1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/sched/sysctl.h>
18 #include <linux/kernel.h>
19 #include <linux/export.h>
20 #include <linux/spinlock.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/pagemap.h>
26 #include <linux/kthread.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/tracepoint.h>
31 #include <linux/device.h>
32 #include <linux/memcontrol.h>
33 #include "internal.h"
34
35 /*
36 * Passed into wb_writeback(), essentially a subset of writeback_control
37 */
38 struct wb_writeback_work {
39 long nr_pages;
40 struct super_block *sb;
41 enum writeback_sync_modes sync_mode;
42 unsigned int tagged_writepages:1;
43 unsigned int for_kupdate:1;
44 unsigned int range_cyclic:1;
45 unsigned int for_background:1;
46 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
47 unsigned int auto_free:1; /* free on completion */
48 enum wb_reason reason; /* why was writeback initiated? */
49
50 struct list_head list; /* pending work list */
51 struct wb_completion *done; /* set if the caller waits */
52 };
53
54 /*
55 * If an inode is constantly having its pages dirtied, but then the
56 * updates stop dirtytime_expire_interval seconds in the past, it's
57 * possible for the worst case time between when an inode has its
58 * timestamps updated and when they finally get written out to be two
59 * dirtytime_expire_intervals. We set the default to 12 hours (in
60 * seconds), which means most of the time inodes will have their
61 * timestamps written to disk after 12 hours, but in the worst case a
62 * few inodes might not their timestamps updated for 24 hours.
63 */
64 static unsigned int dirtytime_expire_interval = 12 * 60 * 60;
65
wb_inode(struct list_head * head)66 static inline struct inode *wb_inode(struct list_head *head)
67 {
68 return list_entry(head, struct inode, i_io_list);
69 }
70
71 /*
72 * Include the creation of the trace points after defining the
73 * wb_writeback_work structure and inline functions so that the definition
74 * remains local to this file.
75 */
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/writeback.h>
78
79 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
80
wb_io_lists_populated(struct bdi_writeback * wb)81 static bool wb_io_lists_populated(struct bdi_writeback *wb)
82 {
83 if (wb_has_dirty_io(wb)) {
84 return false;
85 } else {
86 set_bit(WB_has_dirty_io, &wb->state);
87 WARN_ON_ONCE(!wb->avg_write_bandwidth);
88 atomic_long_add(wb->avg_write_bandwidth,
89 &wb->bdi->tot_write_bandwidth);
90 return true;
91 }
92 }
93
wb_io_lists_depopulated(struct bdi_writeback * wb)94 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
95 {
96 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
97 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
98 clear_bit(WB_has_dirty_io, &wb->state);
99 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
100 &wb->bdi->tot_write_bandwidth) < 0);
101 }
102 }
103
104 /**
105 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
106 * @inode: inode to be moved
107 * @wb: target bdi_writeback
108 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
109 *
110 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
111 * Returns %true if @inode is the first occupant of the !dirty_time IO
112 * lists; otherwise, %false.
113 */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)114 static bool inode_io_list_move_locked(struct inode *inode,
115 struct bdi_writeback *wb,
116 struct list_head *head)
117 {
118 assert_spin_locked(&wb->list_lock);
119 assert_spin_locked(&inode->i_lock);
120 WARN_ON_ONCE(inode_state_read(inode) & I_FREEING);
121
122 list_move(&inode->i_io_list, head);
123
124 /* dirty_time doesn't count as dirty_io until expiration */
125 if (head != &wb->b_dirty_time)
126 return wb_io_lists_populated(wb);
127
128 wb_io_lists_depopulated(wb);
129 return false;
130 }
131
wb_wakeup(struct bdi_writeback * wb)132 static void wb_wakeup(struct bdi_writeback *wb)
133 {
134 spin_lock_irq(&wb->work_lock);
135 if (test_bit(WB_registered, &wb->state))
136 mod_delayed_work(bdi_wq, &wb->dwork, 0);
137 spin_unlock_irq(&wb->work_lock);
138 }
139
140 /*
141 * This function is used when the first inode for this wb is marked dirty. It
142 * wakes-up the corresponding bdi thread which should then take care of the
143 * periodic background write-out of dirty inodes. Since the write-out would
144 * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
145 * set up a timer which wakes the bdi thread up later.
146 *
147 * Note, we wouldn't bother setting up the timer, but this function is on the
148 * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
149 * by delaying the wake-up.
150 *
151 * We have to be careful not to postpone flush work if it is scheduled for
152 * earlier. Thus we use queue_delayed_work().
153 */
wb_wakeup_delayed(struct bdi_writeback * wb)154 static void wb_wakeup_delayed(struct bdi_writeback *wb)
155 {
156 unsigned long timeout;
157
158 timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
159 spin_lock_irq(&wb->work_lock);
160 if (test_bit(WB_registered, &wb->state))
161 queue_delayed_work(bdi_wq, &wb->dwork, timeout);
162 spin_unlock_irq(&wb->work_lock);
163 }
164
finish_writeback_work(struct wb_writeback_work * work)165 static void finish_writeback_work(struct wb_writeback_work *work)
166 {
167 struct wb_completion *done = work->done;
168
169 if (work->auto_free)
170 kfree(work);
171 if (done) {
172 wait_queue_head_t *waitq = done->waitq;
173
174 /* @done can't be accessed after the following dec */
175 if (atomic_dec_and_test(&done->cnt))
176 wake_up_all(waitq);
177 }
178 }
179
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)180 static void wb_queue_work(struct bdi_writeback *wb,
181 struct wb_writeback_work *work)
182 {
183 trace_writeback_queue(wb, work);
184
185 if (work->done)
186 atomic_inc(&work->done->cnt);
187
188 spin_lock_irq(&wb->work_lock);
189
190 if (test_bit(WB_registered, &wb->state)) {
191 list_add_tail(&work->list, &wb->work_list);
192 mod_delayed_work(bdi_wq, &wb->dwork, 0);
193 } else
194 finish_writeback_work(work);
195
196 spin_unlock_irq(&wb->work_lock);
197 }
198
wb_wait_for_completion_cb(struct wb_completion * done)199 static bool wb_wait_for_completion_cb(struct wb_completion *done)
200 {
201 unsigned long waited_secs = (jiffies - done->wait_start) / HZ;
202
203 done->progress_stamp = jiffies;
204 if (waited_secs > sysctl_hung_task_timeout_secs)
205 pr_info("INFO: The task %s:%d has been waiting for writeback "
206 "completion for more than %lu seconds.",
207 current->comm, current->pid, waited_secs);
208
209 return !atomic_read(&done->cnt);
210 }
211
212 /**
213 * wb_wait_for_completion - wait for completion of bdi_writeback_works
214 * @done: target wb_completion
215 *
216 * Wait for one or more work items issued to @bdi with their ->done field
217 * set to @done, which should have been initialized with
218 * DEFINE_WB_COMPLETION(). This function returns after all such work items
219 * are completed. Work items which are waited upon aren't freed
220 * automatically on completion.
221 */
wb_wait_for_completion(struct wb_completion * done)222 void wb_wait_for_completion(struct wb_completion *done)
223 {
224 done->wait_start = jiffies;
225 atomic_dec(&done->cnt); /* put down the initial count */
226 wait_event(*done->waitq, wb_wait_for_completion_cb(done));
227 }
228
229 #ifdef CONFIG_CGROUP_WRITEBACK
230
231 /*
232 * Parameters for foreign inode detection, see wbc_detach_inode() to see
233 * how they're used.
234 *
235 * These paramters are inherently heuristical as the detection target
236 * itself is fuzzy. All we want to do is detaching an inode from the
237 * current owner if it's being written to by some other cgroups too much.
238 *
239 * The current cgroup writeback is built on the assumption that multiple
240 * cgroups writing to the same inode concurrently is very rare and a mode
241 * of operation which isn't well supported. As such, the goal is not
242 * taking too long when a different cgroup takes over an inode while
243 * avoiding too aggressive flip-flops from occasional foreign writes.
244 *
245 * We record, very roughly, 2s worth of IO time history and if more than
246 * half of that is foreign, trigger the switch. The recording is quantized
247 * to 16 slots. To avoid tiny writes from swinging the decision too much,
248 * writes smaller than 1/8 of avg size are ignored.
249 */
250 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
251 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
252 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
253 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
254
255 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
256 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
257 /* each slot's duration is 2s / 16 */
258 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
259 /* if foreign slots >= 8, switch */
260 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
261 /* one round can affect upto 5 slots */
262 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
263
264 /*
265 * Maximum inodes per isw. A specific value has been chosen to make
266 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
267 */
268 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
269 / sizeof(struct inode *))
270
271 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
272 static struct workqueue_struct *isw_wq;
273
__inode_attach_wb(struct inode * inode,struct folio * folio)274 void __inode_attach_wb(struct inode *inode, struct folio *folio)
275 {
276 struct backing_dev_info *bdi = inode_to_bdi(inode);
277 struct bdi_writeback *wb = NULL;
278
279 if (inode_cgwb_enabled(inode)) {
280 struct cgroup_subsys_state *memcg_css;
281
282 if (folio) {
283 memcg_css = mem_cgroup_css_from_folio(folio);
284 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
285 } else {
286 /* must pin memcg_css, see wb_get_create() */
287 memcg_css = task_get_css(current, memory_cgrp_id);
288 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
289 css_put(memcg_css);
290 }
291 }
292
293 if (!wb)
294 wb = &bdi->wb;
295
296 /*
297 * There may be multiple instances of this function racing to
298 * update the same inode. Use cmpxchg() to tell the winner.
299 */
300 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
301 wb_put(wb);
302 }
303
304 /**
305 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
306 * @inode: inode of interest with i_lock held
307 * @wb: target bdi_writeback
308 *
309 * Remove the inode from wb's io lists and if necessarily put onto b_attached
310 * list. Only inodes attached to cgwb's are kept on this list.
311 */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)312 static void inode_cgwb_move_to_attached(struct inode *inode,
313 struct bdi_writeback *wb)
314 {
315 assert_spin_locked(&wb->list_lock);
316 assert_spin_locked(&inode->i_lock);
317 WARN_ON_ONCE(inode_state_read(inode) & I_FREEING);
318
319 inode_state_clear(inode, I_SYNC_QUEUED);
320 if (wb != &wb->bdi->wb)
321 list_move(&inode->i_io_list, &wb->b_attached);
322 else
323 list_del_init(&inode->i_io_list);
324 wb_io_lists_depopulated(wb);
325 }
326
327 /**
328 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
329 * @inode: inode of interest with i_lock held
330 *
331 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
332 * held on entry and is released on return. The returned wb is guaranteed
333 * to stay @inode's associated wb until its list_lock is released.
334 */
335 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)336 locked_inode_to_wb_and_lock_list(struct inode *inode)
337 __releases(&inode->i_lock)
338 __acquires(&wb->list_lock)
339 {
340 while (true) {
341 struct bdi_writeback *wb = inode_to_wb(inode);
342
343 /*
344 * inode_to_wb() association is protected by both
345 * @inode->i_lock and @wb->list_lock but list_lock nests
346 * outside i_lock. Drop i_lock and verify that the
347 * association hasn't changed after acquiring list_lock.
348 */
349 wb_get(wb);
350 spin_unlock(&inode->i_lock);
351 spin_lock(&wb->list_lock);
352
353 /* i_wb may have changed inbetween, can't use inode_to_wb() */
354 if (likely(wb == inode->i_wb)) {
355 wb_put(wb); /* @inode already has ref */
356 return wb;
357 }
358
359 spin_unlock(&wb->list_lock);
360 wb_put(wb);
361 cpu_relax();
362 spin_lock(&inode->i_lock);
363 }
364 }
365
366 /**
367 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
368 * @inode: inode of interest
369 *
370 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
371 * on entry.
372 */
inode_to_wb_and_lock_list(struct inode * inode)373 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
374 __acquires(&wb->list_lock)
375 {
376 spin_lock(&inode->i_lock);
377 return locked_inode_to_wb_and_lock_list(inode);
378 }
379
380 struct inode_switch_wbs_context {
381 /* List of queued switching contexts for the wb */
382 struct llist_node list;
383
384 /*
385 * Multiple inodes can be switched at once. The switching procedure
386 * consists of two parts, separated by a RCU grace period. To make
387 * sure that the second part is executed for each inode gone through
388 * the first part, all inode pointers are placed into a NULL-terminated
389 * array embedded into struct inode_switch_wbs_context. Otherwise
390 * an inode could be left in a non-consistent state.
