xref: /linux/fs/file.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  linux/fs/file.c
3  *
4  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
5  *
6  *  Manage the dynamic fd arrays in the process files_struct.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/time.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/file.h>
16 #include <linux/fdtable.h>
17 #include <linux/bitops.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <linux/workqueue.h>
22 
23 struct fdtable_defer {
24 	spinlock_t lock;
25 	struct work_struct wq;
26 	struct fdtable *next;
27 };
28 
29 int sysctl_nr_open __read_mostly = 1024*1024;
30 int sysctl_nr_open_min = BITS_PER_LONG;
31 int sysctl_nr_open_max = 1024 * 1024; /* raised later */
32 
33 /*
34  * We use this list to defer free fdtables that have vmalloced
35  * sets/arrays. By keeping a per-cpu list, we avoid having to embed
36  * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
37  * this per-task structure.
38  */
39 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
40 
41 static inline void * alloc_fdmem(unsigned int size)
42 {
43 	if (size <= PAGE_SIZE)
44 		return kmalloc(size, GFP_KERNEL);
45 	else
46 		return vmalloc(size);
47 }
48 
49 static inline void free_fdarr(struct fdtable *fdt)
50 {
51 	if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *)))
52 		kfree(fdt->fd);
53 	else
54 		vfree(fdt->fd);
55 }
56 
57 static inline void free_fdset(struct fdtable *fdt)
58 {
59 	if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2))
60 		kfree(fdt->open_fds);
61 	else
62 		vfree(fdt->open_fds);
63 }
64 
65 static void free_fdtable_work(struct work_struct *work)
66 {
67 	struct fdtable_defer *f =
68 		container_of(work, struct fdtable_defer, wq);
69 	struct fdtable *fdt;
70 
71 	spin_lock_bh(&f->lock);
72 	fdt = f->next;
73 	f->next = NULL;
74 	spin_unlock_bh(&f->lock);
75 	while(fdt) {
76 		struct fdtable *next = fdt->next;
77 		vfree(fdt->fd);
78 		free_fdset(fdt);
79 		kfree(fdt);
80 		fdt = next;
81 	}
82 }
83 
84 void free_fdtable_rcu(struct rcu_head *rcu)
85 {
86 	struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
87 	struct fdtable_defer *fddef;
88 
89 	BUG_ON(!fdt);
90 
91 	if (fdt->max_fds <= NR_OPEN_DEFAULT) {
92 		/*
93 		 * This fdtable is embedded in the files structure and that
94 		 * structure itself is getting destroyed.
95 		 */
96 		kmem_cache_free(files_cachep,
97 				container_of(fdt, struct files_struct, fdtab));
98 		return;
99 	}
100 	if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) {
101 		kfree(fdt->fd);
102 		kfree(fdt->open_fds);
103 		kfree(fdt);
104 	} else {
105 		fddef = &get_cpu_var(fdtable_defer_list);
106 		spin_lock(&fddef->lock);
107 		fdt->next = fddef->next;
108 		fddef->next = fdt;
109 		/* vmallocs are handled from the workqueue context */
110 		schedule_work(&fddef->wq);
111 		spin_unlock(&fddef->lock);
112 		put_cpu_var(fdtable_defer_list);
113 	}
114 }
115 
116 /*
117  * Expand the fdset in the files_struct.  Called with the files spinlock
118  * held for write.
119  */
120 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
121 {
122 	unsigned int cpy, set;
123 
124 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
125 
126 	cpy = ofdt->max_fds * sizeof(struct file *);
127 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
128 	memcpy(nfdt->fd, ofdt->fd, cpy);
129 	memset((char *)(nfdt->fd) + cpy, 0, set);
130 
131 	cpy = ofdt->max_fds / BITS_PER_BYTE;
132 	set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
133 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
134 	memset((char *)(nfdt->open_fds) + cpy, 0, set);
135 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
136 	memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
137 }
138 
139 static struct fdtable * alloc_fdtable(unsigned int nr)
140 {
141 	struct fdtable *fdt;
142 	char *data;
143 
144 	/*
145 	 * Figure out how many fds we actually want to support in this fdtable.
