xref: /linux/fs/file.c (revision 6a143a7cf94730f57544ea14a987dc025364dbb8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/file.c
4  *
5  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6  *
7  *  Manage the dynamic fd arrays in the process files_struct.
8  */
9 
10 #include <linux/syscalls.h>
11 #include <linux/export.h>
12 #include <linux/fs.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/close_range.h>
23 #include <net/sock.h>
24 
25 #include "internal.h"
26 
27 unsigned int sysctl_nr_open __read_mostly = 1024*1024;
28 unsigned int sysctl_nr_open_min = BITS_PER_LONG;
29 /* our min() is unusable in constant expressions ;-/ */
30 #define __const_min(x, y) ((x) < (y) ? (x) : (y))
31 unsigned int sysctl_nr_open_max =
32 	__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
33 
34 static void __free_fdtable(struct fdtable *fdt)
35 {
36 	kvfree(fdt->fd);
37 	kvfree(fdt->open_fds);
38 	kfree(fdt);
39 }
40 
41 static void free_fdtable_rcu(struct rcu_head *rcu)
42 {
43 	__free_fdtable(container_of(rcu, struct fdtable, rcu));
44 }
45 
46 #define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
47 #define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
48 
49 /*
50  * Copy 'count' fd bits from the old table to the new table and clear the extra
51  * space if any.  This does not copy the file pointers.  Called with the files
52  * spinlock held for write.
53  */
54 static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
55 			    unsigned int count)
56 {
57 	unsigned int cpy, set;
58 
59 	cpy = count / BITS_PER_BYTE;
60 	set = (nfdt->max_fds - count) / BITS_PER_BYTE;
61 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
62 	memset((char *)nfdt->open_fds + cpy, 0, set);
63 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
64 	memset((char *)nfdt->close_on_exec + cpy, 0, set);
65 
66 	cpy = BITBIT_SIZE(count);
67 	set = BITBIT_SIZE(nfdt->max_fds) - cpy;
68 	memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy);
69 	memset((char *)nfdt->full_fds_bits + cpy, 0, set);
70 }
71 
72 /*
73  * Copy all file descriptors from the old table to the new, expanded table and
74  * clear the extra space.  Called with the files spinlock held for write.
75  */
76 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
77 {
78 	size_t cpy, set;
79 
80 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
81 
82 	cpy = ofdt->max_fds * sizeof(struct file *);
83 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
84 	memcpy(nfdt->fd, ofdt->fd, cpy);
85 	memset((char *)nfdt->fd + cpy, 0, set);
86 
87 	copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds);
88 }
89 
90 static struct fdtable * alloc_fdtable(unsigned int nr)
91 {
92 	struct fdtable *fdt;
93 	void *data;
94 
95 	/*
96 	 * Figure out how many fds we actually want to support in this fdtable.
97 	 * Allocation steps are keyed to the size of the fdarray, since it
98 	 * grows far faster than any of the other dynamic data. We try to fit
99 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
100 	 * and growing in powers of two from there on.
101 	 */
102 	nr /= (1024 / sizeof(struct file *));
103 	nr = roundup_pow_of_two(nr + 1);
104 	nr *= (1024 / sizeof(struct file *));
105 	/*
106 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
107 	 * had been set lower between the check in expand_files() and here.  Deal
108 	 * with that in caller, it's cheaper that way.
109 	 *
110 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
111 	 * bitmaps handling below becomes unpleasant, to put it mildly...
112 	 */
113 	if (unlikely(nr > sysctl_nr_open))
114 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
115 
116 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
117 	if (!fdt)
118 		goto out;
119 	fdt->max_fds = nr;
120 	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
121 	if (!data)
122 		goto out_fdt;
123 	fdt->fd = data;
124 
125 	data = kvmalloc(max_t(size_t,
126 				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
127 				 GFP_KERNEL_ACCOUNT);
128 	if (!data)
129 		goto out_arr;
130 	fdt->open_fds = data;
131 	data += nr / BITS_PER_BYTE;
132 	fdt->close_on_exec = data;
133 	data += nr / BITS_PER_BYTE;
134 	fdt->full_fds_bits = data;
135 
136 	return fdt;
137 
138 out_arr:
139 	kvfree(fdt->fd);
140 out_fdt:
141 	kfree(fdt);
142 out:
143 	return NULL;
144 }
145 
146 /*
147  * Expand the file descriptor table.
148  * This function will allocate a new fdtable and both fd array and fdset, of
149  * the given size.
150  * Return <0 error code on error; 1 on successful completion.
151  * The files->file_lock should be held on entry, and will be held on exit.
152  */
153 static int expand_fdtable(struct files_struct *files, unsigned int nr)
154 	__releases(files->file_lock)
155 	__acquires(files->file_lock)
156 {
157 	struct fdtable *new_fdt, *cur_fdt;
158 
159 	spin_unlock(&files->file_lock);
160 	new_fdt = alloc_fdtable(nr);
161 
162 	/* make sure all fd_install() have seen resize_in_progress
163 	 * or have finished their rcu_read_lock_sched() section.