391 */
392 struct inode *inodes[];
393 };
394
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)395 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
396 {
397 down_write(&bdi->wb_switch_rwsem);
398 }
399
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)400 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
401 {
402 up_write(&bdi->wb_switch_rwsem);
403 }
404
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)405 static bool inode_do_switch_wbs(struct inode *inode,
406 struct bdi_writeback *old_wb,
407 struct bdi_writeback *new_wb)
408 {
409 struct address_space *mapping = inode->i_mapping;
410 XA_STATE(xas, &mapping->i_pages, 0);
411 struct folio *folio;
412 bool switched = false;
413
414 spin_lock(&inode->i_lock);
415 xa_lock_irq(&mapping->i_pages);
416
417 /*
418 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
419 * path owns the inode and we shouldn't modify ->i_io_list.
420 */
421 if (unlikely(inode_state_read(inode) & (I_FREEING | I_WILL_FREE)))
422 goto skip_switch;
423
424 trace_inode_switch_wbs(inode, old_wb, new_wb);
425
426 /*
427 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
428 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
429 * folios actually under writeback.
430 */
431 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
432 if (folio_test_dirty(folio)) {
433 long nr = folio_nr_pages(folio);
434 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
435 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
436 }
437 }
438
439 xas_set(&xas, 0);
440 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
441 long nr = folio_nr_pages(folio);
442 WARN_ON_ONCE(!folio_test_writeback(folio));
443 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
444 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
445 }
446
447 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
448 atomic_dec(&old_wb->writeback_inodes);
449 atomic_inc(&new_wb->writeback_inodes);
450 }
451
452 wb_get(new_wb);
453
454 /*
455 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
456 * the specific list @inode was on is ignored and the @inode is put on
457 * ->b_dirty which is always correct including from ->b_dirty_time.
458 * If the @inode was clean, it means it was on the b_attached list, so
459 * move it onto the b_attached list of @new_wb.
460 */
461 if (!list_empty(&inode->i_io_list)) {
462 inode->i_wb = new_wb;
463
464 if (inode_state_read(inode) & I_DIRTY_ALL) {
465 /*
466 * We need to keep b_dirty list sorted by
467 * dirtied_time_when. However properly sorting the
468 * inode in the list gets too expensive when switching
469 * many inodes. So just attach inode at the end of the
470 * dirty list and clobber the dirtied_time_when.
471 */
472 inode->dirtied_time_when = jiffies;
473 inode_io_list_move_locked(inode, new_wb,
474 &new_wb->b_dirty);
475 } else {
476 inode_cgwb_move_to_attached(inode, new_wb);
477 }
478 } else {
479 inode->i_wb = new_wb;
480 }
481
482 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
483 inode->i_wb_frn_winner = 0;
484 inode->i_wb_frn_avg_time = 0;
485 inode->i_wb_frn_history = 0;
486 switched = true;
487 skip_switch:
488 /*
489 * Paired with an acquire fence in unlocked_inode_to_wb_begin() and
490 * ensures that the new wb is visible if they see !I_WB_SWITCH.
491 */
492 smp_wmb();
493 inode_state_clear(inode, I_WB_SWITCH);
494
495 xa_unlock_irq(&mapping->i_pages);
496 spin_unlock(&inode->i_lock);
497
498 return switched;
499 }
500
process_inode_switch_wbs(struct bdi_writeback * new_wb,struct inode_switch_wbs_context * isw)501 static void process_inode_switch_wbs(struct bdi_writeback *new_wb,
502 struct inode_switch_wbs_context *isw)
503 {
504 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
505 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
506 unsigned long nr_switched = 0;
507 struct inode **inodep;
508
509 /*
510 * If @inode switches cgwb membership while sync_inodes_sb() is
511 * being issued, sync_inodes_sb() might miss it. Synchronize.
512 */
513 down_read(&bdi->wb_switch_rwsem);
514
515 inodep = isw->inodes;
516 /*
517 * By the time control reaches here, RCU grace period has passed
518 * since I_WB_SWITCH assertion and all wb stat update transactions
519 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
520 * synchronizing against the i_pages lock.
521 *
522 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
523 * gives us exclusion against all wb related operations on @inode
524 * including IO list manipulations and stat updates.
525 */
526 relock:
527 if (old_wb < new_wb) {
528 spin_lock(&old_wb->list_lock);
529 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
530 } else {
531 spin_lock(&new_wb->list_lock);
532 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
533 }
534
535 while (*inodep) {
536 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
537 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
538 nr_switched++;
539 inodep++;
540 if (*inodep && need_resched()) {
541 spin_unlock(&new_wb->list_lock);
542 spin_unlock(&old_wb->list_lock);
543 cond_resched();
544 goto relock;
545 }
546 }
547
548 spin_unlock(&new_wb->list_lock);
549 spin_unlock(&old_wb->list_lock);
550
551 up_read(&bdi->wb_switch_rwsem);
552
553 if (nr_switched) {
554 wb_wakeup(new_wb);
555 wb_put_many(old_wb, nr_switched);
556 }
557
558 for (inodep = isw->inodes; *inodep; inodep++)
559 iput(*inodep);
560 wb_put(new_wb);
561 kfree(isw);
562 atomic_dec(&isw_nr_in_flight);
563 }
564
inode_switch_wbs_work_fn(struct work_struct * work)565 void inode_switch_wbs_work_fn(struct work_struct *work)
566 {
567 struct bdi_writeback *new_wb = container_of(work, struct bdi_writeback,
568 switch_work);
569 struct inode_switch_wbs_context *isw, *next_isw;
570 struct llist_node *list;
571
572 /*
573 * Grab out reference to wb so that it cannot get freed under us
574 * after we process all the isw items.
575 */
576 wb_get(new_wb);
577 while (1) {
578 list = llist_del_all(&new_wb->switch_wbs_ctxs);
579 /* Nothing to do? */
580 if (!list)
581 break;
582 /*
583 * In addition to synchronizing among switchers, I_WB_SWITCH
584 * tells the RCU protected stat update paths to grab the i_page
585 * lock so that stat transfer can synchronize against them.
586 * Let's continue after I_WB_SWITCH is guaranteed to be
587 * visible.
588 */
589 synchronize_rcu();
590
591 llist_for_each_entry_safe(isw, next_isw, list, list)
592 process_inode_switch_wbs(new_wb, isw);
593 }
594 wb_put(new_wb);
595 }
596
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)597 static bool inode_prepare_wbs_switch(struct inode *inode,
598 struct bdi_writeback *new_wb)
599 {
600 /*
601 * Paired with smp_mb() in cgroup_writeback_umount().
602 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
603 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
604 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
605 */
606 smp_mb();
607
608 if (IS_DAX(inode))
609 return false;
610
611 /* while holding I_WB_SWITCH, no one else can update the association */
612 spin_lock(&inode->i_lock);
613 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
614 inode_state_read(inode) & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
615 inode_to_wb(inode) == new_wb) {
616 spin_unlock(&inode->i_lock);
617 return false;
618 }
619 inode_state_set(inode, I_WB_SWITCH);
620 __iget(inode);
621 spin_unlock(&inode->i_lock);
622
623 return true;
624 }
625
wb_queue_isw(struct bdi_writeback * wb,struct inode_switch_wbs_context * isw)626 static void wb_queue_isw(struct bdi_writeback *wb,
627 struct inode_switch_wbs_context *isw)
628 {
629 if (llist_add(&isw->list, &wb->switch_wbs_ctxs))
630 queue_work(isw_wq, &wb->switch_work);
631 }
632
633 /**
634 * inode_switch_wbs - change the wb association of an inode
635 * @inode: target inode
636 * @new_wb_id: ID of the new wb
637 *
638 * Switch @inode's wb association to the wb identified by @new_wb_id. The
639 * switching is performed asynchronously and may fail silently.
640 */
inode_switch_wbs(struct inode * inode,int new_wb_id)641 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
642 {
643 struct backing_dev_info *bdi = inode_to_bdi(inode);
644 struct cgroup_subsys_state *memcg_css;
645 struct inode_switch_wbs_context *isw;
646 struct bdi_writeback *new_wb = NULL;
647
648 /* noop if seems to be already in progress */
649 if (inode_state_read_once(inode) & I_WB_SWITCH)
650 return;
651
652 /* avoid queueing a new switch if too many are already in flight */
653 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
654 return;
655
656 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
657 if (!isw)
658 return;
659
660 atomic_inc(&isw_nr_in_flight);
661
662 /* find and pin the new wb */
663 rcu_read_lock();
664 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
665 if (memcg_css && !css_tryget(memcg_css))
666 memcg_css = NULL;
667 rcu_read_unlock();
668 if (!memcg_css)
669 goto out_free;
670
671 new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
672 css_put(memcg_css);
673 if (!new_wb)
674 goto out_free;
675
676 if (!inode_prepare_wbs_switch(inode, new_wb))
677 goto out_free;
678
679 isw->inodes[0] = inode;
680
681 trace_inode_switch_wbs_queue(inode->i_wb, new_wb, 1);
682 wb_queue_isw(new_wb, isw);
683 return;
684
685 out_free:
686 atomic_dec(&isw_nr_in_flight);
687 if (new_wb)
688 wb_put(new_wb);
689 kfree(isw);
690 }
691
isw_prepare_wbs_switch(struct bdi_writeback * new_wb,struct inode_switch_wbs_context * isw,struct list_head * list,int * nr)692 static bool isw_prepare_wbs_switch(struct bdi_writeback *new_wb,
693 struct inode_switch_wbs_context *isw,
694 struct list_head *list, int *nr)
695 {
696 struct inode *inode;
697
698 list_for_each_entry(inode, list, i_io_list) {
699 if (!inode_prepare_wbs_switch(inode, new_wb))
700 continue;
701
702 isw->inodes[*nr] = inode;
703 (*nr)++;
704
705 if (*nr >= WB_MAX_INODES_PER_ISW - 1)
706 return true;
707 }
708 return false;
709 }
710
711 /**
712 * cleanup_offline_cgwb - detach associated inodes
713 * @wb: target wb
714 *
715 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
716 * to eventually release the dying @wb. Returns %true if not all inodes were
717 * switched and the function has to be restarted.
718 */
cleanup_offline_cgwb(struct bdi_writeback * wb)719 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
720 {
721 struct cgroup_subsys_state *memcg_css;
722 struct inode_switch_wbs_context *isw;
723 struct bdi_writeback *new_wb;
724 int nr;
725 bool restart = false;
726
727 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
728 GFP_KERNEL);
729 if (!isw)
730 return restart;
731
732 atomic_inc(&isw_nr_in_flight);
733
734 for (memcg_css = wb->memcg_css->parent; memcg_css;
735 memcg_css = memcg_css->parent) {
736 new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
737 if (new_wb)
738 break;
739 }
740 if (unlikely(!new_wb))
741 new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
742
743 nr = 0;
744 spin_lock(&wb->list_lock);
745 /*
746 * In addition to the inodes that have completed writeback, also switch
747 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
748 * inodes won't be written back for a long time when lazytime is
749 * enabled, and thus pinning the dying cgwbs. It won't break the
750 * bandwidth restrictions, as writeback of inode metadata is not
751 * accounted for.
752 */
753 restart = isw_prepare_wbs_switch(new_wb, isw, &wb->b_attached, &nr);
754 if (!restart)
755 restart = isw_prepare_wbs_switch(new_wb, isw, &wb->b_dirty_time,
756 &nr);
757 spin_unlock(&wb->list_lock);
758
759 /* no attached inodes? bail out */
760 if (nr == 0) {
761 atomic_dec(&isw_nr_in_flight);
762 wb_put(new_wb);
763 kfree(isw);
764 return restart;
765 }
766
767 trace_inode_switch_wbs_queue(wb, new_wb, nr);
768 wb_queue_isw(new_wb, isw);
769
770 return restart;
771 }
772
773 /**
774 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
775 * @wbc: writeback_control of interest
776 * @inode: target inode
777 *
778 * @inode is locked and about to be written back under the control of @wbc.
