1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/file.c 4 * 5 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes 6 * 7 * Manage the dynamic fd arrays in the process files_struct. 8 */ 9 10 #include <linux/syscalls.h> 11 #include <linux/export.h> 12 #include <linux/fs.h> 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/file.h> 18 #include <linux/fdtable.h> 19 #include <linux/bitops.h> 20 #include <linux/spinlock.h> 21 #include <linux/rcupdate.h> 22 #include <linux/close_range.h> 23 #include <net/sock.h> 24 25 #include "internal.h" 26 27 unsigned int sysctl_nr_open __read_mostly = 1024*1024; 28 unsigned int sysctl_nr_open_min = BITS_PER_LONG; 29 /* our min() is unusable in constant expressions ;-/ */ 30 #define __const_min(x, y) ((x) < (y) ? (x) : (y)) 31 unsigned int sysctl_nr_open_max = 32 __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG; 33 34 static void __free_fdtable(struct fdtable *fdt) 35 { 36 kvfree(fdt->fd); 37 kvfree(fdt->open_fds); 38 kfree(fdt); 39 } 40 41 static void free_fdtable_rcu(struct rcu_head *rcu) 42 { 43 __free_fdtable(container_of(rcu, struct fdtable, rcu)); 44 } 45 46 #define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr)) 47 #define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long)) 48 49 /* 50 * Copy 'count' fd bits from the old table to the new table and clear the extra 51 * space if any. This does not copy the file pointers. Called with the files 52 * spinlock held for write. 53 */ 54 static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt, 55 unsigned int count) 56 { 57 unsigned int cpy, set; 58 59 cpy = count / BITS_PER_BYTE; 60 set = (nfdt->max_fds - count) / BITS_PER_BYTE; 61 memcpy(nfdt->open_fds, ofdt->open_fds, cpy); 62 memset((char *)nfdt->open_fds + cpy, 0, set); 63 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); 64 memset((char *)nfdt->close_on_exec + cpy, 0, set); 65 66 cpy = BITBIT_SIZE(count); 67 set = BITBIT_SIZE(nfdt->max_fds) - cpy; 68 memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy); 69 memset((char *)nfdt->full_fds_bits + cpy, 0, set); 70 } 71 72 /* 73 * Copy all file descriptors from the old table to the new, expanded table and 74 * clear the extra space. Called with the files spinlock held for write. 75 */ 76 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) 77 { 78 size_t cpy, set; 79 80 BUG_ON(nfdt->max_fds < ofdt->max_fds); 81 82 cpy = ofdt->max_fds * sizeof(struct file *); 83 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); 84 memcpy(nfdt->fd, ofdt->fd, cpy); 85 memset((char *)nfdt->fd + cpy, 0, set); 86 87 copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds); 88 } 89 90 static struct fdtable * alloc_fdtable(unsigned int nr) 91 { 92 struct fdtable *fdt; 93 void *data; 94 95 /* 96 * Figure out how many fds we actually want to support in this fdtable. 97 * Allocation steps are keyed to the size of the fdarray, since it 98 * grows far faster than any of the other dynamic data. We try to fit 99 * the fdarray into comfortable page-tuned chunks: starting at 1024B 100 * and growing in powers of two from there on. 101 */ 102 nr /= (1024 / sizeof(struct file *)); 103 nr = roundup_pow_of_two(nr + 1); 104 nr *= (1024 / sizeof(struct file *)); 105 /* 106 * Note that this can drive nr *below* what we had passed if sysctl_nr_open 107 * had been set lower between the check in expand_files() and here. Deal 108 * with that in caller, it's cheaper that way. 109 * 110 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise 111 * bitmaps handling below becomes unpleasant, to put it mildly... 112 */ 113 if (unlikely(nr > sysctl_nr_open)) 114 nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; 115 116 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT); 117 if (!fdt) 118 goto out; 119 fdt->max_fds = nr; 120 data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT); 121 if (!data) 122 goto out_fdt; 123 fdt->fd = data; 124 125 data = kvmalloc(max_t(size_t, 126 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES), 127 GFP_KERNEL_ACCOUNT); 128 if (!data) 129 goto out_arr; 130 fdt->open_fds = data; 131 data += nr / BITS_PER_BYTE; 132 fdt->close_on_exec = data; 133 data += nr / BITS_PER_BYTE; 134 fdt->full_fds_bits = data; 135 136 return fdt; 137 138 out_arr: 139 kvfree(fdt->fd); 140 out_fdt: 141 kfree(fdt); 142 out: 143 return NULL; 144 } 145 146 /* 147 * Expand the file descriptor table. 