xref: /linux/fs/file.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  *  linux/fs/file.c
3  *
4  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
5  *
6  *  Manage the dynamic fd arrays in the process files_struct.
7  */
8 
9 #include <linux/syscalls.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/time.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/vmalloc.h>
18 #include <linux/file.h>
19 #include <linux/fdtable.h>
20 #include <linux/bitops.h>
21 #include <linux/interrupt.h>
22 #include <linux/spinlock.h>
23 #include <linux/rcupdate.h>
24 #include <linux/workqueue.h>
25 
26 int sysctl_nr_open __read_mostly = 1024*1024;
27 int sysctl_nr_open_min = BITS_PER_LONG;
28 /* our max() is unusable in constant expressions ;-/ */
29 #define __const_max(x, y) ((x) < (y) ? (x) : (y))
30 int sysctl_nr_open_max = __const_max(INT_MAX, ~(size_t)0/sizeof(void *)) &
31 			 -BITS_PER_LONG;
32 
33 static void *alloc_fdmem(size_t size)
34 {
35 	/*
36 	 * Very large allocations can stress page reclaim, so fall back to
37 	 * vmalloc() if the allocation size will be considered "large" by the VM.
38 	 */
39 	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
40 		void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN|__GFP_NORETRY);
41 		if (data != NULL)
42 			return data;
43 	}
44 	return vmalloc(size);
45 }
46 
47 static void __free_fdtable(struct fdtable *fdt)
48 {
49 	kvfree(fdt->fd);
50 	kvfree(fdt->open_fds);
51 	kfree(fdt);
52 }
53 
54 static void free_fdtable_rcu(struct rcu_head *rcu)
55 {
56 	__free_fdtable(container_of(rcu, struct fdtable, rcu));
57 }
58 
59 #define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
60 #define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
61 
62 /*
63  * Copy 'count' fd bits from the old table to the new table and clear the extra
64  * space if any.  This does not copy the file pointers.  Called with the files
65  * spinlock held for write.
66  */
67 static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
68 			    unsigned int count)
69 {
70 	unsigned int cpy, set;
71 
72 	cpy = count / BITS_PER_BYTE;
73 	set = (nfdt->max_fds - count) / BITS_PER_BYTE;
74 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
75 	memset((char *)nfdt->open_fds + cpy, 0, set);
76 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
77 	memset((char *)nfdt->close_on_exec + cpy, 0, set);
78 
79 	cpy = BITBIT_SIZE(count);
80 	set = BITBIT_SIZE(nfdt->max_fds) - cpy;
81 	memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy);
82 	memset((char *)nfdt->full_fds_bits + cpy, 0, set);
83 }
84 
85 /*
86  * Copy all file descriptors from the old table to the new, expanded table and
87  * clear the extra space.  Called with the files spinlock held for write.
88  */
89 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
90 {
91 	unsigned int cpy, set;
92 
93 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
94 
95 	cpy = ofdt->max_fds * sizeof(struct file *);
96 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
97 	memcpy(nfdt->fd, ofdt->fd, cpy);
98 	memset((char *)nfdt->fd + cpy, 0, set);
99 
100 	copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds);
101 }
102 
103 static struct fdtable * alloc_fdtable(unsigned int nr)
104 {
105 	struct fdtable *fdt;
106 	void *data;
107 
108 	/*
109 	 * Figure out how many fds we actually want to support in this fdtable.
110 	 * Allocation steps are keyed to the size of the fdarray, since it
111 	 * grows far faster than any of the other dynamic data. We try to fit
112 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
113 	 * and growing in powers of two from there on.
114 	 */
115 	nr /= (1024 / sizeof(struct file *));
116 	nr = roundup_pow_of_two(nr + 1);
117 	nr *= (1024 / sizeof(struct file *));
118 	/*
119 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
120 	 * had been set lower between the check in expand_files() and here.  Deal
121 	 * with that in caller, it's cheaper that way.
