1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/file.c 4 * 5 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes 6 * 7 * Manage the dynamic fd arrays in the process files_struct. 8 */ 9 10 #include <linux/syscalls.h> 11 #include <linux/export.h> 12 #include <linux/fs.h> 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/file.h> 18 #include <linux/fdtable.h> 19 #include <linux/bitops.h> 20 #include <linux/spinlock.h> 21 #include <linux/rcupdate.h> 22 #include <linux/close_range.h> 23 #include <linux/file_ref.h> 24 #include <net/sock.h> 25 26 #include "internal.h" 27 28 /** 29 * __file_ref_put - Slowpath of file_ref_put() 30 * @ref: Pointer to the reference count 31 * @cnt: Current reference count 32 * 33 * Invoked when the reference count is outside of the valid zone. 34 * 35 * Return: 36 * True if this was the last reference with no future references 37 * possible. This signals the caller that it can safely schedule the 38 * object, which is protected by the reference counter, for 39 * deconstruction. 40 * 41 * False if there are still active references or the put() raced 42 * with a concurrent get()/put() pair. Caller is not allowed to 43 * deconstruct the protected object. 44 */ 45 bool __file_ref_put(file_ref_t *ref, unsigned long cnt) 46 { 47 /* Did this drop the last reference? */ 48 if (likely(cnt == FILE_REF_NOREF)) { 49 /* 50 * Carefully try to set the reference count to FILE_REF_DEAD. 51 * 52 * This can fail if a concurrent get() operation has 53 * elevated it again or the corresponding put() even marked 54 * it dead already. Both are valid situations and do not 55 * require a retry. If this fails the caller is not 56 * allowed to deconstruct the object. 57 */ 58 if (!atomic_long_try_cmpxchg_release(&ref->refcnt, &cnt, FILE_REF_DEAD)) 59 return false; 60 61 /* 62 * The caller can safely schedule the object for 63 * deconstruction. Provide acquire ordering. 64 */ 65 smp_acquire__after_ctrl_dep(); 66 return true; 67 } 68 69 /* 70 * If the reference count was already in the dead zone, then this 71 * put() operation is imbalanced. Warn, put the reference count back to 72 * DEAD and tell the caller to not deconstruct the object. 73 */ 74 if (WARN_ONCE(cnt >= FILE_REF_RELEASED, "imbalanced put on file reference count")) { 75 atomic_long_set(&ref->refcnt, FILE_REF_DEAD); 76 return false; 77 } 78 79 /* 80 * This is a put() operation on a saturated refcount. Restore the 81 * mean saturation value and tell the caller to not deconstruct the 82 * object. 83 */ 84 if (cnt > FILE_REF_MAXREF) 85 atomic_long_set(&ref->refcnt, FILE_REF_SATURATED); 86 return false; 87 } 88 EXPORT_SYMBOL_GPL(__file_ref_put); 89 90 unsigned int sysctl_nr_open __read_mostly = 1024*1024; 91 unsigned int sysctl_nr_open_min = BITS_PER_LONG; 92 /* our min() is unusable in constant expressions ;-/ */ 93 #define __const_min(x, y) ((x) < (y) ? (x) : (y)) 94 unsigned int sysctl_nr_open_max = 95 __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG; 96 97 static void __free_fdtable(struct fdtable *fdt) 98 { 99 kvfree(fdt->fd); 100 kvfree(fdt->open_fds); 101 kfree(fdt); 102 } 103 104 static void free_fdtable_rcu(struct rcu_head *rcu) 105 { 106 __free_fdtable(container_of(rcu, struct fdtable, rcu)); 107 } 108 109 #define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr)) 110 #define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long)) 111 112 #define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds 113 /* 114 * Copy 'count' fd bits from the old table to the new table and clear the extra 115 * space if any. This does not copy the file pointers. Called with the files 116 * spinlock held for write. 117 */ 118 static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt, 119 unsigned int copy_words) 120 { 121 unsigned int nwords = fdt_words(nfdt); 122 123 bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds, 124 copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG); 125 bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec, 126 copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG); 127 bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits, 128 copy_words, nwords); 129 } 130 131 /* 132 * Copy all file descriptors from the old table to the new, expanded table and 133 * clear the extra space. Called with the files spinlock held for write. 134 */ 135 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) 136 { 137 size_t cpy, set; 138 139 BUG_ON(nfdt->max_fds < ofdt->max_fds); 140 141 cpy = ofdt->max_fds * sizeof(struct file *); 142 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); 143 memcpy(nfdt->fd, ofdt->fd, cpy); 144 memset((char *)nfdt->fd + cpy, 0, set); 145 146 copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt)); 147 } 148 149 /* 150 * Note how the fdtable bitmap allocations very much have to be a multiple of 151 * BITS_PER_LONG. This is not only because we walk those things in chunks of 152 * 'unsigned long' in some places, but simply because that is how the Linux 153 * kernel bitmaps are defined to work: they are not "bits in an array of bytes", 154 * they are very much "bits in an array of unsigned long". 