779 * Record @inode's writeback context into @wbc and unlock the i_lock. On
780 * writeback completion, wbc_detach_inode() should be called. This is used
781 * to track the cgroup writeback context.
782 */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)783 static void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
784 struct inode *inode)
785 __releases(&inode->i_lock)
786 {
787 if (!inode_cgwb_enabled(inode)) {
788 spin_unlock(&inode->i_lock);
789 return;
790 }
791
792 wbc->wb = inode_to_wb(inode);
793 wbc->inode = inode;
794
795 wbc->wb_id = wbc->wb->memcg_css->id;
796 wbc->wb_lcand_id = inode->i_wb_frn_winner;
797 wbc->wb_tcand_id = 0;
798 wbc->wb_bytes = 0;
799 wbc->wb_lcand_bytes = 0;
800 wbc->wb_tcand_bytes = 0;
801
802 wb_get(wbc->wb);
803 spin_unlock(&inode->i_lock);
804
805 /*
806 * A dying wb indicates that either the blkcg associated with the
807 * memcg changed or the associated memcg is dying. In the first
808 * case, a replacement wb should already be available and we should
809 * refresh the wb immediately. In the second case, trying to
810 * refresh will keep failing.
811 */
812 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
813 inode_switch_wbs(inode, wbc->wb_id);
814 }
815
816 /**
817 * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
818 * @wbc: writeback_control of interest
819 * @inode: target inode
820 *
821 * This function is to be used by filemap_writeback(), which is an alternative
822 * entry point into writeback code, and first ensures @inode is associated with
823 * a bdi_writeback and attaches it to @wbc.
824 */
wbc_attach_fdatawrite_inode(struct writeback_control * wbc,struct inode * inode)825 void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
826 struct inode *inode)
827 {
828 spin_lock(&inode->i_lock);
829 inode_attach_wb(inode, NULL);
830 wbc_attach_and_unlock_inode(wbc, inode);
831 }
832 EXPORT_SYMBOL_GPL(wbc_attach_fdatawrite_inode);
833
834 /**
835 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
836 * @wbc: writeback_control of the just finished writeback
837 *
838 * To be called after a writeback attempt of an inode finishes and undoes
839 * wbc_attach_and_unlock_inode(). Can be called under any context.
840 *
841 * As concurrent write sharing of an inode is expected to be very rare and
842 * memcg only tracks page ownership on first-use basis severely confining
843 * the usefulness of such sharing, cgroup writeback tracks ownership
844 * per-inode. While the support for concurrent write sharing of an inode
845 * is deemed unnecessary, an inode being written to by different cgroups at
846 * different points in time is a lot more common, and, more importantly,
847 * charging only by first-use can too readily lead to grossly incorrect
848 * behaviors (single foreign page can lead to gigabytes of writeback to be
849 * incorrectly attributed).
850 *
851 * To resolve this issue, cgroup writeback detects the majority dirtier of
852 * an inode and transfers the ownership to it. To avoid unnecessary
853 * oscillation, the detection mechanism keeps track of history and gives
854 * out the switch verdict only if the foreign usage pattern is stable over
855 * a certain amount of time and/or writeback attempts.
856 *
857 * On each writeback attempt, @wbc tries to detect the majority writer
858 * using Boyer-Moore majority vote algorithm. In addition to the byte
859 * count from the majority voting, it also counts the bytes written for the
860 * current wb and the last round's winner wb (max of last round's current
861 * wb, the winner from two rounds ago, and the last round's majority
862 * candidate). Keeping track of the historical winner helps the algorithm
863 * to semi-reliably detect the most active writer even when it's not the
864 * absolute majority.
865 *
866 * Once the winner of the round is determined, whether the winner is
867 * foreign or not and how much IO time the round consumed is recorded in
868 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
869 * over a certain threshold, the switch verdict is given.
870 */
wbc_detach_inode(struct writeback_control * wbc)871 void wbc_detach_inode(struct writeback_control *wbc)
872 {
873 struct bdi_writeback *wb = wbc->wb;
874 struct inode *inode = wbc->inode;
875 unsigned long avg_time, max_bytes, max_time;
876 u16 history;
877 int max_id;
878
879 if (!wb)
880 return;
881
882 history = inode->i_wb_frn_history;
883 avg_time = inode->i_wb_frn_avg_time;
884
885 /* pick the winner of this round */
886 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
887 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
888 max_id = wbc->wb_id;
889 max_bytes = wbc->wb_bytes;
890 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
891 max_id = wbc->wb_lcand_id;
892 max_bytes = wbc->wb_lcand_bytes;
893 } else {
894 max_id = wbc->wb_tcand_id;
895 max_bytes = wbc->wb_tcand_bytes;
896 }
897
898 /*
899 * Calculate the amount of IO time the winner consumed and fold it
900 * into the running average kept per inode. If the consumed IO
901 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
902 * deciding whether to switch or not. This is to prevent one-off
903 * small dirtiers from skewing the verdict.
904 */
905 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
906 wb->avg_write_bandwidth);
907 if (avg_time)
908 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
909 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
910 else
911 avg_time = max_time; /* immediate catch up on first run */
912
913 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
914 int slots;
915
916 /*
917 * The switch verdict is reached if foreign wb's consume
918 * more than a certain proportion of IO time in a
919 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
920 * history mask where each bit represents one sixteenth of
921 * the period. Determine the number of slots to shift into
922 * history from @max_time.
923 */
924 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
925 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
926 history <<= slots;
927 if (wbc->wb_id != max_id)
928 history |= (1U << slots) - 1;
929
930 if (history)
931 trace_inode_foreign_history(inode, wbc, history);
932
933 /*
934 * Switch if the current wb isn't the consistent winner.
935 * If there are multiple closely competing dirtiers, the
936 * inode may switch across them repeatedly over time, which
937 * is okay. The main goal is avoiding keeping an inode on
938 * the wrong wb for an extended period of time.
939 */
940 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
941 inode_switch_wbs(inode, max_id);
942 }
943
944 /*
945 * Multiple instances of this function may race to update the
946 * following fields but we don't mind occassional inaccuracies.
947 */
948 inode->i_wb_frn_winner = max_id;
949 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
950 inode->i_wb_frn_history = history;
951
952 wb_put(wbc->wb);
953 wbc->wb = NULL;
954 }
955 EXPORT_SYMBOL_GPL(wbc_detach_inode);
956
957 /**
958 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
959 * @wbc: writeback_control of the writeback in progress
960 * @folio: folio being written out
961 * @bytes: number of bytes being written out
962 *
963 * @bytes from @folio are about to written out during the writeback
964 * controlled by @wbc. Keep the book for foreign inode detection. See
965 * wbc_detach_inode().
966 */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct folio * folio,size_t bytes)967 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio,
968 size_t bytes)
969 {
970 struct cgroup_subsys_state *css;
971 int id;
972
973 /*
974 * pageout() path doesn't attach @wbc to the inode being written
975 * out. This is intentional as we don't want the function to block
976 * behind a slow cgroup. Ultimately, we want pageout() to kick off
977 * regular writeback instead of writing things out itself.
978 */
979 if (!wbc->wb || wbc->no_cgroup_owner)
980 return;
981
982 css = mem_cgroup_css_from_folio(folio);
983 /* dead cgroups shouldn't contribute to inode ownership arbitration */
984 if (!(css->flags & CSS_ONLINE))
985 return;
986
987 id = css->id;
988
989 if (id == wbc->wb_id) {
990 wbc->wb_bytes += bytes;
991 return;
992 }
993
994 if (id == wbc->wb_lcand_id)
995 wbc->wb_lcand_bytes += bytes;
996
997 /* Boyer-Moore majority vote algorithm */
998 if (!wbc->wb_tcand_bytes)
999 wbc->wb_tcand_id = id;
1000 if (id == wbc->wb_tcand_id)
1001 wbc->wb_tcand_bytes += bytes;
1002 else
1003 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
1004 }
1005 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
1006
1007 /**
1008 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
1009 * @wb: target bdi_writeback to split @nr_pages to
1010 * @nr_pages: number of pages to write for the whole bdi
1011 *
1012 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
1013 * relation to the total write bandwidth of all wb's w/ dirty inodes on
1014 * @wb->bdi.
1015 */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1016 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1017 {
1018 unsigned long this_bw = wb->avg_write_bandwidth;
1019 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
1020
1021 if (nr_pages == LONG_MAX)
1022 return LONG_MAX;
1023
1024 /*
1025 * This may be called on clean wb's and proportional distribution
1026 * may not make sense, just use the original @nr_pages in those
1027 * cases. In general, we wanna err on the side of writing more.
1028 */
1029 if (!tot_bw || this_bw >= tot_bw)
1030 return nr_pages;
1031 else
1032 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
1033 }
1034
1035 /**
1036 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
1037 * @bdi: target backing_dev_info
1038 * @base_work: wb_writeback_work to issue
1039 * @skip_if_busy: skip wb's which already have writeback in progress
1040 *
1041 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
1042 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
1043 * distributed to the busy wbs according to each wb's proportion in the
1044 * total active write bandwidth of @bdi.
1045 */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1046 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1047 struct wb_writeback_work *base_work,
1048 bool skip_if_busy)
1049 {
1050 struct bdi_writeback *last_wb = NULL;
1051 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
1052 struct bdi_writeback, bdi_node);
1053
1054 might_sleep();
1055 restart:
1056 rcu_read_lock();
1057 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
1058 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
1059 struct wb_writeback_work fallback_work;
1060 struct wb_writeback_work *work;
1061 long nr_pages;
1062
1063 if (last_wb) {
1064 wb_put(last_wb);
1065 last_wb = NULL;
1066 }
1067
1068 /* SYNC_ALL writes out I_DIRTY_TIME too */
1069 if (!wb_has_dirty_io(wb) &&
1070 (base_work->sync_mode == WB_SYNC_NONE ||
1071 list_empty(&wb->b_dirty_time)))
1072 continue;
1073 if (skip_if_busy && writeback_in_progress(wb))
1074 continue;
1075
1076 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1077
1078 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1079 if (work) {
1080 *work = *base_work;
1081 work->nr_pages = nr_pages;
1082 work->auto_free = 1;
1083 wb_queue_work(wb, work);
1084 continue;
1085 }
1086
1087 /*
1088 * If wb_tryget fails, the wb has been shutdown, skip it.
1089 *
1090 * Pin @wb so that it stays on @bdi->wb_list. This allows
1091 * continuing iteration from @wb after dropping and
1092 * regrabbing rcu read lock.
1093 */
1094 if (!wb_tryget(wb))
1095 continue;
1096
1097 /* alloc failed, execute synchronously using on-stack fallback */
1098 work = &fallback_work;
1099 *work = *base_work;
1100 work->nr_pages = nr_pages;
1101 work->auto_free = 0;
1102 work->done = &fallback_work_done;
1103
1104 wb_queue_work(wb, work);
1105 last_wb = wb;
1106
1107 rcu_read_unlock();
1108 wb_wait_for_completion(&fallback_work_done);
1109 goto restart;
1110 }
1111 rcu_read_unlock();
1112
1113 if (last_wb)
1114 wb_put(last_wb);
1115 }
1116
1117 /**
1118 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1119 * @bdi_id: target bdi id
1120 * @memcg_id: target memcg css id
1121 * @reason: reason why some writeback work initiated
1122 * @done: target wb_completion
1123 *
1124 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1125 * with the specified parameters.
1126 */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1127 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1128 enum wb_reason reason, struct wb_completion *done)
1129 {
1130 struct backing_dev_info *bdi;
1131 struct cgroup_subsys_state *memcg_css;
1132 struct bdi_writeback *wb;
1133 struct wb_writeback_work *work;
1134 unsigned long dirty;
1135 int ret;
1136
1137 /* lookup bdi and memcg */
1138 bdi = bdi_get_by_id(bdi_id);
1139 if (!bdi)
1140 return -ENOENT;
1141
1142 rcu_read_lock();
1143 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1144 if (memcg_css && !css_tryget(memcg_css))
1145 memcg_css = NULL;
1146 rcu_read_unlock();
1147 if (!memcg_css) {
1148 ret = -ENOENT;
1149 goto out_bdi_put;
1150 }
1151
1152 /*
1153 * And find the associated wb. If the wb isn't there already
1154 * there's nothing to flush, don't create one.
