new_wb = NULL; 636 637 /* noop if seems to be already in progress */ 638 if (inode->i_state & I_WB_SWITCH) 639 return; 640 641 /* avoid queueing a new switch if too many are already in flight */ 642 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 643 return; 644 645 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); 646 if (!isw) 647 return; 648 649 atomic_inc(&isw_nr_in_flight); 650 651 /* find and pin the new wb */ 652 rcu_read_lock(); 653 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 654 if (memcg_css && !css_tryget(memcg_css)) 655 memcg_css = NULL; 656 rcu_read_unlock(); 657 if (!memcg_css) 658 goto out_free; 659 660 new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 661 css_put(memcg_css); 662 if (!new_wb) 663 goto out_free; 664 665 if (!inode_prepare_wbs_switch(inode, new_wb)) 666 goto out_free; 667 668 isw->inodes[0] = inode; 669 670 trace_inode_switch_wbs_queue(inode->i_wb, new_wb, 1); 671 wb_queue_isw(new_wb, isw); 672 return; 673 674 out_free: 675 atomic_dec(&isw_nr_in_flight); 676 if (new_wb) 677 wb_put(new_wb); 678 kfree(isw); 679 } 680 681 static bool isw_prepare_wbs_switch(struct bdi_writeback *new_wb, 682 struct inode_switch_wbs_context *isw, 683 struct list_head *list, int *nr) 684 { 685 struct inode *inode; 686 687 list_for_each_entry(inode, list, i_io_list) { 688 if (!inode_prepare_wbs_switch(inode, new_wb)) 689 continue; 690 691 isw->inodes[*nr] = inode; 692 (*nr)++; 693 694 if (*nr >= WB_MAX_INODES_PER_ISW - 1) 695 return true; 696 } 697 return false; 698 } 699 700 /** 701 * cleanup_offline_cgwb - detach associated inodes 702 * @wb: target wb 703 * 704 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 705 * to eventually release the dying @wb. Returns %true if not all inodes were 706 * switched and the function has to be restarted. 707 */ 708 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 709 { 710 struct cgroup_subsys_state *memcg_css; 711 struct inode_switch_wbs_context *isw; 712 struct bdi_writeback *new_wb; 713 int nr; 714 bool restart = false; 715 716 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), 717 GFP_KERNEL); 718 if (!isw) 719 return restart; 720 721 atomic_inc(&isw_nr_in_flight); 722 723 for (memcg_css = wb->memcg_css->parent; memcg_css; 724 memcg_css = memcg_css->parent) { 725 new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 726 if (new_wb) 727 break; 728 } 729 if (unlikely(!new_wb)) 730 new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 731 732 nr = 0; 733 spin_lock(&wb->list_lock); 734 /* 735 * In addition to the inodes that have completed writeback, also switch 736 * cgwbs for those inodes only with dirty timestamps. Otherwise, those 737 * inodes won't be written back for a long time when lazytime is 738 * enabled, and thus pinning the dying cgwbs. It won't break the 739 * bandwidth restrictions, as writeback of inode metadata is not 740 * accounted for. 741 */ 742 restart = isw_prepare_wbs_switch(new_wb, isw, &wb->b_attached, &nr); 743 if (!restart) 744 restart = isw_prepare_wbs_switch(new_wb, isw, &wb->b_dirty_time, 745 &nr); 746 spin_unlock(&wb->list_lock); 747 748 /* no attached inodes? bail out */ 749 if (nr == 0) { 750 atomic_dec(&isw_nr_in_flight); 751 wb_put(new_wb); 752 kfree(isw); 753 return restart; 754 } 755 756 trace_inode_switch_wbs_queue(wb, new_wb, nr); 757 wb_queue_isw(new_wb, isw); 758 759 return restart; 760 } 761 762 /** 763 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 764 * @wbc: writeback_control of interest 765 * @inode: target inode 766 * 767 * @inode is locked and about to be written back under the control of @wbc. 768 * Record @inode's writeback context into @wbc and unlock the i_lock. On 769 * writeback completion, wbc_detach_inode() should be called. This is used 770 * to track the cgroup writeback context. 771 */ 772 static void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 773 struct inode *inode) 774 __releases(&inode->i_lock) 775 { 776 if (!inode_cgwb_enabled(inode)) { 777 spin_unlock(&inode->i_lock); 778 return; 779 } 780 781 wbc->wb = inode_to_wb(inode); 782 wbc->inode = inode; 783 784 wbc->wb_id = wbc->wb->memcg_css->id; 785 wbc->wb_lcand_id = inode->i_wb_frn_winner; 786 wbc->wb_tcand_id = 0; 787 wbc->wb_bytes = 0; 788 wbc->wb_lcand_bytes = 0; 789 wbc->wb_tcand_bytes = 0; 790 791 wb_get(wbc->wb); 792 spin_unlock(&inode->i_lock); 793 794 /* 795 * A dying wb indicates that either the blkcg associated with the 796 * memcg changed or the associated memcg is dying. In the first 797 * case, a replacement wb should already be available and we should 798 * refresh the wb immediately. In the second case, trying to 799 * refresh will keep failing. 800 */ 801 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 802 inode_switch_wbs(inode, wbc->wb_id); 803 } 804 805 /** 806 * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite 807 * @wbc: writeback_control of interest 808 * @inode: target inode 809 * 810 * This function is to be used by __filemap_fdatawrite_range(), which is an 811 * alternative entry point into writeback code, and first ensures @inode is 812 * associated with a bdi_writeback and attaches it to @wbc. 813 */ 814 void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, 815 struct inode *inode) 816 { 817 spin_lock(&inode->i_lock); 818 inode_attach_wb(inode, NULL); 819 wbc_attach_and_unlock_inode(wbc, inode); 820 } 821 EXPORT_SYMBOL_GPL(wbc_attach_fdatawrite_inode); 822 823 /** 824 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 825 * @wbc: writeback_control of the just finished writeback 826 * 827 * To be called after a writeback attempt of an inode finishes and undoes 828 * wbc_attach_and_unlock_inode(). Can be called under any context. 829 * 830 * As concurrent write sharing of an inode is expected to be very rare and 831 * memcg only tracks page ownership on first-use basis severely confining 832 * the usefulness of such sharing, cgroup writeback tracks ownership 833 * per-inode. While the support for concurrent write sharing of an inode 834 * is deemed unnecessary, an inode being written to by different cgroups at 835 * different points in time is a lot more common, and, more importantly, 836 * charging only by first-use can too readily lead to grossly incorrect 837 * behaviors (single foreign page can lead to gigabytes of writeback to be 838 * incorrectly attributed). 839 * 840 * To resolve this issue, cgroup writeback detects the majority dirtier of 841 * an inode and transfers the ownership to it. To avoid unnecessary 842 * oscillation, the detection mechanism keeps track of history and gives 843 * out the switch verdict only if the foreign usage pattern is stable over 844 * a certain amount of time and/or writeback attempts. 845 * 846 * On each writeback attempt, @wbc tries to detect the majority writer 847 * using Boyer-Moore majority vote algorithm. In addition to the byte 848 * count from the majority voting, it also counts the bytes written for the 849 * current wb and the last round's winner wb (max of last round's current 850 * wb, the winner from two rounds ago, and the last round's majority 851 * candidate). Keeping track of the historical winner helps the algorithm 852 * to semi-reliably detect the most active writer even when it's not the 853 * absolute majority. 854 * 855 * Once the winner of the round is determined, whether the winner is 856 * foreign or not and how much IO time the round consumed is recorded in 857 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 858 * over a certain threshold, the switch verdict is given. 859 */ 860 void wbc_detach_inode(struct writeback_control *wbc) 861 { 862 struct bdi_writeback *wb = wbc->wb; 863 struct inode *inode = wbc->inode; 864 unsigned long avg_time, max_bytes, max_time; 865 u16 history; 866 int max_id; 867 868 if (!wb) 869 return; 870 871 history = inode->i_wb_frn_history; 872 avg_time = inode->i_wb_frn_avg_time; 873 874 /* pick the winner of this round */ 875 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 876 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 877 max_id = wbc->wb_id; 878 max_bytes = wbc->wb_bytes; 879 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 880 max_id = wbc->wb_lcand_id; 881 max_bytes = wbc->wb_lcand_bytes; 882 } else { 883 max_id = wbc->wb_tcand_id; 884 max_bytes = wbc->wb_tcand_bytes; 885 } 886 887 /* 888 * Calculate the amount of IO time the winner consumed and fold it 889 * into the running average kept per inode. If the consumed IO 890 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 891 * deciding whether to switch or not. This is to prevent one-off 892 * small dirtiers from skewing the verdict. 