122 	 *
123 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
124 	 * bitmaps handling below becomes unpleasant, to put it mildly...
125 	 */
126 	if (unlikely(nr > sysctl_nr_open))
127 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
128 
129 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
130 	if (!fdt)
131 		goto out;
132 	fdt->max_fds = nr;
133 	data = alloc_fdmem(nr * sizeof(struct file *));
134 	if (!data)
135 		goto out_fdt;
136 	fdt->fd = data;
137 
138 	data = alloc_fdmem(max_t(size_t,
139 				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES));
140 	if (!data)
141 		goto out_arr;
142 	fdt->open_fds = data;
143 	data += nr / BITS_PER_BYTE;
144 	fdt->close_on_exec = data;
145 	data += nr / BITS_PER_BYTE;
146 	fdt->full_fds_bits = data;
147 
148 	return fdt;
149 
150 out_arr:
151 	kvfree(fdt->fd);
152 out_fdt:
153 	kfree(fdt);
154 out:
155 	return NULL;
156 }
157 
158 /*
159  * Expand the file descriptor table.
160  * This function will allocate a new fdtable and both fd array and fdset, of
161  * the given size.
162  * Return <0 error code on error; 1 on successful completion.
163  * The files->file_lock should be held on entry, and will be held on exit.
164  */
165 static int expand_fdtable(struct files_struct *files, int nr)
166 	__releases(files->file_lock)
167 	__acquires(files->file_lock)
168 {
169 	struct fdtable *new_fdt, *cur_fdt;
170 
171 	spin_unlock(&files->file_lock);
172 	new_fdt = alloc_fdtable(nr);
173 
174 	/* make sure all __fd_install() have seen resize_in_progress
175 	 * or have finished their rcu_read_lock_sched() section.
176 	 */
177 	if (atomic_read(&files->count) > 1)
178 		synchronize_sched();
179 
180 	spin_lock(&files->file_lock);
181 	if (!new_fdt)
182 		return -ENOMEM;
183 	/*
184 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
185 	 * caller and alloc_fdtable().  Cheaper to catch it here...
186 	 */
187 	if (unlikely(new_fdt->max_fds <= nr)) {
188 		__free_fdtable(new_fdt);
189 		return -EMFILE;
190 	}
191 	cur_fdt = files_fdtable(files);
192 	BUG_ON(nr < cur_fdt->max_fds);
193 	copy_fdtable(new_fdt, cur_fdt);
194 	rcu_assign_pointer(files->fdt, new_fdt);
195 	if (cur_fdt != &files->fdtab)
196 		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
197 	/* coupled with smp_rmb() in __fd_install() */
198 	smp_wmb();
199 	return 1;
200 }
201 
202 /*
203  * Expand files.
204  * This function will expand the file structures, if the requested size exceeds
205  * the current capacity and there is room for expansion.
206  * Return <0 error code on error; 0 when nothing done; 1 when files were
207  * expanded and execution may have blocked.
208  * The files->file_lock should be held on entry, and will be held on exit.