146 	 * Allocation steps are keyed to the size of the fdarray, since it
147 	 * grows far faster than any of the other dynamic data. We try to fit
148 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
149 	 * and growing in powers of two from there on.
150 	 */
151 	nr /= (1024 / sizeof(struct file *));
152 	nr = roundup_pow_of_two(nr + 1);
153 	nr *= (1024 / sizeof(struct file *));
154 	/*
155 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
156 	 * had been set lower between the check in expand_files() and here.  Deal
157 	 * with that in caller, it's cheaper that way.
158 	 *
159 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
160 	 * bitmaps handling below becomes unpleasant, to put it mildly...
161 	 */
162 	if (unlikely(nr > sysctl_nr_open))
163 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
164 
165 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
166 	if (!fdt)
167 		goto out;
168 	fdt->max_fds = nr;
169 	data = alloc_fdmem(nr * sizeof(struct file *));
170 	if (!data)
171 		goto out_fdt;
172 	fdt->fd = (struct file **)data;
173 	data = alloc_fdmem(max_t(unsigned int,
174 				 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
175 	if (!data)
176 		goto out_arr;
177 	fdt->open_fds = (fd_set *)data;
178 	data += nr / BITS_PER_BYTE;
179 	fdt->close_on_exec = (fd_set *)data;
180 	INIT_RCU_HEAD(&fdt->rcu);
181 	fdt->next = NULL;
182 
183 	return fdt;
184 
185 out_arr:
186 	free_fdarr(fdt);
187 out_fdt:
188 	kfree(fdt);
189 out:
190 	return NULL;
191 }
192 
193 /*
194  * Expand the file descriptor table.
195  * This function will allocate a new fdtable and both fd array and fdset, of
196  * the given size.
197  * Return <0 error code on error; 1 on successful completion.
198  * The files->file_lock should be held on entry, and will be held on exit.
199  */
200 static int expand_fdtable(struct files_struct *files, int nr)
201 	__releases(files->file_lock)
202 	__acquires(files->file_lock)
203 {
204 	struct fdtable *new_fdt, *cur_fdt;
205 
206 	spin_unlock(&files->file_lock);
207 	new_fdt = alloc_fdtable(nr);
208 	spin_lock(&files->file_lock);
209 	if (!new_fdt)
210 		return -ENOMEM;
211 	/*
212 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
213 	 * caller and alloc_fdtable().  Cheaper to catch it here...
214 	 */
215 	if (unlikely(new_fdt->max_fds <= nr)) {
216 		free_fdarr(new_fdt);
217 		free_fdset(new_fdt);
218 		kfree(new_fdt);
219 		return -EMFILE;
220 	}
221 	/*
222 	 * Check again since another task may have expanded the fd table while
223 	 * we dropped the lock
224 	 */
225 	cur_fdt = files_fdtable(files);
226 	if (nr >= cur_fdt->max_fds) {
227 		/* Continue as planned */
228 		copy_fdtable(new_fdt, cur_fdt);
229 		rcu_assign_pointer(files->fdt, new_fdt);
230 		if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
231 			free_fdtable(cur_fdt);
232 	} else {
233 		/* Somebody else expanded, so undo our attempt */
234 		free_fdarr(new_fdt);
235 		free_fdset(new_fdt);
236 		kfree(new_fdt);
237 	}
238 	return 1;
239 }
240 
241 /*
242  * Expand files.
243  * This function will expand the file structures, if the requested size exceeds
244  * the current capacity and there is room for expansion.
245  * Return <0 error code on error; 0 when nothing done; 1 when files were
246  * expanded and execution may have blocked.
247  * The files->file_lock should be held on entry, and will be held on exit.
248  */
249 int expand_files(struct files_struct *files, int nr)
250 {
251 	struct fdtable *fdt;
252 
253 	fdt = files_fdtable(files);
254 
255 	/*
256 	 * N.B. For clone tasks sharing a files structure, this test
257 	 * will limit the total number of files that can be opened.
