xref: /linux/fs/file.c (revision 804382d59b81b331735d37a18149ea0d36d5936a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/file.c
4  *
5  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6  *
7  *  Manage the dynamic fd arrays in the process files_struct.
8  */
9 
10 #include <linux/syscalls.h>
11 #include <linux/export.h>
12 #include <linux/fs.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/close_range.h>
23 #include <linux/file_ref.h>
24 #include <net/sock.h>
25 #include <linux/init_task.h>
26 
27 #include "internal.h"
28 
29 /**
30  * __file_ref_put - Slowpath of file_ref_put()
31  * @ref:	Pointer to the reference count
32  * @cnt:	Current reference count
33  *
34  * Invoked when the reference count is outside of the valid zone.
35  *
36  * Return:
37  *	True if this was the last reference with no future references
38  *	possible. This signals the caller that it can safely schedule the
39  *	object, which is protected by the reference counter, for
40  *	deconstruction.
41  *
42  *	False if there are still active references or the put() raced
43  *	with a concurrent get()/put() pair. Caller is not allowed to
44  *	deconstruct the protected object.
45  */
46 bool __file_ref_put(file_ref_t *ref, unsigned long cnt)
47 {
48 	/* Did this drop the last reference? */
49 	if (likely(cnt == FILE_REF_NOREF)) {
50 		/*
51 		 * Carefully try to set the reference count to FILE_REF_DEAD.
52 		 *
53 		 * This can fail if a concurrent get() operation has
54 		 * elevated it again or the corresponding put() even marked
55 		 * it dead already. Both are valid situations and do not
56 		 * require a retry. If this fails the caller is not
57 		 * allowed to deconstruct the object.
58 		 */
59 		if (!atomic_long_try_cmpxchg_release(&ref->refcnt, &cnt, FILE_REF_DEAD))
60 			return false;
61 
62 		/*
63 		 * The caller can safely schedule the object for
64 		 * deconstruction. Provide acquire ordering.
65 		 */
66 		smp_acquire__after_ctrl_dep();
67 		return true;
68 	}
69 
70 	/*
71 	 * If the reference count was already in the dead zone, then this
72 	 * put() operation is imbalanced. Warn, put the reference count back to
73 	 * DEAD and tell the caller to not deconstruct the object.
74 	 */
75 	if (WARN_ONCE(cnt >= FILE_REF_RELEASED, "imbalanced put on file reference count")) {
76 		atomic_long_set(&ref->refcnt, FILE_REF_DEAD);
77 		return false;
78 	}
79 
80 	/*
81 	 * This is a put() operation on a saturated refcount. Restore the
82 	 * mean saturation value and tell the caller to not deconstruct the
83 	 * object.
84 	 */
85 	if (cnt > FILE_REF_MAXREF)
86 		atomic_long_set(&ref->refcnt, FILE_REF_SATURATED);
87 	return false;
88 }
89 EXPORT_SYMBOL_GPL(__file_ref_put);
90 
91 unsigned int sysctl_nr_open __read_mostly = 1024*1024;
92 unsigned int sysctl_nr_open_min = BITS_PER_LONG;
93 /* our min() is unusable in constant expressions ;-/ */
94 #define __const_min(x, y) ((x) < (y) ? (x) : (y))
95 unsigned int sysctl_nr_open_max =
96 	__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
97 
98 static void __free_fdtable(struct fdtable *fdt)
99 {
100 	kvfree(fdt->fd);
101 	kvfree(fdt->open_fds);
102 	kfree(fdt);
103 }
104 
105 static void free_fdtable_rcu(struct rcu_head *rcu)
106 {
107 	__free_fdtable(container_of(rcu, struct fdtable, rcu));
108 }
109 
110 #define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
111 #define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
112 
113 #define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds
114 /*
115  * Copy 'count' fd bits from the old table to the new table and clear the extra
116  * space if any.  This does not copy the file pointers.  Called with the files
117  * spinlock held for write.
118  */
119 static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
120 			    unsigned int copy_words)
121 {
122 	unsigned int nwords = fdt_words(nfdt);
123 
124 	bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds,
125 			copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
126 	bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec,
127 			copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
128 	bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits,
129 			copy_words, nwords);
130 }
131 
132 /*
133  * Copy all file descriptors from the old table to the new, expanded table and
134  * clear the extra space.  Called with the files spinlock held for write.
135  */
136 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
137 {
138 	size_t cpy, set;
139 
140 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
141 
142 	cpy = ofdt->max_fds * sizeof(struct file *);
143 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
144 	memcpy(nfdt->fd, ofdt->fd, cpy);
145 	memset((char *)nfdt->fd + cpy, 0, set);
146 
147 	copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt));
148 }
149 
150 /*
151  * Note how the fdtable bitmap allocations very much have to be a multiple of
152  * BITS_PER_LONG. This is not only because we walk those things in chunks of
153  * 'unsigned long' in some places, but simply because that is how the Linux
154  * kernel bitmaps are defined to work: they are not "bits in an array of bytes",
155  * they are very much "bits in an array of unsigned long".
156  */
157 static struct fdtable *alloc_fdtable(unsigned int slots_wanted)
158 {
159 	struct fdtable *fdt;
160 	unsigned int nr;
161 	void *data;
162 
163 	/*
164 	 * Figure out how many fds we actually want to support in this fdtable.
165 	 * Allocation steps are keyed to the size of the fdarray, since it
166 	 * grows far faster than any of the other dynamic data. We try to fit
167 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
168 	 * and growing in powers of two from there on.  Since we called only
169 	 * with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab
170 	 * already gives BITS_PER_LONG slots), the above boils down to
171 	 * 1.  use the smallest power of two large enough to give us that many
172 	 * slots.
173 	 * 2.  on 32bit skip 64 and 128 - the minimal capacity we want there is
174 	 * 256 slots (i.e. 1Kb fd array).
175 	 * 3.  on 64bit don't skip anything, 1Kb fd array means 128 slots there
176 	 * and we are never going to be asked for 64 or less.
177 	 */
178 	if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256)
179 		nr = 256;
180 	else
181 		nr = roundup_pow_of_two(slots_wanted);
182 	/*
183 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
184 	 * had been set lower between the check in expand_files() and here.