148 * This function will allocate a new fdtable and both fd array and fdset, of 149 * the given size. 150 * Return <0 error code on error; 1 on successful completion. 151 * The files->file_lock should be held on entry, and will be held on exit. 152 */ 153 static int expand_fdtable(struct files_struct *files, unsigned int nr) 154 __releases(files->file_lock) 155 __acquires(files->file_lock) 156 { 157 struct fdtable *new_fdt, *cur_fdt; 158 159 spin_unlock(&files->file_lock); 160 new_fdt = alloc_fdtable(nr); 161 162 /* make sure all fd_install() have seen resize_in_progress 163 * or have finished their rcu_read_lock_sched() section. 164 */ 165 if (atomic_read(&files->count) > 1) 166 synchronize_rcu(); 167 168 spin_lock(&files->file_lock); 169 if (!new_fdt) 170 return -ENOMEM; 171 /* 172 * extremely unlikely race - sysctl_nr_open decreased between the check in 173 * caller and alloc_fdtable(). Cheaper to catch it here... 174 */ 175 if (unlikely(new_fdt->max_fds <= nr)) { 176 __free_fdtable(new_fdt); 177 return -EMFILE; 178 } 179 cur_fdt = files_fdtable(files); 180 BUG_ON(nr < cur_fdt->max_fds); 181 copy_fdtable(new_fdt, cur_fdt); 182 rcu_assign_pointer(files->fdt, new_fdt); 183 if (cur_fdt != &files->fdtab) 184 call_rcu(&cur_fdt->rcu, free_fdtable_rcu); 185 /* coupled with smp_rmb() in fd_install() */ 186 smp_wmb(); 187 return 1; 188 } 189 190 /* 191 * Expand files. 192 * This function will expand the file structures, if the requested size exceeds 193 * the current capacity and there is room for expansion. 194 * Return <0 error code on error; 0 when nothing done; 1 when files were 195 * expanded and execution may have blocked. 196 * The files->file_lock should be held on entry, and will be held on exit. 197 */ 198 static int expand_files(struct files_struct *files, unsigned int nr) 199 __releases(files->file_lock) 200 __acquires(files->file_lock) 201 { 202 struct fdtable *fdt; 203 int expanded = 0; 204 205 repeat: 206 fdt = files_fdtable(files); 207 208 /* Do we need to expand? */ 209 if (nr < fdt->max_fds) 210 return expanded; 211 212 /* Can we expand? */ 213 if (nr >= sysctl_nr_open) 214 return -EMFILE; 215 216 if (unlikely(files->resize_in_progress)) { 217 spin_unlock(&files->file_lock); 218 expanded = 1; 219 wait_event(files->resize_wait, !files->resize_in_progress); 220 spin_lock(&files->file_lock); 221 goto repeat; 222 } 223 224 /* All good, so we try */ 225 files->resize_in_progress = true; 226 expanded = expand_fdtable(files, nr); 227 files->resize_in_progress = false; 228 229 wake_up_all(&files->resize_wait); 230 return expanded; 231 } 232 233 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt) 234 { 235 __set_bit(fd, fdt->close_on_exec); 236 } 237 238 static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt) 239 { 240 if (test_bit(fd, fdt->close_on_exec)) 241 __clear_bit(fd, fdt->close_on_exec); 242 } 243 244 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt) 245 { 246 __set_bit(fd, fdt->open_fds); 247 fd /= BITS_PER_LONG; 248 if (!~fdt->open_fds[fd]) 249 __set_bit(fd, fdt->full_fds_bits); 250 } 251 252 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt) 253 { 254 __clear_bit(fd, fdt->open_fds); 255 __clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits); 256 } 257 258 static unsigned int count_open_files(struct fdtable *fdt) 259 { 260 unsigned int size = fdt->max_fds; 261 unsigned int i; 262 263 /* Find the last open fd */ 264 for (i = size / BITS_PER_LONG; i > 0; ) { 265 if (fdt->open_fds[--i]) 266 break; 267 } 268 i = (i + 1) * BITS_PER_LONG; 269 return i; 270 } 271 272 static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds) 273 { 274 unsigned int count; 275 276 count = count_open_files(fdt); 277 if (max_fds < NR_OPEN_DEFAULT) 278 max_fds = NR_OPEN_DEFAULT; 279 return min(count, max_fds); 280 } 281 282 /* 283 * Allocate a new files structure and copy contents from the 284 * passed in files structure. 