893 */ 894 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 895 wb->avg_write_bandwidth); 896 if (avg_time) 897 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 898 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 899 else 900 avg_time = max_time; /* immediate catch up on first run */ 901 902 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 903 int slots; 904 905 /* 906 * The switch verdict is reached if foreign wb's consume 907 * more than a certain proportion of IO time in a 908 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 909 * history mask where each bit represents one sixteenth of 910 * the period. Determine the number of slots to shift into 911 * history from @max_time. 912 */ 913 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 914 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 915 history <<= slots; 916 if (wbc->wb_id != max_id) 917 history |= (1U << slots) - 1; 918 919 if (history) 920 trace_inode_foreign_history(inode, wbc, history); 921 922 /* 923 * Switch if the current wb isn't the consistent winner. 924 * If there are multiple closely competing dirtiers, the 925 * inode may switch across them repeatedly over time, which 926 * is okay. The main goal is avoiding keeping an inode on 927 * the wrong wb for an extended period of time. 928 */ 929 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS) 930 inode_switch_wbs(inode, max_id); 931 } 932 933 /* 934 * Multiple instances of this function may race to update the 935 * following fields but we don't mind occassional inaccuracies. 936 */ 937 inode->i_wb_frn_winner = max_id; 938 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 939 inode->i_wb_frn_history = history; 940 941 wb_put(wbc->wb); 942 wbc->wb = NULL; 943 } 944 EXPORT_SYMBOL_GPL(wbc_detach_inode); 945 946 /** 947 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 948 * @wbc: writeback_control of the writeback in progress 949 * @folio: folio being written out 950 * @bytes: number of bytes being written out 951 * 952 * @bytes from @folio are about to written out during the writeback 953 * controlled by @wbc. Keep the book for foreign inode detection. See 954 * wbc_detach_inode(). 955 */ 956 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio, 957 size_t bytes) 958 { 959 struct cgroup_subsys_state *css; 960 int id; 961 962 /* 963 * pageout() path doesn't attach @wbc to the inode being written 964 * out. This is intentional as we don't want the function to block 965 * behind a slow cgroup. Ultimately, we want pageout() to kick off 966 * regular writeback instead of writing things out itself. 967 */ 968 if (!wbc->wb || wbc->no_cgroup_owner) 969 return; 970 971 css = mem_cgroup_css_from_folio(folio); 972 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 973 if (!(css->flags & CSS_ONLINE)) 974 return; 975 976 id = css->id; 977 978 if (id == wbc->wb_id) { 979 wbc->wb_bytes += bytes; 980 return; 981 } 982 983 if (id == wbc->wb_lcand_id) 984 wbc->wb_lcand_bytes += bytes; 985 986 /* Boyer-Moore majority vote algorithm */ 987 if (!wbc->wb_tcand_bytes) 988 wbc->wb_tcand_id = id; 989 if (id == wbc->wb_tcand_id) 990 wbc->wb_tcand_bytes += bytes; 991 else 992 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 993 } 994 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 995 996 /** 997 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 998 * @wb: target bdi_writeback to split @nr_pages to 999 * @nr_pages: number of pages to write for the whole bdi 1000 * 1001 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 1002 * relation to the total write bandwidth of all wb's w/ dirty inodes on 1003 * @wb->bdi. 1004 */ 1005 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1006 { 1007 unsigned long this_bw = wb->avg_write_bandwidth; 1008 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 1009 1010 if (nr_pages == LONG_MAX) 1011 return LONG_MAX; 1012 1013 /* 1014 * This may be called on clean wb's and proportional distribution 1015 * may not make sense, just use the original @nr_pages in those 1016 * cases. In general, we wanna err on the side of writing more. 1017 */ 1018 if (!tot_bw || this_bw >= tot_bw) 1019 return nr_pages; 1020 else 1021 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 1022 } 1023 1024 /** 1025 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 1026 * @bdi: target backing_dev_info 1027 * @base_work: wb_writeback_work to issue 1028 * @skip_if_busy: skip wb's which already have writeback in progress 1029 * 1030 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 1031 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 1032 * distributed to the busy wbs according to each wb's proportion in the 1033 * total active write bandwidth of @bdi. 1034 */ 1035 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1036 struct wb_writeback_work *base_work, 1037 bool skip_if_busy) 1038 { 1039 struct bdi_writeback *last_wb = NULL; 1040 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 1041 struct bdi_writeback, bdi_node); 1042 1043 might_sleep(); 1044 restart: 1045 rcu_read_lock(); 1046 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 1047 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 1048 struct wb_writeback_work fallback_work; 1049 struct wb_writeback_work *work; 1050 long nr_pages; 1051 1052 if (last_wb) { 1053 wb_put(last_wb); 1054 last_wb = NULL; 1055 } 1056 1057 /* SYNC_ALL writes out I_DIRTY_TIME too */ 1058 if (!wb_has_dirty_io(wb) && 1059 (base_work->sync_mode == WB_SYNC_NONE || 1060 list_empty(&wb->b_dirty_time))) 1061 continue; 1062 if (skip_if_busy && writeback_in_progress(wb)) 1063 continue; 1064 1065 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 1066 1067 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1068 if (work) { 1069 *work = *base_work; 1070 work->nr_pages = nr_pages; 1071 work->auto_free = 1; 1072 wb_queue_work(wb, work); 1073 continue; 1074 } 1075 1076 /* 1077 * If wb_tryget fails, the wb has been shutdown, skip it. 1078 * 1079 * Pin @wb so that it stays on @bdi->wb_list. This allows 1080 * continuing iteration from @wb after dropping and 1081 * regrabbing rcu read lock. 1082 */ 1083 if (!wb_tryget(wb)) 1084 continue; 1085 1086 /* alloc failed, execute synchronously using on-stack fallback */ 1087 work = &fallback_work; 1088 *work = *base_work; 1089 work->nr_pages = nr_pages; 1090 work->auto_free = 0; 1091 work->done = &fallback_work_done; 1092 1093 wb_queue_work(wb, work); 1094 last_wb = wb; 1095 1096 rcu_read_unlock(); 1097 wb_wait_for_completion(&fallback_work_done); 1098 goto restart; 1099 } 1100 rcu_read_unlock(); 1101 1102 if (last_wb) 1103 wb_put(last_wb); 1104 } 1105 1106 /** 1107 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1108 * @bdi_id: target bdi id 1109 * @memcg_id: target memcg css id 1110 * @reason: reason why some writeback work initiated 1111 * @done: target wb_completion 1112 * 1113 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1114 * with the specified parameters. 1115 */ 1116 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, 1117 enum wb_reason reason, struct wb_completion *done) 1118 { 1119 struct backing_dev_info *bdi; 1120 struct cgroup_subsys_state *memcg_css; 1121 struct bdi_writeback *wb; 1122 struct wb_writeback_work *work; 1123 unsigned long dirty; 1124 int ret; 1125 1126 /* lookup bdi and memcg */ 1127 bdi = bdi_get_by_id(bdi_id); 1128 if (!bdi) 1129 return -ENOENT; 1130 1131 rcu_read_lock(); 1132 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1133 if (memcg_css && !css_tryget(memcg_css)) 1134 memcg_css = NULL; 1135 rcu_read_unlock(); 1136 if (!memcg_css) { 1137 ret = -ENOENT; 1138 goto out_bdi_put; 1139 } 1140 1141 /* 1142 * And find the associated wb. If the wb isn't there already 1143 * there's nothing to flush, don't create one. 1144 */ 1145 wb = wb_get_lookup(bdi, memcg_css); 1146 if (!wb) { 1147 ret = -ENOENT; 1148 goto out_css_put; 1149 } 1150 1151 /* 1152 * The caller is attempting to write out most of 1153 * the currently dirty pages. Let's take the current dirty page 1154 * count and inflate it by 25% which should be large enough to 1155 * flush out most dirty pages while avoiding getting livelocked by 1156 * concurrent dirtiers. 1157 * 1158 * BTW the memcg stats are flushed periodically and this is best-effort 1159 * estimation, so some potential error is ok. 1160 */ 1161 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); 1162 dirty = dirty * 10 / 8; 1163 1164 /* issue the writeback work */ 1165 work = kzalloc(sizeof(*work), GFP_NOWAIT); 1166 if (work) { 1167 work->nr_pages = dirty; 1168 work->sync_mode = WB_SYNC_NONE; 1169 work->range_cyclic = 1; 1170 work->reason = reason; 1171 work->done = done; 1172 work->auto_free = 1; 1173 wb_queue_work(wb, work); 1174 ret = 0; 1175 } else { 1176 ret = -ENOMEM; 1177 } 1178 1179 wb_put(wb); 1180 out_css_put: 1181 css_put(memcg_css); 1182 out_bdi_put: 1183 bdi_put(bdi); 1184 return ret; 1185 } 1186 1187 /** 1188 * cgroup_writeback_umount - flush inode wb switches for umount 1189 * @sb: target super_block 1190 * 1191 * This function is called when a super_block is about to be destroyed and 1192 * flushes in-flight inode wb switches. An inode wb switch goes through 1193 * RCU and then workqueue, so the two need to be flushed in order to ensure 1194 * that all previously scheduled switches are finished. As wb switches are 1195 * rare occurrences and synchronize_rcu() can take a while, perform 1196 * flushing iff wb switches are in flight. 