209  */
210 static int expand_files(struct files_struct *files, int nr)
211 	__releases(files->file_lock)
212 	__acquires(files->file_lock)
213 {
214 	struct fdtable *fdt;
215 	int expanded = 0;
216 
217 repeat:
218 	fdt = files_fdtable(files);
219 
220 	/* Do we need to expand? */
221 	if (nr < fdt->max_fds)
222 		return expanded;
223 
224 	/* Can we expand? */
225 	if (nr >= sysctl_nr_open)
226 		return -EMFILE;
227 
228 	if (unlikely(files->resize_in_progress)) {
229 		spin_unlock(&files->file_lock);
230 		expanded = 1;
231 		wait_event(files->resize_wait, !files->resize_in_progress);
232 		spin_lock(&files->file_lock);
233 		goto repeat;
234 	}
235 
236 	/* All good, so we try */
237 	files->resize_in_progress = true;
238 	expanded = expand_fdtable(files, nr);
239 	files->resize_in_progress = false;
240 
241 	wake_up_all(&files->resize_wait);
242 	return expanded;
243 }
244 
245 static inline void __set_close_on_exec(int fd, struct fdtable *fdt)
246 {
247 	__set_bit(fd, fdt->close_on_exec);
248 }
249 
250 static inline void __clear_close_on_exec(int fd, struct fdtable *fdt)
251 {
252 	if (test_bit(fd, fdt->close_on_exec))
253 		__clear_bit(fd, fdt->close_on_exec);
254 }
255 
256 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt)
257 {
258 	__set_bit(fd, fdt->open_fds);
259 	fd /= BITS_PER_LONG;
260 	if (!~fdt->open_fds[fd])
261 		__set_bit(fd, fdt->full_fds_bits);
262 }
263 
264 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
265 {
266 	__clear_bit(fd, fdt->open_fds);
267 	__clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
268 }
269 
270 static int count_open_files(struct fdtable *fdt)
271 {
272 	int size = fdt->max_fds;
273 	int i;
274 
275 	/* Find the last open fd */
276 	for (i = size / BITS_PER_LONG; i > 0; ) {
277 		if (fdt->open_fds[--i])
278 			break;
279 	}
280 	i = (i + 1) * BITS_PER_LONG;
281 	return i;
282 }
283 
284 /*
285  * Allocate a new files structure and copy contents from the
286  * passed in files structure.
287  * errorp will be valid only when the returned files_struct is NULL.
288  */
289 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
290 {
291 	struct files_struct *newf;
292 	struct file **old_fds, **new_fds;
293 	int open_files, i;
294 	struct fdtable *old_fdt, *new_fdt;
295 
296 	*errorp = -ENOMEM;
297 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
298 	if (!newf)
299 		goto out;
300 
301 	atomic_set(&newf->count, 1);
302 
303 	spin_lock_init(&newf->file_lock);
304 	newf->resize_in_progress = false;
305 	init_waitqueue_head(&newf->resize_wait);
306 	newf->next_fd = 0;
307 	new_fdt = &newf->fdtab;
308 	new_fdt->max_fds = NR_OPEN_DEFAULT;
309 	new_fdt->close_on_exec = newf->close_on_exec_init;
310 	new_fdt->open_fds = newf->open_fds_init;
311 	new_fdt->full_fds_bits = newf->full_fds_bits_init;
312 	new_fdt->fd = &newf->fd_array[0];
313 
314 	spin_lock(&oldf->file_lock);
315 	old_fdt = files_fdtable(oldf);
316 	open_files = count_open_files(old_fdt);
317 
318 	/*
319 	 * Check whether we need to allocate a larger fd array and fd set.
320 	 */
321 	while (unlikely(open_files > new_fdt->max_fds)) {
322 		spin_unlock(&oldf->file_lock);
323 
324 		if (new_fdt != &newf->fdtab)
325 			__free_fdtable(new_fdt);
326 
327 		new_fdt = alloc_fdtable(open_files - 1);
328 		if (!new_fdt) {
329 			*errorp = -ENOMEM;
330 			goto out_release;
331 		}
332 
333 		/* beyond sysctl_nr_open; nothing to do */
334 		if (unlikely(new_fdt->max_fds < open_files)) {
335 			__free_fdtable(new_fdt);
336 			*errorp = -EMFILE;
337 			goto out_release;
338 		}
339 
340 		/*
341 		 * Reacquire the oldf lock and a pointer to its fd table
342 		 * who knows it may have a new bigger fd table. We need
343 		 * the latest pointer.
344 		 */
345 		spin_lock(&oldf->file_lock);
346 		old_fdt = files_fdtable(oldf);
347 		open_files = count_open_files(old_fdt);
348 	}
349 
350 	copy_fd_bitmaps(new_fdt, old_fdt, open_files);
351 
352 	old_fds = old_fdt->fd;
353 	new_fds = new_fdt->fd;
354 
355 	for (i = open_files; i != 0; i--) {
356 		struct file *f = *old_fds++;
357 		if (f) {
358 			get_file(f);
359 		} else {
360 			/*
361 			 * The fd may be claimed in the fd bitmap but not yet
362 			 * instantiated in the files array if a sibling thread
363 			 * is partway through open().  So make sure that this
364 			 * fd is available to the new process.