285 * errorp will be valid only when the returned files_struct is NULL. 286 */ 287 struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp) 288 { 289 struct files_struct *newf; 290 struct file **old_fds, **new_fds; 291 unsigned int open_files, i; 292 struct fdtable *old_fdt, *new_fdt; 293 294 *errorp = -ENOMEM; 295 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); 296 if (!newf) 297 goto out; 298 299 atomic_set(&newf->count, 1); 300 301 spin_lock_init(&newf->file_lock); 302 newf->resize_in_progress = false; 303 init_waitqueue_head(&newf->resize_wait); 304 newf->next_fd = 0; 305 new_fdt = &newf->fdtab; 306 new_fdt->max_fds = NR_OPEN_DEFAULT; 307 new_fdt->close_on_exec = newf->close_on_exec_init; 308 new_fdt->open_fds = newf->open_fds_init; 309 new_fdt->full_fds_bits = newf->full_fds_bits_init; 310 new_fdt->fd = &newf->fd_array[0]; 311 312 spin_lock(&oldf->file_lock); 313 old_fdt = files_fdtable(oldf); 314 open_files = sane_fdtable_size(old_fdt, max_fds); 315 316 /* 317 * Check whether we need to allocate a larger fd array and fd set. 318 */ 319 while (unlikely(open_files > new_fdt->max_fds)) { 320 spin_unlock(&oldf->file_lock); 321 322 if (new_fdt != &newf->fdtab) 323 __free_fdtable(new_fdt); 324 325 new_fdt = alloc_fdtable(open_files - 1); 326 if (!new_fdt) { 327 *errorp = -ENOMEM; 328 goto out_release; 329 } 330 331 /* beyond sysctl_nr_open; nothing to do */ 332 if (unlikely(new_fdt->max_fds < open_files)) { 333 __free_fdtable(new_fdt); 334 *errorp = -EMFILE; 335 goto out_release; 336 } 337 338 /* 339 * Reacquire the oldf lock and a pointer to its fd table 340 * who knows it may have a new bigger fd table. We need 341 * the latest pointer. 342 */ 343 spin_lock(&oldf->file_lock); 344 old_fdt = files_fdtable(oldf); 345 open_files = sane_fdtable_size(old_fdt, max_fds); 346 } 347 348 copy_fd_bitmaps(new_fdt, old_fdt, open_files); 349 350 old_fds = old_fdt->fd; 351 new_fds = new_fdt->fd; 352 353 for (i = open_files; i != 0; i--) { 354 struct file *f = *old_fds++; 355 if (f) { 356 get_file(f); 357 } else { 358 /* 359 * The fd may be claimed in the fd bitmap but not yet 360 * instantiated in the files array if a sibling thread 361 * is partway through open(). So make sure that this 362 * fd is available to the new process. 363 */ 364 __clear_open_fd(open_files - i, new_fdt); 365 } 366 rcu_assign_pointer(*new_fds++, f); 367 } 368 spin_unlock(&oldf->file_lock); 369 370 /* clear the remainder */ 371 memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *)); 372 373 rcu_assign_pointer(newf->fdt, new_fdt); 374 375 return newf; 376 377 out_release: 378 kmem_cache_free(files_cachep, newf); 379 out: 380 return NULL; 381 } 382 383 static struct fdtable *close_files(struct files_struct * files) 384 { 385 /* 386 * It is safe to dereference the fd table without RCU or 387 * ->file_lock because this is the last reference to the 388 * files structure. 389 */ 390 struct fdtable *fdt = rcu_dereference_raw(files->fdt); 391 unsigned int i, j = 0; 392 393 for (;;) { 394 unsigned long set; 395 i = j * BITS_PER_LONG; 396 if (i >= fdt->max_fds) 397 break; 398 set = fdt->open_fds[j++]; 399 while (set) { 400 if (set & 1) { 401 struct file * file = xchg(&fdt->fd[i], NULL); 402 if (file) { 403 filp_close(file, files); 404 cond_resched(); 405 } 406 } 407 i++; 408 set >>= 1; 409 } 410 } 411 412 return fdt; 413 } 414 415 void put_files_struct(struct files_struct *files) 416 { 417 if (atomic_dec_and_test(&files->count)) { 418 struct fdtable *fdt = close_files(files); 419 420 /* free the arrays if they are not embedded */ 421 if (fdt != &files->fdtab) 422 __free_fdtable(fdt); 423 kmem_cache_free(files_cachep, files); 424 } 425 } 426 427 void exit_files(struct task_struct *tsk) 428 { 429 struct files_struct * files = tsk->files; 430 431 if (files) { 432 task_lock(tsk); 433 tsk->files = NULL; 434 task_unlock(tsk); 435 put_files_struct(files); 436 } 437 } 438 439 struct files_struct init_files = { 440 .count = ATOMIC_INIT(1), 441 .fdt = &init_files.fdtab, 442 .fdtab = { 443 .max_fds = NR_OPEN_DEFAULT, 444 .fd = &init_files.fd_array[0], 445 .close_on_exec = init_files.close_on_exec_init, 446 .open_fds = init_files.open_fds_init, 447 .full_fds_bits = init_files.full_fds_bits_init, 448 }, 449 .