1 /* 2 * linux/fs/file.c 3 * 4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes 5 * 6 * Manage the dynamic fd arrays in the process files_struct. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/time.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/file.h> 16 #include <linux/fdtable.h> 17 #include <linux/bitops.h> 18 #include <linux/interrupt.h> 19 #include <linux/spinlock.h> 20 #include <linux/rcupdate.h> 21 #include <linux/workqueue.h> 22 23 struct fdtable_defer { 24 spinlock_t lock; 25 struct work_struct wq; 26 struct fdtable *next; 27 }; 28 29 int sysctl_nr_open __read_mostly = 1024*1024; 30 int sysctl_nr_open_min = BITS_PER_LONG; 31 int sysctl_nr_open_max = 1024 * 1024; /* raised later */ 32 33 /* 34 * We use this list to defer free fdtables that have vmalloced 35 * sets/arrays. By keeping a per-cpu list, we avoid having to embed 36 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in 37 * this per-task structure. 38 */ 39 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list); 40 41 static inline void * alloc_fdmem(unsigned int size) 42 { 43 if (size <= PAGE_SIZE) 44 return kmalloc(size, GFP_KERNEL); 45 else 46 return vmalloc(size); 47 } 48 49 static inline void free_fdarr(struct fdtable *fdt) 50 { 51 if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) 52 kfree(fdt->fd); 53 else 54 vfree(fdt->fd); 55 } 56 57 static inline void free_fdset(struct fdtable *fdt) 58 { 59 if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2)) 60 kfree(fdt->open_fds); 61 else 62 vfree(fdt->open_fds); 63 } 64 65 static void free_fdtable_work(struct work_struct *work) 66 { 67 struct fdtable_defer *f = 68 container_of(work, struct fdtable_defer, wq); 69 struct fdtable *fdt; 70 71 spin_lock_bh(&f->lock); 72 fdt = f->next; 73 f->next = NULL; 74 spin_unlock_bh(&f->lock); 75 while(fdt) { 76 struct fdtable *next = fdt->next; 77 vfree(fdt->fd); 78 free_fdset(fdt); 79 kfree(fdt); 80 fdt = next; 81 } 82 } 83 84 void free_fdtable_rcu(struct rcu_head *rcu) 85 { 86 struct fdtable *fdt = container_of(rcu, struct fdtable, rcu); 87 struct fdtable_defer *fddef; 88 89 BUG_ON(!fdt); 90 91 if (fdt->max_fds <= NR_OPEN_DEFAULT) { 92 /* 93 * This fdtable is embedded in the files structure and that 94 * structure itself is getting destroyed. 95 */ 96 kmem_cache_free(files_cachep, 97 container_of(fdt, struct files_struct, fdtab)); 98 return; 99 } 100 if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) { 101 kfree(fdt->fd); 102 kfree(fdt->open_fds); 103 kfree(fdt); 104 } else { 105 fddef = &get_cpu_var(fdtable_defer_list); 106 spin_lock(&fddef->lock); 107 fdt->next = fddef->next; 108 fddef->next = fdt; 109 /* vmallocs are handled from the workqueue context */ 110 schedule_work(&fddef->wq); 111 spin_unlock(&fddef->lock); 112 put_cpu_var(fdtable_defer_list); 113 } 114 } 115 116 /* 117 * Expand the fdset in the files_struct. Called with the files spinlock 118 * held for write. 119 */ 120 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) 121 { 122 unsigned int cpy, set; 123 124 BUG_ON(nfdt->max_fds < ofdt->max_fds); 125 126 cpy = ofdt->max_fds * sizeof(struct file *); 127 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); 128 memcpy(nfdt->fd, ofdt->fd, cpy); 129 memset((char *)(nfdt->fd) + cpy, 0, set); 130 131 cpy = ofdt->max_fds / BITS_PER_BYTE; 132 set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE; 133 memcpy(nfdt->open_fds, ofdt->open_fds, cpy); 134 memset((char *)(nfdt->open_fds) + cpy, 0, set); 135 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); 136 memset((char *)(nfdt->close_on_exec) + cpy, 0, set); 137 } 138 139 static struct fdtable * alloc_fdtable(unsigned int nr) 140 { 141 struct fdtable *fdt; 142 char *data; 143 144 /* 145 * Figure out how many fds we actually want to support in this fdtable. 