1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/file.c 4 * 5 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes 6 * 7 * Manage the dynamic fd arrays in the process files_struct. 8 */ 9 10 #include <linux/syscalls.h> 11 #include <linux/export.h> 12 #include <linux/fs.h> 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/file.h> 18 #include <linux/fdtable.h> 19 #include <linux/bitops.h> 20 #include <linux/spinlock.h> 21 #include <linux/rcupdate.h> 22 #include <linux/close_range.h> 23 #include <net/sock.h> 24 25 #include "internal.h" 26 27 unsigned int sysctl_nr_open __read_mostly = 1024*1024; 28 unsigned int sysctl_nr_open_min = BITS_PER_LONG; 29 /* our min() is unusable in constant expressions ;-/ */ 30 #define __const_min(x, y) ((x) < (y) ? (x) : (y)) 31 unsigned int sysctl_nr_open_max = 32 __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG; 33 34 static void __free_fdtable(struct fdtable *fdt) 35 { 36 kvfree(fdt->fd); 37 kvfree(fdt->open_fds); 38 kfree(fdt); 39 } 40 41 static void free_fdtable_rcu(struct rcu_head *rcu) 42 { 43 __free_fdtable(container_of(rcu, struct fdtable, rcu)); 44 } 45 46 #define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr)) 47 #define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long)) 48 49 /* 50 * Copy 'count' fd bits from the old table to the new table and clear the extra 51 * space if any. This does not copy the file pointers. Called with the files 52 * spinlock held for write. 53 */ 54 static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt, 55 unsigned int count) 56 { 57 unsigned int cpy, set; 58 59 cpy = count / BITS_PER_BYTE; 60 set = (nfdt->max_fds - count) / BITS_PER_BYTE; 61 memcpy(nfdt->open_fds, ofdt->open_fds, cpy); 62 memset((char *)nfdt->open_fds + cpy, 0, set); 63 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); 64 memset((char *)nfdt->close_on_exec + cpy, 0, set); 65 66 cpy = BITBIT_SIZE(count); 67 set = BITBIT_SIZE(nfdt->max_fds) - cpy; 68 memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy); 69 memset((char *)nfdt->full_fds_bits + cpy, 0, set); 70 } 71 72 /* 73 * Copy all file descriptors from the old table to the new, expanded table and 74 * clear the extra space. Called with the files spinlock held for write. 75 */ 76 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) 77 { 78 size_t cpy, set; 79 80 BUG_ON(nfdt->max_fds < ofdt->max_fds); 81 82 cpy = ofdt->max_fds * sizeof(struct file *); 83 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); 84 memcpy(nfdt->fd, ofdt->fd, cpy); 85 memset((char *)nfdt->fd + cpy, 0, set); 86 87 copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds); 88 } 89 90 static struct fdtable * alloc_fdtable(unsigned int nr) 91 { 92 struct fdtable *fdt; 93 void *data; 94 95 /* 96 * Figure out how many fds we actually want to support in this fdtable. 97 * Allocation steps are keyed to the size of the fdarray, since it 98 * grows far faster than any of the other dynamic data. We try to fit 99 * the fdarray into comfortable page-tuned chunks: starting at 1024B 100 * and growing in powers of two from there on. 101 */ 102 nr /= (1024 / sizeof(struct file *)); 103 nr = roundup_pow_of_two(nr + 1); 104 nr *= (1024 / sizeof(struct file *)); 105 /* 106 * Note that this can drive nr *below* what we had passed if sysctl_nr_open 107 * had been set lower between the check in expand_files() and here. Deal 108 * with that in caller, it's cheaper that way. 109 * 110 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise 111 * bitmaps handling below becomes unpleasant, to put it mildly... 112 */ 113 if (unlikely(nr > sysctl_nr_open)) 114 nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; 115 116 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT); 117 if (!fdt) 118 goto out; 119 fdt->max_fds = nr; 120 data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT); 121 if (!data) 122 goto out_fdt; 123 fdt->fd = data; 124 125 data = kvmalloc(max_t(size_t, 126 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES), 127 GFP_KERNEL_ACCOUNT); 128 if (!data) 129 goto out_arr; 130 fdt->open_fds = data; 131 data += nr / BITS_PER_BYTE; 132 fdt->close_on_exec = data; 133 data += nr / BITS_PER_BYTE; 134 fdt->full_fds_bits = data; 135 136 return fdt; 137 138 out_arr: 139 kvfree(fdt->fd); 140 out_fdt: 141 kfree(fdt); 142 out: 143 return NULL; 144 } 145 146 /* 147 * Expand the file descriptor table. 