1197 */ 1198 void cgroup_writeback_umount(struct super_block *sb) 1199 { 1200 1201 if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK)) 1202 return; 1203 1204 /* 1205 * SB_ACTIVE should be reliably cleared before checking 1206 * isw_nr_in_flight, see generic_shutdown_super(). 1207 */ 1208 smp_mb(); 1209 1210 if (atomic_read(&isw_nr_in_flight)) { 1211 /* 1212 * Use rcu_barrier() to wait for all pending callbacks to 1213 * ensure that all in-flight wb switches are in the workqueue. 1214 */ 1215 rcu_barrier(); 1216 flush_workqueue(isw_wq); 1217 } 1218 } 1219 1220 static int __init cgroup_writeback_init(void) 1221 { 1222 isw_wq = alloc_workqueue("inode_switch_wbs", WQ_PERCPU, 0); 1223 if (!isw_wq) 1224 return -ENOMEM; 1225 return 0; 1226 } 1227 fs_initcall(cgroup_writeback_init); 1228 1229 #else /* CONFIG_CGROUP_WRITEBACK */ 1230 1231 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1232 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1233 1234 static void inode_cgwb_move_to_attached(struct inode *inode, 1235 struct bdi_writeback *wb) 1236 { 1237 assert_spin_locked(&wb->list_lock); 1238 assert_spin_locked(&inode->i_lock); 1239 WARN_ON_ONCE(inode->i_state & I_FREEING); 1240 1241 inode->i_state &= ~I_SYNC_QUEUED; 1242 list_del_init(&inode->i_io_list); 1243 wb_io_lists_depopulated(wb); 1244 } 1245 1246 static struct bdi_writeback * 1247 locked_inode_to_wb_and_lock_list(struct inode *inode) 1248 __releases(&inode->i_lock) 1249 __acquires(&wb->list_lock) 1250 { 1251 struct bdi_writeback *wb = inode_to_wb(inode); 1252 1253 spin_unlock(&inode->i_lock); 1254 spin_lock(&wb->list_lock); 1255 return wb; 1256 } 1257 1258 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1259 __acquires(&wb->list_lock) 1260 { 1261 struct bdi_writeback *wb = inode_to_wb(inode); 1262 1263 spin_lock(&wb->list_lock); 1264 return wb; 1265 } 1266 1267 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1268 { 1269 return nr_pages; 1270 } 1271 1272 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1273 struct wb_writeback_work *base_work, 1274 bool skip_if_busy) 1275 { 1276 might_sleep(); 1277 1278 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1279 base_work->auto_free = 0; 1280 wb_queue_work(&bdi->wb, base_work); 1281 } 1282 } 1283 1284 static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 1285 struct inode *inode) 1286 __releases(&inode->i_lock) 1287 { 1288 spin_unlock(&inode->i_lock); 1289 } 1290 1291 #endif /* CONFIG_CGROUP_WRITEBACK */ 1292 1293 /* 1294 * Add in the number of potentially dirty inodes, because each inode 1295 * write can dirty pagecache in the underlying blockdev. 1296 */ 1297 static unsigned long get_nr_dirty_pages(void) 1298 { 1299 return global_node_page_state(NR_FILE_DIRTY) + 1300 get_nr_dirty_inodes(); 1301 } 1302 1303 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1304 { 1305 if (!wb_has_dirty_io(wb)) 1306 return; 1307 1308 /* 1309 * All callers of this function want to start writeback of all 1310 * dirty pages. Places like vmscan can call this at a very 1311 * high frequency, causing pointless allocations of tons of 1312 * work items and keeping the flusher threads busy retrieving 1313 * that work. Ensure that we only allow one of them pending and 1314 * inflight at the time. 1315 */ 1316 if (test_bit(WB_start_all, &wb->state) || 1317 test_and_set_bit(WB_start_all, &wb->state)) 1318 return; 1319 1320 wb->start_all_reason = reason; 1321 wb_wakeup(wb); 1322 } 1323 1324 /** 1325 * wb_start_background_writeback - start background writeback 1326 * @wb: bdi_writback to write from 1327 * 1328 * Description: 1329 * This makes sure WB_SYNC_NONE background writeback happens. When 1330 * this function returns, it is only guaranteed that for given wb 1331 * some IO is happening if we are over background dirty threshold. 1332 * Caller need not hold sb s_umount semaphore. 1333 */ 1334 void wb_start_background_writeback(struct bdi_writeback *wb) 1335 { 1336 /* 1337 * We just wake up the flusher thread. It will perform background 1338 * writeback as soon as there is no other work to do. 1339 */ 1340 trace_writeback_wake_background(wb); 1341 wb_wakeup(wb); 1342 } 1343 1344 /* 1345 * Remove the inode from the writeback list it is on. 1346 */ 1347 void inode_io_list_del(struct inode *inode) 1348 { 1349 struct bdi_writeback *wb; 1350 1351 wb = inode_to_wb_and_lock_list(inode); 1352 spin_lock(&inode->i_lock); 1353 1354 inode->i_state &= ~I_SYNC_QUEUED; 1355 list_del_init(&inode->i_io_list); 1356 wb_io_lists_depopulated(wb); 1357 1358 spin_unlock(&inode->i_lock); 1359 spin_unlock(&wb->list_lock); 1360 } 1361 EXPORT_SYMBOL(inode_io_list_del); 1362 1363 /* 1364 * mark an inode as under writeback on the sb 1365 */ 1366 void sb_mark_inode_writeback(struct inode *inode) 1367 { 1368 struct super_block *sb = inode->i_sb; 1369 unsigned long flags; 1370 1371 if (list_empty(&inode->i_wb_list)) { 1372 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1373 if (list_empty(&inode->i_wb_list)) { 1374 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1375 trace_sb_mark_inode_writeback(inode); 1376 } 1377 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1378 } 1379 } 1380 1381 /* 1382 * clear an inode as under writeback on the sb 1383 */ 1384 void sb_clear_inode_writeback(struct inode *inode) 1385 { 1386 struct super_block *sb = inode->i_sb; 1387 unsigned long flags; 1388 1389 if (!list_empty(&inode->i_wb_list)) { 1390 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1391 if (!list_empty(&inode->i_wb_list)) { 1392 list_del_init(&inode->i_wb_list); 1393 trace_sb_clear_inode_writeback(inode); 1394 } 1395 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1396 } 1397 } 1398 1399 /* 1400 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1401 * furthest end of its superblock's dirty-inode list. 1402 * 1403 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1404 * already the most-recently-dirtied inode on the b_dirty list. If that is 1405 * the case then the inode must have been redirtied while it was being written 1406 * out and we don't reset its dirtied_when. 1407 */ 1408 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1409 { 1410 assert_spin_locked(&inode->i_lock); 1411 1412 inode->i_state &= ~I_SYNC_QUEUED; 1413 /* 1414 * When the inode is being freed just don't bother with dirty list 1415 * tracking. Flush worker will ignore this inode anyway and it will 1416 * trigger assertions in inode_io_list_move_locked(). 1417 */ 1418 if (inode->i_state & I_FREEING) { 1419 list_del_init(&inode->i_io_list); 1420 wb_io_lists_depopulated(wb); 1421 return; 1422 } 1423 if (!list_empty(&wb->b_dirty)) { 1424 struct inode *tail; 1425 1426 tail = wb_inode(wb->b_dirty.next); 1427 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1428 inode->dirtied_when = jiffies; 1429 } 1430 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1431 } 1432 1433 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1434 { 1435 spin_lock(&inode->i_lock); 1436 redirty_tail_locked(inode, wb); 1437 spin_unlock(&inode->i_lock); 1438 } 1439 1440 /* 1441 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1442 */ 1443 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1444 { 1445 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1446 } 1447 1448 static void inode_sync_complete(struct inode *inode) 1449 { 1450 assert_spin_locked(&inode->i_lock); 1451 1452 inode->i_state &= ~I_SYNC; 1453 /* If inode is clean an unused, put it into LRU now... */ 1454 inode_add_lru(inode); 1455 /* Called with inode->i_lock which ensures memory ordering. */ 1456 inode_wake_up_bit(inode, __I_SYNC); 1457 } 1458 1459 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1460 { 1461 bool ret = time_after(inode->dirtied_when, t); 1462 #ifndef CONFIG_64BIT 1463 /* 1464 * For inodes being constantly redirtied, dirtied_when can get stuck. 1465 * It _appears_ to be in the future, but is actually in distant past. 1466 * This test is necessary to prevent such wrapped-around relative times 1467 * from permanently stopping the whole bdi writeback. 1468 */ 1469 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1470 #endif 1471 return ret; 1472 } 1473 1474 /* 1475 * Move expired (dirtied before dirtied_before) dirty inodes from 1476 * @delaying_queue to @dispatch_queue. 