164 	 */
165 	if (atomic_read(&files->count) > 1)
166 		synchronize_rcu();
167 
168 	spin_lock(&files->file_lock);
169 	if (!new_fdt)
170 		return -ENOMEM;
171 	/*
172 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
173 	 * caller and alloc_fdtable().  Cheaper to catch it here...
174 	 */
175 	if (unlikely(new_fdt->max_fds <= nr)) {
176 		__free_fdtable(new_fdt);
177 		return -EMFILE;
178 	}
179 	cur_fdt = files_fdtable(files);
180 	BUG_ON(nr < cur_fdt->max_fds);
181 	copy_fdtable(new_fdt, cur_fdt);
182 	rcu_assign_pointer(files->fdt, new_fdt);
183 	if (cur_fdt != &files->fdtab)
184 		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
185 	/* coupled with smp_rmb() in fd_install() */
186 	smp_wmb();
187 	return 1;
188 }
189 
190 /*
191  * Expand files.
192  * This function will expand the file structures, if the requested size exceeds
193  * the current capacity and there is room for expansion.
194  * Return <0 error code on error; 0 when nothing done; 1 when files were
195  * expanded and execution may have blocked.
196  * The files->file_lock should be held on entry, and will be held on exit.
197  */
198 static int expand_files(struct files_struct *files, unsigned int nr)
199 	__releases(files->file_lock)
200 	__acquires(files->file_lock)
201 {
202 	struct fdtable *fdt;
203 	int expanded = 0;
204 
205 repeat:
206 	fdt = files_fdtable(files);
207 
208 	/* Do we need to expand? */
209 	if (nr < fdt->max_fds)
210 		return expanded;
211 
212 	/* Can we expand? */
213 	if (nr >= sysctl_nr_open)
214 		return -EMFILE;
215 
216 	if (unlikely(files->resize_in_progress)) {
217 		spin_unlock(&files->file_lock);
218 		expanded = 1;
219 		wait_event(files->resize_wait, !files->resize_in_progress);
220 		spin_lock(&files->file_lock);
221 		goto repeat;
222 	}
223 
224 	/* All good, so we try */
225 	files->resize_in_progress = true;
226 	expanded = expand_fdtable(files, nr);
227 	files->resize_in_progress = false;
228 
229 	wake_up_all(&files->resize_wait);
230 	return expanded;
231 }
232 
233 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt)
234 {
235 	__set_bit(fd, fdt->close_on_exec);
236 }
237 
238 static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt)
239 {
240 	if (test_bit(fd, fdt->close_on_exec))
241 		__clear_bit(fd, fdt->close_on_exec);
242 }
243 
244 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt)
245 {
246 	__set_bit(fd, fdt->open_fds);
247 	fd /= BITS_PER_LONG;
248 	if (!~fdt->open_fds[fd])
249 		__set_bit(fd, fdt->full_fds_bits);
250 }
251 
252 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
253 {
254 	__clear_bit(fd, fdt->open_fds);
255 	__clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
256 }
257 
258 static unsigned int count_open_files(struct fdtable *fdt)
259 {
260 	unsigned int size = fdt->max_fds;
261 	unsigned int i;
262 
263 	/* Find the last open fd */
264 	for (i = size / BITS_PER_LONG; i > 0; ) {
265 		if (fdt->open_fds[--i])
266 			break;
267 	}
268 	i = (i + 1) * BITS_PER_LONG;
269 	return i;
270 }
271 
272 static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds)
273 {
274 	unsigned int count;
275 
276 	count = count_open_files(fdt);
277 	if (max_fds < NR_OPEN_DEFAULT)
278 		max_fds = NR_OPEN_DEFAULT;
279 	return min(count, max_fds);
280 }
281 
282 /*
283  * Allocate a new files structure and copy contents from the
284  * passed in files structure.
285  * errorp will be valid only when the returned files_struct is NULL.
286  */
287 struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp)
288 {
289 	struct files_struct *newf;
290 	struct file **old_fds, **new_fds;
291 	unsigned int open_files, i;
292 	struct fdtable *old_fdt, *new_fdt;
293 
294 	*errorp = -ENOMEM;
295 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
296 	if (!newf)
297 		goto out;
298 
299 	atomic_set(&newf->count, 1);
300 
301 	spin_lock_init(&newf->file_lock);
302 	newf->resize_in_progress = false;
303 	init_waitqueue_head(&newf->resize_wait);
304 	newf->next_fd = 0;
305 	new_fdt = &newf->fdtab;
306 	new_fdt->max_fds = NR_OPEN_DEFAULT;
307 	new_fdt->close_on_exec = newf->close_on_exec_init;
308 	new_fdt->open_fds = newf->open_fds_init;
309 	new_fdt->full_fds_bits = newf->full_fds_bits_init;
310 	new_fdt->fd = &newf->fd_array[0];
311 
312 	spin_lock(&oldf->file_lock);
313 	old_fdt = files_fdtable(oldf);
314 	open_files = sane_fdtable_size(old_fdt, max_fds);
315 
316 	/*
317 	 * Check whether we need to allocate a larger fd array and fd set.