258 	 */
259 	if (nr >= current->signal->rlim[RLIMIT_NOFILE].rlim_cur)
260 		return -EMFILE;
261 
262 	/* Do we need to expand? */
263 	if (nr < fdt->max_fds)
264 		return 0;
265 
266 	/* Can we expand? */
267 	if (nr >= sysctl_nr_open)
268 		return -EMFILE;
269 
270 	/* All good, so we try */
271 	return expand_fdtable(files, nr);
272 }
273 
274 static int count_open_files(struct fdtable *fdt)
275 {
276 	int size = fdt->max_fds;
277 	int i;
278 
279 	/* Find the last open fd */
280 	for (i = size/(8*sizeof(long)); i > 0; ) {
281 		if (fdt->open_fds->fds_bits[--i])
282 			break;
283 	}
284 	i = (i+1) * 8 * sizeof(long);
285 	return i;
286 }
287 
288 /*
289  * Allocate a new files structure and copy contents from the
290  * passed in files structure.
291  * errorp will be valid only when the returned files_struct is NULL.
292  */
293 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
294 {
295 	struct files_struct *newf;
296 	struct file **old_fds, **new_fds;
297 	int open_files, size, i;
298 	struct fdtable *old_fdt, *new_fdt;
299 
300 	*errorp = -ENOMEM;
301 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
302 	if (!newf)
303 		goto out;
304 
305 	atomic_set(&newf->count, 1);
306 
307 	spin_lock_init(&newf->file_lock);
308 	newf->next_fd = 0;
309 	new_fdt = &newf->fdtab;
310 	new_fdt->max_fds = NR_OPEN_DEFAULT;
311 	new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
312 	new_fdt->open_fds = (fd_set *)&newf->open_fds_init;
313 	new_fdt->fd = &newf->fd_array[0];
314 	INIT_RCU_HEAD(&new_fdt->rcu);
315 	new_fdt->next = NULL;
316 
317 	spin_lock(&oldf->file_lock);
318 	old_fdt = files_fdtable(oldf);
319 	open_files = count_open_files(old_fdt);
320 
321 	/*
322 	 * Check whether we need to allocate a larger fd array and fd set.
323 	 */
324 	while (unlikely(open_files > new_fdt->max_fds)) {
325 		spin_unlock(&oldf->file_lock);
326 
327 		if (new_fdt != &newf->fdtab) {
328 			free_fdarr(new_fdt);
329 			free_fdset(new_fdt);
330 			kfree(new_fdt);
331 		}
332 
333 		new_fdt = alloc_fdtable(open_files - 1);
334 		if (!new_fdt) {
335 			*errorp = -ENOMEM;
336 			goto out_release;
337 		}
338 
339 		/* beyond sysctl_nr_open; nothing to do */
340 		if (unlikely(new_fdt->max_fds < open_files)) {
341 			free_fdarr(new_fdt);
342 			free_fdset(new_fdt);
343 			kfree(new_fdt);
344 			*errorp = -EMFILE;
345 			goto out_release;
346 		}
347 
348 		/*
349 		 * Reacquire the oldf lock and a pointer to its fd table
350 		 * who knows it may have a new bigger fd table. We need
351 		 * the latest pointer.
352 		 */
353 		spin_lock(&oldf->file_lock);
354 		old_fdt = files_fdtable(oldf);
355 		open_files = count_open_files(old_fdt);
356 	}
357 
358 	old_fds = old_fdt->fd;
359 	new_fds = new_fdt->fd;
360 
361 	memcpy(new_fdt->open_fds->fds_bits,
362 		old_fdt->open_fds->fds_bits, open_files/8);
363 	memcpy(new_fdt->close_on_exec->fds_bits,
364 		old_fdt->close_on_exec->fds_bits, open_files/8);
365 
366 	for (i = open_files; i != 0; i--) {
367 		struct file *f = *old_fds++;
368 		if (f) {
369 			get_file(f);
370 		} else {
371 			/*
372 			 * The fd may be claimed in the fd bitmap but not yet
373 			 * instantiated in the files array if a sibling thread
374 			 * is partway through open().  So make sure that this
375 			 * fd is available to the new process.