148 * This function will allocate a new fdtable and both fd array and fdset, of 149 * the given size. 150 * Return <0 error code on error; 1 on successful completion. 151 * The files->file_lock should be held on entry, and will be held on exit. 152 */ 153 static int expand_fdtable(struct files_struct *files, unsigned int nr) 154 __releases(files->file_lock) 155 __acquires(files->file_lock) 156 { 157 struct fdtable *new_fdt, *cur_fdt; 158 159 spin_unlock(&files->file_lock); 160 new_fdt = alloc_fdtable(nr); 161 162 /* make sure all fd_install() have seen resize_in_progress 163 * or have finished their rcu_read_lock_sched() section. 164 */ 165 if (atomic_read(&files->count) > 1) 166 synchronize_rcu(); 167 168 spin_lock(&files->file_lock); 169 if (!new_fdt) 170 return -ENOMEM; 171 /* 172 * extremely unlikely race - sysctl_nr_open decreased between the check in 173 * caller and alloc_fdtable(). Cheaper to catch it here... 174 */ 175 if (unlikely(new_fdt->max_fds <= nr)) { 176 __free_fdtable(new_fdt); 177 return -EMFILE; 178 } 179 cur_fdt = files_fdtable(files); 180 BUG_ON(nr < cur_fdt->max_fds); 181 copy_fdtable(new_fdt, cur_fdt); 182 rcu_assign_pointer(files->fdt, new_fdt); 183 if (cur_fdt != &files->fdtab) 184 call_rcu(&cur_fdt->rcu, free_fdtable_rcu); 185 /* coupled with smp_rmb() in fd_install() */ 186 smp_wmb(); 187 return 1; 188 } 189 190 /* 191 * Expand files. 192 * This function will expand the file structures, if the requested size exceeds 193 * the current capacity and there is room for expansion. 194 * Return <0 error code on error; 0 when nothing done; 1 when files were 195 * expanded and execution may have blocked. 196 * The files->file_lock should be held on entry, and will be held on exit. 197 */ 198 static int expand_files(struct files_struct *files, unsigned int nr) 199 __releases(files->file_lock) 200 __acquires(files->file_lock) 201 { 202 struct fdtable *fdt; 203 int expanded = 0; 204 205 repeat: 206 fdt = files_fdtable(files); 207 208 /* Do we need to expand? */ 209 if (nr < fdt->max_fds) 210 return expanded; 211 212 /* Can we expand? */ 213 if (nr >= sysctl_nr_open) 214 return -EMFILE; 215 216 if (unlikely(files->resize_in_progress)) { 217 spin_unlock(&files->file_lock); 218 expanded = 1; 219 wait_event(files->resize_wait, !files->resize_in_progress); 220 spin_lock(&files->file_lock); 221 goto repeat; 222 } 223 224 /* All good, so we try */ 225 files->resize_in_progress = true; 226 expanded = expand_fdtable(files, nr); 227 files->resize_in_progress = false; 228 229 wake_up_all(&files->resize_wait); 230 return expanded; 231 } 232 233 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt) 234 { 235 __set_bit(fd, fdt->close_on_exec); 236 } 237 238 static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt) 239 { 240 if (test_bit(fd, fdt->close_on_exec)) 241 __clear_bit(fd, fdt->close_on_exec); 242 } 243 244 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt) 245 { 246 __set_bit(fd, fdt->open_fds); 247 fd /= BITS_PER_LONG; 248 if (!~fdt->open_fds[fd]) 249 __set_bit(fd, fdt->full_fds_bits); 250 } 251 252 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt) 253 { 254 __clear_bit(fd, fdt->open_fds); 255 __clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits); 256 } 257 258 static unsigned int count_open_files(struct fdtable *fdt) 259 { 260 unsigned int size = fdt->max_fds; 261 unsigned int i; 262 263 /* Find the last open fd */ 264 for (i = size / BITS_PER_LONG; i > 0; ) { 265 if (fdt->open_fds[--i]) 266 break; 267 } 268 i = (i + 1) * BITS_PER_LONG; 269 return i; 270 } 271 272 static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds) 273 { 274 unsigned int count; 275 276 count = count_open_files(fdt); 277 if (max_fds < NR_OPEN_DEFAULT) 278 max_fds = NR_OPEN_DEFAULT; 279 return min(count, max_fds); 280 } 281 282 /* 283 * Allocate a new files structure and copy contents from the 284 * passed in files structure. 