318 	 */
319 	while (unlikely(open_files > new_fdt->max_fds)) {
320 		spin_unlock(&oldf->file_lock);
321 
322 		if (new_fdt != &newf->fdtab)
323 			__free_fdtable(new_fdt);
324 
325 		new_fdt = alloc_fdtable(open_files - 1);
326 		if (!new_fdt) {
327 			*errorp = -ENOMEM;
328 			goto out_release;
329 		}
330 
331 		/* beyond sysctl_nr_open; nothing to do */
332 		if (unlikely(new_fdt->max_fds < open_files)) {
333 			__free_fdtable(new_fdt);
334 			*errorp = -EMFILE;
335 			goto out_release;
336 		}
337 
338 		/*
339 		 * Reacquire the oldf lock and a pointer to its fd table
340 		 * who knows it may have a new bigger fd table. We need
341 		 * the latest pointer.
342 		 */
343 		spin_lock(&oldf->file_lock);
344 		old_fdt = files_fdtable(oldf);
345 		open_files = sane_fdtable_size(old_fdt, max_fds);
346 	}
347 
348 	copy_fd_bitmaps(new_fdt, old_fdt, open_files);
349 
350 	old_fds = old_fdt->fd;
351 	new_fds = new_fdt->fd;
352 
353 	for (i = open_files; i != 0; i--) {
354 		struct file *f = *old_fds++;
355 		if (f) {
356 			get_file(f);
357 		} else {
358 			/*
359 			 * The fd may be claimed in the fd bitmap but not yet
360 			 * instantiated in the files array if a sibling thread
361 			 * is partway through open().  So make sure that this
362 			 * fd is available to the new process.
363 			 */
364 			__clear_open_fd(open_files - i, new_fdt);
365 		}
366 		rcu_assign_pointer(*new_fds++, f);
367 	}
368 	spin_unlock(&oldf->file_lock);
369 
370 	/* clear the remainder */
371 	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
372 
373 	rcu_assign_pointer(newf->fdt, new_fdt);
374 
375 	return newf;
376 
377 out_release:
378 	kmem_cache_free(files_cachep, newf);
379 out:
380 	return NULL;
381 }
382 
383 static struct fdtable *close_files(struct files_struct * files)
384 {
385 	/*
386 	 * It is safe to dereference the fd table without RCU or
387 	 * ->file_lock because this is the last reference to the
388 	 * files structure.
389 	 */
390 	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
391 	unsigned int i, j = 0;
392 
393 	for (;;) {
394 		unsigned long set;
395 		i = j * BITS_PER_LONG;
396 		if (i >= fdt->max_fds)
397 			break;
398 		set = fdt->open_fds[j++];
399 		while (set) {
400 			if (set & 1) {
401 				struct file * file = xchg(&fdt->fd[i], NULL);
402 				if (file) {
403 					filp_close(file, files);
404 					cond_resched();
405 				}
406 			}
407 			i++;
408 			set >>= 1;
409 		}
410 	}
411 
412 	return fdt;
413 }
414 
415 void put_files_struct(struct files_struct *files)
416 {
417 	if (atomic_dec_and_test(&files->count)) {
418 		struct fdtable *fdt = close_files(files);
419 
420 		/* free the arrays if they are not embedded */
421 		if (fdt != &files->fdtab)
422 			__free_fdtable(fdt);
423 		kmem_cache_free(files_cachep, files);
424 	}
425 }
426 
427 void exit_files(struct task_struct *tsk)
428 {
429 	struct files_struct * files = tsk->files;
430 
431 	if (files) {
432 		task_lock(tsk);
433 		tsk->files = NULL;
434 		task_unlock(tsk);
435 		put_files_struct(files);
436 	}
437 }
438 
439 struct files_struct init_files = {
440 	.count		= ATOMIC_INIT(1),
441 	.fdt		= &init_files.fdtab,
442 	.fdtab		= {
443 		.max_fds	= NR_OPEN_DEFAULT,
444 		.fd		= &init_files.fd_array[0],
445 		.close_on_exec	= init_files.close_on_exec_init,
446 		.open_fds	= init_files.open_fds_init,
447 		.full_fds_bits	= init_files.full_fds_bits_init,
448 	},
449 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
450 	.resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
451 };
452 
453 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
454 {
455 	unsigned int maxfd = fdt->max_fds;
456 	unsigned int maxbit = maxfd / BITS_PER_LONG;
457 	unsigned int bitbit = start / BITS_PER_LONG;
458 
459 	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
460 	if (bitbit > maxfd)
461 		return maxfd;
462 	if (bitbit > start)
463 		start = bitbit;
464 	return find_next_zero_bit(fdt->open_fds, maxfd, start);
465 }
466 
467 /*
468  * allocate a file descriptor, mark it busy.
