1 /* 2 * linux/fs/file_table.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) 6 */ 7 8 #include <linux/string.h> 9 #include <linux/slab.h> 10 #include <linux/file.h> 11 #include <linux/fdtable.h> 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/fs.h> 15 #include <linux/security.h> 16 #include <linux/cred.h> 17 #include <linux/eventpoll.h> 18 #include <linux/rcupdate.h> 19 #include <linux/mount.h> 20 #include <linux/capability.h> 21 #include <linux/cdev.h> 22 #include <linux/fsnotify.h> 23 #include <linux/sysctl.h> 24 #include <linux/percpu_counter.h> 25 #include <linux/percpu.h> 26 #include <linux/hardirq.h> 27 #include <linux/task_work.h> 28 #include <linux/ima.h> 29 #include <linux/swap.h> 30 31 #include <linux/atomic.h> 32 33 #include "internal.h" 34 35 /* sysctl tunables... */ 36 struct files_stat_struct files_stat = { 37 .max_files = NR_FILE 38 }; 39 40 /* SLAB cache for file structures */ 41 static struct kmem_cache *filp_cachep __read_mostly; 42 43 static struct percpu_counter nr_files __cacheline_aligned_in_smp; 44 45 static void file_free_rcu(struct rcu_head *head) 46 { 47 struct file *f = container_of(head, struct file, f_u.fu_rcuhead); 48 49 put_cred(f->f_cred); 50 kmem_cache_free(filp_cachep, f); 51 } 52 53 static inline void file_free(struct file *f) 54 { 55 percpu_counter_dec(&nr_files); 56 call_rcu(&f->f_u.fu_rcuhead, file_free_rcu); 57 } 58 59 /* 60 * Return the total number of open files in the system 61 */ 62 static long get_nr_files(void) 63 { 64 return percpu_counter_read_positive(&nr_files); 65 } 66 67 /* 68 * Return the maximum number of open files in the system 69 */ 70 unsigned long get_max_files(void) 71 { 72 return files_stat.max_files; 73 } 74 EXPORT_SYMBOL_GPL(get_max_files); 75 76 /* 77 * Handle nr_files sysctl 78 */ 79 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 80 int proc_nr_files(struct ctl_table *table, int write, 81 void __user *buffer, size_t *lenp, loff_t *ppos) 82 { 83 files_stat.nr_files = get_nr_files(); 84 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 85 } 86 #else 87 int proc_nr_files(struct ctl_table *table, int write, 88 void __user *buffer, size_t *lenp, loff_t *ppos) 89 { 90 return -ENOSYS; 91 } 92 #endif 93 94 /* Find an unused file structure and return a pointer to it. 95 * Returns an error pointer if some error happend e.g. we over file 96 * structures limit, run out of memory or operation is not permitted. 97 * 98 * Be very careful using this. You are responsible for 99 * getting write access to any mount that you might assign 100 * to this filp, if it is opened for write. If this is not 101 * done, you will imbalance int the mount's writer count 102 * and a warning at __fput() time. 103 */ 104 struct file *get_empty_filp(void) 105 { 106 const struct cred *cred = current_cred(); 107 static long old_max; 108 struct file *f; 109 int error; 110 111 /* 112 * Privileged users can go above max_files 113 */ 114 if (get_nr_files() >= files_stat.max_files && !capable(CAP_SYS_ADMIN)) { 115 /* 116 * percpu_counters are inaccurate. Do an expensive check before 117 * we go and fail. 118 */ 119 if (percpu_counter_sum_positive(&nr_files) >= files_stat.max_files) 120 goto over; 121 } 122 123 f = kmem_cache_zalloc(filp_cachep, GFP_KERNEL); 124 if (unlikely(!f)) 125 return ERR_PTR(-ENOMEM); 126 127 percpu_counter_inc(&nr_files); 128 f->f_cred = get_cred(cred); 129 error = security_file_alloc(f); 130 if (unlikely(error)) { 131 file_free(f); 132 return ERR_PTR(error); 133 } 134 135 atomic_long_set(&f->f_count, 1); 136 rwlock_init(&f->f_owner.lock); 137 spin_lock_init(&f->f_lock); 138 mutex_init(&f->f_pos_lock); 139 eventpoll_init_file(f); 140 /* f->f_version: 0 */ 141 return f; 142 143 over: 144 /* Ran out of filps - report that */ 145 if (get_nr_files() > old_max) { 146 pr_info("VFS: file-max limit %lu reached\n", get_max_files()); 147 old_max = get_nr_files(); 148 } 149 return ERR_PTR(-ENFILE); 150 } 151 152 /** 153 * alloc_file - allocate and initialize a 'struct file' 154 * 155 * @path: the (dentry, vfsmount) pair for the new file 156 * @mode: the mode with which the new file will be opened 157 * @fop: the 'struct file_operations' for the new file 158 */ 159 struct file *alloc_file(const struct path *path, fmode_t mode, 160 const struct file_operations *fop) 161 { 162 struct file *file; 163 164 file = get_empty_filp(); 165 if (IS_ERR(file)) 166 return file; 167 168 file->f_path = *path; 169 file->f_inode = path->dentry->d_inode; 170 file->f_mapping = path->dentry->d_inode->i_mapping; 171 file->f_wb_err = filemap_sample_wb_err(file->f_mapping); 172 if ((mode & FMODE_READ) && 173 likely(fop->read || fop->read_iter)) 174 mode |= FMODE_CAN_READ; 175 if ((mode & FMODE_WRITE) && 176 likely(fop->write || fop->write_iter)) 177 mode |= FMODE_CAN_WRITE; 178 file->f_mode = mode; 179 file->f_op = fop; 180 if ((mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) 181 i_readcount_inc(path->dentry->d_inode); 182 return file; 183 } 184 EXPORT_SYMBOL(alloc_file); 185 186 /* the real guts of fput() - releasing the last reference to file 187 */ 188 static void __fput(struct file *file) 189 { 190 struct dentry *dentry = file->f_path.dentry; 191 struct vfsmount *mnt = file->f_path.mnt; 192 struct inode *inode = file->f_inode; 193 194 might_sleep(); 195 196 fsnotify_close(file); 197 /* 198 * The function eventpoll_release() should be the first called 199 * in the file cleanup chain. 