146 * Allocation steps are keyed to the size of the fdarray, since it 147 * grows far faster than any of the other dynamic data. We try to fit 148 * the fdarray into comfortable page-tuned chunks: starting at 1024B 149 * and growing in powers of two from there on. 150 */ 151 nr /= (1024 / sizeof(struct file *)); 152 nr = roundup_pow_of_two(nr + 1); 153 nr *= (1024 / sizeof(struct file *)); 154 /* 155 * Note that this can drive nr *below* what we had passed if sysctl_nr_open 156 * had been set lower between the check in expand_files() and here. Deal 157 * with that in caller, it's cheaper that way. 158 * 159 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise 160 * bitmaps handling below becomes unpleasant, to put it mildly... 161 */ 162 if (unlikely(nr > sysctl_nr_open)) 163 nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; 164 165 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL); 166 if (!fdt) 167 goto out; 168 fdt->max_fds = nr; 169 data = alloc_fdmem(nr * sizeof(struct file *)); 170 if (!data) 171 goto out_fdt; 172 fdt->fd = (struct file **)data; 173 data = alloc_fdmem(max_t(unsigned int, 174 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES)); 175 if (!data) 176 goto out_arr; 177 fdt->open_fds = (fd_set *)data; 178 data += nr / BITS_PER_BYTE; 179 fdt->close_on_exec = (fd_set *)data; 180 INIT_RCU_HEAD(&fdt->rcu); 181 fdt->next = NULL; 182 183 return fdt; 184 185 out_arr: 186 free_fdarr(fdt); 187 out_fdt: 188 kfree(fdt); 189 out: 190 return NULL; 191 } 192 193 /* 194 * Expand the file descriptor table. 195 * This function will allocate a new fdtable and both fd array and fdset, of 196 * the given size. 197 * Return <0 error code on error; 1 on successful completion. 198 * The files->file_lock should be held on entry, and will be held on exit. 199 */ 200 static int expand_fdtable(struct files_struct *files, int nr) 201 __releases(files->file_lock) 202 __acquires(files->file_lock) 203 { 204 struct fdtable *new_fdt, *cur_fdt; 205 206 spin_unlock(&files->file_lock); 207 new_fdt = alloc_fdtable(nr); 208 spin_lock(&files->file_lock); 209 if (!new_fdt) 210 return -ENOMEM; 211 /* 212 * extremely unlikely race - sysctl_nr_open decreased between the check in 213 * caller and alloc_fdtable(). Cheaper to catch it here... 214 */ 215 if (unlikely(new_fdt->max_fds <= nr)) { 216 free_fdarr(new_fdt); 217 free_fdset(new_fdt); 218 kfree(new_fdt); 219 return -EMFILE; 220 } 221 /* 222 * Check again since another task may have expanded the fd table while 223 * we dropped the lock 224 */ 225 cur_fdt = files_fdtable(files); 226 if (nr >= cur_fdt->max_fds) { 227 /* Continue as planned */ 228 copy_fdtable(new_fdt, cur_fdt); 229 rcu_assign_pointer(files->fdt, new_fdt); 230 if (cur_fdt->max_fds > NR_OPEN_DEFAULT) 231 free_fdtable(cur_fdt); 232 } else { 233 /* Somebody else expanded, so undo our attempt */ 234 free_fdarr(new_fdt); 235 free_fdset(new_fdt); 236 kfree(new_fdt); 237 } 238 return 1; 239 } 240 241 /* 242 * Expand files. 