1155 */
1156 wb = wb_get_lookup(bdi, memcg_css);
1157 if (!wb) {
1158 ret = -ENOENT;
1159 goto out_css_put;
1160 }
1161
1162 /*
1163 * The caller is attempting to write out most of
1164 * the currently dirty pages. Let's take the current dirty page
1165 * count and inflate it by 25% which should be large enough to
1166 * flush out most dirty pages while avoiding getting livelocked by
1167 * concurrent dirtiers.
1168 *
1169 * BTW the memcg stats are flushed periodically and this is best-effort
1170 * estimation, so some potential error is ok.
1171 */
1172 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1173 dirty = dirty * 10 / 8;
1174
1175 /* issue the writeback work */
1176 work = kzalloc(sizeof(*work), GFP_NOWAIT);
1177 if (work) {
1178 work->nr_pages = dirty;
1179 work->sync_mode = WB_SYNC_NONE;
1180 work->range_cyclic = 1;
1181 work->reason = reason;
1182 work->done = done;
1183 work->auto_free = 1;
1184 wb_queue_work(wb, work);
1185 ret = 0;
1186 } else {
1187 ret = -ENOMEM;
1188 }
1189
1190 wb_put(wb);
1191 out_css_put:
1192 css_put(memcg_css);
1193 out_bdi_put:
1194 bdi_put(bdi);
1195 return ret;
1196 }
1197
1198 /**
1199 * cgroup_writeback_umount - flush inode wb switches for umount
1200 * @sb: target super_block
1201 *
1202 * This function is called when a super_block is about to be destroyed and
1203 * flushes in-flight inode wb switches. An inode wb switch goes through
1204 * RCU and then workqueue, so the two need to be flushed in order to ensure
1205 * that all previously scheduled switches are finished. As wb switches are
1206 * rare occurrences and synchronize_rcu() can take a while, perform
1207 * flushing iff wb switches are in flight.
1208 */
cgroup_writeback_umount(struct super_block * sb)1209 void cgroup_writeback_umount(struct super_block *sb)
1210 {
1211
1212 if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
1213 return;
1214
1215 /*
1216 * SB_ACTIVE should be reliably cleared before checking
1217 * isw_nr_in_flight, see generic_shutdown_super().
1218 */
1219 smp_mb();
1220
1221 if (atomic_read(&isw_nr_in_flight)) {
1222 /*
1223 * Use rcu_barrier() to wait for all pending callbacks to
1224 * ensure that all in-flight wb switches are in the workqueue.
1225 */
1226 rcu_barrier();
1227 flush_workqueue(isw_wq);
1228 }
1229 }
1230
cgroup_writeback_init(void)1231 static int __init cgroup_writeback_init(void)
1232 {
1233 isw_wq = alloc_workqueue("inode_switch_wbs", WQ_PERCPU, 0);
1234 if (!isw_wq)
1235 return -ENOMEM;
1236 return 0;
1237 }
1238 fs_initcall(cgroup_writeback_init);
1239
1240 #else /* CONFIG_CGROUP_WRITEBACK */
1241
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1242 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1243 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1244
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1245 static void inode_cgwb_move_to_attached(struct inode *inode,
1246 struct bdi_writeback *wb)
1247 {
1248 assert_spin_locked(&wb->list_lock);
1249 assert_spin_locked(&inode->i_lock);
1250 WARN_ON_ONCE(inode_state_read(inode) & I_FREEING);
1251
1252 inode_state_clear(inode, I_SYNC_QUEUED);
1253 list_del_init(&inode->i_io_list);
1254 wb_io_lists_depopulated(wb);
1255 }
1256
1257 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1258 locked_inode_to_wb_and_lock_list(struct inode *inode)
1259 __releases(&inode->i_lock)
1260 __acquires(&wb->list_lock)
1261 {
1262 struct bdi_writeback *wb = inode_to_wb(inode);
1263
1264 spin_unlock(&inode->i_lock);
1265 spin_lock(&wb->list_lock);
1266 return wb;
1267 }
1268
inode_to_wb_and_lock_list(struct inode * inode)1269 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1270 __acquires(&wb->list_lock)
1271 {
1272 struct bdi_writeback *wb = inode_to_wb(inode);
1273
1274 spin_lock(&wb->list_lock);
1275 return wb;
1276 }
1277
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1278 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1279 {
1280 return nr_pages;
1281 }
1282
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1283 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1284 struct wb_writeback_work *base_work,
1285 bool skip_if_busy)
1286 {
1287 might_sleep();
1288
1289 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1290 base_work->auto_free = 0;
1291 wb_queue_work(&bdi->wb, base_work);
1292 }
1293 }
1294
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)1295 static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
1296 struct inode *inode)
1297 __releases(&inode->i_lock)
1298 {
1299 spin_unlock(&inode->i_lock);
1300 }
1301
1302 #endif /* CONFIG_CGROUP_WRITEBACK */
1303
1304 /*
1305 * Add in the number of potentially dirty inodes, because each inode
1306 * write can dirty pagecache in the underlying blockdev.
1307 */
get_nr_dirty_pages(void)1308 static unsigned long get_nr_dirty_pages(void)
1309 {
1310 return global_node_page_state(NR_FILE_DIRTY) +
1311 get_nr_dirty_inodes();
1312 }
1313
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1314 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1315 {
1316 if (!wb_has_dirty_io(wb))
1317 return;
1318
1319 /*
1320 * All callers of this function want to start writeback of all
1321 * dirty pages. Places like vmscan can call this at a very
1322 * high frequency, causing pointless allocations of tons of
1323 * work items and keeping the flusher threads busy retrieving
1324 * that work. Ensure that we only allow one of them pending and
1325 * inflight at the time.
1326 */
1327 if (test_bit(WB_start_all, &wb->state) ||
1328 test_and_set_bit(WB_start_all, &wb->state))
1329 return;
1330
1331 wb->start_all_reason = reason;
1332 wb_wakeup(wb);
1333 }
1334
1335 /**
1336 * wb_start_background_writeback - start background writeback
1337 * @wb: bdi_writback to write from
1338 *
1339 * Description:
1340 * This makes sure WB_SYNC_NONE background writeback happens. When
1341 * this function returns, it is only guaranteed that for given wb
1342 * some IO is happening if we are over background dirty threshold.
1343 * Caller need not hold sb s_umount semaphore.
1344 */
wb_start_background_writeback(struct bdi_writeback * wb)1345 void wb_start_background_writeback(struct bdi_writeback *wb)
1346 {
1347 /*
1348 * We just wake up the flusher thread. It will perform background
1349 * writeback as soon as there is no other work to do.
1350 */
1351 trace_writeback_wake_background(wb);
1352 wb_wakeup(wb);
1353 }
1354
1355 /*
1356 * Remove the inode from the writeback list it is on.
1357 */
inode_io_list_del(struct inode * inode)1358 void inode_io_list_del(struct inode *inode)
1359 {
1360 struct bdi_writeback *wb;
1361
1362 /*
1363 * FIXME: ext4 can call here from ext4_evict_inode() after evict() already
1364 * unlinked the inode.
1365 */
1366 if (list_empty_careful(&inode->i_io_list))
1367 return;
1368
1369 wb = inode_to_wb_and_lock_list(inode);
1370 spin_lock(&inode->i_lock);
1371
1372 inode_state_clear(inode, I_SYNC_QUEUED);
1373 list_del_init(&inode->i_io_list);
1374 wb_io_lists_depopulated(wb);
1375
1376 spin_unlock(&inode->i_lock);
1377 spin_unlock(&wb->list_lock);
1378 }
1379 EXPORT_SYMBOL(inode_io_list_del);
1380
1381 /*
1382 * mark an inode as under writeback on the sb
1383 */
sb_mark_inode_writeback(struct inode * inode)1384 void sb_mark_inode_writeback(struct inode *inode)
1385 {
1386 struct super_block *sb = inode->i_sb;
1387 unsigned long flags;
1388
1389 if (list_empty(&inode->i_wb_list)) {
1390 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1391 if (list_empty(&inode->i_wb_list)) {
1392 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1393 trace_sb_mark_inode_writeback(inode);
1394 }
1395 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1396 }
1397 }
1398
1399 /*
1400 * clear an inode as under writeback on the sb
1401 */
sb_clear_inode_writeback(struct inode * inode)1402 void sb_clear_inode_writeback(struct inode *inode)
1403 {
1404 struct super_block *sb = inode->i_sb;
1405 unsigned long flags;
1406
1407 if (!list_empty(&inode->i_wb_list)) {
1408 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1409 if (!list_empty(&inode->i_wb_list)) {
1410 list_del_init(&inode->i_wb_list);
1411 trace_sb_clear_inode_writeback(inode);
1412 }
1413 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1414 }
1415 }
1416
1417 /*
1418 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1419 * furthest end of its superblock's dirty-inode list.
1420 *
1421 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1422 * already the most-recently-dirtied inode on the b_dirty list. If that is
1423 * the case then the inode must have been redirtied while it was being written
1424 * out and we don't reset its dirtied_when.
1425 */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1426 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1427 {
1428 assert_spin_locked(&inode->i_lock);
1429
1430 inode_state_clear(inode, I_SYNC_QUEUED);
1431 /*
1432 * When the inode is being freed just don't bother with dirty list
1433 * tracking. Flush worker will ignore this inode anyway and it will
1434 * trigger assertions in inode_io_list_move_locked().
1435 */
1436 if (inode_state_read(inode) & I_FREEING) {
1437 list_del_init(&inode->i_io_list);
1438 wb_io_lists_depopulated(wb);
1439 return;
1440 }
1441 if (!list_empty(&wb->b_dirty)) {
1442 struct inode *tail;
1443
1444 tail = wb_inode(wb->b_dirty.next);
1445 if (time_before(inode->dirtied_when, tail->dirtied_when))
1446 inode->dirtied_when = jiffies;
1447 }
1448 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1449 }
1450
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1451 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1452 {
1453 spin_lock(&inode->i_lock);
1454 redirty_tail_locked(inode, wb);
1455 spin_unlock(&inode->i_lock);
1456 }
1457
1458 /*
1459 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1460 */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1461 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1462 {
1463 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1464 }
1465
inode_sync_complete(struct inode * inode)1466 static void inode_sync_complete(struct inode *inode)
1467 {
1468 assert_spin_locked(&inode->i_lock);
1469
1470 inode_state_clear(inode, I_SYNC);
1471 /* If inode is clean an unused, put it into LRU now... */
1472 inode_lru_list_add(inode);
1473 /* Called with inode->i_lock which ensures memory ordering. */
1474 inode_wake_up_bit(inode, __I_SYNC);
1475 }
1476
inode_dirtied_after(struct inode * inode,unsigned long t)1477 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1478 {
1479 bool ret = time_after(inode->dirtied_when, t);
1480 #ifndef CONFIG_64BIT
1481 /*
1482 * For inodes being constantly redirtied, dirtied_when can get stuck.
1483 * It _appears_ to be in the future, but is actually in distant past.
1484 * This test is necessary to prevent such wrapped-around relative times
1485 * from permanently stopping the whole bdi writeback.
1486 */
1487 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1488 #endif
1489 return ret;
1490 }
1491
1492 /*
1493 * Move expired (dirtied before dirtied_before) dirty inodes from
1494 * @delaying_queue to @dispatch_queue.