469  */
470 static int alloc_fd(unsigned start, unsigned end, unsigned flags)
471 {
472 	struct files_struct *files = current->files;
473 	unsigned int fd;
474 	int error;
475 	struct fdtable *fdt;
476 
477 	spin_lock(&files->file_lock);
478 repeat:
479 	fdt = files_fdtable(files);
480 	fd = start;
481 	if (fd < files->next_fd)
482 		fd = files->next_fd;
483 
484 	if (fd < fdt->max_fds)
485 		fd = find_next_fd(fdt, fd);
486 
487 	/*
488 	 * N.B. For clone tasks sharing a files structure, this test
489 	 * will limit the total number of files that can be opened.
490 	 */
491 	error = -EMFILE;
492 	if (fd >= end)
493 		goto out;
494 
495 	error = expand_files(files, fd);
496 	if (error < 0)
497 		goto out;
498 
499 	/*
500 	 * If we needed to expand the fs array we
501 	 * might have blocked - try again.
502 	 */
503 	if (error)
504 		goto repeat;
505 
506 	if (start <= files->next_fd)
507 		files->next_fd = fd + 1;
508 
509 	__set_open_fd(fd, fdt);
510 	if (flags & O_CLOEXEC)
511 		__set_close_on_exec(fd, fdt);
512 	else
513 		__clear_close_on_exec(fd, fdt);
514 	error = fd;
515 #if 1
516 	/* Sanity check */
517 	if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
518 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
519 		rcu_assign_pointer(fdt->fd[fd], NULL);
520 	}
521 #endif
522 
523 out:
524 	spin_unlock(&files->file_lock);
525 	return error;
526 }
527 
528 int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
529 {
530 	return alloc_fd(0, nofile, flags);
531 }
532 
533 int get_unused_fd_flags(unsigned flags)
534 {
535 	return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
536 }
537 EXPORT_SYMBOL(get_unused_fd_flags);
538 
539 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
540 {
541 	struct fdtable *fdt = files_fdtable(files);
542 	__clear_open_fd(fd, fdt);
543 	if (fd < files->next_fd)
544 		files->next_fd = fd;
545 }
546 
547 void put_unused_fd(unsigned int fd)
548 {
549 	struct files_struct *files = current->files;
550 	spin_lock(&files->file_lock);
551 	__put_unused_fd(files, fd);
552 	spin_unlock(&files->file_lock);
553 }
554 
555 EXPORT_SYMBOL(put_unused_fd);
556 
557 /*
558  * Install a file pointer in the fd array.
559  *
560  * The VFS is full of places where we drop the files lock between
561  * setting the open_fds bitmap and installing the file in the file
562  * array.  At any such point, we are vulnerable to a dup2() race
563  * installing a file in the array before us.  We need to detect this and
564  * fput() the struct file we are about to overwrite in this case.
565  *
566  * It should never happen - if we allow dup2() do it, _really_ bad things
567  * will follow.
568  *
569  * This consumes the "file" refcount, so callers should treat it
570  * as if they had called fput(file).
571  */
572 
573 void fd_install(unsigned int fd, struct file *file)
574 {
575 	struct files_struct *files = current->files;
576 	struct fdtable *fdt;
577 
578 	rcu_read_lock_sched();
579 
580 	if (unlikely(files->resize_in_progress)) {
581 		rcu_read_unlock_sched();
582 		spin_lock(&files->file_lock);
583 		fdt = files_fdtable(files);
584 		BUG_ON(fdt->fd[fd] != NULL);
585 		rcu_assign_pointer(fdt->fd[fd], file);
586 		spin_unlock(&files->file_lock);
587 		return;
588 	}
589 	/* coupled with smp_wmb() in expand_fdtable() */
590 	smp_rmb();
591 	fdt = rcu_dereference_sched(files->fdt);
592 	BUG_ON(fdt->fd[fd] != NULL);
593 	rcu_assign_pointer(fdt->fd[fd], file);
594 	rcu_read_unlock_sched();
595 }
596 
597 EXPORT_SYMBOL(fd_install);
598 
599 static struct file *pick_file(struct files_struct *files, unsigned fd)
600 {
601 	struct file *file = NULL;
602 	struct fdtable *fdt;
603 
604 	spin_lock(&files->file_lock);
605 	fdt = files_fdtable(files);
606 	if (fd >= fdt->max_fds)
607 		goto out_unlock;
608 	file = fdt->fd[fd];
609 	if (!file)
610 		goto out_unlock;
611 	rcu_assign_pointer(fdt->fd[fd], NULL);
612 	__put_unused_fd(files, fd);
613 
614 out_unlock:
615 	spin_unlock(&files->file_lock);
616 	return file;
617 }
618 
619 int close_fd(unsigned fd)
620 {
621 	struct files_struct *files = current->files;
622 	struct file *file;
623 
624 	file = pick_file(files, fd);
625 	if (!file)
626 		return -EBADF;
627 
628 	return filp_close(file, files);
629 }
630 EXPORT_SYMBOL(close_fd); /* for ksys_close() */
631 
632 static inline void __range_cloexec(struct files_struct *cur_fds,
633 				   unsigned int fd, unsigned int max_fd)
634 {
635 	struct fdtable *fdt;
636 
637 	if (fd > max_fd)
638 		return;
639 
640 	spin_lock(&cur_fds->file_lock);
641 	fdt = files_fdtable(cur_fds);
642 	bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
643 	spin_unlock(&cur_fds->file_lock);
644 }
645 
646 static inline void __range_close(struct files_struct *cur_fds, unsigned int fd,
647 				 unsigned int max_fd)
648 {
649 	while (fd <= max_fd) {
650 		struct file *file;
651 
652 		file = pick_file(cur_fds, fd++);
653 		if (!file)
654 			continue;
655 
656 		filp_close(file, cur_fds);
657 		cond_resched();
658 	}
659 }
660 
661 /**
662  * __close_range() - Close all file descriptors in a given range.