1477 */ 1478 static int move_expired_inodes(struct list_head *delaying_queue, 1479 struct list_head *dispatch_queue, 1480 unsigned long dirtied_before) 1481 { 1482 LIST_HEAD(tmp); 1483 struct list_head *pos, *node; 1484 struct super_block *sb = NULL; 1485 struct inode *inode; 1486 int do_sb_sort = 0; 1487 int moved = 0; 1488 1489 while (!list_empty(delaying_queue)) { 1490 inode = wb_inode(delaying_queue->prev); 1491 if (inode_dirtied_after(inode, dirtied_before)) 1492 break; 1493 spin_lock(&inode->i_lock); 1494 list_move(&inode->i_io_list, &tmp); 1495 moved++; 1496 inode->i_state |= I_SYNC_QUEUED; 1497 spin_unlock(&inode->i_lock); 1498 if (sb_is_blkdev_sb(inode->i_sb)) 1499 continue; 1500 if (sb && sb != inode->i_sb) 1501 do_sb_sort = 1; 1502 sb = inode->i_sb; 1503 } 1504 1505 /* just one sb in list, splice to dispatch_queue and we're done */ 1506 if (!do_sb_sort) { 1507 list_splice(&tmp, dispatch_queue); 1508 goto out; 1509 } 1510 1511 /* 1512 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', 1513 * we don't take inode->i_lock here because it is just a pointless overhead. 1514 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is 1515 * fully under our control. 1516 */ 1517 while (!list_empty(&tmp)) { 1518 sb = wb_inode(tmp.prev)->i_sb; 1519 list_for_each_prev_safe(pos, node, &tmp) { 1520 inode = wb_inode(pos); 1521 if (inode->i_sb == sb) 1522 list_move(&inode->i_io_list, dispatch_queue); 1523 } 1524 } 1525 out: 1526 return moved; 1527 } 1528 1529 /* 1530 * Queue all expired dirty inodes for io, eldest first. 1531 * Before 1532 * newly dirtied b_dirty b_io b_more_io 1533 * =============> gf edc BA 1534 * After 1535 * newly dirtied b_dirty b_io b_more_io 1536 * =============> g fBAedc 1537 * | 1538 * +--> dequeue for IO 1539 */ 1540 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1541 unsigned long dirtied_before) 1542 { 1543 int moved; 1544 unsigned long time_expire_jif = dirtied_before; 1545 1546 assert_spin_locked(&wb->list_lock); 1547 list_splice_init(&wb->b_more_io, &wb->b_io); 1548 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1549 if (!work->for_sync) 1550 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1551 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1552 time_expire_jif); 1553 if (moved) 1554 wb_io_lists_populated(wb); 1555 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1556 } 1557 1558 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1559 { 1560 int ret; 1561 1562 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1563 trace_writeback_write_inode_start(inode, wbc); 1564 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1565 trace_writeback_write_inode(inode, wbc); 1566 return ret; 1567 } 1568 return 0; 1569 } 1570 1571 /* 1572 * Wait for writeback on an inode to complete. Called with i_lock held. 1573 * Caller must make sure inode cannot go away when we drop i_lock. 1574 */ 1575 void inode_wait_for_writeback(struct inode *inode) 1576 { 1577 struct wait_bit_queue_entry wqe; 1578 struct wait_queue_head *wq_head; 1579 1580 assert_spin_locked(&inode->i_lock); 1581 1582 if (!(inode->i_state & I_SYNC)) 1583 return; 1584 1585 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC); 1586 for (;;) { 1587 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 1588 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */ 1589 if (!(inode->i_state & I_SYNC)) 1590 break; 1591 spin_unlock(&inode->i_lock); 1592 schedule(); 1593 spin_lock(&inode->i_lock); 1594 } 1595 finish_wait(wq_head, &wqe.wq_entry); 1596 } 1597 1598 /* 1599 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1600 * held and drops it. It is aimed for callers not holding any inode reference 1601 * so once i_lock is dropped, inode can go away. 1602 */ 1603 static void inode_sleep_on_writeback(struct inode *inode) 1604 __releases(inode->i_lock) 1605 { 1606 struct wait_bit_queue_entry wqe; 1607 struct wait_queue_head *wq_head; 1608 bool sleep; 1609 1610 assert_spin_locked(&inode->i_lock); 1611 1612 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC); 1613 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); 1614 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */ 1615 sleep = !!(inode->i_state & I_SYNC); 1616 spin_unlock(&inode->i_lock); 1617 if (sleep) 1618 schedule(); 1619 finish_wait(wq_head, &wqe.wq_entry); 1620 } 1621 1622 /* 1623 * Find proper writeback list for the inode depending on its current state and 1624 * possibly also change of its state while we were doing writeback. Here we 1625 * handle things such as livelock prevention or fairness of writeback among 1626 * inodes. This function can be called only by flusher thread - noone else 1627 * processes all inodes in writeback lists and requeueing inodes behind flusher 1628 * thread's back can have unexpected consequences. 1629 */ 1630 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1631 struct writeback_control *wbc, 1632 unsigned long dirtied_before) 1633 { 1634 if (inode->i_state & I_FREEING) 1635 return; 1636 1637 /* 1638 * Sync livelock prevention. Each inode is tagged and synced in one 1639 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1640 * the dirty time to prevent enqueue and sync it again. 1641 */ 1642 if ((inode->i_state & I_DIRTY) && 1643 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1644 inode->dirtied_when = jiffies; 1645 1646 if (wbc->pages_skipped) { 1647 /* 1648 * Writeback is not making progress due to locked buffers. 1649 * Skip this inode for now. Although having skipped pages 1650 * is odd for clean inodes, it can happen for some 1651 * filesystems so handle that gracefully. 1652 */ 1653 if (inode->i_state & I_DIRTY_ALL) 1654 redirty_tail_locked(inode, wb); 1655 else 1656 inode_cgwb_move_to_attached(inode, wb); 1657 return; 1658 } 1659 1660 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1661 /* 1662 * We didn't write back all the pages. nfs_writepages() 1663 * sometimes bales out without doing anything. 1664 */ 1665 if (wbc->nr_to_write <= 0 && 1666 !inode_dirtied_after(inode, dirtied_before)) { 1667 /* Slice used up. Queue for next turn. */ 1668 requeue_io(inode, wb); 1669 } else { 1670 /* 1671 * Writeback blocked by something other than 1672 * congestion. Delay the inode for some time to 1673 * avoid spinning on the CPU (100% iowait) 1674 * retrying writeback of the dirty page/inode 1675 * that cannot be performed immediately. 1676 */ 1677 redirty_tail_locked(inode, wb); 1678 } 1679 } else if (inode->i_state & I_DIRTY) { 1680 /* 1681 * Filesystems can dirty the inode during writeback operations, 1682 * such as delayed allocation during submission or metadata 1683 * updates after data IO completion. 1684 */ 1685 redirty_tail_locked(inode, wb); 1686 } else if (inode->i_state & I_DIRTY_TIME) { 1687 inode->dirtied_when = jiffies; 1688 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1689 inode->i_state &= ~I_SYNC_QUEUED; 1690 } else { 1691 /* The inode is clean. Remove from writeback lists. */ 1692 inode_cgwb_move_to_attached(inode, wb); 1693 } 1694 } 1695 1696 /* 1697 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1698 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1699 * 1700 * This doesn't remove the inode from the writeback list it is on, except 1701 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1702 * expiration. The caller is otherwise responsible for writeback list handling. 1703 * 1704 * The caller is also responsible for setting the I_SYNC flag beforehand and 1705 * calling inode_sync_complete() to clear it afterwards. 1706 */ 1707 static int 1708 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1709 { 1710 struct address_space *mapping = inode->i_mapping; 1711 long nr_to_write = wbc->nr_to_write; 1712 unsigned dirty; 1713 int ret; 1714 1715 WARN_ON(!(inode->i_state & I_SYNC)); 1716 1717 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1718 1719 ret = do_writepages(mapping, wbc); 1720 1721 /* 1722 * Make sure to wait on the data before writing out the metadata. 1723 * This is important for filesystems that modify metadata on data 1724 * I/O completion. We don't do it for sync(2) writeback because it has a 1725 * separate, external IO completion path and ->sync_fs for guaranteeing 1726 * inode metadata is written back correctly. 1727 */ 1728 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1729 int err = filemap_fdatawait(mapping); 1730 if (ret == 0) 1731 ret = err; 1732 } 1733 1734 /* 1735 * If the inode has dirty timestamps and we need to write them, call 1736 * mark_inode_dirty_sync() to notify the filesystem about it and to 1737 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1738 */ 1739 if ((inode->i_state & I_DIRTY_TIME) && 1740 (wbc->sync_mode == WB_SYNC_ALL || 1741 time_after(jiffies, inode->dirtied_time_when + 1742 dirtytime_expire_interval * HZ))) { 1743 trace_writeback_lazytime(inode); 1744 mark_inode_dirty_sync(inode); 1745 } 1746 1747 /* 1748 * Get and clear the dirty flags from i_state. This needs to be done 1749 * after calling writepages because some filesystems may redirty the 1750 * inode during writepages due to delalloc. It also needs to be done 1751 * after handling timestamp expiration, as that may dirty the inode too. 1752 */ 1753 spin_lock(&inode->i_lock); 1754 dirty = inode->i_state & I_DIRTY; 1755 inode->i_state &= ~dirty; 1756 1757 /* 1758 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1759 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1760 * either they see the I_DIRTY bits cleared or we see the dirtied 1761 * inode. 