155 */ 156 static struct fdtable *alloc_fdtable(unsigned int slots_wanted) 157 { 158 struct fdtable *fdt; 159 unsigned int nr; 160 void *data; 161 162 /* 163 * Figure out how many fds we actually want to support in this fdtable. 164 * Allocation steps are keyed to the size of the fdarray, since it 165 * grows far faster than any of the other dynamic data. We try to fit 166 * the fdarray into comfortable page-tuned chunks: starting at 1024B 167 * and growing in powers of two from there on. Since we called only 168 * with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab 169 * already gives BITS_PER_LONG slots), the above boils down to 170 * 1. use the smallest power of two large enough to give us that many 171 * slots. 172 * 2. on 32bit skip 64 and 128 - the minimal capacity we want there is 173 * 256 slots (i.e. 1Kb fd array). 174 * 3. on 64bit don't skip anything, 1Kb fd array means 128 slots there 175 * and we are never going to be asked for 64 or less. 176 */ 177 if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256) 178 nr = 256; 179 else 180 nr = roundup_pow_of_two(slots_wanted); 181 /* 182 * Note that this can drive nr *below* what we had passed if sysctl_nr_open 183 * had been set lower between the check in expand_files() and here. 184 * 185 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise 186 * bitmaps handling below becomes unpleasant, to put it mildly... 187 */ 188 if (unlikely(nr > sysctl_nr_open)) { 189 nr = round_down(sysctl_nr_open, BITS_PER_LONG); 190 if (nr < slots_wanted) 191 return ERR_PTR(-EMFILE); 192 } 193 194 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT); 195 if (!fdt) 196 goto out; 197 fdt->max_fds = nr; 198 data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT); 199 if (!data) 200 goto out_fdt; 201 fdt->fd = data; 202 203 data = kvmalloc(max_t(size_t, 204 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES), 205 GFP_KERNEL_ACCOUNT); 206 if (!data) 207 goto out_arr; 208 fdt->open_fds = data; 209 data += nr / BITS_PER_BYTE; 210 fdt->close_on_exec = data; 211 data += nr / BITS_PER_BYTE; 212 fdt->full_fds_bits = data; 213 214 return fdt; 215 216 out_arr: 217 kvfree(fdt->fd); 218 out_fdt: 219 kfree(fdt); 220 out: 221 return ERR_PTR(-ENOMEM); 222 } 223 224 /* 225 * Expand the file descriptor table. 226 * This function will allocate a new fdtable and both fd array and fdset, of 227 * the given size. 228 * Return <0 error code on error; 0 on successful completion. 229 * The files->file_lock should be held on entry, and will be held on exit. 230 */ 231 static int expand_fdtable(struct files_struct *files, unsigned int nr) 232 __releases(files->file_lock) 233 __acquires(files->file_lock) 234 { 235 struct fdtable *new_fdt, *cur_fdt; 236 237 spin_unlock(&files->file_lock); 238 new_fdt = alloc_fdtable(nr + 1); 239 240 /* make sure all fd_install() have seen resize_in_progress 241 * or have finished their rcu_read_lock_sched() section. 242 */ 243 if (atomic_read(&files->count) > 1) 244 synchronize_rcu(); 245 246 spin_lock(&files->file_lock); 247 if (IS_ERR(new_fdt)) 248 return PTR_ERR(new_fdt); 249 cur_fdt = files_fdtable(files); 250 BUG_ON(nr < cur_fdt->max_fds); 251 copy_fdtable(new_fdt, cur_fdt); 252 rcu_assign_pointer(files->fdt, new_fdt); 253 if (cur_fdt != &files->fdtab) 254 call_rcu(&cur_fdt->rcu, free_fdtable_rcu); 255 /* coupled with smp_rmb() in fd_install() */ 256 smp_wmb(); 257 return 0; 258 } 259 260 /* 261 * Expand files. 262 * This function will expand the file structures, if the requested size exceeds 263 * the current capacity and there is room for expansion. 264 * Return <0 error code on error; 0 on success. 265 * The files->file_lock should be held on entry, and will be held on exit. 266 */ 267 static int expand_files(struct files_struct *files, unsigned int nr) 268 __releases(files->file_lock) 269 __acquires(files->file_lock) 270 { 271 struct fdtable *fdt; 272 int error; 273 274 repeat: 275 fdt = files_fdtable(files); 276 277 /* Do we need to expand? */ 278 if (nr < fdt->max_fds) 279 return 0; 280 281 /* Can we expand? */ 282 if (nr >= sysctl_nr_open) 283 return -EMFILE; 284 285 if (unlikely(files->resize_in_progress)) { 286 spin_unlock(&files->file_lock); 287 wait_event(files->resize_wait, !files->resize_in_progress); 288 spin_lock(&files->file_lock); 289 goto repeat; 290 } 291 292 /* All good, so we try */ 293 files->resize_in_progress = true; 294 error = expand_fdtable(files, nr); 295 files->resize_in_progress = false; 296 297 wake_up_all(&files->resize_wait); 298 return error; 299 } 300 301 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt, 302 bool set) 303 { 304 if (set) { 305 __set_bit(fd, fdt->close_on_exec); 306 } else { 307 if (test_bit(fd, fdt->close_on_exec)) 308 __clear_bit(fd, fdt->close_on_exec); 309 } 310 } 311 312 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt, bool set) 313 { 314 __set_bit(fd, fdt->open_fds); 315 __set_close_on_exec(fd, fdt, set); 316 fd /= BITS_PER_LONG; 317 if (!