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock), 450 .resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait), 451 }; 452 453 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start) 454 { 455 unsigned int maxfd = fdt->max_fds; 456 unsigned int maxbit = maxfd / BITS_PER_LONG; 457 unsigned int bitbit = start / BITS_PER_LONG; 458 459 bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG; 460 if (bitbit > maxfd) 461 return maxfd; 462 if (bitbit > start) 463 start = bitbit; 464 return find_next_zero_bit(fdt->open_fds, maxfd, start); 465 } 466 467 /* 468 * allocate a file descriptor, mark it busy. 469 */ 470 static int alloc_fd(unsigned start, unsigned end, unsigned flags) 471 { 472 struct files_struct *files = current->files; 473 unsigned int fd; 474 int error; 475 struct fdtable *fdt; 476 477 spin_lock(&files->file_lock); 478 repeat: 479 fdt = files_fdtable(files); 480 fd = start; 481 if (fd < files->next_fd) 482 fd = files->next_fd; 483 484 if (fd < fdt->max_fds) 485 fd = find_next_fd(fdt, fd); 486 487 /* 488 * N.B. For clone tasks sharing a files structure, this test 489 * will limit the total number of files that can be opened. 490 */ 491 error = -EMFILE; 492 if (fd >= end) 493 goto out; 494 495 error = expand_files(files, fd); 496 if (error < 0) 497 goto out; 498 499 /* 500 * If we needed to expand the fs array we 501 * might have blocked - try again. 502 */ 503 if (error) 504 goto repeat; 505 506 if (start <= files->next_fd) 507 files->next_fd = fd + 1; 508 509 __set_open_fd(fd, fdt); 510 if (flags & O_CLOEXEC) 511 __set_close_on_exec(fd, fdt); 512 else 513 __clear_close_on_exec(fd, fdt); 514 error = fd; 515 #if 1 516 /* Sanity check */ 517 if (rcu_access_pointer(fdt->fd[fd]) != NULL) { 518 printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd); 519 rcu_assign_pointer(fdt->fd[fd], NULL); 520 } 521 #endif 522 523 out: 524 spin_unlock(&files->file_lock); 525 return error; 526 } 527 528 int __get_unused_fd_flags(unsigned flags, unsigned long nofile) 529 { 530 return alloc_fd(0, nofile, flags); 531 } 532 533 int get_unused_fd_flags(unsigned flags) 534 { 535 return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE)); 536 } 537 EXPORT_SYMBOL(get_unused_fd_flags); 538 539 static void __put_unused_fd(struct files_struct *files, unsigned int fd) 540 { 541 struct fdtable *fdt = files_fdtable(files); 542 __clear_open_fd(fd, fdt); 543 if (fd < files->next_fd) 544 files->next_fd = fd; 545 } 546 547 void put_unused_fd(unsigned int fd) 548 { 549 struct files_struct *files = current->files; 550 spin_lock(&files->file_lock); 551 __put_unused_fd(files, fd); 552 spin_unlock(&files->file_lock); 553 } 554 555 EXPORT_SYMBOL(put_unused_fd); 556 557 /* 558 * Install a file pointer in the fd array. 559 * 560 * The VFS is full of places where we drop the files lock between 561 * setting the open_fds bitmap and installing the file in the file 562 * array. At any such point, we are vulnerable to a dup2() race 563 * installing a file in the array before us. We need to detect this and 564 * fput() the struct file we are about to overwrite in this case. 565 * 566 * It should never happen - if we allow dup2() do it, _really_ bad things 567 * will follow. 568 * 569 * This consumes the "file" refcount, so callers should treat it 570 * as if they had called fput(file). 571 */ 572 573 void fd_install(unsigned int fd, struct file *file) 574 { 575 struct files_struct *files = current->files; 576 struct fdtable *fdt; 577 578 rcu_read_lock_sched(); 579 580 if (unlikely(files->resize_in_progress)) { 581 rcu_read_unlock_sched(); 582 spin_lock(&files->file_lock); 583 fdt = files_fdtable(files); 584 BUG_ON(fdt->fd[fd] != NULL); 585 rcu_assign_pointer(fdt->fd[fd], file); 586 spin_unlock(&files->file_lock); 587 return; 588 } 589 /* coupled with smp_wmb() in expand_fdtable() */ 590 smp_rmb(); 591 fdt = rcu_dereference_sched(files->fdt); 592 BUG_ON(fdt->fd[fd] != NULL); 593 rcu_assign_pointer(fdt->fd[fd], file); 594 rcu_read_unlock_sched(); 595 } 596 597 EXPORT_SYMBOL(fd_install); 598 599 static struct file *pick_file(struct files_struct *files, unsigned fd) 600 { 601 struct file *file = NULL; 602 struct fdtable *fdt; 603 604 spin_lock(&files->file_lock); 605 fdt = files_fdtable(files); 606 if (fd >= fdt->max_fds) 607 goto out_unlock; 608 file = fdt->fd[fd]; 609 if (!file) 610 goto out_unlock; 611 rcu_assign_pointer(fdt->fd[fd], NULL); 612 __put_unused_fd(files, fd); 613 614 out_unlock: 615 spin_unlock(&files->file_lock); 616 return file; 617 } 618 619 int close_fd(unsigned fd) 620 { 621 struct files_struct *files = current->files; 622 struct file *file; 623 624 file = pick_file(files, fd); 625 if (!file) 626 return -EBADF; 627 628 return filp_close(file, files); 629 } 630 EXPORT_SYMBOL(close_fd); /* for ksys_close() */ 631 632 /** 633 * last_fd - return last valid index into fd table 634 * @cur_fds: files struct 635 * 636 * Context: Either rcu read lock or files_lock must be held. 637 * 638 * Returns: Last valid index into fdtable. 639 */ 640 static inline unsigned last_fd(struct fdtable *fdt) 641 { 642 return fdt->max_fds - 1; 643 } 644 645 static inline void __range_cloexec(struct files_struct *cur_fds, 646 unsigned int fd, unsigned int max_fd) 647 { 648 struct fdtable *fdt; 649 650 /* make sure we're using the correct maximum value */ 651 spin_lock(&cur_fds->file_lock); 652 fdt = files_fdtable(cur_fds); 653 max_fd = min(last_fd(fdt), max_fd); 654 if (fd <= max_fd) 655 bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1); 656 spin_unlock(&cur_fds->file_lock); 657 } 658 659 static inline void __range_close(struct files_struct *cur_fds, unsigned int fd, 660 unsigned int max_fd) 661 { 662 while (fd <= max_fd) { 663 struct file *file; 664 665 file = pick_file(cur_fds, fd++); 666 if (!file) 667 continue; 668 669 filp_close(file, cur_fds); 670 cond_resched(); 671 } 672 } 673 674 /** 675 * __close_range() - Close all file descriptors in a given range. 676 * 677 * @fd: starting file descriptor to close 678 * @max_fd: last file descriptor to close 679 * 680 * This closes a range of file descriptors. All file descriptors 681 * from @fd up to and including @max_fd are closed. 682 */ 683 int __close_range(unsigned fd, unsigned max_fd, unsigned int flags) 684 { 685 unsigned int cur_max; 686 struct task_struct *me = current; 687 struct files_struct *cur_fds = me->files, *fds = NULL; 688 689 if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC)) 690 return -EINVAL; 691 692 if (fd > max_fd) 693 return -EINVAL; 694 695 rcu_read_lock(); 696 cur_max = files_fdtable(cur_fds)->max_fds; 697 rcu_read_unlock(); 698 699 /* cap to last valid index into fdtable */ 700 cur_max--; 701 702 if (flags & CLOSE_RANGE_UNSHARE) { 703 int ret; 704 unsigned int max_unshare_fds = NR_OPEN_MAX; 705 706 /* 707 * If the requested range is greater than the current maximum, 708 * we're closing everything so only copy all file descriptors 709 * beneath the lowest file descriptor. 710 * If the caller requested all fds to be made cloexec copy all 711 * of the file descriptors since they still want to use them. 712 */ 713 if (!(flags & CLOSE_RANGE_CLOEXEC) && (max_fd >= cur_max)) 714 max_unshare_fds = fd; 715 716 ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds); 717 if (ret) 718 return ret; 719 720 /* 721 * We used to share our file descriptor table, and have now 722 * created a private one, make sure we're using it below. 723 */ 724 if (fds) 725 swap(cur_fds, fds); 726 } 727 728 max_fd = min(max_fd, cur_max); 729 730 if (flags & CLOSE_RANGE_CLOEXEC) 731 __range_cloexec(cur_fds, fd, max_fd); 732 else 733 __range_close(cur_fds, fd, max_fd); 734 735 if (fds) { 736 /* 737 * We're done closing the files we were supposed to. Time to install 738 * the new file descriptor table and drop the old one. 739 */ 740 task_lock(me); 741 me->files = cur_fds; 742 task_unlock(me); 743 put_files_struct(fds); 744 } 745 746 return 0; 747 } 748 749 /* 750 * See close_fd_get_file() below, this variant assumes current->files->file_lock 751 * is held. 752 */ 753 int __close_fd_get_file(unsigned int fd, struct file **res) 754 { 755 struct files_struct *files = current->files; 756 struct file *file; 757 struct fdtable *fdt; 758 759 fdt = files_fdtable(files); 760 if (fd >= fdt->max_fds) 761 goto out_err; 762 file = fdt->fd[fd]; 763 if (!file) 764 goto out_err; 765 rcu_assign_pointer(fdt->fd[fd], NULL); 766 __put_unused_fd(files, fd); 767 get_file(file); 768 *res = file; 769 return 0; 770 out_err: 771 *res = NULL; 772 return -ENOENT; 773 } 774 775 /* 776 * variant of close_fd that gets a ref on the file for later fput. 777 * The caller must ensure that filp_close() called on the file, and then 778 * an fput(). 