1762 * 1763 * I_DIRTY_PAGES is always cleared together above even if @mapping 1764 * still has dirty pages. The flag is reinstated after smp_mb() if 1765 * necessary. This guarantees that either __mark_inode_dirty() 1766 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1767 */ 1768 smp_mb(); 1769 1770 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1771 inode->i_state |= I_DIRTY_PAGES; 1772 else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) { 1773 if (!(inode->i_state & I_DIRTY_PAGES)) { 1774 inode->i_state &= ~I_PINNING_NETFS_WB; 1775 wbc->unpinned_netfs_wb = true; 1776 dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */ 1777 } 1778 } 1779 1780 spin_unlock(&inode->i_lock); 1781 1782 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1783 if (dirty & ~I_DIRTY_PAGES) { 1784 int err = write_inode(inode, wbc); 1785 if (ret == 0) 1786 ret = err; 1787 } 1788 wbc->unpinned_netfs_wb = false; 1789 trace_writeback_single_inode(inode, wbc, nr_to_write); 1790 return ret; 1791 } 1792 1793 /* 1794 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1795 * the regular batched writeback done by the flusher threads in 1796 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1797 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1798 * 1799 * To prevent the inode from going away, either the caller must have a reference 1800 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1801 */ 1802 static int writeback_single_inode(struct inode *inode, 1803 struct writeback_control *wbc) 1804 { 1805 struct bdi_writeback *wb; 1806 int ret = 0; 1807 1808 spin_lock(&inode->i_lock); 1809 if (!icount_read(inode)) 1810 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1811 else 1812 WARN_ON(inode->i_state & I_WILL_FREE); 1813 1814 if (inode->i_state & I_SYNC) { 1815 /* 1816 * Writeback is already running on the inode. For WB_SYNC_NONE, 1817 * that's enough and we can just return. For WB_SYNC_ALL, we 1818 * must wait for the existing writeback to complete, then do 1819 * writeback again if there's anything left. 1820 */ 1821 if (wbc->sync_mode != WB_SYNC_ALL) 1822 goto out; 1823 inode_wait_for_writeback(inode); 1824 } 1825 WARN_ON(inode->i_state & I_SYNC); 1826 /* 1827 * If the inode is already fully clean, then there's nothing to do. 1828 * 1829 * For data-integrity syncs we also need to check whether any pages are 1830 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1831 * there are any such pages, we'll need to wait for them. 1832 */ 1833 if (!(inode->i_state & I_DIRTY_ALL) && 1834 (wbc->sync_mode != WB_SYNC_ALL || 1835 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1836 goto out; 1837 inode->i_state |= I_SYNC; 1838 wbc_attach_and_unlock_inode(wbc, inode); 1839 1840 ret = __writeback_single_inode(inode, wbc); 1841 1842 wbc_detach_inode(wbc); 1843 1844 wb = inode_to_wb_and_lock_list(inode); 1845 spin_lock(&inode->i_lock); 1846 /* 1847 * If the inode is freeing, its i_io_list shoudn't be updated 1848 * as it can be finally deleted at this moment. 1849 */ 1850 if (!(inode->i_state & I_FREEING)) { 1851 /* 1852 * If the inode is now fully clean, then it can be safely 1853 * removed from its writeback list (if any). Otherwise the 1854 * flusher threads are responsible for the writeback lists. 1855 */ 1856 if (!(inode->i_state & I_DIRTY_ALL)) 1857 inode_cgwb_move_to_attached(inode, wb); 1858 else if (!(inode->i_state & I_SYNC_QUEUED)) { 1859 if ((inode->i_state & I_DIRTY)) 1860 redirty_tail_locked(inode, wb); 1861 else if (inode->i_state & I_DIRTY_TIME) { 1862 inode->dirtied_when = jiffies; 1863 inode_io_list_move_locked(inode, 1864 wb, 1865 &wb->b_dirty_time); 1866 } 1867 } 1868 } 1869 1870 spin_unlock(&wb->list_lock); 1871 inode_sync_complete(inode); 1872 out: 1873 spin_unlock(&inode->i_lock); 1874 return ret; 1875 } 1876 1877 static long writeback_chunk_size(struct bdi_writeback *wb, 1878 struct wb_writeback_work *work) 1879 { 1880 long pages; 1881 1882 /* 1883 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1884 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1885 * here avoids calling into writeback_inodes_wb() more than once. 1886 * 1887 * The intended call sequence for WB_SYNC_ALL writeback is: 1888 * 1889 * wb_writeback() 1890 * writeback_sb_inodes() <== called only once 1891 * write_cache_pages() <== called once for each inode 1892 * (quickly) tag currently dirty pages 1893 * (maybe slowly) sync all tagged pages 1894 */ 1895 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1896 pages = LONG_MAX; 1897 else { 1898 pages = min(wb->avg_write_bandwidth / 2, 1899 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1900 pages = min(pages, work->nr_pages); 1901 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1902 MIN_WRITEBACK_PAGES); 1903 } 1904 1905 return pages; 1906 } 1907 1908 /* 1909 * Write a portion of b_io inodes which belong to @sb. 1910 * 1911 * Return the number of pages and/or inodes written. 1912 * 1913 * NOTE! This is called with wb->list_lock held, and will 1914 * unlock and relock that for each inode it ends up doing 1915 * IO for. 1916 */ 1917 static long writeback_sb_inodes(struct super_block *sb, 1918 struct bdi_writeback *wb, 1919 struct wb_writeback_work *work) 1920 { 1921 struct writeback_control wbc = { 1922 .sync_mode = work->sync_mode, 1923 .tagged_writepages = work->tagged_writepages, 1924 .for_kupdate = work->for_kupdate, 1925 .for_background = work->for_background, 1926 .for_sync = work->for_sync, 1927 .range_cyclic = work->range_cyclic, 1928 .range_start = 0, 1929 .range_end = LLONG_MAX, 1930 }; 1931 unsigned long start_time = jiffies; 1932 long write_chunk; 1933 long total_wrote = 0; /* count both pages and inodes */ 1934 unsigned long dirtied_before = jiffies; 1935 1936 if (work->for_kupdate) 1937 dirtied_before = jiffies - 1938 msecs_to_jiffies(dirty_expire_interval * 10); 1939 1940 while (!list_empty(&wb->b_io)) { 1941 struct inode *inode = wb_inode(wb->b_io.prev); 1942 struct bdi_writeback *tmp_wb; 1943 long wrote; 1944 1945 if (inode->i_sb != sb) { 1946 if (work->sb) { 1947 /* 1948 * We only want to write back data for this 1949 * superblock, move all inodes not belonging 1950 * to it back onto the dirty list. 1951 */ 1952 redirty_tail(inode, wb); 1953 continue; 1954 } 1955 1956 /* 1957 * The inode belongs to a different superblock. 1958 * Bounce back to the caller to unpin this and 1959 * pin the next superblock. 1960 */ 1961 break; 1962 } 1963 1964 /* 1965 * Don't bother with new inodes or inodes being freed, first 1966 * kind does not need periodic writeout yet, and for the latter 1967 * kind writeout is handled by the freer. 1968 */ 1969 spin_lock(&inode->i_lock); 1970 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1971 redirty_tail_locked(inode, wb); 1972 spin_unlock(&inode->i_lock); 1973 continue; 1974 } 1975 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1976 /* 1977 * If this inode is locked for writeback and we are not 1978 * doing writeback-for-data-integrity, move it to 1979 * b_more_io so that writeback can proceed with the 1980 * other inodes on s_io. 1981 * 1982 * We'll have another go at writing back this inode 1983 * when we completed a full scan of b_io. 1984 */ 1985 requeue_io(inode, wb); 1986 spin_unlock(&inode->i_lock); 1987 trace_writeback_sb_inodes_requeue(inode); 1988 continue; 1989 } 1990 spin_unlock(&wb->list_lock); 1991 1992 /* 1993 * We already requeued the inode if it had I_SYNC set and we 1994 * are doing WB_SYNC_NONE writeback. So this catches only the 1995 * WB_SYNC_ALL case. 1996 */ 1997 if (inode->i_state & I_SYNC) { 1998 /* Wait for I_SYNC. This function drops i_lock... */ 1999 inode_sleep_on_writeback(inode); 2000 /* Inode may be gone, start again */ 2001 spin_lock(&wb->list_lock); 2002 continue; 2003 } 2004 inode->i_state |= I_SYNC; 2005 wbc_attach_and_unlock_inode(&wbc, inode); 2006 2007 write_chunk = writeback_chunk_size(wb, work); 2008 wbc.nr_to_write = write_chunk; 2009 wbc.pages_skipped = 0; 2010 2011 /* 2012 * We use I_SYNC to pin the inode in memory. While it is set 2013 * evict_inode() will wait so the inode cannot be freed. 2014 */ 2015 __writeback_single_inode(inode, &wbc); 2016 2017 wbc_detach_inode(&wbc); 2018 work->nr_pages -= write_chunk - wbc.nr_to_write; 2019 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; 2020 wrote = wrote < 0 ? 0 : wrote; 2021 total_wrote += wrote; 2022 2023 if (need_resched()) { 2024 /* 2025 * We're trying to balance between building up a nice 2026 * long list of IOs to improve our merge rate, and 2027 * getting those IOs out quickly for anyone throttling 2028 * in balance_dirty_pages(). cond_resched() doesn't 2029 * unplug, so get our IOs out the door before we 2030 * give up the CPU. 2031 */ 2032 blk_flush_plug(current->plug, false); 2033 cond_resched(); 2034 } 2035 2036 /* 2037 * Requeue @inode if still dirty. Be careful as @inode may 2038 * have been switched to another wb in the meantime. 