185 	 *
186 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
187 	 * bitmaps handling below becomes unpleasant, to put it mildly...
188 	 */
189 	if (unlikely(nr > sysctl_nr_open)) {
190 		nr = round_down(sysctl_nr_open, BITS_PER_LONG);
191 		if (nr < slots_wanted)
192 			return ERR_PTR(-EMFILE);
193 	}
194 
195 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
196 	if (!fdt)
197 		goto out;
198 	fdt->max_fds = nr;
199 	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
200 	if (!data)
201 		goto out_fdt;
202 	fdt->fd = data;
203 
204 	data = kvmalloc(max_t(size_t,
205 				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
206 				 GFP_KERNEL_ACCOUNT);
207 	if (!data)
208 		goto out_arr;
209 	fdt->open_fds = data;
210 	data += nr / BITS_PER_BYTE;
211 	fdt->close_on_exec = data;
212 	data += nr / BITS_PER_BYTE;
213 	fdt->full_fds_bits = data;
214 
215 	return fdt;
216 
217 out_arr:
218 	kvfree(fdt->fd);
219 out_fdt:
220 	kfree(fdt);
221 out:
222 	return ERR_PTR(-ENOMEM);
223 }
224 
225 /*
226  * Expand the file descriptor table.
227  * This function will allocate a new fdtable and both fd array and fdset, of
228  * the given size.
229  * Return <0 error code on error; 0 on successful completion.
230  * The files->file_lock should be held on entry, and will be held on exit.
231  */
232 static int expand_fdtable(struct files_struct *files, unsigned int nr)
233 	__releases(files->file_lock)
234 	__acquires(files->file_lock)
235 {
236 	struct fdtable *new_fdt, *cur_fdt;
237 
238 	spin_unlock(&files->file_lock);
239 	new_fdt = alloc_fdtable(nr + 1);
240 
241 	/* make sure all fd_install() have seen resize_in_progress
242 	 * or have finished their rcu_read_lock_sched() section.
243 	 */
244 	if (atomic_read(&files->count) > 1)
245 		synchronize_rcu();
246 
247 	spin_lock(&files->file_lock);
248 	if (IS_ERR(new_fdt))
249 		return PTR_ERR(new_fdt);
250 	cur_fdt = files_fdtable(files);
251 	BUG_ON(nr < cur_fdt->max_fds);
252 	copy_fdtable(new_fdt, cur_fdt);
253 	rcu_assign_pointer(files->fdt, new_fdt);
254 	if (cur_fdt != &files->fdtab)
255 		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
256 	/* coupled with smp_rmb() in fd_install() */
257 	smp_wmb();
258 	return 0;
259 }
260 
261 /*
262  * Expand files.
263  * This function will expand the file structures, if the requested size exceeds
264  * the current capacity and there is room for expansion.
265  * Return <0 error code on error; 0 on success.
266  * The files->file_lock should be held on entry, and will be held on exit.
267  */
268 static int expand_files(struct files_struct *files, unsigned int nr)
269 	__releases(files->file_lock)
270 	__acquires(files->file_lock)
271 {
272 	struct fdtable *fdt;
273 	int error;
274 
275 repeat:
276 	fdt = files_fdtable(files);
277 
278 	/* Do we need to expand? */
279 	if (nr < fdt->max_fds)
280 		return 0;
281 
282 	if (unlikely(files->resize_in_progress)) {
283 		spin_unlock(&files->file_lock);
284 		wait_event(files->resize_wait, !files->resize_in_progress);
285 		spin_lock(&files->file_lock);
286 		goto repeat;
287 	}
288 
289 	/* Can we expand? */
290 	if (unlikely(nr >= sysctl_nr_open))
291 		return -EMFILE;
292 
293 	/* All good, so we try */
294 	files->resize_in_progress = true;
295 	error = expand_fdtable(files, nr);
296 	files->resize_in_progress = false;
297 
298 	wake_up_all(&files->resize_wait);
299 	return error;
300 }
301 
302 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt,
303 				       bool set)
304 {
305 	if (set) {
306 		__set_bit(fd, fdt->close_on_exec);
307 	} else {
308 		if (test_bit(fd, fdt->close_on_exec))
309 			__clear_bit(fd, fdt->close_on_exec);
310 	}
311 }
312 
313 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt, bool set)
314 {
315 	__set_bit(fd, fdt->open_fds);
316 	__set_close_on_exec(fd, fdt, set);
317 	fd /= BITS_PER_LONG;
318 	if (!~fdt->open_fds[fd])
319 		__set_bit(fd, fdt->full_fds_bits);
320 }
321 
322 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
323 {
324 	__clear_bit(fd, fdt->open_fds);
325 	fd /= BITS_PER_LONG;
326 	if (test_bit(fd, fdt->full_fds_bits))
327 		__clear_bit(fd, fdt->full_fds_bits);
328 }
329 
330 static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt)
331 {
332 	return test_bit(fd, fdt->open_fds);
333 }
334 
335 /*
336  * Note that a sane fdtable size always has to be a multiple of
337  * BITS_PER_LONG, since we have bitmaps that are sized by this.
338  *
339  * punch_hole is optional - when close_range() is asked to unshare
340  * and close, we don't need to copy descriptors in that range, so
341  * a smaller cloned descriptor table might suffice if the last
342  * currently opened descriptor falls into that range.
343  */
344 static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole)
345 {
346 	unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds);
347 
348 	if (last == fdt->max_fds)
349 		return NR_OPEN_DEFAULT;
350 	if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) {
351 		last = find_last_bit(fdt->open_fds, punch_hole->from);
352 		if (last == punch_hole->from)
353 			return NR_OPEN_DEFAULT;
354 	}
355 	return ALIGN(last + 1, BITS_PER_LONG);
356 }
357 
358 /*
359  * Allocate a new descriptor table and copy contents from the passed in
360  * instance.  Returns a pointer to cloned table on success, ERR_PTR()
361  * on failure.  For 'punch_hole' see sane_fdtable_size().