~fdt->open_fds[fd]) 318 __set_bit(fd, fdt->full_fds_bits); 319 } 320 321 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt) 322 { 323 __clear_bit(fd, fdt->open_fds); 324 fd /= BITS_PER_LONG; 325 if (test_bit(fd, fdt->full_fds_bits)) 326 __clear_bit(fd, fdt->full_fds_bits); 327 } 328 329 static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt) 330 { 331 return test_bit(fd, fdt->open_fds); 332 } 333 334 /* 335 * Note that a sane fdtable size always has to be a multiple of 336 * BITS_PER_LONG, since we have bitmaps that are sized by this. 337 * 338 * punch_hole is optional - when close_range() is asked to unshare 339 * and close, we don't need to copy descriptors in that range, so 340 * a smaller cloned descriptor table might suffice if the last 341 * currently opened descriptor falls into that range. 342 */ 343 static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole) 344 { 345 unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds); 346 347 if (last == fdt->max_fds) 348 return NR_OPEN_DEFAULT; 349 if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) { 350 last = find_last_bit(fdt->open_fds, punch_hole->from); 351 if (last == punch_hole->from) 352 return NR_OPEN_DEFAULT; 353 } 354 return ALIGN(last + 1, BITS_PER_LONG); 355 } 356 357 /* 358 * Allocate a new descriptor table and copy contents from the passed in 359 * instance. Returns a pointer to cloned table on success, ERR_PTR() 360 * on failure. For 'punch_hole' see sane_fdtable_size(). 361 */ 362 struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole) 363 { 364 struct files_struct *newf; 365 struct file **old_fds, **new_fds; 366 unsigned int open_files, i; 367 struct fdtable *old_fdt, *new_fdt; 368 369 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); 370 if (!newf) 371 return ERR_PTR(-ENOMEM); 372 373 atomic_set(&newf->count, 1); 374 375 spin_lock_init(&newf->file_lock); 376 newf->resize_in_progress = false; 377 init_waitqueue_head(&newf->resize_wait); 378 newf->next_fd = 0; 379 new_fdt = &newf->fdtab; 380 new_fdt->max_fds = NR_OPEN_DEFAULT; 381 new_fdt->close_on_exec = newf->close_on_exec_init; 382 new_fdt->open_fds = newf->open_fds_init; 383 new_fdt->full_fds_bits = newf->full_fds_bits_init; 384 new_fdt->fd = &newf->fd_array[0]; 385 386 spin_lock(&oldf->file_lock); 387 old_fdt = files_fdtable(oldf); 388 open_files = sane_fdtable_size(old_fdt, punch_hole); 389 390 /* 391 * Check whether we need to allocate a larger fd array and fd set. 392 */ 393 while (unlikely(open_files > new_fdt->max_fds)) { 394 spin_unlock(&oldf->file_lock); 395 396 if (new_fdt != &newf->fdtab) 397 __free_fdtable(new_fdt); 398 399 new_fdt = alloc_fdtable(open_files); 400 if (IS_ERR(new_fdt)) { 401 kmem_cache_free(files_cachep, newf); 402 return ERR_CAST(new_fdt); 403 } 404 405 /* 406 * Reacquire the oldf lock and a pointer to its fd table 407 * who knows it may have a new bigger fd table. We need 408 * the latest pointer. 409 */ 410 spin_lock(&oldf->file_lock); 411 old_fdt = files_fdtable(oldf); 412 open_files = sane_fdtable_size(old_fdt, punch_hole); 413 } 414 415 copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG); 416 417 old_fds = old_fdt->fd; 418 new_fds = new_fdt->fd; 419 420 for (i = open_files; i != 0; i--) { 421 struct file *f = *old_fds++; 422 if (f) { 423 get_file(f); 424 } else { 425 /* 426 * The fd may be claimed in the fd bitmap but not yet 427 * instantiated in the files array if a sibling thread 428 * is partway through open(). So make sure that this 429 * fd is available to the new process. 430 */ 431 __clear_open_fd(open_files - i, new_fdt); 432 } 433 rcu_assign_pointer(*new_fds++, f); 434 } 435 spin_unlock(&oldf->file_lock); 436 437 /* clear the remainder */ 438 memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *)); 439 440 rcu_assign_pointer(newf->fdt, new_fdt); 441 442 return newf; 443 } 444 445 static struct fdtable *close_files(struct files_struct * files) 446 { 447 /* 448 * It is safe to dereference the fd table without RCU or 449 * ->file_lock because this is the last reference to the 450 * files structure. 451 */ 452 struct fdtable *fdt = rcu_dereference_raw(files->fdt); 453 unsigned int i, j = 0; 454 455 for (;;) { 456 unsigned long set; 457 i = j * BITS_PER_LONG; 458 if (i >= fdt->max_fds) 459 break; 460 set = fdt->open_fds[j++]; 461 while (set) { 462 if (set & 1) { 463 struct file *file = fdt->fd[i]; 464 if (file) { 465 filp_close(file, files); 466 cond_resched(); 467 } 468 } 469 i++; 470 set >>= 1; 471 } 472 } 473 474 return fdt; 475 } 476 477 void put_files_struct(struct files_struct *files) 478 { 479 if (atomic_dec_and_test(&files->count)) { 480 struct fdtable *fdt = close_files(files); 481 482 /* free the arrays if they are not embedded */ 483 if (fdt != &files->fdtab) 484 __free_fdtable(fdt); 485 kmem_cache_free(files_cachep, files); 486 } 487 } 488 489 void exit_files(struct task_struct *tsk) 490 { 491 struct files_struct * files = tsk->files; 492 493 if (files) { 494 task_lock(tsk); 495 tsk->files = NULL; 496 task_unlock(tsk); 497 put_files_struct(files); 498 } 499 } 500 501 struct files_struct init_files = { 502 .count = ATOMIC_INIT(1), 503 .fdt = &init_files.fdtab, 504 .fdtab = { 505 .max_fds = NR_OPEN_DEFAULT, 506 .fd = &init_files.fd_array[0], 507 .close_on_exec = init_files.close_on_exec_init, 508 .open_fds = init_files.open_fds_init, 509 .full_fds_bits = init_files.full_fds_bits_init, 510 }, 511 .