779 */ 780 int close_fd_get_file(unsigned int fd, struct file **res) 781 { 782 struct files_struct *files = current->files; 783 int ret; 784 785 spin_lock(&files->file_lock); 786 ret = __close_fd_get_file(fd, res); 787 spin_unlock(&files->file_lock); 788 789 return ret; 790 } 791 792 void do_close_on_exec(struct files_struct *files) 793 { 794 unsigned i; 795 struct fdtable *fdt; 796 797 /* exec unshares first */ 798 spin_lock(&files->file_lock); 799 for (i = 0; ; i++) { 800 unsigned long set; 801 unsigned fd = i * BITS_PER_LONG; 802 fdt = files_fdtable(files); 803 if (fd >= fdt->max_fds) 804 break; 805 set = fdt->close_on_exec[i]; 806 if (!set) 807 continue; 808 fdt->close_on_exec[i] = 0; 809 for ( ; set ; fd++, set >>= 1) { 810 struct file *file; 811 if (!(set & 1)) 812 continue; 813 file = fdt->fd[fd]; 814 if (!file) 815 continue; 816 rcu_assign_pointer(fdt->fd[fd], NULL); 817 __put_unused_fd(files, fd); 818 spin_unlock(&files->file_lock); 819 filp_close(file, files); 820 cond_resched(); 821 spin_lock(&files->file_lock); 822 } 823 824 } 825 spin_unlock(&files->file_lock); 826 } 827 828 static struct file *__fget_files(struct files_struct *files, unsigned int fd, 829 fmode_t mask, unsigned int refs) 830 { 831 struct file *file; 832 833 rcu_read_lock(); 834 loop: 835 file = files_lookup_fd_rcu(files, fd); 836 if (file) { 837 /* File object ref couldn't be taken. 838 * dup2() atomicity guarantee is the reason 839 * we loop to catch the new file (or NULL pointer) 840 */ 841 if (file->f_mode & mask) 842 file = NULL; 843 else if (!get_file_rcu_many(file, refs)) 844 goto loop; 845 } 846 rcu_read_unlock(); 847 848 return file; 849 } 850 851 static inline struct file *__fget(unsigned int fd, fmode_t mask, 852 unsigned int refs) 853 { 854 return __fget_files(current->files, fd, mask, refs); 855 } 856 857 struct file *fget_many(unsigned int fd, unsigned int refs) 858 { 859 return __fget(fd, FMODE_PATH, refs); 860 } 861 862 struct file *fget(unsigned int fd) 863 { 864 return __fget(fd, FMODE_PATH, 1); 865 } 866 EXPORT_SYMBOL(fget); 867 868 struct file *fget_raw(unsigned int fd) 869 { 870 return __fget(fd, 0, 1); 871 } 872 EXPORT_SYMBOL(fget_raw); 873 874 struct file *fget_task(struct task_struct *task, unsigned int fd) 875 { 876 struct file *file = NULL; 877 878 task_lock(task); 879 if (task->files) 880 file = __fget_files(task->files, fd, 0, 1); 881 task_unlock(task); 882 883 return file; 884 } 885 886 struct file *task_lookup_fd_rcu(struct task_struct *task, unsigned int fd) 887 { 888 /* Must be called with rcu_read_lock held */ 889 struct files_struct *files; 890 struct file *file = NULL; 891 892 task_lock(task); 893 files = task->files; 894 if (files) 895 file = files_lookup_fd_rcu(files, fd); 896 task_unlock(task); 897 898 return file; 899 } 900 901 struct file *task_lookup_next_fd_rcu(struct task_struct *task, unsigned int *ret_fd) 902 { 903 /* Must be called with rcu_read_lock held */ 904 struct files_struct *files; 905 unsigned int fd = *ret_fd; 906 struct file *file = NULL; 907 908 task_lock(task); 909 files = task->files; 910 if (files) { 911 for (; fd < files_fdtable(files)->max_fds; fd++) { 912 file = files_lookup_fd_rcu(files, fd); 913 if (file) 914 break; 915 } 916 } 917 task_unlock(task); 918 *ret_fd = fd; 919 return file; 920 } 921 922 /* 923 * Lightweight file lookup - no refcnt increment if fd table isn't shared. 924 * 925 * You can use this instead of fget if you satisfy all of the following 926 * conditions: 927 * 1) You must call fput_light before exiting the syscall and returning control 928 * to userspace (i.e. you cannot remember the returned struct file * after 929 * returning to userspace). 