243 * This function will expand the file structures, if the requested size exceeds 244 * the current capacity and there is room for expansion. 245 * Return <0 error code on error; 0 when nothing done; 1 when files were 246 * expanded and execution may have blocked. 247 * The files->file_lock should be held on entry, and will be held on exit. 248 */ 249 int expand_files(struct files_struct *files, int nr) 250 { 251 struct fdtable *fdt; 252 253 fdt = files_fdtable(files); 254 255 /* 256 * N.B. For clone tasks sharing a files structure, this test 257 * will limit the total number of files that can be opened. 258 */ 259 if (nr >= current->signal->rlim[RLIMIT_NOFILE].rlim_cur) 260 return -EMFILE; 261 262 /* Do we need to expand? */ 263 if (nr < fdt->max_fds) 264 return 0; 265 266 /* Can we expand? */ 267 if (nr >= sysctl_nr_open) 268 return -EMFILE; 269 270 /* All good, so we try */ 271 return expand_fdtable(files, nr); 272 } 273 274 static int count_open_files(struct fdtable *fdt) 275 { 276 int size = fdt->max_fds; 277 int i; 278 279 /* Find the last open fd */ 280 for (i = size/(8*sizeof(long)); i > 0; ) { 281 if (fdt->open_fds->fds_bits[--i]) 282 break; 283 } 284 i = (i+1) * 8 * sizeof(long); 285 return i; 286 } 287 288 /* 289 * Allocate a new files structure and copy contents from the 290 * passed in files structure. 291 * errorp will be valid only when the returned files_struct is NULL. 292 */ 293 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) 294 { 295 struct files_struct *newf; 296 struct file **old_fds, **new_fds; 297 int open_files, size, i; 298 struct fdtable *old_fdt, *new_fdt; 299 300 *errorp = -ENOMEM; 301 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); 302 if (!newf) 303 goto out; 304 305 atomic_set(&newf->count, 1); 306 307 spin_lock_init(&newf->file_lock); 308 newf->next_fd = 0; 309 new_fdt = &newf->fdtab; 310 new_fdt->max_fds = NR_OPEN_DEFAULT; 311 new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init; 312 new_fdt->open_fds = (fd_set *)&newf->open_fds_init; 313 new_fdt->fd = &newf->fd_array[0]; 314 INIT_RCU_HEAD(&new_fdt->rcu); 315 new_fdt->next = NULL; 316 317 spin_lock(&oldf->file_lock); 318 old_fdt = files_fdtable(oldf); 319 open_files = count_open_files(old_fdt); 320 321 /* 322 * Check whether we need to allocate a larger fd array and fd set. 323 */ 324 while (unlikely(open_files > new_fdt->max_fds)) { 325 spin_unlock(&oldf->file_lock); 326 327 if (new_fdt != &newf->fdtab) { 328 free_fdarr(new_fdt); 329 free_fdset(new_fdt); 330 kfree(new_fdt); 331 } 332 333 new_fdt = alloc_fdtable(open_files - 1); 334 if (!new_fdt) { 335 *errorp = -ENOMEM; 336 goto out_release; 337 } 338 339 /* beyond sysctl_nr_open; nothing to do */ 340 if (unlikely(new_fdt->max_fds < open_files)) { 341 free_fdarr(new_fdt); 342 free_fdset(new_fdt); 343 kfree(new_fdt); 344 *errorp = -EMFILE; 345 goto out_release; 346 } 347 348 /* 349 * Reacquire the oldf lock and a pointer to its fd table 350 * who knows it may have a new bigger fd table. We need 351 * the latest pointer. 