663  *
664  * @fd:     starting file descriptor to close
665  * @max_fd: last file descriptor to close
666  *
667  * This closes a range of file descriptors. All file descriptors
668  * from @fd up to and including @max_fd are closed.
669  */
670 int __close_range(unsigned fd, unsigned max_fd, unsigned int flags)
671 {
672 	unsigned int cur_max;
673 	struct task_struct *me = current;
674 	struct files_struct *cur_fds = me->files, *fds = NULL;
675 
676 	if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
677 		return -EINVAL;
678 
679 	if (fd > max_fd)
680 		return -EINVAL;
681 
682 	rcu_read_lock();
683 	cur_max = files_fdtable(cur_fds)->max_fds;
684 	rcu_read_unlock();
685 
686 	/* cap to last valid index into fdtable */
687 	cur_max--;
688 
689 	if (flags & CLOSE_RANGE_UNSHARE) {
690 		int ret;
691 		unsigned int max_unshare_fds = NR_OPEN_MAX;
692 
693 		/*
694 		 * If the requested range is greater than the current maximum,
695 		 * we're closing everything so only copy all file descriptors
696 		 * beneath the lowest file descriptor.
697 		 * If the caller requested all fds to be made cloexec copy all
698 		 * of the file descriptors since they still want to use them.
699 		 */
700 		if (!(flags & CLOSE_RANGE_CLOEXEC) && (max_fd >= cur_max))
701 			max_unshare_fds = fd;
702 
703 		ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds);
704 		if (ret)
705 			return ret;
706 
707 		/*
708 		 * We used to share our file descriptor table, and have now
709 		 * created a private one, make sure we're using it below.
710 		 */
711 		if (fds)
712 			swap(cur_fds, fds);
713 	}
714 
715 	max_fd = min(max_fd, cur_max);
716 
717 	if (flags & CLOSE_RANGE_CLOEXEC)
718 		__range_cloexec(cur_fds, fd, max_fd);
719 	else
720 		__range_close(cur_fds, fd, max_fd);
721 
722 	if (fds) {
723 		/*
724 		 * We're done closing the files we were supposed to. Time to install
725 		 * the new file descriptor table and drop the old one.
726 		 */
727 		task_lock(me);
728 		me->files = cur_fds;
729 		task_unlock(me);
730 		put_files_struct(fds);
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * See close_fd_get_file() below, this variant assumes current->files->file_lock
738  * is held.
739  */
740 int __close_fd_get_file(unsigned int fd, struct file **res)
741 {
742 	struct files_struct *files = current->files;
743 	struct file *file;
744 	struct fdtable *fdt;
745 
746 	fdt = files_fdtable(files);
747 	if (fd >= fdt->max_fds)
748 		goto out_err;
749 	file = fdt->fd[fd];
750 	if (!file)
751 		goto out_err;
752 	rcu_assign_pointer(fdt->fd[fd], NULL);
753 	__put_unused_fd(files, fd);
754 	get_file(file);
755 	*res = file;
756 	return 0;
757 out_err:
758 	*res = NULL;
759 	return -ENOENT;
760 }
761 
762 /*
763  * variant of close_fd that gets a ref on the file for later fput.
764  * The caller must ensure that filp_close() called on the file, and then
765  * an fput().