2039 */ 2040 tmp_wb = inode_to_wb_and_lock_list(inode); 2041 spin_lock(&inode->i_lock); 2042 if (!(inode->i_state & I_DIRTY_ALL)) 2043 total_wrote++; 2044 requeue_inode(inode, tmp_wb, &wbc, dirtied_before); 2045 inode_sync_complete(inode); 2046 spin_unlock(&inode->i_lock); 2047 2048 if (unlikely(tmp_wb != wb)) { 2049 spin_unlock(&tmp_wb->list_lock); 2050 spin_lock(&wb->list_lock); 2051 } 2052 2053 /* 2054 * bail out to wb_writeback() often enough to check 2055 * background threshold and other termination conditions. 2056 */ 2057 if (total_wrote) { 2058 if (time_is_before_jiffies(start_time + HZ / 10UL)) 2059 break; 2060 if (work->nr_pages <= 0) 2061 break; 2062 } 2063 } 2064 return total_wrote; 2065 } 2066 2067 static long __writeback_inodes_wb(struct bdi_writeback *wb, 2068 struct wb_writeback_work *work) 2069 { 2070 unsigned long start_time = jiffies; 2071 long wrote = 0; 2072 2073 while (!list_empty(&wb->b_io)) { 2074 struct inode *inode = wb_inode(wb->b_io.prev); 2075 struct super_block *sb = inode->i_sb; 2076 2077 if (!super_trylock_shared(sb)) { 2078 /* 2079 * super_trylock_shared() may fail consistently due to 2080 * s_umount being grabbed by someone else. Don't use 2081 * requeue_io() to avoid busy retrying the inode/sb. 2082 */ 2083 redirty_tail(inode, wb); 2084 continue; 2085 } 2086 wrote += writeback_sb_inodes(sb, wb, work); 2087 up_read(&sb->s_umount); 2088 2089 /* refer to the same tests at the end of writeback_sb_inodes */ 2090 if (wrote) { 2091 if (time_is_before_jiffies(start_time + HZ / 10UL)) 2092 break; 2093 if (work->nr_pages <= 0) 2094 break; 2095 } 2096 } 2097 /* Leave any unwritten inodes on b_io */ 2098 return wrote; 2099 } 2100 2101 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 2102 enum wb_reason reason) 2103 { 2104 struct wb_writeback_work work = { 2105 .nr_pages = nr_pages, 2106 .sync_mode = WB_SYNC_NONE, 2107 .range_cyclic = 1, 2108 .reason = reason, 2109 }; 2110 struct blk_plug plug; 2111 2112 blk_start_plug(&plug); 2113 spin_lock(&wb->list_lock); 2114 if (list_empty(&wb->b_io)) 2115 queue_io(wb, &work, jiffies); 2116 __writeback_inodes_wb(wb, &work); 2117 spin_unlock(&wb->list_lock); 2118 blk_finish_plug(&plug); 2119 2120 return nr_pages - work.nr_pages; 2121 } 2122 2123 /* 2124 * Explicit flushing or periodic writeback of "old" data. 2125 * 2126 * Define "old": the first time one of an inode's pages is dirtied, we mark the 2127 * dirtying-time in the inode's address_space. So this periodic writeback code 2128 * just walks the superblock inode list, writing back any inodes which are 2129 * older than a specific point in time. 2130 * 2131 * Try to run once per dirty_writeback_interval. But if a writeback event 2132 * takes longer than a dirty_writeback_interval interval, then leave a 2133 * one-second gap. 2134 * 2135 * dirtied_before takes precedence over nr_to_write. So we'll only write back 2136 * all dirty pages if they are all attached to "old" mappings. 2137 */ 2138 static long wb_writeback(struct bdi_writeback *wb, 2139 struct wb_writeback_work *work) 2140 { 2141 long nr_pages = work->nr_pages; 2142 unsigned long dirtied_before = jiffies; 2143 struct inode *inode; 2144 long progress; 2145 struct blk_plug plug; 2146 bool queued = false; 2147 2148 blk_start_plug(&plug); 2149 for (;;) { 2150 /* 2151 * Stop writeback when nr_pages has been consumed 2152 */ 2153 if (work->nr_pages <= 0) 2154 break; 2155 2156 /* 2157 * Background writeout and kupdate-style writeback may 2158 * run forever. Stop them if there is other work to do 2159 * so that e.g. sync can proceed. They'll be restarted 2160 * after the other works are all done. 2161 */ 2162 if ((work->for_background || work->for_kupdate) && 2163 !list_empty(&wb->work_list)) 2164 break; 2165 2166 /* 2167 * For background writeout, stop when we are below the 2168 * background dirty threshold 2169 */ 2170 if (work->for_background && !wb_over_bg_thresh(wb)) 2171 break; 2172 2173 2174 spin_lock(&wb->list_lock); 2175 2176 trace_writeback_start(wb, work); 2177 if (list_empty(&wb->b_io)) { 2178 /* 2179 * Kupdate and background works are special and we want 2180 * to include all inodes that need writing. Livelock 2181 * avoidance is handled by these works yielding to any 2182 * other work so we are safe. 2183 */ 2184 if (work->for_kupdate) { 2185 dirtied_before = jiffies - 2186 msecs_to_jiffies(dirty_expire_interval * 2187 10); 2188 } else if (work->for_background) 2189 dirtied_before = jiffies; 2190 2191 queue_io(wb, work, dirtied_before); 2192 queued = true; 2193 } 2194 if (work->sb) 2195 progress = writeback_sb_inodes(work->sb, wb, work); 2196 else 2197 progress = __writeback_inodes_wb(wb, work); 2198 trace_writeback_written(wb, work); 2199 2200 /* 2201 * Did we write something? Try for more 2202 * 2203 * Dirty inodes are moved to b_io for writeback in batches. 2204 * The completion of the current batch does not necessarily 2205 * mean the overall work is done. So we keep looping as long 2206 * as made some progress on cleaning pages or inodes. 2207 */ 2208 if (progress || !queued) { 2209 spin_unlock(&wb->list_lock); 2210 continue; 2211 } 2212 2213 /* 2214 * No more inodes for IO, bail 2215 */ 2216 if (list_empty(&wb->b_more_io)) { 2217 spin_unlock(&wb->list_lock); 2218 break; 2219 } 2220 2221 /* 2222 * Nothing written. Wait for some inode to 2223 * become available for writeback. Otherwise 2224 * we'll just busyloop. 2225 */ 2226 trace_writeback_wait(wb, work); 2227 inode = wb_inode(wb->b_more_io.prev); 2228 spin_lock(&inode->i_lock); 2229 spin_unlock(&wb->list_lock); 2230 /* This function drops i_lock... */ 2231 inode_sleep_on_writeback(inode); 2232 } 2233 blk_finish_plug(&plug); 2234 2235 return nr_pages - work->nr_pages; 2236 } 2237 2238 /* 2239 * Return the next wb_writeback_work struct that hasn't been processed yet. 2240 */ 2241 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2242 { 2243 struct wb_writeback_work *work = NULL; 2244 2245 spin_lock_irq(&wb->work_lock); 2246 if (!list_empty(&wb->work_list)) { 2247 work = list_entry(wb->work_list.next, 2248 struct wb_writeback_work, list); 2249 list_del_init(&work->list); 2250 } 2251 spin_unlock_irq(&wb->work_lock); 2252 return work; 2253 } 2254 2255 static long wb_check_background_flush(struct bdi_writeback *wb) 2256 { 2257 if (wb_over_bg_thresh(wb)) { 2258 2259 struct wb_writeback_work work = { 2260 .nr_pages = LONG_MAX, 2261 .sync_mode = WB_SYNC_NONE, 2262 .for_background = 1, 2263 .range_cyclic = 1, 2264 .reason = WB_REASON_BACKGROUND, 2265 }; 2266 2267 return wb_writeback(wb, &work); 2268 } 2269 2270 return 0; 2271 } 2272 2273 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2274 { 2275 unsigned long expired; 2276 long nr_pages; 2277 2278 /* 2279 * When set to zero, disable periodic writeback 2280 */ 2281 if (!dirty_writeback_interval) 2282 return 0; 2283 2284 expired = wb->last_old_flush + 2285 msecs_to_jiffies(dirty_writeback_interval * 10); 2286 if (time_before(jiffies, expired)) 2287 return 0; 2288 2289 wb->last_old_flush = jiffies; 2290 nr_pages = get_nr_dirty_pages(); 2291 2292 if (nr_pages) { 2293 struct wb_writeback_work work = { 2294 .nr_pages = nr_pages, 2295 .sync_mode = WB_SYNC_NONE, 2296 .for_kupdate = 1, 2297 .range_cyclic = 1, 2298 .reason = WB_REASON_PERIODIC, 2299 }; 2300 2301 return wb_writeback(wb, &work); 2302 } 2303 2304 return 0; 2305 } 2306 2307 static long wb_check_start_all(struct bdi_writeback *wb) 2308 { 2309 long nr_pages; 2310 2311 if (!test_bit(WB_start_all, &wb->state)) 2312 return 0; 2313 2314 nr_pages = get_nr_dirty_pages(); 2315 if (nr_pages) { 2316 struct wb_writeback_work work = { 2317 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2318 .sync_mode = WB_SYNC_NONE, 2319 .range_cyclic = 1, 2320 .reason = wb->start_all_reason, 2321 }; 2322 2323 nr_pages = wb_writeback(wb, &work); 2324 } 2325 2326 clear_bit(WB_start_all, &wb->state); 2327 return nr_pages; 2328 } 2329 2330 2331 /* 2332 * Retrieve work items and do the writeback they describe 2333 */ 2334 static long wb_do_writeback(struct bdi_writeback *wb) 2335 { 2336 struct wb_writeback_work *work; 2337 long wrote = 0; 2338 2339 set_bit(WB_writeback_running, &wb->state); 2340 while ((work = get_next_work_item(wb)) != NULL) { 2341 trace_writeback_exec(wb, work); 2342 wrote += wb_writeback(wb, work); 2343 finish_writeback_work(work); 2344 } 2345 2346 /* 2347 * Check for a flush-everything request 2348 */ 2349 wrote += wb_check_start_all(wb); 2350 2351 /* 2352 * Check for periodic writeback, kupdated() style 2353 */ 2354 wrote += wb_check_old_data_flush(wb); 2355 wrote += wb_check_background_flush(wb); 2356 clear_bit(WB_writeback_running, &wb->state); 2357 2358 return wrote; 2359 } 2360 2361 /* 2362 * Handle writeback of dirty data for the device backed by this bdi. Also 2363 * reschedules periodically and does kupdated style flushing. 