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock), 512 .resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait), 513 }; 514 515 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start) 516 { 517 unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */ 518 unsigned int maxbit = maxfd / BITS_PER_LONG; 519 unsigned int bitbit = start / BITS_PER_LONG; 520 unsigned int bit; 521 522 /* 523 * Try to avoid looking at the second level bitmap 524 */ 525 bit = find_next_zero_bit(&fdt->open_fds[bitbit], BITS_PER_LONG, 526 start & (BITS_PER_LONG - 1)); 527 if (bit < BITS_PER_LONG) 528 return bit + bitbit * BITS_PER_LONG; 529 530 bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG; 531 if (bitbit >= maxfd) 532 return maxfd; 533 if (bitbit > start) 534 start = bitbit; 535 return find_next_zero_bit(fdt->open_fds, maxfd, start); 536 } 537 538 /* 539 * allocate a file descriptor, mark it busy. 540 */ 541 static int alloc_fd(unsigned start, unsigned end, unsigned flags) 542 { 543 struct files_struct *files = current->files; 544 unsigned int fd; 545 int error; 546 struct fdtable *fdt; 547 548 spin_lock(&files->file_lock); 549 repeat: 550 fdt = files_fdtable(files); 551 fd = start; 552 if (fd < files->next_fd) 553 fd = files->next_fd; 554 555 if (likely(fd < fdt->max_fds)) 556 fd = find_next_fd(fdt, fd); 557 558 /* 559 * N.B. For clone tasks sharing a files structure, this test 560 * will limit the total number of files that can be opened. 561 */ 562 error = -EMFILE; 563 if (unlikely(fd >= end)) 564 goto out; 565 566 if (unlikely(fd >= fdt->max_fds)) { 567 error = expand_files(files, fd); 568 if (error < 0) 569 goto out; 570 571 goto repeat; 572 } 573 574 if (start <= files->next_fd) 575 files->next_fd = fd + 1; 576 577 __set_open_fd(fd, fdt, flags & O_CLOEXEC); 578 error = fd; 579 580 out: 581 spin_unlock(&files->file_lock); 582 return error; 583 } 584 585 int __get_unused_fd_flags(unsigned flags, unsigned long nofile) 586 { 587 return alloc_fd(0, nofile, flags); 588 } 589 590 int get_unused_fd_flags(unsigned flags) 591 { 592 return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE)); 593 } 594 EXPORT_SYMBOL(get_unused_fd_flags); 595 596 static void __put_unused_fd(struct files_struct *files, unsigned int fd) 597 { 598 struct fdtable *fdt = files_fdtable(files); 599 __clear_open_fd(fd, fdt); 600 if (fd < files->next_fd) 601 files->next_fd = fd; 602 } 603 604 void put_unused_fd(unsigned int fd) 605 { 606 struct files_struct *files = current->files; 607 spin_lock(&files->file_lock); 608 __put_unused_fd(files, fd); 609 spin_unlock(&files->file_lock); 610 } 611 612 EXPORT_SYMBOL(put_unused_fd); 613 614 /* 615 * Install a file pointer in the fd array. 616 * 617 * The VFS is full of places where we drop the files lock between 618 * setting the open_fds bitmap and installing the file in the file 619 * array. At any such point, we are vulnerable to a dup2() race 620 * installing a file in the array before us. We need to detect this and 621 * fput() the struct file we are about to overwrite in this case. 622 * 623 * It should never happen - if we allow dup2() do it, _really_ bad things 624 * will follow. 625 * 626 * This consumes the "file" refcount, so callers should treat it 627 * as if they had called fput(file). 628 */ 629 630 void fd_install(unsigned int fd, struct file *file) 631 { 632 struct files_struct *files = current->files; 633 struct fdtable *fdt; 634 635 if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING))) 636 return; 637 638 rcu_read_lock_sched(); 639 640 if (unlikely(files->resize_in_progress)) { 641 rcu_read_unlock_sched(); 642 spin_lock(&files->file_lock); 643 fdt = files_fdtable(files); 644 WARN_ON(fdt->fd[fd] != NULL); 645 rcu_assign_pointer(fdt->fd[fd], file); 646 spin_unlock(&files->file_lock); 647 return; 648 } 649 /* coupled with smp_wmb() in expand_fdtable() */ 650 smp_rmb(); 651 fdt = rcu_dereference_sched(files->fdt); 652 BUG_ON(fdt->fd[fd] != NULL); 653 rcu_assign_pointer(fdt->fd[fd], file); 654 rcu_read_unlock_sched(); 655 } 656 657 EXPORT_SYMBOL(fd_install); 658 659 /** 660 * file_close_fd_locked - return file associated with fd 661 * @files: file struct to retrieve file from 662 * @fd: file descriptor to retrieve file for 663 * 664 * Doesn't take a separate reference count. 665 * 666 * Context: files_lock must be held. 667 * 668 * Returns: The file associated with @fd (NULL if @fd is not open) 669 */ 670 struct file *file_close_fd_locked(struct files_struct *files, unsigned fd) 671 { 672 struct fdtable *fdt = files_fdtable(files); 673 struct file *file; 674 675 lockdep_assert_held(&files->file_lock); 676 677 if (fd >= fdt->max_fds) 678 return NULL; 679 680 fd = array_index_nospec(fd, fdt->max_fds); 681 file = fdt->fd[fd]; 682 if (file) { 683 rcu_assign_pointer(fdt->fd[fd], NULL); 684 __put_unused_fd(files, fd); 685 } 686 return file; 687 } 688 689 int close_fd(unsigned fd) 690 { 691 struct files_struct *files = current->files; 692 struct file *file; 693 694 spin_lock(&files->file_lock); 695 file = file_close_fd_locked(files, fd); 696 spin_unlock(&files->file_lock); 697 if (!file) 698 return -EBADF; 699 700 return filp_close(file, files); 701 } 702 EXPORT_SYMBOL(close_fd); 703 704 /** 705 * last_fd - return last valid index into fd table 706 * @fdt: File descriptor table. 