766  */
767 int close_fd_get_file(unsigned int fd, struct file **res)
768 {
769 	struct files_struct *files = current->files;
770 	int ret;
771 
772 	spin_lock(&files->file_lock);
773 	ret = __close_fd_get_file(fd, res);
774 	spin_unlock(&files->file_lock);
775 
776 	return ret;
777 }
778 
779 void do_close_on_exec(struct files_struct *files)
780 {
781 	unsigned i;
782 	struct fdtable *fdt;
783 
784 	/* exec unshares first */
785 	spin_lock(&files->file_lock);
786 	for (i = 0; ; i++) {
787 		unsigned long set;
788 		unsigned fd = i * BITS_PER_LONG;
789 		fdt = files_fdtable(files);
790 		if (fd >= fdt->max_fds)
791 			break;
792 		set = fdt->close_on_exec[i];
793 		if (!set)
794 			continue;
795 		fdt->close_on_exec[i] = 0;
796 		for ( ; set ; fd++, set >>= 1) {
797 			struct file *file;
798 			if (!(set & 1))
799 				continue;
800 			file = fdt->fd[fd];
801 			if (!file)
802 				continue;
803 			rcu_assign_pointer(fdt->fd[fd], NULL);
804 			__put_unused_fd(files, fd);
805 			spin_unlock(&files->file_lock);
806 			filp_close(file, files);
807 			cond_resched();
808 			spin_lock(&files->file_lock);
809 		}
810 
811 	}
812 	spin_unlock(&files->file_lock);
813 }
814 
815 static struct file *__fget_files(struct files_struct *files, unsigned int fd,
816 				 fmode_t mask, unsigned int refs)
817 {
818 	struct file *file;
819 
820 	rcu_read_lock();
821 loop:
822 	file = files_lookup_fd_rcu(files, fd);
823 	if (file) {
824 		/* File object ref couldn't be taken.
825 		 * dup2() atomicity guarantee is the reason
826 		 * we loop to catch the new file (or NULL pointer)
827 		 */
828 		if (file->f_mode & mask)
829 			file = NULL;
830 		else if (!get_file_rcu_many(file, refs))
831 			goto loop;
832 	}
833 	rcu_read_unlock();
834 
835 	return file;
836 }
837 
838 static inline struct file *__fget(unsigned int fd, fmode_t mask,
839 				  unsigned int refs)
840 {
841 	return __fget_files(current->files, fd, mask, refs);
842 }
843 
844 struct file *fget_many(unsigned int fd, unsigned int refs)
845 {
846 	return __fget(fd, FMODE_PATH, refs);
847 }
848 
849 struct file *fget(unsigned int fd)
850 {
851 	return __fget(fd, FMODE_PATH, 1);
852 }
853 EXPORT_SYMBOL(fget);
854 
855 struct file *fget_raw(unsigned int fd)
856 {
857 	return __fget(fd, 0, 1);
858 }
859 EXPORT_SYMBOL(fget_raw);
860 
861 struct file *fget_task(struct task_struct *task, unsigned int fd)
862 {
863 	struct file *file = NULL;
864 
865 	task_lock(task);
866 	if (task->files)
867 		file = __fget_files(task->files, fd, 0, 1);
868 	task_unlock(task);
869 
870 	return file;
871 }
872 
873 struct file *task_lookup_fd_rcu(struct task_struct *task, unsigned int fd)
874 {
875 	/* Must be called with rcu_read_lock held */
876 	struct files_struct *files;
877 	struct file *file = NULL;
878 
879 	task_lock(task);
880 	files = task->files;
881 	if (files)
882 		file = files_lookup_fd_rcu(files, fd);
883 	task_unlock(task);
884 
885 	return file;
886 }
887 
888 struct file *task_lookup_next_fd_rcu(struct task_struct *task, unsigned int *ret_fd)
889 {
890 	/* Must be called with rcu_read_lock held */
891 	struct files_struct *files;
892 	unsigned int fd = *ret_fd;
893 	struct file *file = NULL;
894 
895 	task_lock(task);
896 	files = task->files;
897 	if (files) {
898 		for (; fd < files_fdtable(files)->max_fds; fd++) {
899 			file = files_lookup_fd_rcu(files, fd);
900 			if (file)
901 				break;
902 		}
903 	}
904 	task_unlock(task);
905 	*ret_fd = fd;
906 	return file;
907 }
908 
909 /*
910  * Lightweight file lookup - no refcnt increment if fd table isn't shared.
911  *
912  * You can use this instead of fget if you satisfy all of the following
913  * conditions:
914  * 1) You must call fput_light before exiting the syscall and returning control
915  *    to userspace (i.e. you cannot remember the returned struct file * after
916  *    returning to userspace).
917  * 2) You must not call filp_close on the returned struct file * in between
918  *    calls to fget_light and fput_light.
919  * 3) You must not clone the current task in between the calls to fget_light
920  *    and fput_light.
921  *
922  * The fput_needed flag returned by fget_light should be passed to the
923  * corresponding fput_light.