200 */ 201 eventpoll_release(file); 202 locks_remove_file(file); 203 204 if (unlikely(file->f_flags & FASYNC)) { 205 if (file->f_op->fasync) 206 file->f_op->fasync(-1, file, 0); 207 } 208 ima_file_free(file); 209 if (file->f_op->release) 210 file->f_op->release(inode, file); 211 security_file_free(file); 212 if (unlikely(S_ISCHR(inode->i_mode) && inode->i_cdev != NULL && 213 !(file->f_mode & FMODE_PATH))) { 214 cdev_put(inode->i_cdev); 215 } 216 fops_put(file->f_op); 217 put_pid(file->f_owner.pid); 218 if ((file->f_mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) 219 i_readcount_dec(inode); 220 if (file->f_mode & FMODE_WRITER) { 221 put_write_access(inode); 222 __mnt_drop_write(mnt); 223 } 224 file->f_path.dentry = NULL; 225 file->f_path.mnt = NULL; 226 file->f_inode = NULL; 227 file_free(file); 228 dput(dentry); 229 mntput(mnt); 230 } 231 232 static LLIST_HEAD(delayed_fput_list); 233 static void delayed_fput(struct work_struct *unused) 234 { 235 struct llist_node *node = llist_del_all(&delayed_fput_list); 236 struct llist_node *next; 237 238 for (; node; node = next) { 239 next = llist_next(node); 240 __fput(llist_entry(node, struct file, f_u.fu_llist)); 241 } 242 } 243 244 static void ____fput(struct callback_head *work) 245 { 246 __fput(container_of(work, struct file, f_u.fu_rcuhead)); 247 } 248 249 /* 250 * If kernel thread really needs to have the final fput() it has done 251 * to complete, call this. The only user right now is the boot - we 252 * *do* need to make sure our writes to binaries on initramfs has 253 * not left us with opened struct file waiting for __fput() - execve() 254 * won't work without that. Please, don't add more callers without 255 * very good reasons; in particular, never call that with locks 256 * held and never call that from a thread that might need to do 257 * some work on any kind of umount. 258 */ 259 void flush_delayed_fput(void) 260 { 261 delayed_fput(NULL); 262 } 263 264 static DECLARE_DELAYED_WORK(delayed_fput_work, delayed_fput); 265 266 void fput(struct file *file) 267 { 268 if (atomic_long_dec_and_test(&file->f_count)) { 269 struct task_struct *task = current; 270 271 if (likely(!in_interrupt() && !(task->flags & PF_KTHREAD))) { 272 init_task_work(&file->f_u.fu_rcuhead, ____fput); 273 if (!task_work_add(task, &file->f_u.fu_rcuhead, true)) 274 return; 275 /* 276 * After this task has run exit_task_work(), 277 * task_work_add() will fail. Fall through to delayed 278 * fput to avoid leaking *file. 279 */ 280 } 281 282 if (llist_add(&file->f_u.fu_llist, &delayed_fput_list)) 283 schedule_delayed_work(&delayed_fput_work, 1); 284 } 285 } 286 287 /* 288 * synchronous analog of fput(); for kernel threads that might be needed 289 * in some umount() (and thus can't use flush_delayed_fput() without 290 * risking deadlocks), need to wait for completion of __fput() and know 291 * for this specific struct file it won't involve anything that would 292 * need them. Use only if you really need it - at the very least, 293 * don't blindly convert fput() by kernel thread to that. 294 */ 295 void __fput_sync(struct file *file) 296 { 297 if (atomic_long_dec_and_test(&file->f_count)) { 298 struct task_struct *task = current; 299 BUG_ON(!(task->flags & PF_KTHREAD)); 300 __fput(file); 301 } 302 } 303 304 EXPORT_SYMBOL(fput); 305 306 void put_filp(struct file *file) 307 { 308 if (atomic_long_dec_and_test(&file->f_count)) { 309 security_file_free(file); 310 file_free(file); 311 } 312 } 313 314 void __init files_init(void) 315 { 316 filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0, 317 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 318 percpu_counter_init(&nr_files, 0, GFP_KERNEL); 319 } 320 321 /* 322 * One file with associated inode and dcache is very roughly 1K. Per default 323 * do not use more than 10% of our memory for files. 324 */ 325 void __init files_maxfiles_init(void) 326 { 327 unsigned long n; 328 unsigned long memreserve = (totalram_pages - nr_free_pages()) * 3/2; 329 330 memreserve = min(memreserve, totalram_pages - 1); 331 n = ((totalram_pages - memreserve) * (PAGE_SIZE / 1024)) / 10; 332 333 files_stat.max_files = max_t(unsigned long, n, NR_FILE); 334 } 335