362  */
363 struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole)
364 {
365 	struct files_struct *newf;
366 	struct file **old_fds, **new_fds;
367 	unsigned int open_files, i;
368 	struct fdtable *old_fdt, *new_fdt;
369 
370 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
371 	if (!newf)
372 		return ERR_PTR(-ENOMEM);
373 
374 	atomic_set(&newf->count, 1);
375 
376 	spin_lock_init(&newf->file_lock);
377 	newf->resize_in_progress = false;
378 	init_waitqueue_head(&newf->resize_wait);
379 	newf->next_fd = 0;
380 	new_fdt = &newf->fdtab;
381 	new_fdt->max_fds = NR_OPEN_DEFAULT;
382 	new_fdt->close_on_exec = newf->close_on_exec_init;
383 	new_fdt->open_fds = newf->open_fds_init;
384 	new_fdt->full_fds_bits = newf->full_fds_bits_init;
385 	new_fdt->fd = &newf->fd_array[0];
386 
387 	spin_lock(&oldf->file_lock);
388 	old_fdt = files_fdtable(oldf);
389 	open_files = sane_fdtable_size(old_fdt, punch_hole);
390 
391 	/*
392 	 * Check whether we need to allocate a larger fd array and fd set.
393 	 */
394 	while (unlikely(open_files > new_fdt->max_fds)) {
395 		spin_unlock(&oldf->file_lock);
396 
397 		if (new_fdt != &newf->fdtab)
398 			__free_fdtable(new_fdt);
399 
400 		new_fdt = alloc_fdtable(open_files);
401 		if (IS_ERR(new_fdt)) {
402 			kmem_cache_free(files_cachep, newf);
403 			return ERR_CAST(new_fdt);
404 		}
405 
406 		/*
407 		 * Reacquire the oldf lock and a pointer to its fd table
408 		 * who knows it may have a new bigger fd table. We need
409 		 * the latest pointer.
410 		 */
411 		spin_lock(&oldf->file_lock);
412 		old_fdt = files_fdtable(oldf);
413 		open_files = sane_fdtable_size(old_fdt, punch_hole);
414 	}
415 
416 	copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG);
417 
418 	old_fds = old_fdt->fd;
419 	new_fds = new_fdt->fd;
420 
421 	/*
422 	 * We may be racing against fd allocation from other threads using this
423 	 * files_struct, despite holding ->file_lock.
424 	 *
425 	 * alloc_fd() might have already claimed a slot, while fd_install()
426 	 * did not populate it yet. Note the latter operates locklessly, so
427 	 * the file can show up as we are walking the array below.
428 	 *
429 	 * At the same time we know no files will disappear as all other
430 	 * operations take the lock.
431 	 *
432 	 * Instead of trying to placate userspace racing with itself, we
433 	 * ref the file if we see it and mark the fd slot as unused otherwise.
434 	 */
435 	for (i = open_files; i != 0; i--) {
436 		struct file *f = rcu_dereference_raw(*old_fds++);
437 		if (f) {
438 			get_file(f);
439 		} else {
440 			__clear_open_fd(open_files - i, new_fdt);
441 		}
442 		rcu_assign_pointer(*new_fds++, f);
443 	}
444 	spin_unlock(&oldf->file_lock);
445 
446 	/* clear the remainder */
447 	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
448 
449 	rcu_assign_pointer(newf->fdt, new_fdt);
450 
451 	return newf;
452 }
453 
454 static struct fdtable *close_files(struct files_struct * files)
455 {
456 	/*
457 	 * It is safe to dereference the fd table without RCU or
458 	 * ->file_lock because this is the last reference to the
459 	 * files structure.
460 	 */
461 	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
462 	unsigned int i, j = 0;
463 
464 	for (;;) {
465 		unsigned long set;
466 		i = j * BITS_PER_LONG;
467 		if (i >= fdt->max_fds)
468 			break;
469 		set = fdt->open_fds[j++];
470 		while (set) {
471 			if (set & 1) {
472 				struct file *file = fdt->fd[i];
473 				if (file) {
474 					filp_close(file, files);
475 					cond_resched();
476 				}
477 			}
478 			i++;
479 			set >>= 1;
480 		}
481 	}
482 
483 	return fdt;
484 }
485 
486 void put_files_struct(struct files_struct *files)
487 {
488 	if (atomic_dec_and_test(&files->count)) {
489 		struct fdtable *fdt = close_files(files);
490 
491 		/* free the arrays if they are not embedded */
492 		if (fdt != &files->fdtab)
493 			__free_fdtable(fdt);
494 		kmem_cache_free(files_cachep, files);
495 	}
496 }
497 
498 void exit_files(struct task_struct *tsk)
499 {
500 	struct files_struct * files = tsk->files;
501 
502 	if (files) {
503 		task_lock(tsk);
504 		tsk->files = NULL;
505 		task_unlock(tsk);
506 		put_files_struct(files);
507 	}
508 }
509 
510 struct files_struct init_files = {
511 	.count		= ATOMIC_INIT(1),
512 	.fdt		= &init_files.fdtab,
513 	.fdtab		= {
514 		.max_fds	= NR_OPEN_DEFAULT,
515 		.fd		= &init_files.fd_array[0],
516 		.close_on_exec	= init_files.close_on_exec_init,
517 		.open_fds	= init_files.open_fds_init,
518 		.full_fds_bits	= init_files.full_fds_bits_init,
519 	},
520 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
521 	.resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
522 };
523 
524 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
525 {
526 	unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */
527 	unsigned int maxbit = maxfd / BITS_PER_LONG;
528 	unsigned int bitbit = start / BITS_PER_LONG;
529 	unsigned int bit;
530 
531 	/*
532 	 * Try to avoid looking at the second level bitmap
533 	 */
534 	bit = find_next_zero_bit(&fdt->open_fds[bitbit], BITS_PER_LONG,
535 				 start & (BITS_PER_LONG - 1));
536 	if (bit < BITS_PER_LONG)
537 		return bit + bitbit * BITS_PER_LONG;
538 
539 	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
540 	if (bitbit >= maxfd)
541 		return maxfd;
542 	if (bitbit > start)
543 		start = bitbit;
544 	return find_next_zero_bit(fdt->open_fds, maxfd, start);
545 }
546 
547 /*
548  * allocate a file descriptor, mark it busy.