924  */
925 static unsigned long __fget_light(unsigned int fd, fmode_t mask)
926 {
927 	struct files_struct *files = current->files;
928 	struct file *file;
929 
930 	if (atomic_read(&files->count) == 1) {
931 		file = files_lookup_fd_raw(files, fd);
932 		if (!file || unlikely(file->f_mode & mask))
933 			return 0;
934 		return (unsigned long)file;
935 	} else {
936 		file = __fget(fd, mask, 1);
937 		if (!file)
938 			return 0;
939 		return FDPUT_FPUT | (unsigned long)file;
940 	}
941 }
942 unsigned long __fdget(unsigned int fd)
943 {
944 	return __fget_light(fd, FMODE_PATH);
945 }
946 EXPORT_SYMBOL(__fdget);
947 
948 unsigned long __fdget_raw(unsigned int fd)
949 {
950 	return __fget_light(fd, 0);
951 }
952 
953 unsigned long __fdget_pos(unsigned int fd)
954 {
955 	unsigned long v = __fdget(fd);
956 	struct file *file = (struct file *)(v & ~3);
957 
958 	if (file && (file->f_mode & FMODE_ATOMIC_POS)) {
959 		if (file_count(file) > 1) {
960 			v |= FDPUT_POS_UNLOCK;
961 			mutex_lock(&file->f_pos_lock);
962 		}
963 	}
964 	return v;
965 }
966 
967 void __f_unlock_pos(struct file *f)
968 {
969 	mutex_unlock(&f->f_pos_lock);
970 }
971 
972 /*
973  * We only lock f_pos if we have threads or if the file might be
974  * shared with another process. In both cases we'll have an elevated
975  * file count (done either by fdget() or by fork()).
976  */
977 
978 void set_close_on_exec(unsigned int fd, int flag)
979 {
980 	struct files_struct *files = current->files;
981 	struct fdtable *fdt;
982 	spin_lock(&files->file_lock);
983 	fdt = files_fdtable(files);
984 	if (flag)
985 		__set_close_on_exec(fd, fdt);
986 	else
987 		__clear_close_on_exec(fd, fdt);
988 	spin_unlock(&files->file_lock);
989 }
990 
991 bool get_close_on_exec(unsigned int fd)
992 {
993 	struct files_struct *files = current->files;
994 	struct fdtable *fdt;
995 	bool res;
996 	rcu_read_lock();
997 	fdt = files_fdtable(files);
998 	res = close_on_exec(fd, fdt);
999 	rcu_read_unlock();
1000 	return res;
1001 }
1002 
1003 static int do_dup2(struct files_struct *files,
1004 	struct file *file, unsigned fd, unsigned flags)
1005 __releases(&files->file_lock)
1006 {
1007 	struct file *tofree;
1008 	struct fdtable *fdt;
1009 
1010 	/*
1011 	 * We need to detect attempts to do dup2() over allocated but still
1012 	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
1013 	 * extra work in their equivalent of fget() - they insert struct
1014 	 * file immediately after grabbing descriptor, mark it larval if
1015 	 * more work (e.g. actual opening) is needed and make sure that
1016 	 * fget() treats larval files as absent.  Potentially interesting,
1017 	 * but while extra work in fget() is trivial, locking implications
1018 	 * and amount of surgery on open()-related paths in VFS are not.
1019 	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
1020 	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
1021 	 * scope of POSIX or SUS, since neither considers shared descriptor
1022 	 * tables and this condition does not arise without those.
1023 	 */
1024 	fdt = files_fdtable(files);
1025 	tofree = fdt->fd[fd];
1026 	if (!tofree && fd_is_open(fd, fdt))
1027 		goto Ebusy;
1028 	get_file(file);
1029 	rcu_assign_pointer(fdt->fd[fd], file);
1030 	__set_open_fd(fd, fdt);
1031 	if (flags & O_CLOEXEC)
1032 		__set_close_on_exec(fd, fdt);
1033 	else
1034 		__clear_close_on_exec(fd, fdt);
1035 	spin_unlock(&files->file_lock);
1036 
1037 	if (tofree)
1038 		filp_close(tofree, files);
1039 
1040 	return fd;
1041 
1042 Ebusy:
1043 	spin_unlock(&files->file_lock);
1044 	return -EBUSY;
1045 }
1046 
1047 int replace_fd(unsigned fd, struct file *file, unsigned flags)
1048 {
1049 	int err;
1050 	struct files_struct *files = current->files;
1051 
1052 	if (!file)
1053 		return close_fd(fd);
1054 
1055 	if (fd >= rlimit(RLIMIT_NOFILE))
1056 		return -EBADF;
1057 
1058 	spin_lock(&files->file_lock);
1059 	err = expand_files(files, fd);
1060 	if (unlikely(err < 0))
1061 		goto out_unlock;
1062 	return do_dup2(files, file, fd, flags);
1063 
1064 out_unlock:
1065 	spin_unlock(&files->file_lock);
1066 	return err;
1067 }
1068 
1069 /**
1070  * __receive_fd() - Install received file into file descriptor table
1071  *
1072  * @fd: fd to install into (if negative, a new fd will be allocated)
1073  * @file: struct file that was received from another process
1074  * @ufd: __user pointer to write new fd number to
1075  * @o_flags: the O_* flags to apply to the new fd entry
1076  *
1077  * Installs a received file into the file descriptor table, with appropriate
1078  * checks and count updates. Optionally writes the fd number to userspace, if
1079  * @ufd is non-NULL.