365 			 */
366 			__clear_open_fd(open_files - i, new_fdt);
367 		}
368 		rcu_assign_pointer(*new_fds++, f);
369 	}
370 	spin_unlock(&oldf->file_lock);
371 
372 	/* clear the remainder */
373 	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
374 
375 	rcu_assign_pointer(newf->fdt, new_fdt);
376 
377 	return newf;
378 
379 out_release:
380 	kmem_cache_free(files_cachep, newf);
381 out:
382 	return NULL;
383 }
384 
385 static struct fdtable *close_files(struct files_struct * files)
386 {
387 	/*
388 	 * It is safe to dereference the fd table without RCU or
389 	 * ->file_lock because this is the last reference to the
390 	 * files structure.
391 	 */
392 	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
393 	int i, j = 0;
394 
395 	for (;;) {
396 		unsigned long set;
397 		i = j * BITS_PER_LONG;
398 		if (i >= fdt->max_fds)
399 			break;
400 		set = fdt->open_fds[j++];
401 		while (set) {
402 			if (set & 1) {
403 				struct file * file = xchg(&fdt->fd[i], NULL);
404 				if (file) {
405 					filp_close(file, files);
406 					cond_resched_rcu_qs();
407 				}
408 			}
409 			i++;
410 			set >>= 1;
411 		}
412 	}
413 
414 	return fdt;
415 }
416 
417 struct files_struct *get_files_struct(struct task_struct *task)
418 {
419 	struct files_struct *files;
420 
421 	task_lock(task);
422 	files = task->files;
423 	if (files)
424 		atomic_inc(&files->count);
425 	task_unlock(task);
426 
427 	return files;
428 }
429 
430 void put_files_struct(struct files_struct *files)
431 {
432 	if (atomic_dec_and_test(&files->count)) {
433 		struct fdtable *fdt = close_files(files);
434 
435 		/* free the arrays if they are not embedded */
436 		if (fdt != &files->fdtab)
437 			__free_fdtable(fdt);
438 		kmem_cache_free(files_cachep, files);
439 	}
440 }
441 
442 void reset_files_struct(struct files_struct *files)
443 {
444 	struct task_struct *tsk = current;
445 	struct files_struct *old;
446 
447 	old = tsk->files;
448 	task_lock(tsk);
449 	tsk->files = files;
450 	task_unlock(tsk);
451 	put_files_struct(old);
452 }
453 
454 void exit_files(struct task_struct *tsk)
455 {
456 	struct files_struct * files = tsk->files;
457 
458 	if (files) {
459 		task_lock(tsk);
460 		tsk->files = NULL;
461 		task_unlock(tsk);
462 		put_files_struct(files);
463 	}
464 }
465 
466 struct files_struct init_files = {
467 	.count		= ATOMIC_INIT(1),
468 	.fdt		= &init_files.fdtab,
469 	.fdtab		= {
470 		.max_fds	= NR_OPEN_DEFAULT,
471 		.fd		= &init_files.fd_array[0],
472 		.close_on_exec	= init_files.close_on_exec_init,
473 		.open_fds	= init_files.open_fds_init,
474 		.full_fds_bits	= init_files.full_fds_bits_init,
475 	},
476 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
477 };
478 
479 static unsigned long find_next_fd(struct fdtable *fdt, unsigned long start)
480 {
481 	unsigned long maxfd = fdt->max_fds;
482 	unsigned long maxbit = maxfd / BITS_PER_LONG;
483 	unsigned long bitbit = start / BITS_PER_LONG;
484 
485 	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
486 	if (bitbit > maxfd)
487 		return maxfd;
488 	if (bitbit > start)
489 		start = bitbit;
490 	return find_next_zero_bit(fdt->open_fds, maxfd, start);
491 }
492 
493 /*
494  * allocate a file descriptor, mark it busy.