549  */
550 static int alloc_fd(unsigned start, unsigned end, unsigned flags)
551 {
552 	struct files_struct *files = current->files;
553 	unsigned int fd;
554 	int error;
555 	struct fdtable *fdt;
556 
557 	spin_lock(&files->file_lock);
558 repeat:
559 	fdt = files_fdtable(files);
560 	fd = start;
561 	if (fd < files->next_fd)
562 		fd = files->next_fd;
563 
564 	if (likely(fd < fdt->max_fds))
565 		fd = find_next_fd(fdt, fd);
566 
567 	/*
568 	 * N.B. For clone tasks sharing a files structure, this test
569 	 * will limit the total number of files that can be opened.
570 	 */
571 	error = -EMFILE;
572 	if (unlikely(fd >= end))
573 		goto out;
574 
575 	if (unlikely(fd >= fdt->max_fds)) {
576 		error = expand_files(files, fd);
577 		if (error < 0)
578 			goto out;
579 
580 		goto repeat;
581 	}
582 
583 	if (start <= files->next_fd)
584 		files->next_fd = fd + 1;
585 
586 	__set_open_fd(fd, fdt, flags & O_CLOEXEC);
587 	error = fd;
588 	VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL);
589 
590 out:
591 	spin_unlock(&files->file_lock);
592 	return error;
593 }
594 
595 int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
596 {
597 	return alloc_fd(0, nofile, flags);
598 }
599 
600 int get_unused_fd_flags(unsigned flags)
601 {
602 	return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
603 }
604 EXPORT_SYMBOL(get_unused_fd_flags);
605 
606 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
607 {
608 	struct fdtable *fdt = files_fdtable(files);
609 	__clear_open_fd(fd, fdt);
610 	if (fd < files->next_fd)
611 		files->next_fd = fd;
612 }
613 
614 void put_unused_fd(unsigned int fd)
615 {
616 	struct files_struct *files = current->files;
617 	spin_lock(&files->file_lock);
618 	__put_unused_fd(files, fd);
619 	spin_unlock(&files->file_lock);
620 }
621 
622 EXPORT_SYMBOL(put_unused_fd);
623 
624 /**
625  * fd_install - install a file pointer in the fd array
626  * @fd: file descriptor to install the file in
627  * @file: the file to install
628  *
629  * This consumes the "file" refcount, so callers should treat it
630  * as if they had called fput(file).
631  */
632 void fd_install(unsigned int fd, struct file *file)
633 {
634 	struct files_struct *files = current->files;
635 	struct fdtable *fdt;
636 
637 	if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING)))
638 		return;
639 
640 	rcu_read_lock_sched();
641 
642 	if (unlikely(files->resize_in_progress)) {
643 		rcu_read_unlock_sched();
644 		spin_lock(&files->file_lock);
645 		fdt = files_fdtable(files);
646 		VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL);
647 		rcu_assign_pointer(fdt->fd[fd], file);
648 		spin_unlock(&files->file_lock);
649 		return;
650 	}
651 	/* coupled with smp_wmb() in expand_fdtable() */
652 	smp_rmb();
653 	fdt = rcu_dereference_sched(files->fdt);
654 	VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL);
655 	rcu_assign_pointer(fdt->fd[fd], file);
656 	rcu_read_unlock_sched();
657 }
658 
659 EXPORT_SYMBOL(fd_install);
660 
661 /**
662  * file_close_fd_locked - return file associated with fd
663  * @files: file struct to retrieve file from
664  * @fd: file descriptor to retrieve file for
665  *
666  * Doesn't take a separate reference count.
667  *
668  * Context: files_lock must be held.
669  *
670  * Returns: The file associated with @fd (NULL if @fd is not open)
671  */
672 struct file *file_close_fd_locked(struct files_struct *files, unsigned fd)
673 {
674 	struct fdtable *fdt = files_fdtable(files);
675 	struct file *file;
676 
677 	lockdep_assert_held(&files->file_lock);
678 
679 	if (fd >= fdt->max_fds)
680 		return NULL;
681 
682 	fd = array_index_nospec(fd, fdt->max_fds);
683 	file = rcu_dereference_raw(fdt->fd[fd]);
684 	if (file) {
685 		rcu_assign_pointer(fdt->fd[fd], NULL);
686 		__put_unused_fd(files, fd);
687 	}
688 	return file;
689 }
690 
691 int close_fd(unsigned fd)
692 {
693 	struct files_struct *files = current->files;
694 	struct file *file;
695 
696 	spin_lock(&files->file_lock);
697 	file = file_close_fd_locked(files, fd);
698 	spin_unlock(&files->file_lock);
699 	if (!file)
700 		return -EBADF;
701 
702 	return filp_close(file, files);
703 }
704 EXPORT_SYMBOL(close_fd);
705 
706 /**
707  * last_fd - return last valid index into fd table
708  * @fdt: File descriptor table.
709  *
710  * Context: Either rcu read lock or files_lock must be held.
711  *
712  * Returns: Last valid index into fdtable.
713  */
714 static inline unsigned last_fd(struct fdtable *fdt)
715 {
716 	return fdt->max_fds - 1;
717 }
718 
719 static inline void __range_cloexec(struct files_struct *cur_fds,
720 				   unsigned int fd, unsigned int max_fd)
721 {
722 	struct fdtable *fdt;
723 
724 	/* make sure we're using the correct maximum value */
725 	spin_lock(&cur_fds->file_lock);
726 	fdt = files_fdtable(cur_fds);
727 	max_fd = min(last_fd(fdt), max_fd);
728 	if (fd <= max_fd)
729 		bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
730 	spin_unlock(&cur_fds->file_lock);
731 }
732 
733 static inline void __range_close(struct files_struct *files, unsigned int fd,
734 				 unsigned int max_fd)
735 {
736 	struct file *file;
737 	unsigned n;
738 
739 	spin_lock(&files->file_lock);
740 	n = last_fd(files_fdtable(files));
741 	max_fd = min(max_fd, n);
742 
743 	for (; fd <= max_fd; fd++) {
744 		file = file_close_fd_locked(files, fd);
745 		if (file) {
746 			spin_unlock(&files->file_lock);
747 			filp_close(file, files);
748 			cond_resched();
749 			spin_lock(&files->file_lock);
750 		} else if (need_resched()) {
751 			spin_unlock(&files->file_lock);
752 			cond_resched();
753 			spin_lock(&files->file_lock);
754 		}
755 	}
756 	spin_unlock(&files->file_lock);
757 }
758 
759 /**
760  * sys_close_range() - Close all file descriptors in a given range.