1495 */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1496 static int move_expired_inodes(struct list_head *delaying_queue,
1497 struct list_head *dispatch_queue,
1498 unsigned long dirtied_before)
1499 {
1500 LIST_HEAD(tmp);
1501 struct list_head *pos, *node;
1502 struct super_block *sb = NULL;
1503 struct inode *inode;
1504 int do_sb_sort = 0;
1505 int moved = 0;
1506
1507 while (!list_empty(delaying_queue)) {
1508 inode = wb_inode(delaying_queue->prev);
1509 if (inode_dirtied_after(inode, dirtied_before))
1510 break;
1511 spin_lock(&inode->i_lock);
1512 list_move(&inode->i_io_list, &tmp);
1513 moved++;
1514 inode_state_set(inode, I_SYNC_QUEUED);
1515 spin_unlock(&inode->i_lock);
1516 if (sb_is_blkdev_sb(inode->i_sb))
1517 continue;
1518 if (sb && sb != inode->i_sb)
1519 do_sb_sort = 1;
1520 sb = inode->i_sb;
1521 }
1522
1523 /* just one sb in list, splice to dispatch_queue and we're done */
1524 if (!do_sb_sort) {
1525 list_splice(&tmp, dispatch_queue);
1526 goto out;
1527 }
1528
1529 /*
1530 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1531 * we don't take inode->i_lock here because it is just a pointless overhead.
1532 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1533 * fully under our control.
1534 */
1535 while (!list_empty(&tmp)) {
1536 sb = wb_inode(tmp.prev)->i_sb;
1537 list_for_each_prev_safe(pos, node, &tmp) {
1538 inode = wb_inode(pos);
1539 if (inode->i_sb == sb)
1540 list_move(&inode->i_io_list, dispatch_queue);
1541 }
1542 }
1543 out:
1544 return moved;
1545 }
1546
1547 /*
1548 * Queue all expired dirty inodes for io, eldest first.
1549 * Before
1550 * newly dirtied b_dirty b_io b_more_io
1551 * =============> gf edc BA
1552 * After
1553 * newly dirtied b_dirty b_io b_more_io
1554 * =============> g fBAedc
1555 * |
1556 * +--> dequeue for IO
1557 */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1558 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1559 unsigned long dirtied_before)
1560 {
1561 int moved;
1562 unsigned long time_expire_jif = dirtied_before;
1563
1564 assert_spin_locked(&wb->list_lock);
1565 list_splice_init(&wb->b_more_io, &wb->b_io);
1566 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1567 if (!work->for_sync)
1568 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1569 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1570 time_expire_jif);
1571 if (moved)
1572 wb_io_lists_populated(wb);
1573 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1574 }
1575
write_inode(struct inode * inode,struct writeback_control * wbc)1576 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1577 {
1578 int ret;
1579
1580 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1581 trace_writeback_write_inode_start(inode, wbc);
1582 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1583 trace_writeback_write_inode(inode, wbc);
1584 return ret;
1585 }
1586 return 0;
1587 }
1588
1589 /*
1590 * Wait for writeback on an inode to complete. Called with i_lock held.
1591 * Caller must make sure inode cannot go away when we drop i_lock.
1592 */
inode_wait_for_writeback(struct inode * inode)1593 void inode_wait_for_writeback(struct inode *inode)
1594 {
1595 struct wait_bit_queue_entry wqe;
1596 struct wait_queue_head *wq_head;
1597
1598 assert_spin_locked(&inode->i_lock);
1599
1600 if (!(inode_state_read(inode) & I_SYNC))
1601 return;
1602
1603 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1604 for (;;) {
1605 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1606 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1607 if (!(inode_state_read(inode) & I_SYNC))
1608 break;
1609 spin_unlock(&inode->i_lock);
1610 schedule();
1611 spin_lock(&inode->i_lock);
1612 }
1613 finish_wait(wq_head, &wqe.wq_entry);
1614 }
1615
1616 /*
1617 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1618 * held and drops it. It is aimed for callers not holding any inode reference
1619 * so once i_lock is dropped, inode can go away.
1620 */
inode_sleep_on_writeback(struct inode * inode)1621 static void inode_sleep_on_writeback(struct inode *inode)
1622 __releases(inode->i_lock)
1623 {
1624 struct wait_bit_queue_entry wqe;
1625 struct wait_queue_head *wq_head;
1626 bool sleep;
1627
1628 assert_spin_locked(&inode->i_lock);
1629
1630 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1631 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1632 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1633 sleep = !!(inode_state_read(inode) & I_SYNC);
1634 spin_unlock(&inode->i_lock);
1635 if (sleep)
1636 schedule();
1637 finish_wait(wq_head, &wqe.wq_entry);
1638 }
1639
1640 /*
1641 * Find proper writeback list for the inode depending on its current state and
1642 * possibly also change of its state while we were doing writeback. Here we
1643 * handle things such as livelock prevention or fairness of writeback among
1644 * inodes. This function can be called only by flusher thread - noone else
1645 * processes all inodes in writeback lists and requeueing inodes behind flusher
1646 * thread's back can have unexpected consequences.
1647 */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc,unsigned long dirtied_before)1648 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1649 struct writeback_control *wbc,
1650 unsigned long dirtied_before)
1651 {
1652 if (inode_state_read(inode) & I_FREEING)
1653 return;
1654
1655 /*
1656 * Sync livelock prevention. Each inode is tagged and synced in one
1657 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1658 * the dirty time to prevent enqueue and sync it again.
1659 */
1660 if ((inode_state_read(inode) & I_DIRTY) &&
1661 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1662 inode->dirtied_when = jiffies;
1663
1664 if (wbc->pages_skipped) {
1665 /*
1666 * Writeback is not making progress due to locked buffers.
1667 * Skip this inode for now. Although having skipped pages
1668 * is odd for clean inodes, it can happen for some
1669 * filesystems so handle that gracefully.
1670 */
1671 if (inode_state_read(inode) & I_DIRTY_ALL)
1672 redirty_tail_locked(inode, wb);
1673 else
1674 inode_cgwb_move_to_attached(inode, wb);
1675 return;
1676 }
1677
1678 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1679 /*
1680 * We didn't write back all the pages. nfs_writepages()
1681 * sometimes bales out without doing anything.
1682 */
1683 if (wbc->nr_to_write <= 0 &&
1684 !inode_dirtied_after(inode, dirtied_before)) {
1685 /* Slice used up. Queue for next turn. */
1686 requeue_io(inode, wb);
1687 } else {
1688 /*
1689 * Writeback blocked by something other than
1690 * congestion. Delay the inode for some time to
1691 * avoid spinning on the CPU (100% iowait)
1692 * retrying writeback of the dirty page/inode
1693 * that cannot be performed immediately.
1694 */
1695 redirty_tail_locked(inode, wb);
1696 }
1697 } else if (inode_state_read(inode) & I_DIRTY) {
1698 /*
1699 * Filesystems can dirty the inode during writeback operations,
1700 * such as delayed allocation during submission or metadata
1701 * updates after data IO completion.
1702 */
1703 redirty_tail_locked(inode, wb);
1704 } else if (inode_state_read(inode) & I_DIRTY_TIME) {
1705 inode->dirtied_when = jiffies;
1706 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1707 inode_state_clear(inode, I_SYNC_QUEUED);
1708 } else {
1709 /* The inode is clean. Remove from writeback lists. */
1710 inode_cgwb_move_to_attached(inode, wb);
1711 }
1712 }
1713
1714 /*
1715 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1716 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1717 *
1718 * This doesn't remove the inode from the writeback list it is on, except
1719 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1720 * expiration. The caller is otherwise responsible for writeback list handling.
1721 *
1722 * The caller is also responsible for setting the I_SYNC flag beforehand and
1723 * calling inode_sync_complete() to clear it afterwards.
1724 */
1725 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1726 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1727 {
1728 struct address_space *mapping = inode->i_mapping;
1729 long nr_to_write = wbc->nr_to_write;
1730 unsigned dirty;
1731 int ret;
1732
1733 WARN_ON(!(inode_state_read_once(inode) & I_SYNC));
1734
1735 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1736
1737 ret = do_writepages(mapping, wbc);
1738
1739 /*
1740 * Make sure to wait on the data before writing out the metadata.
1741 * This is important for filesystems that modify metadata on data
1742 * I/O completion. We don't do it for sync(2) writeback because it has a
1743 * separate, external IO completion path and ->sync_fs for guaranteeing
1744 * inode metadata is written back correctly.
1745 */
1746 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1747 int err = filemap_fdatawait(mapping);
1748 if (ret == 0)
1749 ret = err;
1750 }
1751
1752 /*
1753 * If the inode has dirty timestamps and we need to write them, call
1754 * mark_inode_dirty_sync() to notify the filesystem about it and to
1755 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1756 */
1757 if ((inode_state_read_once(inode) & I_DIRTY_TIME) &&
1758 (wbc->sync_mode == WB_SYNC_ALL ||
1759 time_after(jiffies, inode->dirtied_time_when +
1760 dirtytime_expire_interval * HZ))) {
1761 trace_writeback_lazytime(inode);
1762 mark_inode_dirty_sync(inode);
1763 }
1764
1765 /*
1766 * Get and clear the dirty flags from i_state. This needs to be done
1767 * after calling writepages because some filesystems may redirty the
1768 * inode during writepages due to delalloc. It also needs to be done
1769 * after handling timestamp expiration, as that may dirty the inode too.
1770 */
1771 spin_lock(&inode->i_lock);
1772 dirty = inode_state_read(inode) & I_DIRTY;
1773 inode_state_clear(inode, dirty);
1774
1775 /*
1776 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1777 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1778 * either they see the I_DIRTY bits cleared or we see the dirtied
1779 * inode.
1780 *
1781 * I_DIRTY_PAGES is always cleared together above even if @mapping
1782 * still has dirty pages. The flag is reinstated after smp_mb() if
1783 * necessary. This guarantees that either __mark_inode_dirty()
1784 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1785 */
1786 smp_mb();
1787
1788 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1789 inode_state_set(inode, I_DIRTY_PAGES);
1790 else if (unlikely(inode_state_read(inode) & I_PINNING_NETFS_WB)) {
1791 if (!(inode_state_read(inode) & I_DIRTY_PAGES)) {
1792 inode_state_clear(inode, I_PINNING_NETFS_WB);
1793 wbc->unpinned_netfs_wb = true;
1794 dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1795 }
1796 }
1797
1798 spin_unlock(&inode->i_lock);
1799
1800 /* Don't write the inode if only I_DIRTY_PAGES was set */
1801 if (dirty & ~I_DIRTY_PAGES) {
1802 int err = write_inode(inode, wbc);
1803 if (ret == 0)
1804 ret = err;
1805 }
1806 wbc->unpinned_netfs_wb = false;
1807 trace_writeback_single_inode(inode, wbc, nr_to_write);
1808 return ret;
1809 }
1810
1811 /*
1812 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1813 * the regular batched writeback done by the flusher threads in
1814 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1815 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1816 *
1817 * To prevent the inode from going away, either the caller must have a reference
1818 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1819 */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1820 static int writeback_single_inode(struct inode *inode,
1821 struct writeback_control *wbc)
1822 {
1823 struct bdi_writeback *wb;
1824 int ret = 0;
1825
1826 spin_lock(&inode->i_lock);
1827 if (!icount_read(inode))
1828 WARN_ON(!(inode_state_read(inode) & (I_WILL_FREE | I_FREEING)));
1829 else
1830 WARN_ON(inode_state_read(inode) & I_WILL_FREE);
1831
1832 if (inode_state_read(inode) & I_SYNC) {
1833 /*
1834 * Writeback is already running on the inode. For WB_SYNC_NONE,
1835 * that's enough and we can just return. For WB_SYNC_ALL, we
1836 * must wait for the existing writeback to complete, then do
1837 * writeback again if there's anything left.
1838 */
1839 if (wbc->sync_mode != WB_SYNC_ALL)
1840 goto out;
1841 inode_wait_for_writeback(inode);
1842 }
1843 WARN_ON(inode_state_read(inode) & I_SYNC);
1844 /*
1845 * If the inode is already fully clean, then there's nothing to do.
1846 *
1847 * For data-integrity syncs we also need to check whether any pages are
1848 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1849 * there are any such pages, we'll need to wait for them.
1850 */
1851 if (!(inode_state_read(inode) & I_DIRTY_ALL) &&
1852 (wbc->sync_mode != WB_SYNC_ALL ||
1853 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1854 goto out;
1855 inode_state_set(inode, I_SYNC);
1856 wbc_attach_and_unlock_inode(wbc, inode);
1857
1858 ret = __writeback_single_inode(inode, wbc);
1859
1860 wbc_detach_inode(wbc);
1861
1862 wb = inode_to_wb_and_lock_list(inode);
1863 spin_lock(&inode->i_lock);
1864 /*
1865 * If the inode is freeing, its i_io_list shoudn't be updated
1866 * as it can be finally deleted at this moment.