285 * errorp will be valid only when the returned files_struct is NULL. 286 */ 287 struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp) 288 { 289 struct files_struct *newf; 290 struct file **old_fds, **new_fds; 291 unsigned int open_files, i; 292 struct fdtable *old_fdt, *new_fdt; 293 294 *errorp = -ENOMEM; 295 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); 296 if (!newf) 297 goto out; 298 299 atomic_set(&newf->count, 1); 300 301 spin_lock_init(&newf->file_lock); 302 newf->resize_in_progress = false; 303 init_waitqueue_head(&newf->resize_wait); 304 newf->next_fd = 0; 305 new_fdt = &newf->fdtab; 306 new_fdt->max_fds = NR_OPEN_DEFAULT; 307 new_fdt->close_on_exec = newf->close_on_exec_init; 308 new_fdt->open_fds = newf->open_fds_init; 309 new_fdt->full_fds_bits = newf->full_fds_bits_init; 310 new_fdt->fd = &newf->fd_array[0]; 311 312 spin_lock(&oldf->file_lock); 313 old_fdt = files_fdtable(oldf); 314 open_files = sane_fdtable_size(old_fdt, max_fds); 315 316 /* 317 * Check whether we need to allocate a larger fd array and fd set. 318 */ 319 while (unlikely(open_files > new_fdt->max_fds)) { 320 spin_unlock(&oldf->file_lock); 321 322 if (new_fdt != &newf->fdtab) 323 __free_fdtable(new_fdt); 324 325 new_fdt = alloc_fdtable(open_files - 1); 326 if (!new_fdt) { 327 *errorp = -ENOMEM; 328 goto out_release; 329 } 330 331 /* beyond sysctl_nr_open; nothing to do */ 332 if (unlikely(new_fdt->max_fds < open_files)) { 333 __free_fdtable(new_fdt); 334 *errorp = -EMFILE; 335 goto out_release; 336 } 337 338 /* 339 * Reacquire the oldf lock and a pointer to its fd table 340 * who knows it may have a new bigger fd table. We need 341 * the latest pointer. 342 */ 343 spin_lock(&oldf->file_lock); 344 old_fdt = files_fdtable(oldf); 345 open_files = sane_fdtable_size(old_fdt, max_fds); 346 } 347 348 copy_fd_bitmaps(new_fdt, old_fdt, open_files); 349 350 old_fds = old_fdt->fd; 351 new_fds = new_fdt->fd; 352 353 for (i = open_files; i != 0; i--) { 354 struct file *f = *old_fds++; 355 if (f) { 356 get_file(f); 357 } else { 358 /* 359 * The fd may be claimed in the fd bitmap but not yet 360 * instantiated in the files array if a sibling thread 361 * is partway through open(). So make sure that this 362 * fd is available to the new process. 363 */ 364 __clear_open_fd(open_files - i, new_fdt); 365 } 366 rcu_assign_pointer(*new_fds++, f); 367 } 368 spin_unlock(&oldf->file_lock); 369 370 /* clear the remainder */ 371 memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *)); 372 373 rcu_assign_pointer(newf->fdt, new_fdt); 374 375 return newf; 376 377 out_release: 378 kmem_cache_free(files_cachep, newf); 379 out: 380 return NULL; 381 } 382 383 static struct fdtable *close_files(struct files_struct * files) 384 { 385 /* 386 * It is safe to dereference the fd table without RCU or 387 * ->file_lock because this is the last reference to the 388 * files structure. 389 */ 390 struct fdtable *fdt = rcu_dereference_raw(files->fdt); 391 unsigned int i, j = 0; 392 393 for (;;) { 394 unsigned long set; 395 i = j * BITS_PER_LONG; 396 if (i >= fdt->max_fds) 397 break; 398 set = fdt->open_fds[j++]; 399 while (set) { 400 if (set & 1) { 401 struct file * file = xchg(&fdt->fd[i], NULL); 402 if (file) { 403 filp_close(file, files); 404 cond_resched(); 405 } 406 } 407 i++; 408 set >>= 1; 409 } 410 } 411 412 return fdt; 413 } 414 415 void put_files_struct(struct files_struct *files) 416 { 417 if (atomic_dec_and_test(&files->count)) { 418 struct fdtable *fdt = close_files(files); 419 420 /* free the arrays if they are not embedded */ 421 if (fdt != &files->fdtab) 422 __free_fdtable(fdt); 423 kmem_cache_free(files_cachep, files); 424 } 425 } 426 427 void exit_files(struct task_struct *tsk) 428 { 429 struct files_struct * files = tsk->files; 430 431 if (files) { 432 task_lock(tsk); 433 tsk->files = NULL; 434 task_unlock(tsk); 435 put_files_struct(files); 436 } 437 } 438 439 struct files_struct init_files = { 440 .count = ATOMIC_INIT(1), 441 .fdt = &init_files.fdtab, 442 .fdtab = { 443 .max_fds = NR_OPEN_DEFAULT, 444 .fd = &init_files.fd_array[0], 445 .close_on_exec = init_files.close_on_exec_init, 446 .open_fds = init_files.open_fds_init, 447 .full_fds_bits = init_files.full_fds_bits_init, 448 }, 449 .