495  */
496 int __alloc_fd(struct files_struct *files,
497 	       unsigned start, unsigned end, unsigned flags)
498 {
499 	unsigned int fd;
500 	int error;
501 	struct fdtable *fdt;
502 
503 	spin_lock(&files->file_lock);
504 repeat:
505 	fdt = files_fdtable(files);
506 	fd = start;
507 	if (fd < files->next_fd)
508 		fd = files->next_fd;
509 
510 	if (fd < fdt->max_fds)
511 		fd = find_next_fd(fdt, fd);
512 
513 	/*
514 	 * N.B. For clone tasks sharing a files structure, this test
515 	 * will limit the total number of files that can be opened.
516 	 */
517 	error = -EMFILE;
518 	if (fd >= end)
519 		goto out;
520 
521 	error = expand_files(files, fd);
522 	if (error < 0)
523 		goto out;
524 
525 	/*
526 	 * If we needed to expand the fs array we
527 	 * might have blocked - try again.
528 	 */
529 	if (error)
530 		goto repeat;
531 
532 	if (start <= files->next_fd)
533 		files->next_fd = fd + 1;
534 
535 	__set_open_fd(fd, fdt);
536 	if (flags & O_CLOEXEC)
537 		__set_close_on_exec(fd, fdt);
538 	else
539 		__clear_close_on_exec(fd, fdt);
540 	error = fd;
541 #if 1
542 	/* Sanity check */
543 	if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
544 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
545 		rcu_assign_pointer(fdt->fd[fd], NULL);
546 	}
547 #endif
548 
549 out:
550 	spin_unlock(&files->file_lock);
551 	return error;
552 }
553 
554 static int alloc_fd(unsigned start, unsigned flags)
555 {
556 	return __alloc_fd(current->files, start, rlimit(RLIMIT_NOFILE), flags);
557 }
558 
559 int get_unused_fd_flags(unsigned flags)
560 {
561 	return __alloc_fd(current->files, 0, rlimit(RLIMIT_NOFILE), flags);
562 }
563 EXPORT_SYMBOL(get_unused_fd_flags);
564 
565 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
566 {
567 	struct fdtable *fdt = files_fdtable(files);
568 	__clear_open_fd(fd, fdt);
569 	if (fd < files->next_fd)
570 		files->next_fd = fd;
571 }
572 
573 void put_unused_fd(unsigned int fd)
574 {
575 	struct files_struct *files = current->files;
576 	spin_lock(&files->file_lock);
577 	__put_unused_fd(files, fd);
578 	spin_unlock(&files->file_lock);
579 }
580 
581 EXPORT_SYMBOL(put_unused_fd);
582 
583 /*
584  * Install a file pointer in the fd array.
585  *
586  * The VFS is full of places where we drop the files lock between
587  * setting the open_fds bitmap and installing the file in the file
588  * array.  At any such point, we are vulnerable to a dup2() race
589  * installing a file in the array before us.  We need to detect this and
590  * fput() the struct file we are about to overwrite in this case.
591  *
592  * It should never happen - if we allow dup2() do it, _really_ bad things
593  * will follow.
594  *
595  * NOTE: __fd_install() variant is really, really low-level; don't
596  * use it unless you are forced to by truly lousy API shoved down
597  * your throat.  'files' *MUST* be either current->files or obtained
598  * by get_files_struct(current) done by whoever had given it to you,
599  * or really bad things will happen.  Normally you want to use
600  * fd_install() instead.