1867 */
1868 if (!(inode_state_read(inode) & I_FREEING)) {
1869 /*
1870 * If the inode is now fully clean, then it can be safely
1871 * removed from its writeback list (if any). Otherwise the
1872 * flusher threads are responsible for the writeback lists.
1873 */
1874 if (!(inode_state_read(inode) & I_DIRTY_ALL))
1875 inode_cgwb_move_to_attached(inode, wb);
1876 else if (!(inode_state_read(inode) & I_SYNC_QUEUED)) {
1877 if ((inode_state_read(inode) & I_DIRTY))
1878 redirty_tail_locked(inode, wb);
1879 else if (inode_state_read(inode) & I_DIRTY_TIME) {
1880 inode->dirtied_when = jiffies;
1881 inode_io_list_move_locked(inode,
1882 wb,
1883 &wb->b_dirty_time);
1884 }
1885 }
1886 }
1887
1888 spin_unlock(&wb->list_lock);
1889 inode_sync_complete(inode);
1890 out:
1891 spin_unlock(&inode->i_lock);
1892 return ret;
1893 }
1894
writeback_chunk_size(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1895 static long writeback_chunk_size(struct super_block *sb,
1896 struct bdi_writeback *wb, struct wb_writeback_work *work)
1897 {
1898 long pages;
1899
1900 /*
1901 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1902 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1903 * here avoids calling into writeback_inodes_wb() more than once.
1904 *
1905 * The intended call sequence for WB_SYNC_ALL writeback is:
1906 *
1907 * wb_writeback()
1908 * writeback_sb_inodes() <== called only once
1909 * write_cache_pages() <== called once for each inode
1910 * (quickly) tag currently dirty pages
1911 * (maybe slowly) sync all tagged pages
1912 */
1913 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1914 return LONG_MAX;
1915
1916 pages = min(wb->avg_write_bandwidth / 2,
1917 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1918 pages = min(pages, work->nr_pages);
1919 return round_down(pages + sb->s_min_writeback_pages,
1920 sb->s_min_writeback_pages);
1921 }
1922
1923 /*
1924 * Write a portion of b_io inodes which belong to @sb.
1925 *
1926 * Return the number of pages and/or inodes written.
1927 *
1928 * NOTE! This is called with wb->list_lock held, and will
1929 * unlock and relock that for each inode it ends up doing
1930 * IO for.
1931 */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1932 static long writeback_sb_inodes(struct super_block *sb,
1933 struct bdi_writeback *wb,
1934 struct wb_writeback_work *work)
1935 {
1936 struct writeback_control wbc = {
1937 .sync_mode = work->sync_mode,
1938 .tagged_writepages = work->tagged_writepages,
1939 .for_kupdate = work->for_kupdate,
1940 .for_background = work->for_background,
1941 .for_sync = work->for_sync,
1942 .range_cyclic = work->range_cyclic,
1943 .range_start = 0,
1944 .range_end = LLONG_MAX,
1945 };
1946 unsigned long start_time = jiffies;
1947 long write_chunk;
1948 long total_wrote = 0; /* count both pages and inodes */
1949 unsigned long dirtied_before = jiffies;
1950
1951 if (work->for_kupdate)
1952 dirtied_before = jiffies -
1953 msecs_to_jiffies(dirty_expire_interval * 10);
1954
1955 while (!list_empty(&wb->b_io)) {
1956 struct inode *inode = wb_inode(wb->b_io.prev);
1957 struct bdi_writeback *tmp_wb;
1958 long wrote;
1959
1960 if (inode->i_sb != sb) {
1961 if (work->sb) {
1962 /*
1963 * We only want to write back data for this
1964 * superblock, move all inodes not belonging
1965 * to it back onto the dirty list.
1966 */
1967 redirty_tail(inode, wb);
1968 continue;
1969 }
1970
1971 /*
1972 * The inode belongs to a different superblock.
1973 * Bounce back to the caller to unpin this and
1974 * pin the next superblock.
1975 */
1976 break;
1977 }
1978
1979 /*
1980 * Don't bother with new inodes or inodes being freed, first
1981 * kind does not need periodic writeout yet, and for the latter
1982 * kind writeout is handled by the freer.
1983 */
1984 spin_lock(&inode->i_lock);
1985 if (inode_state_read(inode) & (I_NEW | I_FREEING | I_WILL_FREE)) {
1986 redirty_tail_locked(inode, wb);
1987 spin_unlock(&inode->i_lock);
1988 continue;
1989 }
1990 if ((inode_state_read(inode) & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1991 /*
1992 * If this inode is locked for writeback and we are not
1993 * doing writeback-for-data-integrity, move it to
1994 * b_more_io so that writeback can proceed with the
1995 * other inodes on s_io.
1996 *
1997 * We'll have another go at writing back this inode
1998 * when we completed a full scan of b_io.
1999 */
2000 requeue_io(inode, wb);
2001 spin_unlock(&inode->i_lock);
2002 trace_writeback_sb_inodes_requeue(inode);
2003 continue;
2004 }
2005 spin_unlock(&wb->list_lock);
2006
2007 /*
2008 * We already requeued the inode if it had I_SYNC set and we
2009 * are doing WB_SYNC_NONE writeback. So this catches only the
2010 * WB_SYNC_ALL case.
2011 */
2012 if (inode_state_read(inode) & I_SYNC) {
2013 /* Wait for I_SYNC. This function drops i_lock... */
2014 inode_sleep_on_writeback(inode);
2015 /* Inode may be gone, start again */
2016 spin_lock(&wb->list_lock);
2017 continue;
2018 }
2019 inode_state_set(inode, I_SYNC);
2020 wbc_attach_and_unlock_inode(&wbc, inode);
2021
2022 write_chunk = writeback_chunk_size(inode->i_sb, wb, work);
2023 wbc.nr_to_write = write_chunk;
2024 wbc.pages_skipped = 0;
2025
2026 /*
2027 * We use I_SYNC to pin the inode in memory. While it is set
2028 * evict_inode() will wait so the inode cannot be freed.
2029 */
2030 __writeback_single_inode(inode, &wbc);
2031
2032 /* Report progress to inform the hung task detector of the progress. */
2033 if (work->done && work->done->progress_stamp &&
2034 (jiffies - work->done->progress_stamp) > HZ *
2035 sysctl_hung_task_timeout_secs / 2)
2036 wake_up_all(work->done->waitq);
2037
2038 wbc_detach_inode(&wbc);
2039 work->nr_pages -= write_chunk - wbc.nr_to_write;
2040 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
2041 wrote = wrote < 0 ? 0 : wrote;
2042 total_wrote += wrote;
2043
2044 if (need_resched()) {
2045 /*
2046 * We're trying to balance between building up a nice
2047 * long list of IOs to improve our merge rate, and
2048 * getting those IOs out quickly for anyone throttling
2049 * in balance_dirty_pages(). cond_resched() doesn't
2050 * unplug, so get our IOs out the door before we
2051 * give up the CPU.
2052 */
2053 blk_flush_plug(current->plug, false);
2054 cond_resched();
2055 }
2056
2057 /*
2058 * Requeue @inode if still dirty. Be careful as @inode may
2059 * have been switched to another wb in the meantime.
2060 */
2061 tmp_wb = inode_to_wb_and_lock_list(inode);
2062 spin_lock(&inode->i_lock);
2063 if (!(inode_state_read(inode) & I_DIRTY_ALL))
2064 total_wrote++;
2065 requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
2066 inode_sync_complete(inode);
2067 spin_unlock(&inode->i_lock);
2068
2069 if (unlikely(tmp_wb != wb)) {
2070 spin_unlock(&tmp_wb->list_lock);
2071 spin_lock(&wb->list_lock);
2072 }
2073
2074 /*
2075 * bail out to wb_writeback() often enough to check
2076 * background threshold and other termination conditions.
2077 */
2078 if (total_wrote) {
2079 if (time_is_before_jiffies(start_time + HZ / 10UL))
2080 break;
2081 if (work->nr_pages <= 0)
2082 break;
2083 }
2084 }
2085 return total_wrote;
2086 }
2087
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)2088 static long __writeback_inodes_wb(struct bdi_writeback *wb,
2089 struct wb_writeback_work *work)
2090 {
2091 unsigned long start_time = jiffies;
2092 long wrote = 0;
2093
2094 while (!list_empty(&wb->b_io)) {
2095 struct inode *inode = wb_inode(wb->b_io.prev);
2096 struct super_block *sb = inode->i_sb;
2097
2098 if (!super_trylock_shared(sb)) {
2099 /*
2100 * super_trylock_shared() may fail consistently due to
2101 * s_umount being grabbed by someone else. Don't use
2102 * requeue_io() to avoid busy retrying the inode/sb.
2103 */
2104 redirty_tail(inode, wb);
2105 continue;
2106 }
2107 wrote += writeback_sb_inodes(sb, wb, work);
2108 up_read(&sb->s_umount);
2109
2110 /* refer to the same tests at the end of writeback_sb_inodes */
2111 if (wrote) {
2112 if (time_is_before_jiffies(start_time + HZ / 10UL))
2113 break;
2114 if (work->nr_pages <= 0)
2115 break;
2116 }
2117 }
2118 /* Leave any unwritten inodes on b_io */
2119 return wrote;
2120 }
2121
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)2122 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2123 enum wb_reason reason)
2124 {
2125 struct wb_writeback_work work = {
2126 .nr_pages = nr_pages,
2127 .sync_mode = WB_SYNC_NONE,
2128 .range_cyclic = 1,
2129 .reason = reason,
2130 };
2131 struct blk_plug plug;
2132
2133 blk_start_plug(&plug);
2134 spin_lock(&wb->list_lock);
2135 if (list_empty(&wb->b_io))
2136 queue_io(wb, &work, jiffies);
2137 __writeback_inodes_wb(wb, &work);
2138 spin_unlock(&wb->list_lock);
2139 blk_finish_plug(&plug);
2140
2141 return nr_pages - work.nr_pages;
2142 }
2143
2144 /*
2145 * Explicit flushing or periodic writeback of "old" data.
2146 *
2147 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2148 * dirtying-time in the inode's address_space. So this periodic writeback code
2149 * just walks the superblock inode list, writing back any inodes which are
2150 * older than a specific point in time.
2151 *
2152 * Try to run once per dirty_writeback_interval. But if a writeback event
2153 * takes longer than a dirty_writeback_interval interval, then leave a
2154 * one-second gap.
2155 *
2156 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2157 * all dirty pages if they are all attached to "old" mappings.
2158 */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2159 static long wb_writeback(struct bdi_writeback *wb,
2160 struct wb_writeback_work *work)
2161 {
2162 long nr_pages = work->nr_pages;
2163 unsigned long dirtied_before = jiffies;
2164 struct inode *inode;
2165 long progress;
2166 struct blk_plug plug;
2167 bool queued = false;
2168
2169 blk_start_plug(&plug);
2170 for (;;) {
2171 /*
2172 * Stop writeback when nr_pages has been consumed
2173 */
2174 if (work->nr_pages <= 0)
2175 break;
2176
2177 /*
2178 * Background writeout and kupdate-style writeback may
2179 * run forever. Stop them if there is other work to do
2180 * so that e.g. sync can proceed. They'll be restarted
2181 * after the other works are all done.
2182 */
2183 if ((work->for_background || work->for_kupdate) &&
2184 !list_empty(&wb->work_list))
2185 break;
2186
2187 /*
2188 * For background writeout, stop when we are below the
2189 * background dirty threshold
2190 */
2191 if (work->for_background && !wb_over_bg_thresh(wb))
2192 break;
2193
2194
2195 spin_lock(&wb->list_lock);
2196
2197 trace_writeback_start(wb, work);
2198 if (list_empty(&wb->b_io)) {
2199 /*
2200 * Kupdate and background works are special and we want
2201 * to include all inodes that need writing. Livelock
2202 * avoidance is handled by these works yielding to any
2203 * other work so we are safe.