707 * 708 * Context: Either rcu read lock or files_lock must be held. 709 * 710 * Returns: Last valid index into fdtable. 711 */ 712 static inline unsigned last_fd(struct fdtable *fdt) 713 { 714 return fdt->max_fds - 1; 715 } 716 717 static inline void __range_cloexec(struct files_struct *cur_fds, 718 unsigned int fd, unsigned int max_fd) 719 { 720 struct fdtable *fdt; 721 722 /* make sure we're using the correct maximum value */ 723 spin_lock(&cur_fds->file_lock); 724 fdt = files_fdtable(cur_fds); 725 max_fd = min(last_fd(fdt), max_fd); 726 if (fd <= max_fd) 727 bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1); 728 spin_unlock(&cur_fds->file_lock); 729 } 730 731 static inline void __range_close(struct files_struct *files, unsigned int fd, 732 unsigned int max_fd) 733 { 734 struct file *file; 735 unsigned n; 736 737 spin_lock(&files->file_lock); 738 n = last_fd(files_fdtable(files)); 739 max_fd = min(max_fd, n); 740 741 for (; fd <= max_fd; fd++) { 742 file = file_close_fd_locked(files, fd); 743 if (file) { 744 spin_unlock(&files->file_lock); 745 filp_close(file, files); 746 cond_resched(); 747 spin_lock(&files->file_lock); 748 } else if (need_resched()) { 749 spin_unlock(&files->file_lock); 750 cond_resched(); 751 spin_lock(&files->file_lock); 752 } 753 } 754 spin_unlock(&files->file_lock); 755 } 756 757 /** 758 * sys_close_range() - Close all file descriptors in a given range. 759 * 760 * @fd: starting file descriptor to close 761 * @max_fd: last file descriptor to close 762 * @flags: CLOSE_RANGE flags. 763 * 764 * This closes a range of file descriptors. All file descriptors 765 * from @fd up to and including @max_fd are closed. 766 * Currently, errors to close a given file descriptor are ignored. 767 */ 768 SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd, 769 unsigned int, flags) 770 { 771 struct task_struct *me = current; 772 struct files_struct *cur_fds = me->files, *fds = NULL; 773 774 if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC)) 775 return -EINVAL; 776 777 if (fd > max_fd) 778 return -EINVAL; 779 780 if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) { 781 struct fd_range range = {fd, max_fd}, *punch_hole = ⦥ 782 783 /* 784 * If the caller requested all fds to be made cloexec we always 785 * copy all of the file descriptors since they still want to 786 * use them. 787 */ 788 if (flags & CLOSE_RANGE_CLOEXEC) 789 punch_hole = NULL; 790 791 fds = dup_fd(cur_fds, punch_hole); 792 if (IS_ERR(fds)) 793 return PTR_ERR(fds); 794 /* 795 * We used to share our file descriptor table, and have now 796 * created a private one, make sure we're using it below. 797 */ 798 swap(cur_fds, fds); 799 } 800 801 if (flags & CLOSE_RANGE_CLOEXEC) 802 __range_cloexec(cur_fds, fd, max_fd); 803 else 804 __range_close(cur_fds, fd, max_fd); 805 806 if (fds) { 807 /* 808 * We're done closing the files we were supposed to. Time to install 809 * the new file descriptor table and drop the old one. 810 */ 811 task_lock(me); 812 me->files = cur_fds; 813 task_unlock(me); 814 put_files_struct(fds); 815 } 816 817 return 0; 818 } 819 820 /** 821 * file_close_fd - return file associated with fd 822 * @fd: file descriptor to retrieve file for 823 * 824 * Doesn't take a separate reference count. 825 * 826 * Returns: The file associated with @fd (NULL if @fd is not open) 827 */ 828 struct file *file_close_fd(unsigned int fd) 829 { 830 struct files_struct *files = current->files; 831 struct file *file; 832 833 spin_lock(&files->file_lock); 834 file = file_close_fd_locked(files, fd); 835 spin_unlock(&files->file_lock); 836 837 return file; 838 } 839 840 void do_close_on_exec(struct files_struct *files) 841 { 842 unsigned i; 843 struct fdtable *fdt; 844 845 /* exec unshares first */ 846 spin_lock(&files->file_lock); 847 for (i = 0; ; i++) { 848 unsigned long set; 849 unsigned fd = i * BITS_PER_LONG; 850 fdt = files_fdtable(files); 851 if (fd >= fdt->max_fds) 852 break; 853 set = fdt->close_on_exec[i]; 854 if (!set) 855 continue; 856 fdt->close_on_exec[i] = 0; 857 for ( ; set ; fd++, set >>= 1) { 858 struct file *file; 859 if (!(set & 1)) 860 continue; 861 file = fdt->fd[fd]; 862 if (!file) 863 continue; 864 rcu_assign_pointer(fdt->fd[fd], NULL); 865 __put_unused_fd(files, fd); 866 spin_unlock(&files->file_lock); 867 filp_close(file, files); 868 cond_resched(); 869 spin_lock(&files->file_lock); 870 } 871 872 } 873 spin_unlock(&files->file_lock); 874 } 875 876 static struct file *__get_file_rcu(struct file __rcu **f) 877 { 878 struct file __rcu *file; 879 struct file __rcu *file_reloaded; 880 struct file __rcu *file_reloaded_cmp; 881 882 file = rcu_dereference_raw(*f); 883 if (!file) 884 return NULL; 885 886 if (unlikely(!file_ref_get(&file->f_ref))) 887 return ERR_PTR(-EAGAIN); 888 889 file_reloaded = rcu_dereference_raw(*f); 890 891 /* 892 * Ensure that all accesses have a dependency on the load from 893 * rcu_dereference_raw() above so we get correct ordering 894 * between reuse/allocation and the pointer check below. 895 */ 896 file_reloaded_cmp = file_reloaded; 897 OPTIMIZER_HIDE_VAR(file_reloaded_cmp); 898 899 /* 900 * file_ref_get() above provided a full memory barrier when we 901 * acquired a reference. 