601  */
602 
603 void __fd_install(struct files_struct *files, unsigned int fd,
604 		struct file *file)
605 {
606 	struct fdtable *fdt;
607 
608 	might_sleep();
609 	rcu_read_lock_sched();
610 
611 	while (unlikely(files->resize_in_progress)) {
612 		rcu_read_unlock_sched();
613 		wait_event(files->resize_wait, !files->resize_in_progress);
614 		rcu_read_lock_sched();
615 	}
616 	/* coupled with smp_wmb() in expand_fdtable() */
617 	smp_rmb();
618 	fdt = rcu_dereference_sched(files->fdt);
619 	BUG_ON(fdt->fd[fd] != NULL);
620 	rcu_assign_pointer(fdt->fd[fd], file);
621 	rcu_read_unlock_sched();
622 }
623 
624 void fd_install(unsigned int fd, struct file *file)
625 {
626 	__fd_install(current->files, fd, file);
627 }
628 
629 EXPORT_SYMBOL(fd_install);
630 
631 /*
632  * The same warnings as for __alloc_fd()/__fd_install() apply here...
633  */
634 int __close_fd(struct files_struct *files, unsigned fd)
635 {
636 	struct file *file;
637 	struct fdtable *fdt;
638 
639 	spin_lock(&files->file_lock);
640 	fdt = files_fdtable(files);
641 	if (fd >= fdt->max_fds)
642 		goto out_unlock;
643 	file = fdt->fd[fd];
644 	if (!file)
645 		goto out_unlock;
646 	rcu_assign_pointer(fdt->fd[fd], NULL);
647 	__clear_close_on_exec(fd, fdt);
648 	__put_unused_fd(files, fd);
649 	spin_unlock(&files->file_lock);
650 	return filp_close(file, files);
651 
652 out_unlock:
653 	spin_unlock(&files->file_lock);
654 	return -EBADF;
655 }
656 
657 void do_close_on_exec(struct files_struct *files)
658 {
659 	unsigned i;
660 	struct fdtable *fdt;
661 
662 	/* exec unshares first */
663 	spin_lock(&files->file_lock);
664 	for (i = 0; ; i++) {
665 		unsigned long set;
666 		unsigned fd = i * BITS_PER_LONG;
667 		fdt = files_fdtable(files);
668 		if (fd >= fdt->max_fds)
669 			break;
670 		set = fdt->close_on_exec[i];
671 		if (!set)
672 			continue;
673 		fdt->close_on_exec[i] = 0;
674 		for ( ; set ; fd++, set >>= 1) {
675 			struct file *file;
676 			if (!(set & 1))
677 				continue;
678 			file = fdt->fd[fd];
679 			if (!file)
680 				continue;
681 			rcu_assign_pointer(fdt->fd[fd], NULL);
682 			__put_unused_fd(files, fd);
683 			spin_unlock(&files->file_lock);
684 			filp_close(file, files);
685 			cond_resched();
686 			spin_lock(&files->file_lock);
687 		}
688 
689 	}
690 	spin_unlock(&files->file_lock);
691 }
692 
693 static struct file *__fget(unsigned int fd, fmode_t mask)
694 {
695 	struct files_struct *files = current->files;
696 	struct file *file;
697 
698 	rcu_read_lock();
699 loop:
700 	file = fcheck_files(files, fd);
701 	if (file) {
702 		/* File object ref couldn't be taken.
703 		 * dup2() atomicity guarantee is the reason
704 		 * we loop to catch the new file (or NULL pointer)
705 		 */
706 		if (file->f_mode & mask)
707 			file = NULL;
708 		else if (!get_file_rcu(file))
709 			goto loop;
710 	}
711 	rcu_read_unlock();
712 
713 	return file;
714 }
715 
716 struct file *fget(unsigned int fd)
717 {
718 	return __fget(fd, FMODE_PATH);
719 }
720 EXPORT_SYMBOL(fget);
721 
722 struct file *fget_raw(unsigned int fd)
723 {
724 	return __fget(fd, 0);
725 }
726 EXPORT_SYMBOL(fget_raw);
727 
728 /*
729  * Lightweight file lookup - no refcnt increment if fd table isn't shared.