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock), 450 .resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait), 451 }; 452 453 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start) 454 { 455 unsigned int maxfd = fdt->max_fds; 456 unsigned int maxbit = maxfd / BITS_PER_LONG; 457 unsigned int bitbit = start / BITS_PER_LONG; 458 459 bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG; 460 if (bitbit > maxfd) 461 return maxfd; 462 if (bitbit > start) 463 start = bitbit; 464 return find_next_zero_bit(fdt->open_fds, maxfd, start); 465 } 466 467 /* 468 * allocate a file descriptor, mark it busy. 469 */ 470 static int alloc_fd(unsigned start, unsigned end, unsigned flags) 471 { 472 struct files_struct *files = current->files; 473 unsigned int fd; 474 int error; 475 struct fdtable *fdt; 476 477 spin_lock(&files->file_lock); 478 repeat: 479 fdt = files_fdtable(files); 480 fd = start; 481 if (fd < files->next_fd) 482 fd = files->next_fd; 483 484 if (fd < fdt->max_fds) 485 fd = find_next_fd(fdt, fd); 486 487 /* 488 * N.B. For clone tasks sharing a files structure, this test 489 * will limit the total number of files that can be opened. 490 */ 491 error = -EMFILE; 492 if (fd >= end) 493 goto out; 494 495 error = expand_files(files, fd); 496 if (error < 0) 497 goto out; 498 499 /* 500 * If we needed to expand the fs array we 501 * might have blocked - try again. 502 */ 503 if (error) 504 goto repeat; 505 506 if (start <= files->next_fd) 507 files->next_fd = fd + 1; 508 509 __set_open_fd(fd, fdt); 510 if (flags & O_CLOEXEC) 511 __set_close_on_exec(fd, fdt); 512 else 513 __clear_close_on_exec(fd, fdt); 514 error = fd; 515 #if 1 516 /* Sanity check */ 517 if (rcu_access_pointer(fdt->fd[fd]) != NULL) { 518 printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd); 519 rcu_assign_pointer(fdt->fd[fd], NULL); 520 } 521 #endif 522 523 out: 524 spin_unlock(&files->file_lock); 525 return error; 526 } 527 528 int __get_unused_fd_flags(unsigned flags, unsigned long nofile) 529 { 530 return alloc_fd(0, nofile, flags); 531 } 532 533 int get_unused_fd_flags(unsigned flags) 534 { 535 return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE)); 536 } 537 EXPORT_SYMBOL(get_unused_fd_flags); 538 539 static void __put_unused_fd(struct files_struct *files, unsigned int fd) 540 { 541 struct fdtable *fdt = files_fdtable(files); 542 __clear_open_fd(fd, fdt); 543 if (fd < files->next_fd) 544 files->next_fd = fd; 545 } 546 547 void put_unused_fd(unsigned int fd) 548 { 549 struct files_struct *files = current->files; 550 spin_lock(&files->file_lock); 551 __put_unused_fd(files, fd); 552 spin_unlock(&files->file_lock); 553 } 554 555 EXPORT_SYMBOL(put_unused_fd); 556 557 /* 558 * Install a file pointer in the fd array. 559 * 560 * The VFS is full of places where we drop the files lock between 561 * setting the open_fds bitmap and installing the file in the file 562 * array. At any such point, we are vulnerable to a dup2() race 563 * installing a file in the array before us. We need to detect this and 564 * fput() the struct file we are about to overwrite in this case. 565 * 566 * It should never happen - if we allow dup2() do it, _really_ bad things 567 * will follow. 568 * 569 * This consumes the "file" refcount, so callers should treat it 570 * as if they had called fput(file). 571 */ 572 573 void fd_install(unsigned int fd, struct file *file) 574 { 575 struct files_struct *files = current->files; 576 struct fdtable *fdt; 577 578 rcu_read_lock_sched(); 579 580 if (unlikely(files->resize_in_progress)) { 581 rcu_read_unlock_sched(); 582 spin_lock(&files->file_lock); 583 fdt = files_fdtable(files); 584 BUG_ON(fdt->fd[fd] != NULL); 585 rcu_assign_pointer(fdt->fd[fd], file); 586 spin_unlock(&files->file_lock); 587 return; 588 } 589 /* coupled with smp_wmb() in expand_fdtable() */ 590 smp_rmb(); 591 fdt = rcu_dereference_sched(files->fdt); 592 BUG_ON(fdt->fd[fd] != NULL); 593 rcu_assign_pointer(fdt->fd[fd], file); 594 rcu_read_unlock_sched(); 595 } 596 597 EXPORT_SYMBOL(fd_install); 598 599 /** 600 * pick_file - return file associatd with fd 601 * @files: file struct to retrieve file from 602 * @fd: file descriptor to retrieve file for 603 * 604 * If this functions returns an EINVAL error pointer the fd was beyond the 605 * current maximum number of file descriptors for that fdtable. 606 * 607 * Returns: The file associated with @fd, on error returns an error pointer. 