902 * 903 * This is paired with the write barrier from assigning to the 904 * __rcu protected file pointer so that if that pointer still 905 * matches the current file, we know we have successfully 906 * acquired a reference to the right file. 907 * 908 * If the pointers don't match the file has been reallocated by 909 * SLAB_TYPESAFE_BY_RCU. 910 */ 911 if (file == file_reloaded_cmp) 912 return file_reloaded; 913 914 fput(file); 915 return ERR_PTR(-EAGAIN); 916 } 917 918 /** 919 * get_file_rcu - try go get a reference to a file under rcu 920 * @f: the file to get a reference on 921 * 922 * This function tries to get a reference on @f carefully verifying that 923 * @f hasn't been reused. 924 * 925 * This function should rarely have to be used and only by users who 926 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it. 927 * 928 * Return: Returns @f with the reference count increased or NULL. 929 */ 930 struct file *get_file_rcu(struct file __rcu **f) 931 { 932 for (;;) { 933 struct file __rcu *file; 934 935 file = __get_file_rcu(f); 936 if (!IS_ERR(file)) 937 return file; 938 } 939 } 940 EXPORT_SYMBOL_GPL(get_file_rcu); 941 942 /** 943 * get_file_active - try go get a reference to a file 944 * @f: the file to get a reference on 945 * 946 * In contast to get_file_rcu() the pointer itself isn't part of the 947 * reference counting. 948 * 949 * This function should rarely have to be used and only by users who 950 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it. 951 * 952 * Return: Returns @f with the reference count increased or NULL. 953 */ 954 struct file *get_file_active(struct file **f) 955 { 956 struct file __rcu *file; 957 958 rcu_read_lock(); 959 file = __get_file_rcu(f); 960 rcu_read_unlock(); 961 if (IS_ERR(file)) 962 file = NULL; 963 return file; 964 } 965 EXPORT_SYMBOL_GPL(get_file_active); 966 967 static inline struct file *__fget_files_rcu(struct files_struct *files, 968 unsigned int fd, fmode_t mask) 969 { 970 for (;;) { 971 struct file *file; 972 struct fdtable *fdt = rcu_dereference_raw(files->fdt); 973 struct file __rcu **fdentry; 974 unsigned long nospec_mask; 975 976 /* Mask is a 0 for invalid fd's, ~0 for valid ones */ 977 nospec_mask = array_index_mask_nospec(fd, fdt->max_fds); 978 979 /* 980 * fdentry points to the 'fd' offset, or fdt->fd[0]. 981 * Loading from fdt->fd[0] is always safe, because the 982 * array always exists. 983 */ 984 fdentry = fdt->fd + (fd & nospec_mask); 985 986 /* Do the load, then mask any invalid result */ 987 file = rcu_dereference_raw(*fdentry); 988 file = (void *)(nospec_mask & (unsigned long)file); 989 if (unlikely(!file)) 990 return NULL; 991 992 /* 993 * Ok, we have a file pointer that was valid at 994 * some point, but it might have become stale since. 995 * 996 * We need to confirm it by incrementing the refcount 997 * and then check the lookup again. 998 * 999 * file_ref_get() gives us a full memory barrier. We 1000 * only really need an 'acquire' one to protect the 1001 * loads below, but we don't have that. 1002 */ 1003 if (unlikely(!file_ref_get(&file->f_ref))) 1004 continue; 1005 1006 /* 1007 * Such a race can take two forms: 1008 * 1009 * (a) the file ref already went down to zero and the 1010 * file hasn't been reused yet or the file count 1011 * isn't zero but the file has already been reused. 1012 * 1013 * (b) the file table entry has changed under us. 1014 * Note that we don't need to re-check the 'fdt->fd' 1015 * pointer having changed, because it always goes 1016 * hand-in-hand with 'fdt'. 1017 * 1018 * If so, we need to put our ref and try again. 1019 */ 1020 if (unlikely(file != rcu_dereference_raw(*fdentry)) || 1021 unlikely(rcu_dereference_raw(files->fdt) != fdt)) { 1022 fput(file); 1023 continue; 1024 } 1025 1026 /* 1027 * This isn't the file we're looking for or we're not 1028 * allowed to get a reference to it. 1029 */ 1030 if (unlikely(file->f_mode & mask)) { 1031 fput(file); 1032 return NULL; 1033 } 1034 1035 /* 1036 * Ok, we have a ref to the file, and checked that it 1037 * still exists. 1038 */ 1039 return file; 1040 } 1041 } 1042 1043 static struct file *__fget_files(struct files_struct *files, unsigned int fd, 1044 fmode_t mask) 1045 { 1046 struct file *file; 1047 1048 rcu_read_lock(); 1049 file = __fget_files_rcu(files, fd, mask); 1050 rcu_read_unlock(); 1051 1052 return file; 1053 } 1054 1055 static inline struct file *__fget(unsigned int fd, fmode_t mask) 1056 { 1057 return __fget_files(current->files, fd, mask); 1058 } 1059 1060 struct file *fget(unsigned int fd) 1061 { 1062 return __fget(fd, FMODE_PATH); 1063 } 1064 EXPORT_SYMBOL(fget); 1065 1066 struct file *fget_raw(unsigned int fd) 1067 { 1068 return __fget(fd, 0); 1069 } 1070 EXPORT_SYMBOL(fget_raw); 1071 1072 struct file *fget_task(struct task_struct *task, unsigned int fd) 1073 { 1074 struct file *file = NULL; 1075 1076 task_lock(task); 1077 if (task->files) 1078 file = __fget_files(task->files, fd, 0); 1079 task_unlock(task); 1080 1081 return file; 1082 } 1083 1084 struct file *fget_task_next(struct task_struct *task, unsigned int *ret_fd) 1085 { 1086 /* Must be called with rcu_read_lock held */ 1087 struct files_struct *files; 1088 unsigned int fd = *ret_fd; 1089 struct file *file = NULL; 1090 1091 task_lock(task); 1092 files = task->files; 1093 if (files) { 1094 rcu_read_lock(); 1095 for (; fd < files_fdtable(files)->max_fds; fd++) { 1096 file = __fget_files_rcu(files, fd, 0); 1097 if (file) 1098 break; 1099 } 1100 rcu_read_unlock(); 1101 } 1102 task_unlock(task); 1103 *ret_fd = fd; 1104 return file; 1105 } 1106 EXPORT_SYMBOL(fget_task_next); 1107 1108 /* 1109 * Lightweight file lookup - no refcnt increment if fd table isn't shared. 