2364 */ 2365 void wb_workfn(struct work_struct *work) 2366 { 2367 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2368 struct bdi_writeback, dwork); 2369 long pages_written; 2370 2371 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2372 2373 if (likely(!current_is_workqueue_rescuer() || 2374 !test_bit(WB_registered, &wb->state))) { 2375 /* 2376 * The normal path. Keep writing back @wb until its 2377 * work_list is empty. Note that this path is also taken 2378 * if @wb is shutting down even when we're running off the 2379 * rescuer as work_list needs to be drained. 2380 */ 2381 do { 2382 pages_written = wb_do_writeback(wb); 2383 trace_writeback_pages_written(pages_written); 2384 } while (!list_empty(&wb->work_list)); 2385 } else { 2386 /* 2387 * bdi_wq can't get enough workers and we're running off 2388 * the emergency worker. Don't hog it. Hopefully, 1024 is 2389 * enough for efficient IO. 2390 */ 2391 pages_written = writeback_inodes_wb(wb, 1024, 2392 WB_REASON_FORKER_THREAD); 2393 trace_writeback_pages_written(pages_written); 2394 } 2395 2396 if (!list_empty(&wb->work_list)) 2397 wb_wakeup(wb); 2398 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2399 wb_wakeup_delayed(wb); 2400 } 2401 2402 /* 2403 * Start writeback of all dirty pages on this bdi. 2404 */ 2405 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2406 enum wb_reason reason) 2407 { 2408 struct bdi_writeback *wb; 2409 2410 if (!bdi_has_dirty_io(bdi)) 2411 return; 2412 2413 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2414 wb_start_writeback(wb, reason); 2415 } 2416 2417 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2418 enum wb_reason reason) 2419 { 2420 rcu_read_lock(); 2421 __wakeup_flusher_threads_bdi(bdi, reason); 2422 rcu_read_unlock(); 2423 } 2424 2425 /* 2426 * Wakeup the flusher threads to start writeback of all currently dirty pages 2427 */ 2428 void wakeup_flusher_threads(enum wb_reason reason) 2429 { 2430 struct backing_dev_info *bdi; 2431 2432 /* 2433 * If we are expecting writeback progress we must submit plugged IO. 2434 */ 2435 blk_flush_plug(current->plug, true); 2436 2437 rcu_read_lock(); 2438 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2439 __wakeup_flusher_threads_bdi(bdi, reason); 2440 rcu_read_unlock(); 2441 } 2442 2443 /* 2444 * Wake up bdi's periodically to make sure dirtytime inodes gets 2445 * written back periodically. We deliberately do *not* check the 2446 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2447 * kernel to be constantly waking up once there are any dirtytime 2448 * inodes on the system. So instead we define a separate delayed work 2449 * function which gets called much more rarely. (By default, only 2450 * once every 12 hours.) 2451 * 2452 * If there is any other write activity going on in the file system, 2453 * this function won't be necessary. But if the only thing that has 2454 * happened on the file system is a dirtytime inode caused by an atime 2455 * update, we need this infrastructure below to make sure that inode 2456 * eventually gets pushed out to disk. 2457 */ 2458 static void wakeup_dirtytime_writeback(struct work_struct *w); 2459 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2460 2461 static void wakeup_dirtytime_writeback(struct work_struct *w) 2462 { 2463 struct backing_dev_info *bdi; 2464 2465 rcu_read_lock(); 2466 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2467 struct bdi_writeback *wb; 2468 2469 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2470 if (!list_empty(&wb->b_dirty_time)) 2471 wb_wakeup(wb); 2472 } 2473 rcu_read_unlock(); 2474 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2475 } 2476 2477 static int dirtytime_interval_handler(const struct ctl_table *table, int write, 2478 void *buffer, size_t *lenp, loff_t *ppos) 2479 { 2480 int ret; 2481 2482 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2483 if (ret == 0 && write) 2484 mod_delayed_work(system_percpu_wq, &dirtytime_work, 0); 2485 return ret; 2486 } 2487 2488 static const struct ctl_table vm_fs_writeback_table[] = { 2489 { 2490 .procname = "dirtytime_expire_seconds", 2491 .data = &dirtytime_expire_interval, 2492 .maxlen = sizeof(dirtytime_expire_interval), 2493 .mode = 0644, 2494 .proc_handler = dirtytime_interval_handler, 2495 .extra1 = SYSCTL_ZERO, 2496 }, 2497 }; 2498 2499 static int __init start_dirtytime_writeback(void) 2500 { 2501 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2502 register_sysctl_init("vm", vm_fs_writeback_table); 2503 return 0; 2504 } 2505 __initcall(start_dirtytime_writeback); 2506 2507 /** 2508 * __mark_inode_dirty - internal function to mark an inode dirty 2509 * 2510 * @inode: inode to mark 2511 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2512 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2513 * with I_DIRTY_PAGES. 2514 * 2515 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2516 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2517 * 2518 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2519 * instead of calling this directly. 2520 * 2521 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2522 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2523 * even if they are later hashed, as they will have been marked dirty already. 2524 * 2525 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2526 * 2527 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2528 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2529 * the kernel-internal blockdev inode represents the dirtying time of the 2530 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2531 * page->mapping->host, so the page-dirtying time is recorded in the internal 2532 * blockdev inode. 2533 */ 2534 void __mark_inode_dirty(struct inode *inode, int flags) 2535 { 2536 struct super_block *sb = inode->i_sb; 2537 int dirtytime = 0; 2538 struct bdi_writeback *wb = NULL; 2539 2540 trace_writeback_mark_inode_dirty(inode, flags); 2541 2542 if (flags & I_DIRTY_INODE) { 2543 /* 2544 * Inode timestamp update will piggback on this dirtying. 2545 * We tell ->dirty_inode callback that timestamps need to 2546 * be updated by setting I_DIRTY_TIME in flags. 2547 */ 2548 if (inode->i_state & I_DIRTY_TIME) { 2549 spin_lock(&inode->i_lock); 2550 if (inode->i_state & I_DIRTY_TIME) { 2551 inode->i_state &= ~I_DIRTY_TIME; 2552 flags |= I_DIRTY_TIME; 2553 } 2554 spin_unlock(&inode->i_lock); 2555 } 2556 2557 /* 2558 * Notify the filesystem about the inode being dirtied, so that 2559 * (if needed) it can update on-disk fields and journal the 2560 * inode. This is only needed when the inode itself is being 2561 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2562 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2563 */ 2564 trace_writeback_dirty_inode_start(inode, flags); 2565 if (sb->s_op->dirty_inode) 2566 sb->s_op->dirty_inode(inode, 2567 flags & (I_DIRTY_INODE | I_DIRTY_TIME)); 2568 trace_writeback_dirty_inode(inode, flags); 2569 2570 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2571 flags &= ~I_DIRTY_TIME; 2572 } else { 2573 /* 2574 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2575 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2576 * in one call to __mark_inode_dirty().) 2577 */ 2578 dirtytime = flags & I_DIRTY_TIME; 2579 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2580 } 2581 2582 /* 2583 * Paired with smp_mb() in __writeback_single_inode() for the 2584 * following lockless i_state test. See there for details. 2585 */ 2586 smp_mb(); 2587 2588 if ((inode->i_state & flags) == flags) 2589 return; 2590 2591 spin_lock(&inode->i_lock); 2592 if ((inode->i_state & flags) != flags) { 2593 const int was_dirty = inode->i_state & I_DIRTY; 2594 2595 inode_attach_wb(inode, NULL); 2596 2597 inode->i_state |= flags; 2598 2599 /* 2600 * Grab inode's wb early because it requires dropping i_lock and we 2601 * need to make sure following checks happen atomically with dirty 2602 * list handling so that we don't move inodes under flush worker's 2603 * hands. 2604 */ 2605 if (!was_dirty) { 2606 wb = locked_inode_to_wb_and_lock_list(inode); 2607 spin_lock(&inode->i_lock); 2608 } 2609 2610 /* 2611 * If the inode is queued for writeback by flush worker, just 2612 * update its dirty state. Once the flush worker is done with 2613 * the inode it will place it on the appropriate superblock 2614 * list, based upon its state. 2615 */ 2616 if (inode->i_state & I_SYNC_QUEUED) 2617 goto out_unlock; 2618 2619 /* 2620 * Only add valid (hashed) inodes to the superblock's 2621 * dirty list. Add blockdev inodes as well. 2622 */ 2623 if (!S_ISBLK(inode->i_mode)) { 2624 if (inode_unhashed(inode)) 2625 goto out_unlock; 2626 } 2627 if (inode->i_state & I_FREEING) 2628 goto out_unlock; 2629 2630 /* 2631 * If the inode was already on b_dirty/b_io/b_more_io, don't 2632 * reposition it (that would break b_dirty time-ordering). 