608 */ 609 static struct file *pick_file(struct files_struct *files, unsigned fd) 610 { 611 struct file *file; 612 struct fdtable *fdt; 613 614 spin_lock(&files->file_lock); 615 fdt = files_fdtable(files); 616 if (fd >= fdt->max_fds) { 617 file = ERR_PTR(-EINVAL); 618 goto out_unlock; 619 } 620 file = fdt->fd[fd]; 621 if (!file) { 622 file = ERR_PTR(-EBADF); 623 goto out_unlock; 624 } 625 rcu_assign_pointer(fdt->fd[fd], NULL); 626 __put_unused_fd(files, fd); 627 628 out_unlock: 629 spin_unlock(&files->file_lock); 630 return file; 631 } 632 633 int close_fd(unsigned fd) 634 { 635 struct files_struct *files = current->files; 636 struct file *file; 637 638 file = pick_file(files, fd); 639 if (IS_ERR(file)) 640 return -EBADF; 641 642 return filp_close(file, files); 643 } 644 EXPORT_SYMBOL(close_fd); /* for ksys_close() */ 645 646 /** 647 * last_fd - return last valid index into fd table 648 * @cur_fds: files struct 649 * 650 * Context: Either rcu read lock or files_lock must be held. 651 * 652 * Returns: Last valid index into fdtable. 653 */ 654 static inline unsigned last_fd(struct fdtable *fdt) 655 { 656 return fdt->max_fds - 1; 657 } 658 659 static inline void __range_cloexec(struct files_struct *cur_fds, 660 unsigned int fd, unsigned int max_fd) 661 { 662 struct fdtable *fdt; 663 664 /* make sure we're using the correct maximum value */ 665 spin_lock(&cur_fds->file_lock); 666 fdt = files_fdtable(cur_fds); 667 max_fd = min(last_fd(fdt), max_fd); 668 if (fd <= max_fd) 669 bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1); 670 spin_unlock(&cur_fds->file_lock); 671 } 672 673 static inline void __range_close(struct files_struct *cur_fds, unsigned int fd, 674 unsigned int max_fd) 675 { 676 while (fd <= max_fd) { 677 struct file *file; 678 679 file = pick_file(cur_fds, fd++); 680 if (!IS_ERR(file)) { 681 /* found a valid file to close */ 682 filp_close(file, cur_fds); 683 cond_resched(); 684 continue; 685 } 686 687 /* beyond the last fd in that table */ 688 if (PTR_ERR(file) == -EINVAL) 689 return; 690 } 691 } 692 693 /** 694 * __close_range() - Close all file descriptors in a given range. 695 * 696 * @fd: starting file descriptor to close 697 * @max_fd: last file descriptor to close 698 * 699 * This closes a range of file descriptors. All file descriptors 700 * from @fd up to and including @max_fd are closed. 701 */ 702 int __close_range(unsigned fd, unsigned max_fd, unsigned int flags) 703 { 704 struct task_struct *me = current; 705 struct files_struct *cur_fds = me->files, *fds = NULL; 706 707 if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC)) 708 return -EINVAL; 709 710 if (fd > max_fd) 711 return -EINVAL; 712 713 if (flags & CLOSE_RANGE_UNSHARE) { 714 int ret; 715 unsigned int max_unshare_fds = NR_OPEN_MAX; 716 717 /* 718 * If the caller requested all fds to be made cloexec we always 719 * copy all of the file descriptors since they still want to 720 * use them. 721 */ 722 if (!(flags & CLOSE_RANGE_CLOEXEC)) { 723 /* 724 * If the requested range is greater than the current 725 * maximum, we're closing everything so only copy all 726 * file descriptors beneath the lowest file descriptor. 727 */ 728 rcu_read_lock(); 729 if (max_fd >= last_fd(files_fdtable(cur_fds))) 730 max_unshare_fds = fd; 731 rcu_read_unlock(); 732 } 733 734 ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds); 735 if (ret) 736 return ret; 737 738 /* 739 * We used to share our file descriptor table, and have now 740 * created a private one, make sure we're using it below. 741 */ 742 if (fds) 743 swap(cur_fds, fds); 744 } 745 746 if (flags & CLOSE_RANGE_CLOEXEC) 747 __range_cloexec(cur_fds, fd, max_fd); 748 else 749 __range_close(cur_fds, fd, max_fd); 750 751 if (fds) { 752 /* 753 * We're done closing the files we were supposed to. Time to install 754 * the new file descriptor table and drop the old one. 755 */ 756 task_lock(me); 757 me->files = cur_fds; 758 task_unlock(me); 759 put_files_struct(fds); 760 } 761 762 return 0; 763 } 764 765 /* 766 * See close_fd_get_file() below, this variant assumes current->files->file_lock 767 * is held. 768 */ 769 int __close_fd_get_file(unsigned int fd, struct file **res) 770 { 771 struct files_struct *files = current->files; 772 struct file *file; 773 struct fdtable *fdt; 774 775 fdt = files_fdtable(files); 776 if (fd >= fdt->max_fds) 777 goto out_err; 778 file = fdt->fd[fd]; 779 if (!file) 780 goto out_err; 781 rcu_assign_pointer(fdt->fd[fd], NULL); 782 __put_unused_fd(files, fd); 783 get_file(file); 784 *res = file; 785 return 0; 786 out_err: 787 *res = NULL; 788 return -ENOENT; 789 } 790 791 /* 792 * variant of close_fd that gets a ref on the file for later fput. 793 * The caller must ensure that filp_close() called on the file, and then 794 * an fput(). 