1110 * 1111 * You can use this instead of fget if you satisfy all of the following 1112 * conditions: 1113 * 1) You must call fput_light before exiting the syscall and returning control 1114 * to userspace (i.e. you cannot remember the returned struct file * after 1115 * returning to userspace). 1116 * 2) You must not call filp_close on the returned struct file * in between 1117 * calls to fget_light and fput_light. 1118 * 3) You must not clone the current task in between the calls to fget_light 1119 * and fput_light. 1120 * 1121 * The fput_needed flag returned by fget_light should be passed to the 1122 * corresponding fput_light. 1123 * 1124 * (As an exception to rule 2, you can call filp_close between fget_light and 1125 * fput_light provided that you capture a real refcount with get_file before 1126 * the call to filp_close, and ensure that this real refcount is fput *after* 1127 * the fput_light call.) 1128 * 1129 * See also the documentation in rust/kernel/file.rs. 1130 */ 1131 static inline struct fd __fget_light(unsigned int fd, fmode_t mask) 1132 { 1133 struct files_struct *files = current->files; 1134 struct file *file; 1135 1136 /* 1137 * If another thread is concurrently calling close_fd() followed 1138 * by put_files_struct(), we must not observe the old table 1139 * entry combined with the new refcount - otherwise we could 1140 * return a file that is concurrently being freed. 1141 * 1142 * atomic_read_acquire() pairs with atomic_dec_and_test() in 1143 * put_files_struct(). 1144 */ 1145 if (likely(atomic_read_acquire(&files->count) == 1)) { 1146 file = files_lookup_fd_raw(files, fd); 1147 if (!file || unlikely(file->f_mode & mask)) 1148 return EMPTY_FD; 1149 return BORROWED_FD(file); 1150 } else { 1151 file = __fget_files(files, fd, mask); 1152 if (!file) 1153 return EMPTY_FD; 1154 return CLONED_FD(file); 1155 } 1156 } 1157 struct fd fdget(unsigned int fd) 1158 { 1159 return __fget_light(fd, FMODE_PATH); 1160 } 1161 EXPORT_SYMBOL(fdget); 1162 1163 struct fd fdget_raw(unsigned int fd) 1164 { 1165 return __fget_light(fd, 0); 1166 } 1167 1168 /* 1169 * Try to avoid f_pos locking. We only need it if the 1170 * file is marked for FMODE_ATOMIC_POS, and it can be 1171 * accessed multiple ways. 1172 * 1173 * Always do it for directories, because pidfd_getfd() 1174 * can make a file accessible even if it otherwise would 1175 * not be, and for directories this is a correctness 1176 * issue, not a "POSIX requirement". 1177 */ 1178 static inline bool file_needs_f_pos_lock(struct file *file) 1179 { 1180 return (file->f_mode & FMODE_ATOMIC_POS) && 1181 (file_count(file) > 1 || file->f_op->iterate_shared); 1182 } 1183 1184 struct fd fdget_pos(unsigned int fd) 1185 { 1186 struct fd f = fdget(fd); 1187 struct file *file = fd_file(f); 1188 1189 if (file && file_needs_f_pos_lock(file)) { 1190 f.word |= FDPUT_POS_UNLOCK; 1191 mutex_lock(&file->f_pos_lock); 1192 } 1193 return f; 1194 } 1195 1196 void __f_unlock_pos(struct file *f) 1197 { 1198 mutex_unlock(&f->f_pos_lock); 1199 } 1200 1201 /* 1202 * We only lock f_pos if we have threads or if the file might be 1203 * shared with another process. In both cases we'll have an elevated 1204 * file count (done either by fdget() or by fork()). 1205 */ 1206 1207 void set_close_on_exec(unsigned int fd, int flag) 1208 { 1209 struct files_struct *files = current->files; 1210 spin_lock(&files->file_lock); 1211 __set_close_on_exec(fd, files_fdtable(files), flag); 1212 spin_unlock(&files->file_lock); 1213 } 1214 1215 bool get_close_on_exec(unsigned int fd) 1216 { 1217 bool res; 1218 rcu_read_lock(); 1219 res = close_on_exec(fd, current->files); 1220 rcu_read_unlock(); 1221 return res; 1222 } 1223 1224 static int do_dup2(struct files_struct *files, 1225 struct file *file, unsigned fd, unsigned flags) 1226 __releases(&files->file_lock) 1227 { 1228 struct file *tofree; 1229 struct fdtable *fdt; 1230 1231 /* 1232 * We need to detect attempts to do dup2() over allocated but still 1233 * not finished descriptor. NB: OpenBSD avoids that at the price of 1234 * extra work in their equivalent of fget() - they insert struct 1235 * file immediately after grabbing descriptor, mark it larval if 1236 * more work (e.g. actual opening) is needed and make sure that 1237 * fget() treats larval files as absent. Potentially interesting, 1238 * but while extra work in fget() is trivial, locking implications 1239 * and amount of surgery on open()-related paths in VFS are not. 1240 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution" 1241 * deadlocks in rather amusing ways, AFAICS. All of that is out of 1242 * scope of POSIX or SUS, since neither considers shared descriptor 1243 * tables and this condition does not arise without those. 