2204 */
2205 if (work->for_kupdate) {
2206 dirtied_before = jiffies -
2207 msecs_to_jiffies(dirty_expire_interval *
2208 10);
2209 } else if (work->for_background)
2210 dirtied_before = jiffies;
2211
2212 queue_io(wb, work, dirtied_before);
2213 queued = true;
2214 }
2215 if (work->sb)
2216 progress = writeback_sb_inodes(work->sb, wb, work);
2217 else
2218 progress = __writeback_inodes_wb(wb, work);
2219 trace_writeback_written(wb, work);
2220
2221 /*
2222 * Did we write something? Try for more
2223 *
2224 * Dirty inodes are moved to b_io for writeback in batches.
2225 * The completion of the current batch does not necessarily
2226 * mean the overall work is done. So we keep looping as long
2227 * as made some progress on cleaning pages or inodes.
2228 */
2229 if (progress || !queued) {
2230 spin_unlock(&wb->list_lock);
2231 continue;
2232 }
2233
2234 /*
2235 * No more inodes for IO, bail
2236 */
2237 if (list_empty(&wb->b_more_io)) {
2238 spin_unlock(&wb->list_lock);
2239 break;
2240 }
2241
2242 /*
2243 * Nothing written. Wait for some inode to
2244 * become available for writeback. Otherwise
2245 * we'll just busyloop.
2246 */
2247 trace_writeback_wait(wb, work);
2248 inode = wb_inode(wb->b_more_io.prev);
2249 spin_lock(&inode->i_lock);
2250 spin_unlock(&wb->list_lock);
2251 /* This function drops i_lock... */
2252 inode_sleep_on_writeback(inode);
2253 }
2254 blk_finish_plug(&plug);
2255
2256 return nr_pages - work->nr_pages;
2257 }
2258
2259 /*
2260 * Return the next wb_writeback_work struct that hasn't been processed yet.
2261 */
get_next_work_item(struct bdi_writeback * wb)2262 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2263 {
2264 struct wb_writeback_work *work = NULL;
2265
2266 spin_lock_irq(&wb->work_lock);
2267 if (!list_empty(&wb->work_list)) {
2268 work = list_entry(wb->work_list.next,
2269 struct wb_writeback_work, list);
2270 list_del_init(&work->list);
2271 }
2272 spin_unlock_irq(&wb->work_lock);
2273 return work;
2274 }
2275
wb_check_background_flush(struct bdi_writeback * wb)2276 static long wb_check_background_flush(struct bdi_writeback *wb)
2277 {
2278 if (wb_over_bg_thresh(wb)) {
2279
2280 struct wb_writeback_work work = {
2281 .nr_pages = LONG_MAX,
2282 .sync_mode = WB_SYNC_NONE,
2283 .for_background = 1,
2284 .range_cyclic = 1,
2285 .reason = WB_REASON_BACKGROUND,
2286 };
2287
2288 return wb_writeback(wb, &work);
2289 }
2290
2291 return 0;
2292 }
2293
wb_check_old_data_flush(struct bdi_writeback * wb)2294 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2295 {
2296 unsigned long expired;
2297 long nr_pages;
2298
2299 /*
2300 * When set to zero, disable periodic writeback
2301 */
2302 if (!dirty_writeback_interval)
2303 return 0;
2304
2305 expired = wb->last_old_flush +
2306 msecs_to_jiffies(dirty_writeback_interval * 10);
2307 if (time_before(jiffies, expired))
2308 return 0;
2309
2310 wb->last_old_flush = jiffies;
2311 nr_pages = get_nr_dirty_pages();
2312
2313 if (nr_pages) {
2314 struct wb_writeback_work work = {
2315 .nr_pages = nr_pages,
2316 .sync_mode = WB_SYNC_NONE,
2317 .for_kupdate = 1,
2318 .range_cyclic = 1,
2319 .reason = WB_REASON_PERIODIC,
2320 };
2321
2322 return wb_writeback(wb, &work);
2323 }
2324
2325 return 0;
2326 }
2327
wb_check_start_all(struct bdi_writeback * wb)2328 static long wb_check_start_all(struct bdi_writeback *wb)
2329 {
2330 long nr_pages;
2331
2332 if (!test_bit(WB_start_all, &wb->state))
2333 return 0;
2334
2335 nr_pages = get_nr_dirty_pages();
2336 if (nr_pages) {
2337 struct wb_writeback_work work = {
2338 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2339 .sync_mode = WB_SYNC_NONE,
2340 .range_cyclic = 1,
2341 .reason = wb->start_all_reason,
2342 };
2343
2344 nr_pages = wb_writeback(wb, &work);
2345 }
2346
2347 clear_bit(WB_start_all, &wb->state);
2348 return nr_pages;
2349 }
2350
2351
2352 /*
2353 * Retrieve work items and do the writeback they describe
2354 */
wb_do_writeback(struct bdi_writeback * wb)2355 static long wb_do_writeback(struct bdi_writeback *wb)
2356 {
2357 struct wb_writeback_work *work;
2358 long wrote = 0;
2359
2360 set_bit(WB_writeback_running, &wb->state);
2361 while ((work = get_next_work_item(wb)) != NULL) {
2362 trace_writeback_exec(wb, work);
2363 wrote += wb_writeback(wb, work);
2364 finish_writeback_work(work);
2365 }
2366
2367 /*
2368 * Check for a flush-everything request
2369 */
2370 wrote += wb_check_start_all(wb);
2371
2372 /*
2373 * Check for periodic writeback, kupdated() style
2374 */
2375 wrote += wb_check_old_data_flush(wb);
2376 wrote += wb_check_background_flush(wb);
2377 clear_bit(WB_writeback_running, &wb->state);
2378
2379 return wrote;
2380 }
2381
2382 /*
2383 * Handle writeback of dirty data for the device backed by this bdi. Also
2384 * reschedules periodically and does kupdated style flushing.
2385 */
wb_workfn(struct work_struct * work)2386 void wb_workfn(struct work_struct *work)
2387 {
2388 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2389 struct bdi_writeback, dwork);
2390 long pages_written;
2391
2392 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2393
2394 if (likely(!current_is_workqueue_rescuer() ||
2395 !test_bit(WB_registered, &wb->state))) {
2396 /*
2397 * The normal path. Keep writing back @wb until its
2398 * work_list is empty. Note that this path is also taken
2399 * if @wb is shutting down even when we're running off the
2400 * rescuer as work_list needs to be drained.
2401 */
2402 do {
2403 pages_written = wb_do_writeback(wb);
2404 trace_writeback_pages_written(pages_written);
2405 } while (!list_empty(&wb->work_list));
2406 } else {
2407 /*
2408 * bdi_wq can't get enough workers and we're running off
2409 * the emergency worker. Don't hog it. Hopefully, 1024 is
2410 * enough for efficient IO.
2411 */
2412 pages_written = writeback_inodes_wb(wb, 1024,
2413 WB_REASON_FORKER_THREAD);
2414 trace_writeback_pages_written(pages_written);
2415 }
2416
2417 if (!list_empty(&wb->work_list))
2418 wb_wakeup(wb);
2419 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2420 wb_wakeup_delayed(wb);
2421 }
2422
2423 /*
2424 * Start writeback of all dirty pages on this bdi.
2425 */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2426 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2427 enum wb_reason reason)
2428 {
2429 struct bdi_writeback *wb;
2430
2431 if (!bdi_has_dirty_io(bdi))
2432 return;
2433
2434 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2435 wb_start_writeback(wb, reason);
2436 }
2437
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2438 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2439 enum wb_reason reason)
2440 {
2441 rcu_read_lock();
2442 __wakeup_flusher_threads_bdi(bdi, reason);
2443 rcu_read_unlock();
2444 }
2445
2446 /*
2447 * Wakeup the flusher threads to start writeback of all currently dirty pages
2448 */
wakeup_flusher_threads(enum wb_reason reason)2449 void wakeup_flusher_threads(enum wb_reason reason)
2450 {
2451 struct backing_dev_info *bdi;
2452
2453 /*
2454 * If we are expecting writeback progress we must submit plugged IO.
2455 */
2456 blk_flush_plug(current->plug, true);
2457
2458 rcu_read_lock();
2459 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2460 __wakeup_flusher_threads_bdi(bdi, reason);
2461 rcu_read_unlock();
2462 }
2463
2464 /*
2465 * Wake up bdi's periodically to make sure dirtytime inodes gets
2466 * written back periodically. We deliberately do *not* check the
2467 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2468 * kernel to be constantly waking up once there are any dirtytime
2469 * inodes on the system. So instead we define a separate delayed work
2470 * function which gets called much more rarely. (By default, only
2471 * once every 12 hours.)
2472 *
2473 * If there is any other write activity going on in the file system,
2474 * this function won't be necessary. But if the only thing that has
2475 * happened on the file system is a dirtytime inode caused by an atime
2476 * update, we need this infrastructure below to make sure that inode
2477 * eventually gets pushed out to disk.
2478 */
2479 static void wakeup_dirtytime_writeback(struct work_struct *w);
2480 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2481
wakeup_dirtytime_writeback(struct work_struct * w)2482 static void wakeup_dirtytime_writeback(struct work_struct *w)
2483 {
2484 struct backing_dev_info *bdi;
2485
2486 rcu_read_lock();
2487 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2488 struct bdi_writeback *wb;
2489
2490 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2491 if (!list_empty(&wb->b_dirty_time))
2492 wb_wakeup(wb);
2493 }
2494 rcu_read_unlock();
2495 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2496 }
2497
dirtytime_interval_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2498 static int dirtytime_interval_handler(const struct ctl_table *table, int write,
2499 void *buffer, size_t *lenp, loff_t *ppos)
2500 {
2501 int ret;
2502
2503 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2504 if (ret == 0 && write)
2505 mod_delayed_work(system_percpu_wq, &dirtytime_work, 0);
2506 return ret;
2507 }
2508
2509 static const struct ctl_table vm_fs_writeback_table[] = {
2510 {
2511 .procname = "dirtytime_expire_seconds",
2512 .data = &dirtytime_expire_interval,
2513 .maxlen = sizeof(dirtytime_expire_interval),
2514 .mode = 0644,
2515 .proc_handler = dirtytime_interval_handler,
2516 .extra1 = SYSCTL_ZERO,
2517 },
2518 };
2519
start_dirtytime_writeback(void)2520 static int __init start_dirtytime_writeback(void)
2521 {
2522 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2523 register_sysctl_init("vm", vm_fs_writeback_table);
2524 return 0;
2525 }
2526 __initcall(start_dirtytime_writeback);
2527
2528 /**
2529 * __mark_inode_dirty - internal function to mark an inode dirty
2530 *
2531 * @inode: inode to mark
2532 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2533 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2534 * with I_DIRTY_PAGES.
2535 *
2536 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2537 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2538 *
2539 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2540 * instead of calling this directly.
2541 *
2542 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2543 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2544 * even if they are later hashed, as they will have been marked dirty already.
2545 *
2546 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2547 *
2548 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2549 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2550 * the kernel-internal blockdev inode represents the dirtying time of the
2551 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2552 * page->mapping->host, so the page-dirtying time is recorded in the internal
2553 * blockdev inode.
2554 */
__mark_inode_dirty(struct inode * inode,int flags)2555 void __mark_inode_dirty(struct inode *inode, int flags)
2556 {
2557 struct super_block *sb = inode->i_sb;
2558 int dirtytime = 0;
2559 struct bdi_writeback *wb = NULL;
2560
2561 trace_writeback_mark_inode_dirty(inode, flags);
2562
2563 if (flags & I_DIRTY_INODE) {
2564 /*
2565 * Inode timestamp update will piggback on this dirtying.
2566 * We tell ->dirty_inode callback that timestamps need to
2567 * be updated by setting I_DIRTY_TIME in flags.