2633 */ 2634 if (!was_dirty) { 2635 struct list_head *dirty_list; 2636 bool wakeup_bdi = false; 2637 2638 inode->dirtied_when = jiffies; 2639 if (dirtytime) 2640 inode->dirtied_time_when = jiffies; 2641 2642 if (inode->i_state & I_DIRTY) 2643 dirty_list = &wb->b_dirty; 2644 else 2645 dirty_list = &wb->b_dirty_time; 2646 2647 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2648 dirty_list); 2649 2650 /* 2651 * If this is the first dirty inode for this bdi, 2652 * we have to wake-up the corresponding bdi thread 2653 * to make sure background write-back happens 2654 * later. 2655 */ 2656 if (wakeup_bdi && 2657 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2658 wb_wakeup_delayed(wb); 2659 2660 spin_unlock(&wb->list_lock); 2661 spin_unlock(&inode->i_lock); 2662 trace_writeback_dirty_inode_enqueue(inode); 2663 2664 return; 2665 } 2666 } 2667 out_unlock: 2668 if (wb) 2669 spin_unlock(&wb->list_lock); 2670 spin_unlock(&inode->i_lock); 2671 } 2672 EXPORT_SYMBOL(__mark_inode_dirty); 2673 2674 /* 2675 * The @s_sync_lock is used to serialise concurrent sync operations 2676 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2677 * Concurrent callers will block on the s_sync_lock rather than doing contending 2678 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2679 * has been issued up to the time this function is enter is guaranteed to be 2680 * completed by the time we have gained the lock and waited for all IO that is 2681 * in progress regardless of the order callers are granted the lock. 2682 */ 2683 static void wait_sb_inodes(struct super_block *sb) 2684 { 2685 LIST_HEAD(sync_list); 2686 2687 /* 2688 * We need to be protected against the filesystem going from 2689 * r/o to r/w or vice versa. 2690 */ 2691 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2692 2693 mutex_lock(&sb->s_sync_lock); 2694 2695 /* 2696 * Splice the writeback list onto a temporary list to avoid waiting on 2697 * inodes that have started writeback after this point. 2698 * 2699 * Use rcu_read_lock() to keep the inodes around until we have a 2700 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2701 * the local list because inodes can be dropped from either by writeback 2702 * completion. 2703 */ 2704 rcu_read_lock(); 2705 spin_lock_irq(&sb->s_inode_wblist_lock); 2706 list_splice_init(&sb->s_inodes_wb, &sync_list); 2707 2708 /* 2709 * Data integrity sync. Must wait for all pages under writeback, because 2710 * there may have been pages dirtied before our sync call, but which had 2711 * writeout started before we write it out. In which case, the inode 2712 * may not be on the dirty list, but we still have to wait for that 2713 * writeout. 2714 */ 2715 while (!list_empty(&sync_list)) { 2716 struct inode *inode = list_first_entry(&sync_list, struct inode, 2717 i_wb_list); 2718 struct address_space *mapping = inode->i_mapping; 2719 2720 /* 2721 * Move each inode back to the wb list before we drop the lock 2722 * to preserve consistency between i_wb_list and the mapping 2723 * writeback tag. Writeback completion is responsible to remove 2724 * the inode from either list once the writeback tag is cleared. 2725 */ 2726 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2727 2728 /* 2729 * The mapping can appear untagged while still on-list since we 2730 * do not have the mapping lock. Skip it here, wb completion 2731 * will remove it. 2732 */ 2733 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2734 continue; 2735 2736 spin_unlock_irq(&sb->s_inode_wblist_lock); 2737 2738 spin_lock(&inode->i_lock); 2739 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2740 spin_unlock(&inode->i_lock); 2741 2742 spin_lock_irq(&sb->s_inode_wblist_lock); 2743 continue; 2744 } 2745 __iget(inode); 2746 spin_unlock(&inode->i_lock); 2747 rcu_read_unlock(); 2748 2749 /* 2750 * We keep the error status of individual mapping so that 2751 * applications can catch the writeback error using fsync(2). 2752 * See filemap_fdatawait_keep_errors() for details. 2753 */ 2754 filemap_fdatawait_keep_errors(mapping); 2755 2756 cond_resched(); 2757 2758 iput(inode); 2759 2760 rcu_read_lock(); 2761 spin_lock_irq(&sb->s_inode_wblist_lock); 2762 } 2763 spin_unlock_irq(&sb->s_inode_wblist_lock); 2764 rcu_read_unlock(); 2765 mutex_unlock(&sb->s_sync_lock); 2766 } 2767 2768 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2769 enum wb_reason reason, bool skip_if_busy) 2770 { 2771 struct backing_dev_info *bdi = sb->s_bdi; 2772 DEFINE_WB_COMPLETION(done, bdi); 2773 struct wb_writeback_work work = { 2774 .sb = sb, 2775 .sync_mode = WB_SYNC_NONE, 2776 .tagged_writepages = 1, 2777 .done = &done, 2778 .nr_pages = nr, 2779 .reason = reason, 2780 }; 2781 2782 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2783 return; 2784 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2785 2786 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2787 wb_wait_for_completion(&done); 2788 } 2789 2790 /** 2791 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2792 * @sb: the superblock 2793 * @nr: the number of pages to write 2794 * @reason: reason why some writeback work initiated 2795 * 2796 * Start writeback on some inodes on this super_block. No guarantees are made 2797 * on how many (if any) will be written, and this function does not wait 2798 * for IO completion of submitted IO. 2799 */ 2800 void writeback_inodes_sb_nr(struct super_block *sb, 2801 unsigned long nr, 2802 enum wb_reason reason) 2803 { 2804 __writeback_inodes_sb_nr(sb, nr, reason, false); 2805 } 2806 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2807 2808 /** 2809 * writeback_inodes_sb - writeback dirty inodes from given super_block 2810 * @sb: the superblock 2811 * @reason: reason why some writeback work was initiated 2812 * 2813 * Start writeback on some inodes on this super_block. No guarantees are made 2814 * on how many (if any) will be written, and this function does not wait 2815 * for IO completion of submitted IO. 2816 */ 2817 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2818 { 2819 writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2820 } 2821 EXPORT_SYMBOL(writeback_inodes_sb); 2822 2823 /** 2824 * try_to_writeback_inodes_sb - try to start writeback if none underway 2825 * @sb: the superblock 2826 * @reason: reason why some writeback work was initiated 2827 * 2828 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2829 */ 2830 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2831 { 2832 if (!down_read_trylock(&sb->s_umount)) 2833 return; 2834 2835 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2836 up_read(&sb->s_umount); 2837 } 2838 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2839 2840 /** 2841 * sync_inodes_sb - sync sb inode pages 2842 * @sb: the superblock 2843 * 2844 * This function writes and waits on any dirty inode belonging to this 2845 * super_block. 2846 */ 2847 void sync_inodes_sb(struct super_block *sb) 2848 { 2849 struct backing_dev_info *bdi = sb->s_bdi; 2850 DEFINE_WB_COMPLETION(done, bdi); 2851 struct wb_writeback_work work = { 2852 .sb = sb, 2853 .sync_mode = WB_SYNC_ALL, 2854 .nr_pages = LONG_MAX, 2855 .range_cyclic = 0, 2856 .done = &done, 2857 .reason = WB_REASON_SYNC, 2858 .for_sync = 1, 2859 }; 2860 2861 /* 2862 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2863 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2864 * bdi_has_dirty() need to be written out too. 2865 */ 2866 if (bdi == &noop_backing_dev_info) 2867 return; 2868 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2869 2870 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2871 bdi_down_write_wb_switch_rwsem(bdi); 2872 bdi_split_work_to_wbs(bdi, &work, false); 2873 wb_wait_for_completion(&done); 2874 bdi_up_write_wb_switch_rwsem(bdi); 2875 2876 wait_sb_inodes(sb); 2877 } 2878 EXPORT_SYMBOL(sync_inodes_sb); 2879 2880 /** 2881 * write_inode_now - write an inode to disk 2882 * @inode: inode to write to disk 2883 * @sync: whether the write should be synchronous or not 2884 * 2885 * This function commits an inode to disk immediately if it is dirty. This is 2886 * primarily needed by knfsd. 2887 * 2888 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2889 */ 2890 int write_inode_now(struct inode *inode, int sync) 2891 { 2892 struct writeback_control wbc = { 2893 .nr_to_write = LONG_MAX, 2894 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2895 .range_start = 0, 2896 .range_end = LLONG_MAX, 2897 }; 2898 2899 if (!mapping_can_writeback(inode->i_mapping)) 2900 wbc.nr_to_write = 0; 2901 2902 might_sleep(); 2903 return writeback_single_inode(inode, &wbc); 2904 } 2905 EXPORT_SYMBOL(write_inode_now); 2906 2907 /** 2908 * sync_inode_metadata - write an inode to disk 2909 * @inode: the inode to sync 2910 * @wait: wait for I/O to complete. 2911 * 2912 * Write an inode to disk and adjust its dirty state after completion. 2913 * 2914 * Note: only writes the actual inode, no associated data or other metadata. 2915 */ 2916 int sync_inode_metadata(struct inode *inode, int wait) 2917 { 2918 struct writeback_control wbc = { 2919 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2920 .nr_to_write = 0, /* metadata-only */ 2921 }; 2922 2923 return writeback_single_inode(inode, &wbc); 2924 } 2925 EXPORT_SYMBOL(sync_inode_metadata); 2926