376 			 */
377 			FD_CLR(open_files - i, new_fdt->open_fds);
378 		}
379 		rcu_assign_pointer(*new_fds++, f);
380 	}
381 	spin_unlock(&oldf->file_lock);
382 
383 	/* compute the remainder to be cleared */
384 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
385 
386 	/* This is long word aligned thus could use a optimized version */
387 	memset(new_fds, 0, size);
388 
389 	if (new_fdt->max_fds > open_files) {
390 		int left = (new_fdt->max_fds-open_files)/8;
391 		int start = open_files / (8 * sizeof(unsigned long));
392 
393 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
394 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
395 	}
396 
397 	rcu_assign_pointer(newf->fdt, new_fdt);
398 
399 	return newf;
400 
401 out_release:
402 	kmem_cache_free(files_cachep, newf);
403 out:
404 	return NULL;
405 }
406 
407 static void __devinit fdtable_defer_list_init(int cpu)
408 {
409 	struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
410 	spin_lock_init(&fddef->lock);
411 	INIT_WORK(&fddef->wq, free_fdtable_work);
412 	fddef->next = NULL;
413 }
414 
415 void __init files_defer_init(void)
416 {
417 	int i;
418 	for_each_possible_cpu(i)
419 		fdtable_defer_list_init(i);
420 	sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
421 			     -BITS_PER_LONG;
422 }
423 
424 struct files_struct init_files = {
425 	.count		= ATOMIC_INIT(1),
426 	.fdt		= &init_files.fdtab,
427 	.fdtab		= {
428 		.max_fds	= NR_OPEN_DEFAULT,
429 		.fd		= &init_files.fd_array[0],
430 		.close_on_exec	= (fd_set *)&init_files.close_on_exec_init,
431 		.open_fds	= (fd_set *)&init_files.open_fds_init,
432 		.rcu		= RCU_HEAD_INIT,
433 	},
434 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock),
435 };
436 
437 /*
438  * allocate a file descriptor, mark it busy.
439  */
440 int alloc_fd(unsigned start, unsigned flags)
441 {
442 	struct files_struct *files = current->files;
443 	unsigned int fd;
444 	int error;
445 	struct fdtable *fdt;
446 
447 	spin_lock(&files->file_lock);
448 repeat:
449 	fdt = files_fdtable(files);
450 	fd = start;
451 	if (fd < files->next_fd)
452 		fd = files->next_fd;
453 
454 	if (fd < fdt->max_fds)
455 		fd = find_next_zero_bit(fdt->open_fds->fds_bits,
456 					   fdt->max_fds, fd);
457 
458 	error = expand_files(files, fd);
459 	if (error < 0)
460 		goto out;
461 
462 	/*
463 	 * If we needed to expand the fs array we
464 	 * might have blocked - try again.
465 	 */
466 	if (error)
467 		goto repeat;
468 
469 	if (start <= files->next_fd)
470 		files->next_fd = fd + 1;
471 
472 	FD_SET(fd, fdt->open_fds);
473 	if (flags & O_CLOEXEC)
474 		FD_SET(fd, fdt->close_on_exec);
475 	else
476 		FD_CLR(fd, fdt->close_on_exec);
477 	error = fd;
478 #if 1
479 	/* Sanity check */
480 	if (rcu_dereference(fdt->fd[fd]) != NULL) {
481 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
482 		rcu_assign_pointer(fdt->fd[fd], NULL);
483 	}
484 #endif
485 
486 out:
487 	spin_unlock(&files->file_lock);
488 	return error;
489 }
490 
491 int get_unused_fd(void)
492 {
493 	return alloc_fd(0, 0);
494 }
495 EXPORT_SYMBOL(get_unused_fd);
496