795 */ 796 int close_fd_get_file(unsigned int fd, struct file **res) 797 { 798 struct files_struct *files = current->files; 799 int ret; 800 801 spin_lock(&files->file_lock); 802 ret = __close_fd_get_file(fd, res); 803 spin_unlock(&files->file_lock); 804 805 return ret; 806 } 807 808 void do_close_on_exec(struct files_struct *files) 809 { 810 unsigned i; 811 struct fdtable *fdt; 812 813 /* exec unshares first */ 814 spin_lock(&files->file_lock); 815 for (i = 0; ; i++) { 816 unsigned long set; 817 unsigned fd = i * BITS_PER_LONG; 818 fdt = files_fdtable(files); 819 if (fd >= fdt->max_fds) 820 break; 821 set = fdt->close_on_exec[i]; 822 if (!set) 823 continue; 824 fdt->close_on_exec[i] = 0; 825 for ( ; set ; fd++, set >>= 1) { 826 struct file *file; 827 if (!(set & 1)) 828 continue; 829 file = fdt->fd[fd]; 830 if (!file) 831 continue; 832 rcu_assign_pointer(fdt->fd[fd], NULL); 833 __put_unused_fd(files, fd); 834 spin_unlock(&files->file_lock); 835 filp_close(file, files); 836 cond_resched(); 837 spin_lock(&files->file_lock); 838 } 839 840 } 841 spin_unlock(&files->file_lock); 842 } 843 844 static struct file *__fget_files(struct files_struct *files, unsigned int fd, 845 fmode_t mask, unsigned int refs) 846 { 847 struct file *file; 848 849 rcu_read_lock(); 850 loop: 851 file = files_lookup_fd_rcu(files, fd); 852 if (file) { 853 /* File object ref couldn't be taken. 854 * dup2() atomicity guarantee is the reason 855 * we loop to catch the new file (or NULL pointer) 856 */ 857 if (file->f_mode & mask) 858 file = NULL; 859 else if (!get_file_rcu_many(file, refs)) 860 goto loop; 861 } 862 rcu_read_unlock(); 863 864 return file; 865 } 866 867 static inline struct file *__fget(unsigned int fd, fmode_t mask, 868 unsigned int refs) 869 { 870 return __fget_files(current->files, fd, mask, refs); 871 } 872 873 struct file *fget_many(unsigned int fd, unsigned int refs) 874 { 875 return __fget(fd, FMODE_PATH, refs); 876 } 877 878 struct file *fget(unsigned int fd) 879 { 880 return __fget(fd, FMODE_PATH, 1); 881 } 882 EXPORT_SYMBOL(fget); 883 884 struct file *fget_raw(unsigned int fd) 885 { 886 return __fget(fd, 0, 1); 887 } 888 EXPORT_SYMBOL(fget_raw); 889 890 struct file *fget_task(struct task_struct *task, unsigned int fd) 891 { 892 struct file *file = NULL; 893 894 task_lock(task); 895 if (task->files) 896 file = __fget_files(task->files, fd, 0, 1); 897 task_unlock(task); 898 899 return file; 900 } 901 902 struct file *task_lookup_fd_rcu(struct task_struct *task, unsigned int fd) 903 { 904 /* Must be called with rcu_read_lock held */ 905 struct files_struct *files; 906 struct file *file = NULL; 907 908 task_lock(task); 909 files = task->files; 910 if (files) 911 file = files_lookup_fd_rcu(files, fd); 912 task_unlock(task); 913 914 return file; 915 } 916 917 struct file *task_lookup_next_fd_rcu(struct task_struct *task, unsigned int *ret_fd) 918 { 919 /* Must be called with rcu_read_lock held */ 920 struct files_struct *files; 921 unsigned int fd = *ret_fd; 922 struct file *file = NULL; 923 924 task_lock(task); 925 files = task->files; 926 if (files) { 927 for (; fd < files_fdtable(files)->max_fds; fd++) { 928 file = files_lookup_fd_rcu(files, fd); 929 if (file) 930 break; 931 } 932 } 933 task_unlock(task); 934 *ret_fd = fd; 935 return file; 936 } 937 938 /* 939 * Lightweight file lookup - no refcnt increment if fd table isn't shared. 940 * 941 * You can use this instead of fget if you satisfy all of the following 942 * conditions: 943 * 1) You must call fput_light before exiting the syscall and returning control 944 * to userspace (i.e. you cannot remember the returned struct file * after 945 * returning to userspace). 