761  *
762  * @fd:     starting file descriptor to close
763  * @max_fd: last file descriptor to close
764  * @flags:  CLOSE_RANGE flags.
765  *
766  * This closes a range of file descriptors. All file descriptors
767  * from @fd up to and including @max_fd are closed.
768  * Currently, errors to close a given file descriptor are ignored.
769  */
770 SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd,
771 		unsigned int, flags)
772 {
773 	struct task_struct *me = current;
774 	struct files_struct *cur_fds = me->files, *fds = NULL;
775 
776 	if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
777 		return -EINVAL;
778 
779 	if (fd > max_fd)
780 		return -EINVAL;
781 
782 	if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) {
783 		struct fd_range range = {fd, max_fd}, *punch_hole = &range;
784 
785 		/*
786 		 * If the caller requested all fds to be made cloexec we always
787 		 * copy all of the file descriptors since they still want to
788 		 * use them.
789 		 */
790 		if (flags & CLOSE_RANGE_CLOEXEC)
791 			punch_hole = NULL;
792 
793 		fds = dup_fd(cur_fds, punch_hole);
794 		if (IS_ERR(fds))
795 			return PTR_ERR(fds);
796 		/*
797 		 * We used to share our file descriptor table, and have now
798 		 * created a private one, make sure we're using it below.
799 		 */
800 		swap(cur_fds, fds);
801 	}
802 
803 	if (flags & CLOSE_RANGE_CLOEXEC)
804 		__range_cloexec(cur_fds, fd, max_fd);
805 	else
806 		__range_close(cur_fds, fd, max_fd);
807 
808 	if (fds) {
809 		/*
810 		 * We're done closing the files we were supposed to. Time to install
811 		 * the new file descriptor table and drop the old one.
812 		 */
813 		task_lock(me);
814 		me->files = cur_fds;
815 		task_unlock(me);
816 		put_files_struct(fds);
817 	}
818 
819 	return 0;
820 }
821 
822 /**
823  * file_close_fd - return file associated with fd
824  * @fd: file descriptor to retrieve file for
825  *
826  * Doesn't take a separate reference count.
827  *
828  * Returns: The file associated with @fd (NULL if @fd is not open)
829  */
830 struct file *file_close_fd(unsigned int fd)
831 {
832 	struct files_struct *files = current->files;
833 	struct file *file;
834 
835 	spin_lock(&files->file_lock);
836 	file = file_close_fd_locked(files, fd);
837 	spin_unlock(&files->file_lock);
838 
839 	return file;
840 }
841 
842 void do_close_on_exec(struct files_struct *files)
843 {
844 	unsigned i;
845 	struct fdtable *fdt;
846 
847 	/* exec unshares first */
848 	spin_lock(&files->file_lock);
849 	for (i = 0; ; i++) {
850 		unsigned long set;
851 		unsigned fd = i * BITS_PER_LONG;
852 		fdt = files_fdtable(files);
853 		if (fd >= fdt->max_fds)
854 			break;
855 		set = fdt->close_on_exec[i];
856 		if (!set)
857 			continue;
858 		fdt->close_on_exec[i] = 0;
859 		for ( ; set ; fd++, set >>= 1) {
860 			struct file *file;
861 			if (!(set & 1))
862 				continue;
863 			file = fdt->fd[fd];
864 			if (!file)
865 				continue;
866 			rcu_assign_pointer(fdt->fd[fd], NULL);
867 			__put_unused_fd(files, fd);
868 			spin_unlock(&files->file_lock);
869 			filp_close(file, files);
870 			cond_resched();
871 			spin_lock(&files->file_lock);
872 		}
873 
874 	}
875 	spin_unlock(&files->file_lock);
876 }
877 
878 static struct file *__get_file_rcu(struct file __rcu **f)
879 {
880 	struct file __rcu *file;
881 	struct file __rcu *file_reloaded;
882 	struct file __rcu *file_reloaded_cmp;
883 
884 	file = rcu_dereference_raw(*f);
885 	if (!file)
886 		return NULL;
887 
888 	if (unlikely(!file_ref_get(&file->f_ref)))
889 		return ERR_PTR(-EAGAIN);
890 
891 	file_reloaded = rcu_dereference_raw(*f);
892 
893 	/*
894 	 * Ensure that all accesses have a dependency on the load from
895 	 * rcu_dereference_raw() above so we get correct ordering
896 	 * between reuse/allocation and the pointer check below.
897 	 */
898 	file_reloaded_cmp = file_reloaded;
899 	OPTIMIZER_HIDE_VAR(file_reloaded_cmp);
900 
901 	/*
902 	 * file_ref_get() above provided a full memory barrier when we
903 	 * acquired a reference.
904 	 *
905 	 * This is paired with the write barrier from assigning to the
906 	 * __rcu protected file pointer so that if that pointer still
907 	 * matches the current file, we know we have successfully
908 	 * acquired a reference to the right file.
909 	 *
910 	 * If the pointers don't match the file has been reallocated by
911 	 * SLAB_TYPESAFE_BY_RCU.
912 	 */
913 	if (file == file_reloaded_cmp)
914 		return file_reloaded;
915 
916 	fput(file);
917 	return ERR_PTR(-EAGAIN);
918 }
919 
920 /**
921  * get_file_rcu - try go get a reference to a file under rcu
922  * @f: the file to get a reference on
923  *
924  * This function tries to get a reference on @f carefully verifying that
925  * @f hasn't been reused.
926  *
927  * This function should rarely have to be used and only by users who
928  * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
929  *
930  * Return: Returns @f with the reference count increased or NULL.