2568 */
2569 if (inode_state_read_once(inode) & I_DIRTY_TIME) {
2570 spin_lock(&inode->i_lock);
2571 if (inode_state_read(inode) & I_DIRTY_TIME) {
2572 inode_state_clear(inode, I_DIRTY_TIME);
2573 flags |= I_DIRTY_TIME;
2574 }
2575 spin_unlock(&inode->i_lock);
2576 }
2577
2578 /*
2579 * Notify the filesystem about the inode being dirtied, so that
2580 * (if needed) it can update on-disk fields and journal the
2581 * inode. This is only needed when the inode itself is being
2582 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2583 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2584 */
2585 trace_writeback_dirty_inode_start(inode, flags);
2586 if (sb->s_op->dirty_inode)
2587 sb->s_op->dirty_inode(inode,
2588 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2589 trace_writeback_dirty_inode(inode, flags);
2590
2591 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2592 flags &= ~I_DIRTY_TIME;
2593 } else {
2594 /*
2595 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2596 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2597 * in one call to __mark_inode_dirty().)
2598 */
2599 dirtytime = flags & I_DIRTY_TIME;
2600 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2601 }
2602
2603 /*
2604 * Paired with smp_mb() in __writeback_single_inode() for the
2605 * following lockless i_state test. See there for details.
2606 */
2607 smp_mb();
2608
2609 if ((inode_state_read_once(inode) & flags) == flags)
2610 return;
2611
2612 spin_lock(&inode->i_lock);
2613 if ((inode_state_read(inode) & flags) != flags) {
2614 const int was_dirty = inode_state_read(inode) & I_DIRTY;
2615
2616 inode_attach_wb(inode, NULL);
2617
2618 inode_state_set(inode, flags);
2619
2620 /*
2621 * Grab inode's wb early because it requires dropping i_lock and we
2622 * need to make sure following checks happen atomically with dirty
2623 * list handling so that we don't move inodes under flush worker's
2624 * hands.
2625 */
2626 if (!was_dirty) {
2627 wb = locked_inode_to_wb_and_lock_list(inode);
2628 spin_lock(&inode->i_lock);
2629 }
2630
2631 /*
2632 * If the inode is queued for writeback by flush worker, just
2633 * update its dirty state. Once the flush worker is done with
2634 * the inode it will place it on the appropriate superblock
2635 * list, based upon its state.
2636 */
2637 if (inode_state_read(inode) & I_SYNC_QUEUED)
2638 goto out_unlock;
2639
2640 /*
2641 * Only add valid (hashed) inodes to the superblock's
2642 * dirty list. Add blockdev inodes as well.
2643 */
2644 if (!S_ISBLK(inode->i_mode)) {
2645 if (inode_unhashed(inode))
2646 goto out_unlock;
2647 }
2648 if (inode_state_read(inode) & I_FREEING)
2649 goto out_unlock;
2650
2651 /*
2652 * If the inode was already on b_dirty/b_io/b_more_io, don't
2653 * reposition it (that would break b_dirty time-ordering).
2654 */
2655 if (!was_dirty) {
2656 struct list_head *dirty_list;
2657 bool wakeup_bdi = false;
2658
2659 inode->dirtied_when = jiffies;
2660 if (dirtytime)
2661 inode->dirtied_time_when = jiffies;
2662
2663 if (inode_state_read(inode) & I_DIRTY)
2664 dirty_list = &wb->b_dirty;
2665 else
2666 dirty_list = &wb->b_dirty_time;
2667
2668 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2669 dirty_list);
2670
2671 /*
2672 * If this is the first dirty inode for this bdi,
2673 * we have to wake-up the corresponding bdi thread
2674 * to make sure background write-back happens
2675 * later.
2676 */
2677 if (wakeup_bdi &&
2678 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2679 wb_wakeup_delayed(wb);
2680
2681 spin_unlock(&wb->list_lock);
2682 spin_unlock(&inode->i_lock);
2683 trace_writeback_dirty_inode_enqueue(inode);
2684
2685 return;
2686 }
2687 }
2688 out_unlock:
2689 if (wb)
2690 spin_unlock(&wb->list_lock);
2691 spin_unlock(&inode->i_lock);
2692 }
2693 EXPORT_SYMBOL(__mark_inode_dirty);
2694
2695 /*
2696 * The @s_sync_lock is used to serialise concurrent sync operations
2697 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2698 * Concurrent callers will block on the s_sync_lock rather than doing contending
2699 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2700 * has been issued up to the time this function is enter is guaranteed to be
2701 * completed by the time we have gained the lock and waited for all IO that is
2702 * in progress regardless of the order callers are granted the lock.
2703 */
wait_sb_inodes(struct super_block * sb)2704 static void wait_sb_inodes(struct super_block *sb)
2705 {
2706 LIST_HEAD(sync_list);
2707
2708 /*
2709 * We need to be protected against the filesystem going from
2710 * r/o to r/w or vice versa.
2711 */
2712 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2713
2714 mutex_lock(&sb->s_sync_lock);
2715
2716 /*
2717 * Splice the writeback list onto a temporary list to avoid waiting on
2718 * inodes that have started writeback after this point.
2719 *
2720 * Use rcu_read_lock() to keep the inodes around until we have a
2721 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2722 * the local list because inodes can be dropped from either by writeback
2723 * completion.
2724 */
2725 rcu_read_lock();
2726 spin_lock_irq(&sb->s_inode_wblist_lock);
2727 list_splice_init(&sb->s_inodes_wb, &sync_list);
2728
2729 /*
2730 * Data integrity sync. Must wait for all pages under writeback, because
2731 * there may have been pages dirtied before our sync call, but which had
2732 * writeout started before we write it out. In which case, the inode
2733 * may not be on the dirty list, but we still have to wait for that
2734 * writeout.
2735 */
2736 while (!list_empty(&sync_list)) {
2737 struct inode *inode = list_first_entry(&sync_list, struct inode,
2738 i_wb_list);
2739 struct address_space *mapping = inode->i_mapping;
2740
2741 /*
2742 * Move each inode back to the wb list before we drop the lock
2743 * to preserve consistency between i_wb_list and the mapping
2744 * writeback tag. Writeback completion is responsible to remove
2745 * the inode from either list once the writeback tag is cleared.
2746 */
2747 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2748
2749 /*
2750 * The mapping can appear untagged while still on-list since we
2751 * do not have the mapping lock. Skip it here, wb completion
2752 * will remove it.
2753 */
2754 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2755 continue;
2756
2757 spin_unlock_irq(&sb->s_inode_wblist_lock);
2758
2759 spin_lock(&inode->i_lock);
2760 if (inode_state_read(inode) & (I_FREEING | I_WILL_FREE | I_NEW)) {
2761 spin_unlock(&inode->i_lock);
2762
2763 spin_lock_irq(&sb->s_inode_wblist_lock);
2764 continue;
2765 }
2766 __iget(inode);
2767 spin_unlock(&inode->i_lock);
2768 rcu_read_unlock();
2769
2770 /*
2771 * We keep the error status of individual mapping so that
2772 * applications can catch the writeback error using fsync(2).
2773 * See filemap_fdatawait_keep_errors() for details.
2774 */
2775 filemap_fdatawait_keep_errors(mapping);
2776
2777 cond_resched();
2778
2779 iput(inode);
2780
2781 rcu_read_lock();
2782 spin_lock_irq(&sb->s_inode_wblist_lock);
2783 }
2784 spin_unlock_irq(&sb->s_inode_wblist_lock);
2785 rcu_read_unlock();
2786 mutex_unlock(&sb->s_sync_lock);
2787 }
2788
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2789 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2790 enum wb_reason reason, bool skip_if_busy)
2791 {
2792 struct backing_dev_info *bdi = sb->s_bdi;
2793 DEFINE_WB_COMPLETION(done, bdi);
2794 struct wb_writeback_work work = {
2795 .sb = sb,
2796 .sync_mode = WB_SYNC_NONE,
2797 .tagged_writepages = 1,
2798 .done = &done,
2799 .nr_pages = nr,
2800 .reason = reason,
2801 };
2802
2803 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2804 return;
2805 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2806
2807 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2808 wb_wait_for_completion(&done);
2809 }
2810
2811 /**
2812 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2813 * @sb: the superblock
2814 * @nr: the number of pages to write
2815 * @reason: reason why some writeback work initiated
2816 *
2817 * Start writeback on some inodes on this super_block. No guarantees are made
2818 * on how many (if any) will be written, and this function does not wait
2819 * for IO completion of submitted IO.
2820 */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2821 void writeback_inodes_sb_nr(struct super_block *sb,
2822 unsigned long nr,
2823 enum wb_reason reason)
2824 {
2825 __writeback_inodes_sb_nr(sb, nr, reason, false);
2826 }
2827 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2828
2829 /**
2830 * writeback_inodes_sb - writeback dirty inodes from given super_block
2831 * @sb: the superblock
2832 * @reason: reason why some writeback work was initiated
2833 *
2834 * Start writeback on some inodes on this super_block. No guarantees are made
2835 * on how many (if any) will be written, and this function does not wait
2836 * for IO completion of submitted IO.
2837 */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2838 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2839 {
2840 writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2841 }
2842 EXPORT_SYMBOL(writeback_inodes_sb);
2843
2844 /**
2845 * try_to_writeback_inodes_sb - try to start writeback if none underway
2846 * @sb: the superblock
2847 * @reason: reason why some writeback work was initiated
2848 *
2849 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2850 */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2851 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2852 {
2853 if (!down_read_trylock(&sb->s_umount))
2854 return;
2855
2856 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2857 up_read(&sb->s_umount);
2858 }
2859 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2860
2861 /**
2862 * sync_inodes_sb - sync sb inode pages
2863 * @sb: the superblock
2864 *
2865 * This function writes and waits on any dirty inode belonging to this
2866 * super_block.
2867 */
sync_inodes_sb(struct super_block * sb)2868 void sync_inodes_sb(struct super_block *sb)
2869 {
2870 struct backing_dev_info *bdi = sb->s_bdi;
2871 DEFINE_WB_COMPLETION(done, bdi);
2872 struct wb_writeback_work work = {
2873 .sb = sb,
2874 .sync_mode = WB_SYNC_ALL,
2875 .nr_pages = LONG_MAX,
2876 .range_cyclic = 0,
2877 .done = &done,
2878 .reason = WB_REASON_SYNC,
2879 .for_sync = 1,
2880 };
2881
2882 /*
2883 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2884 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2885 * bdi_has_dirty() need to be written out too.
2886 */
2887 if (bdi == &noop_backing_dev_info)
2888 return;
2889 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2890
2891 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2892 bdi_down_write_wb_switch_rwsem(bdi);
2893 bdi_split_work_to_wbs(bdi, &work, false);
2894 wb_wait_for_completion(&done);
2895 bdi_up_write_wb_switch_rwsem(bdi);
2896
2897 wait_sb_inodes(sb);
2898 }
2899 EXPORT_SYMBOL(sync_inodes_sb);
2900
2901 /**
2902 * write_inode_now - write an inode to disk
2903 * @inode: inode to write to disk
2904 * @sync: whether the write should be synchronous or not
2905 *
2906 * This function commits an inode to disk immediately if it is dirty. This is
2907 * primarily needed by knfsd.
2908 *
2909 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2910 */
write_inode_now(struct inode * inode,int sync)2911 int write_inode_now(struct inode *inode, int sync)
2912 {
2913 struct writeback_control wbc = {
2914 .nr_to_write = LONG_MAX,
2915 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2916 .range_start = 0,
2917 .range_end = LLONG_MAX,
2918 };
2919
2920 if (!mapping_can_writeback(inode->i_mapping))
2921 wbc.nr_to_write = 0;
2922
2923 might_sleep();
2924 return writeback_single_inode(inode, &wbc);
2925 }
2926 EXPORT_SYMBOL(write_inode_now);
2927
2928 /**
2929 * sync_inode_metadata - write an inode to disk
2930 * @inode: the inode to sync
2931 * @wait: wait for I/O to complete.
2932 *
2933 * Write an inode to disk and adjust its dirty state after completion.
2934 *
2935 * Note: only writes the actual inode, no associated data or other metadata.
2936 */
sync_inode_metadata(struct inode * inode,int wait)2937 int sync_inode_metadata(struct inode *inode, int wait)
2938 {
2939 struct writeback_control wbc = {
2940 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2941 .nr_to_write = 0, /* metadata-only */
2942 };
2943
2944 return writeback_single_inode(inode, &wbc);
2945 }
2946 EXPORT_SYMBOL(sync_inode_metadata);
2947