946 * 2) You must not call filp_close on the returned struct file * in between 947 * calls to fget_light and fput_light. 948 * 3) You must not clone the current task in between the calls to fget_light 949 * and fput_light. 950 * 951 * The fput_needed flag returned by fget_light should be passed to the 952 * corresponding fput_light. 953 */ 954 static unsigned long __fget_light(unsigned int fd, fmode_t mask) 955 { 956 struct files_struct *files = current->files; 957 struct file *file; 958 959 if (atomic_read(&files->count) == 1) { 960 file = files_lookup_fd_raw(files, fd); 961 if (!file || unlikely(file->f_mode & mask)) 962 return 0; 963 return (unsigned long)file; 964 } else { 965 file = __fget(fd, mask, 1); 966 if (!file) 967 return 0; 968 return FDPUT_FPUT | (unsigned long)file; 969 } 970 } 971 unsigned long __fdget(unsigned int fd) 972 { 973 return __fget_light(fd, FMODE_PATH); 974 } 975 EXPORT_SYMBOL(__fdget); 976 977 unsigned long __fdget_raw(unsigned int fd) 978 { 979 return __fget_light(fd, 0); 980 } 981 982 unsigned long __fdget_pos(unsigned int fd) 983 { 984 unsigned long v = __fdget(fd); 985 struct file *file = (struct file *)(v & ~3); 986 987 if (file && (file->f_mode & FMODE_ATOMIC_POS)) { 988 if (file_count(file) > 1) { 989 v |= FDPUT_POS_UNLOCK; 990 mutex_lock(&file->f_pos_lock); 991 } 992 } 993 return v; 994 } 995 996 void __f_unlock_pos(struct file *f) 997 { 998 mutex_unlock(&f->f_pos_lock); 999 } 1000 1001 /* 1002 * We only lock f_pos if we have threads or if the file might be 1003 * shared with another process. In both cases we'll have an elevated 1004 * file count (done either by fdget() or by fork()). 1005 */ 1006 1007 void set_close_on_exec(unsigned int fd, int flag) 1008 { 1009 struct files_struct *files = current->files; 1010 struct fdtable *fdt; 1011 spin_lock(&files->file_lock); 1012 fdt = files_fdtable(files); 1013 if (flag) 1014 __set_close_on_exec(fd, fdt); 1015 else 1016 __clear_close_on_exec(fd, fdt); 1017 spin_unlock(&files->file_lock); 1018 } 1019 1020 bool get_close_on_exec(unsigned int fd) 1021 { 1022 struct files_struct *files = current->files; 1023 struct fdtable *fdt; 1024 bool res; 1025 rcu_read_lock(); 1026 fdt = files_fdtable(files); 1027 res = close_on_exec(fd, fdt); 1028 rcu_read_unlock(); 1029 return res; 1030 } 1031 1032 static int do_dup2(struct files_struct *files, 1033 struct file *file, unsigned fd, unsigned flags) 1034 __releases(&files->file_lock) 1035 { 1036 struct file *tofree; 1037 struct fdtable *fdt; 1038 1039 /* 1040 * We need to detect attempts to do dup2() over allocated but still 1041 * not finished descriptor. NB: OpenBSD avoids that at the price of 1042 * extra work in their equivalent of fget() - they insert struct 1043 * file immediately after grabbing descriptor, mark it larval if 1044 * more work (e.g. actual opening) is needed and make sure that 1045 * fget() treats larval files as absent. Potentially interesting, 1046 * but while extra work in fget() is trivial, locking implications 1047 * and amount of surgery on open()-related paths in VFS are not. 1048 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution" 1049 * deadlocks in rather amusing ways, AFAICS. All of that is out of 1050 * scope of POSIX or SUS, since neither considers shared descriptor 1051 * tables and this condition does not arise without those. 1052 */ 1053 fdt = files_fdtable(files); 1054 tofree = fdt->fd[fd]; 1055 if (!tofree && fd_is_open(fd, fdt)) 1056 goto Ebusy; 1057 get_file(file); 1058 rcu_assign_pointer(fdt->fd[fd], file); 1059 __set_open_fd(fd, fdt); 1060 if (flags & O_CLOEXEC) 1061 __set_close_on_exec(fd, fdt); 1062 else 1063 __clear_close_on_exec(fd, fdt); 1064 spin_unlock(&files->file_lock); 1065 1066 if (tofree) 1067 filp_close(tofree, files); 1068 1069 return fd; 1070 1071 Ebusy: 1072 spin_unlock(&files->file_lock); 1073 return -EBUSY; 1074 } 1075 1076 int replace_fd(unsigned fd, struct file *file, unsigned flags) 1077 { 1078 int err; 1079 struct files_struct *files = current->files; 1080 1081 if (!file) 1082 return close_fd(fd); 1083 1084 if (fd >= rlimit(RLIMIT_NOFILE)) 1085 return -EBADF; 1086 1087 spin_lock(&files->file_lock); 1088 err = expand_files(files, fd); 1089 if (unlikely(err < 0)) 1090 goto out_unlock; 1091 return do_dup2(files, file, fd, flags); 