930 * 2) You must not call filp_close on the returned struct file * in between 931 * calls to fget_light and fput_light. 932 * 3) You must not clone the current task in between the calls to fget_light 933 * and fput_light. 934 * 935 * The fput_needed flag returned by fget_light should be passed to the 936 * corresponding fput_light. 937 */ 938 static unsigned long __fget_light(unsigned int fd, fmode_t mask) 939 { 940 struct files_struct *files = current->files; 941 struct file *file; 942 943 if (atomic_read(&files->count) == 1) { 944 file = files_lookup_fd_raw(files, fd); 945 if (!file || unlikely(file->f_mode & mask)) 946 return 0; 947 return (unsigned long)file; 948 } else { 949 file = __fget(fd, mask, 1); 950 if (!file) 951 return 0; 952 return FDPUT_FPUT | (unsigned long)file; 953 } 954 } 955 unsigned long __fdget(unsigned int fd) 956 { 957 return __fget_light(fd, FMODE_PATH); 958 } 959 EXPORT_SYMBOL(__fdget); 960 961 unsigned long __fdget_raw(unsigned int fd) 962 { 963 return __fget_light(fd, 0); 964 } 965 966 unsigned long __fdget_pos(unsigned int fd) 967 { 968 unsigned long v = __fdget(fd); 969 struct file *file = (struct file *)(v & ~3); 970 971 if (file && (file->f_mode & FMODE_ATOMIC_POS)) { 972 if (file_count(file) > 1) { 973 v |= FDPUT_POS_UNLOCK; 974 mutex_lock(&file->f_pos_lock); 975 } 976 } 977 return v; 978 } 979 980 void __f_unlock_pos(struct file *f) 981 { 982 mutex_unlock(&f->f_pos_lock); 983 } 984 985 /* 986 * We only lock f_pos if we have threads or if the file might be 987 * shared with another process. In both cases we'll have an elevated 988 * file count (done either by fdget() or by fork()). 989 */ 990 991 void set_close_on_exec(unsigned int fd, int flag) 992 { 993 struct files_struct *files = current->files; 994 struct fdtable *fdt; 995 spin_lock(&files->file_lock); 996 fdt = files_fdtable(files); 997 if (flag) 998 __set_close_on_exec(fd, fdt); 999 else 1000 __clear_close_on_exec(fd, fdt); 1001 spin_unlock(&files->file_lock); 1002 } 1003 1004 bool get_close_on_exec(unsigned int fd) 1005 { 1006 struct files_struct *files = current->files; 1007 struct fdtable *fdt; 1008 bool res; 1009 rcu_read_lock(); 1010 fdt = files_fdtable(files); 1011 res = close_on_exec(fd, fdt); 1012 rcu_read_unlock(); 1013 return res; 1014 } 1015 1016 static int do_dup2(struct files_struct *files, 1017 struct file *file, unsigned fd, unsigned flags) 1018 __releases(&files->file_lock) 1019 { 1020 struct file *tofree; 1021 struct fdtable *fdt; 1022 1023 /* 1024 * We need to detect attempts to do dup2() over allocated but still 1025 * not finished descriptor. NB: OpenBSD avoids that at the price of 1026 * extra work in their equivalent of fget() - they insert struct 1027 * file immediately after grabbing descriptor, mark it larval if 1028 * more work (e.g. actual opening) is needed and make sure that 1029 * fget() treats larval files as absent. Potentially interesting, 1030 * but while extra work in fget() is trivial, locking implications 1031 * and amount of surgery on open()-related paths in VFS are not. 1032 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution" 1033 * deadlocks in rather amusing ways, AFAICS. All of that is out of 1034 * scope of POSIX or SUS, since neither considers shared descriptor 1035 * tables and this condition does not arise without those. 1036 */ 1037 fdt = files_fdtable(files); 1038 tofree = fdt->fd[fd]; 1039 if (!tofree && fd_is_open(fd, fdt)) 1040 goto Ebusy; 1041 get_file(file); 1042 rcu_assign_pointer(fdt->fd[fd], file); 1043 __set_open_fd(fd, fdt); 1044 if (flags & O_CLOEXEC) 1045 __set_close_on_exec(fd, fdt); 1046 else 1047 __clear_close_on_exec(fd, fdt); 1048 spin_unlock(&files->file_lock); 1049 1050 if (tofree) 1051 filp_close(tofree, files); 1052 1053 return fd; 1054 1055 Ebusy: 1056 spin_unlock(&files->file_lock); 1057 return -EBUSY; 1058 } 1059 1060 int replace_fd(unsigned fd, struct file *file, unsigned flags) 1061 { 1062 int err; 1063 struct files_struct *files = current->files; 1064 1065 if (!file) 1066 return close_fd(fd); 1067 1068 if (fd >= rlimit(RLIMIT_NOFILE)) 1069 return -EBADF; 1070 1071 spin_lock(&files->file_lock); 1072 err = expand_files(files, fd); 1073 if (unlikely(err < 0)) 1074 goto out_unlock; 1075 return do_dup2(files, file, fd, flags); 1076 1077 out_unlock: 1078 spin_unlock(&files->file_lock); 1079 return err; 1080 } 1081 1082 /** 1083 * __receive_fd() - Install received file into file descriptor table 1084 * @file: struct file that was received from another process 1085 * @ufd: __user pointer to write new fd number to 1086 * @o_flags: the O_* flags to apply to the new fd entry 1087 * 1088 * Installs a received file into the file descriptor table, with appropriate 1089 * checks and count updates. Optionally writes the fd number to userspace, if 1090 * @ufd is non-NULL. 1091 * 1092 * This helper handles its own reference counting of the incoming 1093 * struct file. 1094 * 1095 * Returns newly install fd or -ve on error. 1096 */ 1097 int __receive_fd(struct file *file, int __user *ufd, unsigned int o_flags) 1098 { 1099 int new_fd; 1100 int error; 1101 1102 error = security_file_receive(file); 1103 if (error) 1104 return error; 1105 1106 new_fd = get_unused_fd_flags(o_flags); 1107 if (new_fd < 0) 1108 return new_fd; 1109 1110 if (ufd) { 1111 error = put_user(new_fd, ufd); 1112 if (error) { 1113 put_unused_fd(new_fd); 1114 return error; 1115 } 1116 } 1117 1118 fd_install(new_fd, get_file(file)); 1119 __receive_sock(file); 1120 return new_fd; 1121 } 1122 1123 int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags) 1124 { 1125 int error; 1126 1127 error = security_file_receive(file); 1128 if (error) 1129 return error; 1130 error = replace_fd(new_fd, file, o_flags); 1131 if (error) 1132 return error; 1133 __receive_sock(file); 1134 return new_fd; 1135 } 1136 1137 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags) 1138 { 1139 int err = -EBADF; 1140 struct file *file; 1141 struct files_struct *files = current->files; 1142 1143 if ((flags & ~O_CLOEXEC) != 0) 1144 return -EINVAL; 1145 1146 if (unlikely(oldfd == newfd)) 1147 return -EINVAL; 1148 1149 if (newfd >= rlimit(RLIMIT_NOFILE)) 1150 return -EBADF; 1151 1152 spin_lock(&files->file_lock); 1153 err = expand_files(files, newfd); 1154 file = files_lookup_fd_locked(files, oldfd); 1155 if (unlikely(!file)) 1156 goto Ebadf; 1157 if (unlikely(err < 0)) { 1158 if (err == -EMFILE) 1159 goto Ebadf; 1160 goto out_unlock; 1161 } 1162 return do_dup2(files, file, newfd, flags); 1163 1164 Ebadf: 1165 err = -EBADF; 1166 out_unlock: 1167 spin_unlock(&files->file_lock); 1168 return err; 1169 } 1170 1171 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags) 1172 { 1173 return ksys_dup3(oldfd, newfd, flags); 1174 } 1175 1176 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd) 1177 { 1178 if (unlikely(newfd == oldfd)) { /* corner case */ 1179 struct files_struct *files = current->files; 1180 int retval = oldfd; 1181 1182 rcu_read_lock(); 1183 if (!files_lookup_fd_rcu(files, oldfd)) 1184 retval = -EBADF; 1185 rcu_read_unlock(); 1186 return retval; 1187 } 1188 return ksys_dup3(oldfd, newfd, 0); 1189 } 1190 1191 SYSCALL_DEFINE1(dup, unsigned int, fildes) 1192 { 1193 int ret = -EBADF; 1194 struct file *file = fget_raw(fildes); 1195 1196 if (file) { 1197 ret = get_unused_fd_flags(0); 1198 if (ret >= 0) 1199 fd_install(ret, file); 1200 else 1201 fput(file); 1202 } 1203 return ret; 1204 } 1205 1206 int f_dupfd(unsigned int from, struct file *file, unsigned flags) 1207 { 1208 unsigned long nofile = rlimit(RLIMIT_NOFILE); 1209 int err; 1210 if (from >= nofile) 1211 return -EINVAL; 1212 err = alloc_fd(from, nofile, flags); 1213 if (err >= 0) { 1214 get_file(file); 1215 fd_install(err, file); 1216 } 1217 return err; 1218 } 1219 1220 int iterate_fd(struct files_struct *files, unsigned n, 1221 int (*f)(const void *, struct file *, unsigned), 1222 const void *p) 1223 { 1224 struct fdtable *fdt; 1225 int res = 0; 1226 if (!files) 1227 return 0; 1228 spin_lock(&files->file_lock); 1229 for (fdt = files_fdtable(files); n < fdt->max_fds; n++) { 1230 struct file *file; 1231 file = rcu_dereference_check_fdtable(files, fdt->fd[n]); 1232 if (!file) 1233 continue; 1234 res = f(p, file, n); 1235 if (res) 1236 break; 1237 } 1238 spin_unlock(&files->file_lock); 1239 return res; 1240 } 1241 EXPORT_SYMBOL(iterate_fd); 1242