931  */
932 struct file *get_file_rcu(struct file __rcu **f)
933 {
934 	for (;;) {
935 		struct file __rcu *file;
936 
937 		file = __get_file_rcu(f);
938 		if (!IS_ERR(file))
939 			return file;
940 	}
941 }
942 EXPORT_SYMBOL_GPL(get_file_rcu);
943 
944 /**
945  * get_file_active - try go get a reference to a file
946  * @f: the file to get a reference on
947  *
948  * In contast to get_file_rcu() the pointer itself isn't part of the
949  * reference counting.
950  *
951  * This function should rarely have to be used and only by users who
952  * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
953  *
954  * Return: Returns @f with the reference count increased or NULL.
955  */
956 struct file *get_file_active(struct file **f)
957 {
958 	struct file __rcu *file;
959 
960 	rcu_read_lock();
961 	file = __get_file_rcu(f);
962 	rcu_read_unlock();
963 	if (IS_ERR(file))
964 		file = NULL;
965 	return file;
966 }
967 EXPORT_SYMBOL_GPL(get_file_active);
968 
969 static inline struct file *__fget_files_rcu(struct files_struct *files,
970        unsigned int fd, fmode_t mask)
971 {
972 	for (;;) {
973 		struct file *file;
974 		struct fdtable *fdt = rcu_dereference_raw(files->fdt);
975 		struct file __rcu **fdentry;
976 		unsigned long nospec_mask;
977 
978 		/* Mask is a 0 for invalid fd's, ~0 for valid ones */
979 		nospec_mask = array_index_mask_nospec(fd, fdt->max_fds);
980 
981 		/*
982 		 * fdentry points to the 'fd' offset, or fdt->fd[0].
983 		 * Loading from fdt->fd[0] is always safe, because the
984 		 * array always exists.
985 		 */
986 		fdentry = fdt->fd + (fd & nospec_mask);
987 
988 		/* Do the load, then mask any invalid result */
989 		file = rcu_dereference_raw(*fdentry);
990 		file = (void *)(nospec_mask & (unsigned long)file);
991 		if (unlikely(!file))
992 			return NULL;
993 
994 		/*
995 		 * Ok, we have a file pointer that was valid at
996 		 * some point, but it might have become stale since.
997 		 *
998 		 * We need to confirm it by incrementing the refcount
999 		 * and then check the lookup again.
1000 		 *
1001 		 * file_ref_get() gives us a full memory barrier. We
1002 		 * only really need an 'acquire' one to protect the
1003 		 * loads below, but we don't have that.
1004 		 */
1005 		if (unlikely(!file_ref_get(&file->f_ref)))
1006 			continue;
1007 
1008 		/*
1009 		 * Such a race can take two forms:
1010 		 *
1011 		 *  (a) the file ref already went down to zero and the
1012 		 *      file hasn't been reused yet or the file count
1013 		 *      isn't zero but the file has already been reused.
1014 		 *
1015 		 *  (b) the file table entry has changed under us.
1016 		 *       Note that we don't need to re-check the 'fdt->fd'
1017 		 *       pointer having changed, because it always goes
1018 		 *       hand-in-hand with 'fdt'.
1019 		 *
1020 		 * If so, we need to put our ref and try again.
1021 		 */
1022 		if (unlikely(file != rcu_dereference_raw(*fdentry)) ||
1023 		    unlikely(rcu_dereference_raw(files->fdt) != fdt)) {
1024 			fput(file);
1025 			continue;
1026 		}
1027 
1028 		/*
1029 		 * This isn't the file we're looking for or we're not
1030 		 * allowed to get a reference to it.
1031 		 */
1032 		if (unlikely(file->f_mode & mask)) {
1033 			fput(file);
1034 			return NULL;
1035 		}
1036 
1037 		/*
1038 		 * Ok, we have a ref to the file, and checked that it
1039 		 * still exists.
1040 		 */
1041 		return file;
1042 	}
1043 }
1044 
1045 static struct file *__fget_files(struct files_struct *files, unsigned int fd,
1046 				 fmode_t mask)
1047 {
1048 	struct file *file;
1049 
1050 	rcu_read_lock();
1051 	file = __fget_files_rcu(files, fd, mask);
1052 	rcu_read_unlock();
1053 
1054 	return file;
1055 }
1056 
1057 static inline struct file *__fget(unsigned int fd, fmode_t mask)
1058 {
1059 	return __fget_files(current->files, fd, mask);
1060 }
1061 
1062 struct file *fget(unsigned int fd)
1063 {
1064 	return __fget(fd, FMODE_PATH);
1065 }
1066 EXPORT_SYMBOL(fget);
1067 
1068 struct file *fget_raw(unsigned int fd)
1069 {
1070 	return __fget(fd, 0);
1071 }
1072 EXPORT_SYMBOL(fget_raw);
1073 
1074 struct file *fget_task(struct task_struct *task, unsigned int fd)
1075 {
1076 	struct file *file = NULL;
1077 
1078 	task_lock(task);
1079 	if (task->files)
1080 		file = __fget_files(task->files, fd, 0);
1081 	task_unlock(task);
1082 
1083 	return file;
1084 }
1085 
1086 struct file *fget_task_next(struct task_struct *task, unsigned int *ret_fd)
1087 {
1088 	/* Must be called with rcu_read_lock held */
1089 	struct files_struct *files;
1090 	unsigned int fd = *ret_fd;
1091 	struct file *file = NULL;
1092 
1093 	task_lock(task);
1094 	files = task->files;
1095 	if (files) {
1096 		rcu_read_lock();
1097 		for (; fd < files_fdtable(files)->max_fds; fd++) {
1098 			file = __fget_files_rcu(files, fd, 0);
1099 			if (file)
1100 				break;
1101 		}
1102 		rcu_read_unlock();
1103 	}
1104 	task_unlock(task);
1105 	*ret_fd = fd;
1106 	return file;
1107 }
1108 EXPORT_SYMBOL(fget_task_next);
1109 
1110 /*
1111  * Lightweight file lookup - no refcnt increment if fd table isn't shared.
1112  *
1113  * You can use this instead of fget if you satisfy all of the following
1114  * conditions:
1115  * 1) You must call fput_light before exiting the syscall and returning control
1116  *    to userspace (i.e. you cannot remember the returned struct file * after
1117  *    returning to userspace).
1118  * 2) You must not call filp_close on the returned struct file * in between
1119  *    calls to fget_light and fput_light.