352 */ 353 spin_lock(&oldf->file_lock); 354 old_fdt = files_fdtable(oldf); 355 open_files = count_open_files(old_fdt); 356 } 357 358 old_fds = old_fdt->fd; 359 new_fds = new_fdt->fd; 360 361 memcpy(new_fdt->open_fds->fds_bits, 362 old_fdt->open_fds->fds_bits, open_files/8); 363 memcpy(new_fdt->close_on_exec->fds_bits, 364 old_fdt->close_on_exec->fds_bits, open_files/8); 365 366 for (i = open_files; i != 0; i--) { 367 struct file *f = *old_fds++; 368 if (f) { 369 get_file(f); 370 } else { 371 /* 372 * The fd may be claimed in the fd bitmap but not yet 373 * instantiated in the files array if a sibling thread 374 * is partway through open(). So make sure that this 375 * fd is available to the new process. 376 */ 377 FD_CLR(open_files - i, new_fdt->open_fds); 378 } 379 rcu_assign_pointer(*new_fds++, f); 380 } 381 spin_unlock(&oldf->file_lock); 382 383 /* compute the remainder to be cleared */ 384 size = (new_fdt->max_fds - open_files) * sizeof(struct file *); 385 386 /* This is long word aligned thus could use a optimized version */ 387 memset(new_fds, 0, size); 388 389 if (new_fdt->max_fds > open_files) { 390 int left = (new_fdt->max_fds-open_files)/8; 391 int start = open_files / (8 * sizeof(unsigned long)); 392 393 memset(&new_fdt->open_fds->fds_bits[start], 0, left); 394 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left); 395 } 396 397 rcu_assign_pointer(newf->fdt, new_fdt); 398 399 return newf; 400 401 out_release: 402 kmem_cache_free(files_cachep, newf); 403 out: 404 return NULL; 405 } 406 407 static void __devinit fdtable_defer_list_init(int cpu) 408 { 409 struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu); 410 spin_lock_init(&fddef->lock); 411 INIT_WORK(&fddef->wq, free_fdtable_work); 412 fddef->next = NULL; 413 } 414 415 void __init files_defer_init(void) 416 { 417 int i; 418 for_each_possible_cpu(i) 419 fdtable_defer_list_init(i); 420 sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) & 421 -BITS_PER_LONG; 422 } 423 424 struct files_struct init_files = { 425 .count = ATOMIC_INIT(1), 426 .fdt = &init_files.fdtab, 427 .fdtab = { 428 .max_fds = NR_OPEN_DEFAULT, 429 .fd = &init_files.fd_array[0], 430 .close_on_exec = (fd_set *)&init_files.close_on_exec_init, 431 .open_fds = (fd_set *)&init_files.open_fds_init, 432 .rcu = RCU_HEAD_INIT, 433 }, 434 .file_lock = __SPIN_LOCK_UNLOCKED(init_task.file_lock), 435 }; 436 437 /* 438 * allocate a file descriptor, mark it busy. 439 */ 440 int alloc_fd(unsigned start, unsigned flags) 441 { 442 struct files_struct *files = current->files; 443 unsigned int fd; 444 int error; 445 struct fdtable *fdt; 446 447 spin_lock(&files->file_lock); 448 repeat: 449 fdt = files_fdtable(files); 450 fd = start; 451 if (fd < files->next_fd) 452 fd = files->next_fd; 453 454 if (fd < fdt->max_fds) 455 fd = find_next_zero_bit(fdt->open_fds->fds_bits, 456 fdt->max_fds, fd); 457 458 error = expand_files(files, fd); 459 if (error < 0) 460 goto out; 461 462 /* 463 * If we needed to expand the fs array we 464 * might have blocked - try again. 465 */ 466 if (error) 467 goto repeat; 468 469 if (start <= files->next_fd) 470 files->next_fd = fd + 1; 471 472 FD_SET(fd, fdt->open_fds); 473 if (flags & O_CLOEXEC) 474 FD_SET(fd, fdt->close_on_exec); 475 else 476 FD_CLR(fd, fdt->close_on_exec); 477 error = fd; 478 #if 1 479 /* Sanity check */ 480 if (rcu_dereference(fdt->fd[fd]) != NULL) { 481 printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd); 482 rcu_assign_pointer(fdt->fd[fd], NULL); 483 } 484 #endif 485 486 out: 487 spin_unlock(&files->file_lock); 488 return error; 489 } 490 491 int get_unused_fd(void) 492 { 493 return alloc_fd(0, 0); 494 } 495 EXPORT_SYMBOL(get_unused_fd); 496