730  *
731  * You can use this instead of fget if you satisfy all of the following
732  * conditions:
733  * 1) You must call fput_light before exiting the syscall and returning control
734  *    to userspace (i.e. you cannot remember the returned struct file * after
735  *    returning to userspace).
736  * 2) You must not call filp_close on the returned struct file * in between
737  *    calls to fget_light and fput_light.
738  * 3) You must not clone the current task in between the calls to fget_light
739  *    and fput_light.
740  *
741  * The fput_needed flag returned by fget_light should be passed to the
742  * corresponding fput_light.
743  */
744 static unsigned long __fget_light(unsigned int fd, fmode_t mask)
745 {
746 	struct files_struct *files = current->files;
747 	struct file *file;
748 
749 	if (atomic_read(&files->count) == 1) {
750 		file = __fcheck_files(files, fd);
751 		if (!file || unlikely(file->f_mode & mask))
752 			return 0;
753 		return (unsigned long)file;
754 	} else {
755 		file = __fget(fd, mask);
756 		if (!file)
757 			return 0;
758 		return FDPUT_FPUT | (unsigned long)file;
759 	}
760 }
761 unsigned long __fdget(unsigned int fd)
762 {
763 	return __fget_light(fd, FMODE_PATH);
764 }
765 EXPORT_SYMBOL(__fdget);
766 
767 unsigned long __fdget_raw(unsigned int fd)
768 {
769 	return __fget_light(fd, 0);
770 }
771 
772 unsigned long __fdget_pos(unsigned int fd)
773 {
774 	unsigned long v = __fdget(fd);
775 	struct file *file = (struct file *)(v & ~3);
776 
777 	if (file && (file->f_mode & FMODE_ATOMIC_POS)) {
778 		if (file_count(file) > 1) {
779 			v |= FDPUT_POS_UNLOCK;
780 			mutex_lock(&file->f_pos_lock);
781 		}
782 	}
783 	return v;
784 }
785 
786 /*
787  * We only lock f_pos if we have threads or if the file might be
788  * shared with another process. In both cases we'll have an elevated
789  * file count (done either by fdget() or by fork()).
790  */
791 
792 void set_close_on_exec(unsigned int fd, int flag)
793 {
794 	struct files_struct *files = current->files;
795 	struct fdtable *fdt;
796 	spin_lock(&files->file_lock);
797 	fdt = files_fdtable(files);
798 	if (flag)
799 		__set_close_on_exec(fd, fdt);
800 	else
801 		__clear_close_on_exec(fd, fdt);
802 	spin_unlock(&files->file_lock);
803 }
804 
805 bool get_close_on_exec(unsigned int fd)
806 {
807 	struct files_struct *files = current->files;
808 	struct fdtable *fdt;
809 	bool res;
810 	rcu_read_lock();
811 	fdt = files_fdtable(files);
812 	res = close_on_exec(fd, fdt);
813 	rcu_read_unlock();
814 	return res;
815 }
816 
817 static int do_dup2(struct files_struct *files,
818 	struct file *file, unsigned fd, unsigned flags)
819 __releases(&files->file_lock)
820 {
821 	struct file *tofree;
822 	struct fdtable *fdt;
823 
824 	/*
825 	 * We need to detect attempts to do dup2() over allocated but still
826 	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
827 	 * extra work in their equivalent of fget() - they insert struct
828 	 * file immediately after grabbing descriptor, mark it larval if
829 	 * more work (e.g. actual opening) is needed and make sure that
830 	 * fget() treats larval files as absent.  Potentially interesting,
831 	 * but while extra work in fget() is trivial, locking implications
832 	 * and amount of surgery on open()-related paths in VFS are not.
833 	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
834 	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
835 	 * scope of POSIX or SUS, since neither considers shared descriptor
836 	 * tables and this condition does not arise without those.