1120  * 3) You must not clone the current task in between the calls to fget_light
1121  *    and fput_light.
1122  *
1123  * The fput_needed flag returned by fget_light should be passed to the
1124  * corresponding fput_light.
1125  *
1126  * (As an exception to rule 2, you can call filp_close between fget_light and
1127  * fput_light provided that you capture a real refcount with get_file before
1128  * the call to filp_close, and ensure that this real refcount is fput *after*
1129  * the fput_light call.)
1130  *
1131  * See also the documentation in rust/kernel/file.rs.
1132  */
1133 static inline struct fd __fget_light(unsigned int fd, fmode_t mask)
1134 {
1135 	struct files_struct *files = current->files;
1136 	struct file *file;
1137 
1138 	/*
1139 	 * If another thread is concurrently calling close_fd() followed
1140 	 * by put_files_struct(), we must not observe the old table
1141 	 * entry combined with the new refcount - otherwise we could
1142 	 * return a file that is concurrently being freed.
1143 	 *
1144 	 * atomic_read_acquire() pairs with atomic_dec_and_test() in
1145 	 * put_files_struct().
1146 	 */
1147 	if (likely(atomic_read_acquire(&files->count) == 1)) {
1148 		file = files_lookup_fd_raw(files, fd);
1149 		if (!file || unlikely(file->f_mode & mask))
1150 			return EMPTY_FD;
1151 		return BORROWED_FD(file);
1152 	} else {
1153 		file = __fget_files(files, fd, mask);
1154 		if (!file)
1155 			return EMPTY_FD;
1156 		return CLONED_FD(file);
1157 	}
1158 }
1159 struct fd fdget(unsigned int fd)
1160 {
1161 	return __fget_light(fd, FMODE_PATH);
1162 }
1163 EXPORT_SYMBOL(fdget);
1164 
1165 struct fd fdget_raw(unsigned int fd)
1166 {
1167 	return __fget_light(fd, 0);
1168 }
1169 
1170 /*
1171  * Try to avoid f_pos locking. We only need it if the
1172  * file is marked for FMODE_ATOMIC_POS, and it can be
1173  * accessed multiple ways.
1174  *
1175  * Always do it for directories, because pidfd_getfd()
1176  * can make a file accessible even if it otherwise would
1177  * not be, and for directories this is a correctness
1178  * issue, not a "POSIX requirement".
1179  */
1180 static inline bool file_needs_f_pos_lock(struct file *file)
1181 {
1182 	return (file->f_mode & FMODE_ATOMIC_POS) &&
1183 		(file_count(file) > 1 || file->f_op->iterate_shared);
1184 }
1185 
1186 bool file_seek_cur_needs_f_lock(struct file *file)
1187 {
1188 	if (!(file->f_mode & FMODE_ATOMIC_POS) && !file->f_op->iterate_shared)
1189 		return false;
1190 
1191 	VFS_WARN_ON_ONCE((file_count(file) > 1) &&
1192 			 !mutex_is_locked(&file->f_pos_lock));
1193 	return true;
1194 }
1195 
1196 struct fd fdget_pos(unsigned int fd)
1197 {
1198 	struct fd f = fdget(fd);
1199 	struct file *file = fd_file(f);
1200 
1201 	if (file && file_needs_f_pos_lock(file)) {
1202 		f.word |= FDPUT_POS_UNLOCK;
1203 		mutex_lock(&file->f_pos_lock);
1204 	}
1205 	return f;
1206 }
1207 
1208 void __f_unlock_pos(struct file *f)
1209 {
1210 	mutex_unlock(&f->f_pos_lock);
1211 }
1212 
1213 /*
1214  * We only lock f_pos if we have threads or if the file might be
1215  * shared with another process. In both cases we'll have an elevated
1216  * file count (done either by fdget() or by fork()).
1217  */
1218 
1219 void set_close_on_exec(unsigned int fd, int flag)
1220 {
1221 	struct files_struct *files = current->files;
1222 	spin_lock(&files->file_lock);
1223 	__set_close_on_exec(fd, files_fdtable(files), flag);
1224 	spin_unlock(&files->file_lock);
1225 }
1226 
1227 bool get_close_on_exec(unsigned int fd)
1228 {
1229 	bool res;
1230 	rcu_read_lock();
1231 	res = close_on_exec(fd, current->files);
1232 	rcu_read_unlock();
1233 	return res;
1234 }
1235 
1236 static int do_dup2(struct files_struct *files,
1237 	struct file *file, unsigned fd, unsigned flags)
1238 __releases(&files->file_lock)
1239 {
1240 	struct file *tofree;
1241 	struct fdtable *fdt;
1242 
1243 	/*
1244 	 * dup2() is expected to close the file installed in the target fd slot
1245 	 * (if any). However, userspace hand-picking a fd may be racing against
1246 	 * its own threads which happened to allocate it in open() et al but did
1247 	 * not populate it yet.
1248 	 *
1249 	 * Broadly speaking we may be racing against the following:
1250 	 * fd = get_unused_fd_flags();     // fd slot reserved, ->fd[fd] == NULL
1251 	 * file = hard_work_goes_here();
1252 	 * fd_install(fd, file);           // only now ->fd[fd] == file
1253 	 *
1254 	 * It is an invariant that a successfully allocated fd has a NULL entry
1255 	 * in the array until the matching fd_install().
1256 	 *
1257 	 * If we fit the window, we have the fd to populate, yet no target file
1258 	 * to close. Trying to ignore it and install our new file would violate
1259 	 * the invariant and make fd_install() overwrite our file.
1260 	 *
1261 	 * Things can be done(tm) to handle this. However, the issue does not
1262 	 * concern legitimate programs and we only need to make sure the kernel
1263 	 * does not trip over it.
1264 	 *
1265 	 * The simplest way out is to return an error if we find ourselves here.
1266 	 *
1267 	 * POSIX is silent on the issue, we return -EBUSY.