1080  *
1081  * This helper handles its own reference counting of the incoming
1082  * struct file.
1083  *
1084  * Returns newly install fd or -ve on error.
1085  */
1086 int __receive_fd(int fd, struct file *file, int __user *ufd, unsigned int o_flags)
1087 {
1088 	int new_fd;
1089 	int error;
1090 
1091 	error = security_file_receive(file);
1092 	if (error)
1093 		return error;
1094 
1095 	if (fd < 0) {
1096 		new_fd = get_unused_fd_flags(o_flags);
1097 		if (new_fd < 0)
1098 			return new_fd;
1099 	} else {
1100 		new_fd = fd;
1101 	}
1102 
1103 	if (ufd) {
1104 		error = put_user(new_fd, ufd);
1105 		if (error) {
1106 			if (fd < 0)
1107 				put_unused_fd(new_fd);
1108 			return error;
1109 		}
1110 	}
1111 
1112 	if (fd < 0) {
1113 		fd_install(new_fd, get_file(file));
1114 	} else {
1115 		error = replace_fd(new_fd, file, o_flags);
1116 		if (error)
1117 			return error;
1118 	}
1119 
1120 	/* Bump the sock usage counts, if any. */
1121 	__receive_sock(file);
1122 	return new_fd;
1123 }
1124 
1125 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1126 {
1127 	int err = -EBADF;
1128 	struct file *file;
1129 	struct files_struct *files = current->files;
1130 
1131 	if ((flags & ~O_CLOEXEC) != 0)
1132 		return -EINVAL;
1133 
1134 	if (unlikely(oldfd == newfd))
1135 		return -EINVAL;
1136 
1137 	if (newfd >= rlimit(RLIMIT_NOFILE))
1138 		return -EBADF;
1139 
1140 	spin_lock(&files->file_lock);
1141 	err = expand_files(files, newfd);
1142 	file = files_lookup_fd_locked(files, oldfd);
1143 	if (unlikely(!file))
1144 		goto Ebadf;
1145 	if (unlikely(err < 0)) {
1146 		if (err == -EMFILE)
1147 			goto Ebadf;
1148 		goto out_unlock;
1149 	}
1150 	return do_dup2(files, file, newfd, flags);
1151 
1152 Ebadf:
1153 	err = -EBADF;
1154 out_unlock:
1155 	spin_unlock(&files->file_lock);
1156 	return err;
1157 }
1158 
1159 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1160 {
1161 	return ksys_dup3(oldfd, newfd, flags);
1162 }
1163 
1164 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1165 {
1166 	if (unlikely(newfd == oldfd)) { /* corner case */
1167 		struct files_struct *files = current->files;
1168 		int retval = oldfd;
1169 
1170 		rcu_read_lock();
1171 		if (!files_lookup_fd_rcu(files, oldfd))
1172 			retval = -EBADF;
1173 		rcu_read_unlock();
1174 		return retval;
1175 	}
1176 	return ksys_dup3(oldfd, newfd, 0);
1177 }
1178 
1179 SYSCALL_DEFINE1(dup, unsigned int, fildes)
1180 {
1181 	int ret = -EBADF;
1182 	struct file *file = fget_raw(fildes);
1183 
1184 	if (file) {
1185 		ret = get_unused_fd_flags(0);
1186 		if (ret >= 0)
1187 			fd_install(ret, file);
1188 		else
1189 			fput(file);
1190 	}
1191 	return ret;
1192 }
1193 
1194 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1195 {
1196 	unsigned long nofile = rlimit(RLIMIT_NOFILE);
1197 	int err;
1198 	if (from >= nofile)
1199 		return -EINVAL;
1200 	err = alloc_fd(from, nofile, flags);
1201 	if (err >= 0) {
1202 		get_file(file);
1203 		fd_install(err, file);
1204 	}
1205 	return err;
1206 }
1207 
1208 int iterate_fd(struct files_struct *files, unsigned n,
1209 		int (*f)(const void *, struct file *, unsigned),
1210 		const void *p)
1211 {
1212 	struct fdtable *fdt;
1213 	int res = 0;
1214 	if (!files)
1215 		return 0;
1216 	spin_lock(&files->file_lock);
1217 	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1218 		struct file *file;
1219 		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1220 		if (!file)
1221 			continue;
1222 		res = f(p, file, n);
1223 		if (res)
1224 			break;
1225 	}
1226 	spin_unlock(&files->file_lock);
1227 	return res;
1228 }
1229 EXPORT_SYMBOL(iterate_fd);
1230