1244 */ 1245 fdt = files_fdtable(files); 1246 fd = array_index_nospec(fd, fdt->max_fds); 1247 tofree = fdt->fd[fd]; 1248 if (!tofree && fd_is_open(fd, fdt)) 1249 goto Ebusy; 1250 get_file(file); 1251 rcu_assign_pointer(fdt->fd[fd], file); 1252 __set_open_fd(fd, fdt, flags & O_CLOEXEC); 1253 spin_unlock(&files->file_lock); 1254 1255 if (tofree) 1256 filp_close(tofree, files); 1257 1258 return fd; 1259 1260 Ebusy: 1261 spin_unlock(&files->file_lock); 1262 return -EBUSY; 1263 } 1264 1265 int replace_fd(unsigned fd, struct file *file, unsigned flags) 1266 { 1267 int err; 1268 struct files_struct *files = current->files; 1269 1270 if (!file) 1271 return close_fd(fd); 1272 1273 if (fd >= rlimit(RLIMIT_NOFILE)) 1274 return -EBADF; 1275 1276 spin_lock(&files->file_lock); 1277 err = expand_files(files, fd); 1278 if (unlikely(err < 0)) 1279 goto out_unlock; 1280 return do_dup2(files, file, fd, flags); 1281 1282 out_unlock: 1283 spin_unlock(&files->file_lock); 1284 return err; 1285 } 1286 1287 /** 1288 * receive_fd() - Install received file into file descriptor table 1289 * @file: struct file that was received from another process 1290 * @ufd: __user pointer to write new fd number to 1291 * @o_flags: the O_* flags to apply to the new fd entry 1292 * 1293 * Installs a received file into the file descriptor table, with appropriate 1294 * checks and count updates. Optionally writes the fd number to userspace, if 1295 * @ufd is non-NULL. 1296 * 1297 * This helper handles its own reference counting of the incoming 1298 * struct file. 1299 * 1300 * Returns newly install fd or -ve on error. 1301 */ 1302 int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags) 1303 { 1304 int new_fd; 1305 int error; 1306 1307 error = security_file_receive(file); 1308 if (error) 1309 return error; 1310 1311 new_fd = get_unused_fd_flags(o_flags); 1312 if (new_fd < 0) 1313 return new_fd; 1314 1315 if (ufd) { 1316 error = put_user(new_fd, ufd); 1317 if (error) { 1318 put_unused_fd(new_fd); 1319 return error; 1320 } 1321 } 1322 1323 fd_install(new_fd, get_file(file)); 1324 __receive_sock(file); 1325 return new_fd; 1326 } 1327 EXPORT_SYMBOL_GPL(receive_fd); 1328 1329 int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags) 1330 { 1331 int error; 1332 1333 error = security_file_receive(file); 1334 if (error) 1335 return error; 1336 error = replace_fd(new_fd, file, o_flags); 1337 if (error) 1338 return error; 1339 __receive_sock(file); 1340 return new_fd; 1341 } 1342 1343 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags) 1344 { 1345 int err = -EBADF; 1346 struct file *file; 1347 struct files_struct *files = current->files; 1348 1349 if ((flags & ~O_CLOEXEC) != 0) 1350 return -EINVAL; 1351 1352 if (unlikely(oldfd == newfd)) 1353 return -EINVAL; 1354 1355 if (newfd >= rlimit(RLIMIT_NOFILE)) 1356 return -EBADF; 1357 1358 spin_lock(&files->file_lock); 1359 err = expand_files(files, newfd); 1360 file = files_lookup_fd_locked(files, oldfd); 1361 if (unlikely(!file)) 1362 goto Ebadf; 1363 if (unlikely(err < 0)) { 1364 if (err == -EMFILE) 1365 goto Ebadf; 1366 goto out_unlock; 1367 } 1368 return do_dup2(files, file, newfd, flags); 1369 1370 Ebadf: 1371 err = -EBADF; 1372 out_unlock: 1373 spin_unlock(&files->file_lock); 1374 return err; 1375 } 1376 1377 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags) 1378 { 1379 return ksys_dup3(oldfd, newfd, flags); 1380 } 1381 1382 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd) 1383 { 1384 if (unlikely(newfd == oldfd)) { /* corner case */ 1385 struct files_struct *files = current->files; 1386 struct file *f; 1387 int retval = oldfd; 1388 1389 rcu_read_lock(); 1390 f = __fget_files_rcu(files, oldfd, 0); 1391 if (!f) 1392 retval = -EBADF; 1393 rcu_read_unlock(); 1394 if (f) 1395 fput(f); 1396 return retval; 1397 } 1398 return ksys_dup3(oldfd, newfd, 0); 1399 } 1400 1401 SYSCALL_DEFINE1(dup, unsigned int, fildes) 1402 { 1403 int ret = -EBADF; 1404 struct file *file = fget_raw(fildes); 1405 1406 if (file) { 1407 ret = get_unused_fd_flags(0); 1408 if (ret >= 0) 1409 fd_install(ret, file); 1410 else 1411 fput(file); 1412 } 1413 return ret; 1414 } 1415 1416 int f_dupfd(unsigned int from, struct file *file, unsigned flags) 1417 { 1418 unsigned long nofile = rlimit(RLIMIT_NOFILE); 1419 int err; 1420 if (from >= nofile) 1421 return -EINVAL; 1422 err = alloc_fd(from, nofile, flags); 1423 if (err >= 0) { 1424 get_file(file); 1425 fd_install(err, file); 1426 } 1427 return err; 1428 } 1429 1430 int iterate_fd(struct files_struct *files, unsigned n, 1431 int (*f)(const void *, struct file *, unsigned), 1432 const void *p) 1433 { 1434 struct fdtable *fdt; 1435 int res = 0; 1436 if (!files) 1437 return 0; 1438 spin_lock(&files->file_lock); 1439 for (fdt = files_fdtable(files); n < fdt->max_fds; n++) { 1440 struct file *file; 1441 file = rcu_dereference_check_fdtable(files, fdt->fd[n]); 1442 if (!file) 1443 continue; 1444 res = f(p, file, n); 1445 if (res) 1446 break; 1447 } 1448 spin_unlock(&files->file_lock); 1449 return res; 1450 } 1451 EXPORT_SYMBOL(iterate_fd); 1452