1268 	 */
1269 	fdt = files_fdtable(files);
1270 	fd = array_index_nospec(fd, fdt->max_fds);
1271 	tofree = rcu_dereference_raw(fdt->fd[fd]);
1272 	if (!tofree && fd_is_open(fd, fdt))
1273 		goto Ebusy;
1274 	get_file(file);
1275 	rcu_assign_pointer(fdt->fd[fd], file);
1276 	__set_open_fd(fd, fdt, flags & O_CLOEXEC);
1277 	spin_unlock(&files->file_lock);
1278 
1279 	if (tofree)
1280 		filp_close(tofree, files);
1281 
1282 	return fd;
1283 
1284 Ebusy:
1285 	spin_unlock(&files->file_lock);
1286 	return -EBUSY;
1287 }
1288 
1289 int replace_fd(unsigned fd, struct file *file, unsigned flags)
1290 {
1291 	int err;
1292 	struct files_struct *files = current->files;
1293 
1294 	if (!file)
1295 		return close_fd(fd);
1296 
1297 	if (fd >= rlimit(RLIMIT_NOFILE))
1298 		return -EBADF;
1299 
1300 	spin_lock(&files->file_lock);
1301 	err = expand_files(files, fd);
1302 	if (unlikely(err < 0))
1303 		goto out_unlock;
1304 	return do_dup2(files, file, fd, flags);
1305 
1306 out_unlock:
1307 	spin_unlock(&files->file_lock);
1308 	return err;
1309 }
1310 
1311 /**
1312  * receive_fd() - Install received file into file descriptor table
1313  * @file: struct file that was received from another process
1314  * @ufd: __user pointer to write new fd number to
1315  * @o_flags: the O_* flags to apply to the new fd entry
1316  *
1317  * Installs a received file into the file descriptor table, with appropriate
1318  * checks and count updates. Optionally writes the fd number to userspace, if
1319  * @ufd is non-NULL.
1320  *
1321  * This helper handles its own reference counting of the incoming
1322  * struct file.
1323  *
1324  * Returns newly install fd or -ve on error.
1325  */
1326 int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
1327 {
1328 	int new_fd;
1329 	int error;
1330 
1331 	error = security_file_receive(file);
1332 	if (error)
1333 		return error;
1334 
1335 	new_fd = get_unused_fd_flags(o_flags);
1336 	if (new_fd < 0)
1337 		return new_fd;
1338 
1339 	if (ufd) {
1340 		error = put_user(new_fd, ufd);
1341 		if (error) {
1342 			put_unused_fd(new_fd);
1343 			return error;
1344 		}
1345 	}
1346 
1347 	fd_install(new_fd, get_file(file));
1348 	__receive_sock(file);
1349 	return new_fd;
1350 }
1351 EXPORT_SYMBOL_GPL(receive_fd);
1352 
1353 int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
1354 {
1355 	int error;
1356 
1357 	error = security_file_receive(file);
1358 	if (error)
1359 		return error;
1360 	error = replace_fd(new_fd, file, o_flags);
1361 	if (error)
1362 		return error;
1363 	__receive_sock(file);
1364 	return new_fd;
1365 }
1366 
1367 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1368 {
1369 	int err = -EBADF;
1370 	struct file *file;
1371 	struct files_struct *files = current->files;
1372 
1373 	if ((flags & ~O_CLOEXEC) != 0)
1374 		return -EINVAL;
1375 
1376 	if (unlikely(oldfd == newfd))
1377 		return -EINVAL;
1378 
1379 	if (newfd >= rlimit(RLIMIT_NOFILE))
1380 		return -EBADF;
1381 
1382 	spin_lock(&files->file_lock);
1383 	err = expand_files(files, newfd);
1384 	file = files_lookup_fd_locked(files, oldfd);
1385 	if (unlikely(!file))
1386 		goto Ebadf;
1387 	if (unlikely(err < 0)) {
1388 		if (err == -EMFILE)
1389 			goto Ebadf;
1390 		goto out_unlock;
1391 	}
1392 	return do_dup2(files, file, newfd, flags);
1393 
1394 Ebadf:
1395 	err = -EBADF;
1396 out_unlock:
1397 	spin_unlock(&files->file_lock);
1398 	return err;
1399 }
1400 
1401 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1402 {
1403 	return ksys_dup3(oldfd, newfd, flags);
1404 }
1405 
1406 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1407 {
1408 	if (unlikely(newfd == oldfd)) { /* corner case */
1409 		struct files_struct *files = current->files;
1410 		struct file *f;
1411 		int retval = oldfd;
1412 
1413 		rcu_read_lock();
1414 		f = __fget_files_rcu(files, oldfd, 0);
1415 		if (!f)
1416 			retval = -EBADF;
1417 		rcu_read_unlock();
1418 		if (f)
1419 			fput(f);
1420 		return retval;
1421 	}
1422 	return ksys_dup3(oldfd, newfd, 0);
1423 }
1424 
1425 SYSCALL_DEFINE1(dup, unsigned int, fildes)
1426 {
1427 	int ret = -EBADF;
1428 	struct file *file = fget_raw(fildes);
1429 
1430 	if (file) {
1431 		ret = get_unused_fd_flags(0);
1432 		if (ret >= 0)
1433 			fd_install(ret, file);
1434 		else
1435 			fput(file);
1436 	}
1437 	return ret;
1438 }
1439 
1440 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1441 {
1442 	unsigned long nofile = rlimit(RLIMIT_NOFILE);
1443 	int err;
1444 	if (from >= nofile)
1445 		return -EINVAL;
1446 	err = alloc_fd(from, nofile, flags);
1447 	if (err >= 0) {
1448 		get_file(file);
1449 		fd_install(err, file);
1450 	}
1451 	return err;
1452 }
1453 
1454 int iterate_fd(struct files_struct *files, unsigned n,
1455 		int (*f)(const void *, struct file *, unsigned),
1456 		const void *p)
1457 {
1458 	struct fdtable *fdt;
1459 	int res = 0;
1460 	if (!files)
1461 		return 0;
1462 	spin_lock(&files->file_lock);
1463 	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1464 		struct file *file;
1465 		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1466 		if (!file)
1467 			continue;
1468 		res = f(p, file, n);
1469 		if (res)
1470 			break;
1471 	}
1472 	spin_unlock(&files->file_lock);
1473 	return res;
1474 }
1475 EXPORT_SYMBOL(iterate_fd);
1476