1092 1093 out_unlock: 1094 spin_unlock(&files->file_lock); 1095 return err; 1096 } 1097 1098 /** 1099 * __receive_fd() - Install received file into file descriptor table 1100 * @file: struct file that was received from another process 1101 * @ufd: __user pointer to write new fd number to 1102 * @o_flags: the O_* flags to apply to the new fd entry 1103 * 1104 * Installs a received file into the file descriptor table, with appropriate 1105 * checks and count updates. Optionally writes the fd number to userspace, if 1106 * @ufd is non-NULL. 1107 * 1108 * This helper handles its own reference counting of the incoming 1109 * struct file. 1110 * 1111 * Returns newly install fd or -ve on error. 1112 */ 1113 int __receive_fd(struct file *file, int __user *ufd, unsigned int o_flags) 1114 { 1115 int new_fd; 1116 int error; 1117 1118 error = security_file_receive(file); 1119 if (error) 1120 return error; 1121 1122 new_fd = get_unused_fd_flags(o_flags); 1123 if (new_fd < 0) 1124 return new_fd; 1125 1126 if (ufd) { 1127 error = put_user(new_fd, ufd); 1128 if (error) { 1129 put_unused_fd(new_fd); 1130 return error; 1131 } 1132 } 1133 1134 fd_install(new_fd, get_file(file)); 1135 __receive_sock(file); 1136 return new_fd; 1137 } 1138 1139 int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags) 1140 { 1141 int error; 1142 1143 error = security_file_receive(file); 1144 if (error) 1145 return error; 1146 error = replace_fd(new_fd, file, o_flags); 1147 if (error) 1148 return error; 1149 __receive_sock(file); 1150 return new_fd; 1151 } 1152 1153 int receive_fd(struct file *file, unsigned int o_flags) 1154 { 1155 return __receive_fd(file, NULL, o_flags); 1156 } 1157 EXPORT_SYMBOL_GPL(receive_fd); 1158 1159 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags) 1160 { 1161 int err = -EBADF; 1162 struct file *file; 1163 struct files_struct *files = current->files; 1164 1165 if ((flags & ~O_CLOEXEC) != 0) 1166 return -EINVAL; 1167 1168 if (unlikely(oldfd == newfd)) 1169 return -EINVAL; 1170 1171 if (newfd >= rlimit(RLIMIT_NOFILE)) 1172 return -EBADF; 1173 1174 spin_lock(&files->file_lock); 1175 err = expand_files(files, newfd); 1176 file = files_lookup_fd_locked(files, oldfd); 1177 if (unlikely(!file)) 1178 goto Ebadf; 1179 if (unlikely(err < 0)) { 1180 if (err == -EMFILE) 1181 goto Ebadf; 1182 goto out_unlock; 1183 } 1184 return do_dup2(files, file, newfd, flags); 1185 1186 Ebadf: 1187 err = -EBADF; 1188 out_unlock: 1189 spin_unlock(&files->file_lock); 1190 return err; 1191 } 1192 1193 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags) 1194 { 1195 return ksys_dup3(oldfd, newfd, flags); 1196 } 1197 1198 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd) 1199 { 1200 if (unlikely(newfd == oldfd)) { /* corner case */ 1201 struct files_struct *files = current->files; 1202 int retval = oldfd; 1203 1204 rcu_read_lock(); 1205 if (!files_lookup_fd_rcu(files, oldfd)) 1206 retval = -EBADF; 1207 rcu_read_unlock(); 1208 return retval; 1209 } 1210 return ksys_dup3(oldfd, newfd, 0); 1211 } 1212 1213 SYSCALL_DEFINE1(dup, unsigned int, fildes) 1214 { 1215 int ret = -EBADF; 1216 struct file *file = fget_raw(fildes); 1217 1218 if (file) { 1219 ret = get_unused_fd_flags(0); 1220 if (ret >= 0) 1221 fd_install(ret, file); 1222 else 1223 fput(file); 1224 } 1225 return ret; 1226 } 1227 1228 int f_dupfd(unsigned int from, struct file *file, unsigned flags) 1229 { 1230 unsigned long nofile = rlimit(RLIMIT_NOFILE); 1231 int err; 1232 if (from >= nofile) 1233 return -EINVAL; 1234 err = alloc_fd(from, nofile, flags); 1235 if (err >= 0) { 1236 get_file(file); 1237 fd_install(err, file); 1238 } 1239 return err; 1240 } 1241 1242 int iterate_fd(struct files_struct *files, unsigned n, 1243 int (*f)(const void *, struct file *, unsigned), 1244 const void *p) 1245 { 1246 struct fdtable *fdt; 1247 int res = 0; 1248 if (!files) 1249 return 0; 1250 spin_lock(&files->file_lock); 1251 for (fdt = files_fdtable(files); n < fdt->max_fds; n++) { 1252 struct file *file; 1253 file = rcu_dereference_check_fdtable(files, fdt->fd[n]); 1254 if (!file) 1255 continue; 1256 res = f(p, file, n); 1257 if (res) 1258 break; 1259 } 1260 spin_unlock(&files->file_lock); 1261 return res; 1262 } 1263 EXPORT_SYMBOL(iterate_fd); 1264