837 	 */
838 	fdt = files_fdtable(files);
839 	tofree = fdt->fd[fd];
840 	if (!tofree && fd_is_open(fd, fdt))
841 		goto Ebusy;
842 	get_file(file);
843 	rcu_assign_pointer(fdt->fd[fd], file);
844 	__set_open_fd(fd, fdt);
845 	if (flags & O_CLOEXEC)
846 		__set_close_on_exec(fd, fdt);
847 	else
848 		__clear_close_on_exec(fd, fdt);
849 	spin_unlock(&files->file_lock);
850 
851 	if (tofree)
852 		filp_close(tofree, files);
853 
854 	return fd;
855 
856 Ebusy:
857 	spin_unlock(&files->file_lock);
858 	return -EBUSY;
859 }
860 
861 int replace_fd(unsigned fd, struct file *file, unsigned flags)
862 {
863 	int err;
864 	struct files_struct *files = current->files;
865 
866 	if (!file)
867 		return __close_fd(files, fd);
868 
869 	if (fd >= rlimit(RLIMIT_NOFILE))
870 		return -EBADF;
871 
872 	spin_lock(&files->file_lock);
873 	err = expand_files(files, fd);
874 	if (unlikely(err < 0))
875 		goto out_unlock;
876 	return do_dup2(files, file, fd, flags);
877 
878 out_unlock:
879 	spin_unlock(&files->file_lock);
880 	return err;
881 }
882 
883 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
884 {
885 	int err = -EBADF;
886 	struct file *file;
887 	struct files_struct *files = current->files;
888 
889 	if ((flags & ~O_CLOEXEC) != 0)
890 		return -EINVAL;
891 
892 	if (unlikely(oldfd == newfd))
893 		return -EINVAL;
894 
895 	if (newfd >= rlimit(RLIMIT_NOFILE))
896 		return -EBADF;
897 
898 	spin_lock(&files->file_lock);
899 	err = expand_files(files, newfd);
900 	file = fcheck(oldfd);
901 	if (unlikely(!file))
902 		goto Ebadf;
903 	if (unlikely(err < 0)) {
904 		if (err == -EMFILE)
905 			goto Ebadf;
906 		goto out_unlock;
907 	}
908 	return do_dup2(files, file, newfd, flags);
909 
910 Ebadf:
911 	err = -EBADF;
912 out_unlock:
913 	spin_unlock(&files->file_lock);
914 	return err;
915 }
916 
917 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
918 {
919 	if (unlikely(newfd == oldfd)) { /* corner case */
920 		struct files_struct *files = current->files;
921 		int retval = oldfd;
922 
923 		rcu_read_lock();
924 		if (!fcheck_files(files, oldfd))
925 			retval = -EBADF;
926 		rcu_read_unlock();
927 		return retval;
928 	}
929 	return sys_dup3(oldfd, newfd, 0);
930 }
931 
932 SYSCALL_DEFINE1(dup, unsigned int, fildes)
933 {
934 	int ret = -EBADF;
935 	struct file *file = fget_raw(fildes);
936 
937 	if (file) {
938 		ret = get_unused_fd_flags(0);
939 		if (ret >= 0)
940 			fd_install(ret, file);
941 		else
942 			fput(file);
943 	}
944 	return ret;
945 }
946 
947 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
948 {
949 	int err;
950 	if (from >= rlimit(RLIMIT_NOFILE))
951 		return -EINVAL;
952 	err = alloc_fd(from, flags);
953 	if (err >= 0) {
954 		get_file(file);
955 		fd_install(err, file);
956 	}
957 	return err;
958 }
959 
960 int iterate_fd(struct files_struct *files, unsigned n,
961 		int (*f)(const void *, struct file *, unsigned),
962 		const void *p)
963 {
964 	struct fdtable *fdt;
965 	int res = 0;
966 	if (!files)
967 		return 0;
968 	spin_lock(&files->file_lock);
969 	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
970 		struct file *file;
971 		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
972 		if (!file)
973 			continue;
974 		res = f(p, file, n);
975 		if (res)
976 			break;
977 	}
978 	spin_unlock(&files->file_lock);
979 	return res;
980 }
981 EXPORT_SYMBOL(iterate_fd);
982