xref: /linux/fs/file.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  *  linux/fs/file.c
3  *
4  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
5  *
6  *  Manage the dynamic fd arrays in the process files_struct.
7  */
8 
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/time.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/file.h>
15 #include <linux/bitops.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/rcupdate.h>
19 #include <linux/workqueue.h>
20 
21 struct fdtable_defer {
22 	spinlock_t lock;
23 	struct work_struct wq;
24 	struct fdtable *next;
25 };
26 
27 /*
28  * We use this list to defer free fdtables that have vmalloced
29  * sets/arrays. By keeping a per-cpu list, we avoid having to embed
30  * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
31  * this per-task structure.
32  */
33 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
34 
35 
36 /*
37  * Allocate an fd array, using kmalloc or vmalloc.
38  * Note: the array isn't cleared at allocation time.
39  */
40 struct file ** alloc_fd_array(int num)
41 {
42 	struct file **new_fds;
43 	int size = num * sizeof(struct file *);
44 
45 	if (size <= PAGE_SIZE)
46 		new_fds = (struct file **) kmalloc(size, GFP_KERNEL);
47 	else
48 		new_fds = (struct file **) vmalloc(size);
49 	return new_fds;
50 }
51 
52 void free_fd_array(struct file **array, int num)
53 {
54 	int size = num * sizeof(struct file *);
55 
56 	if (!array) {
57 		printk (KERN_ERR "free_fd_array: array = 0 (num = %d)\n", num);
58 		return;
59 	}
60 
61 	if (num <= NR_OPEN_DEFAULT) /* Don't free the embedded fd array! */
62 		return;
63 	else if (size <= PAGE_SIZE)
64 		kfree(array);
65 	else
66 		vfree(array);
67 }
68 
69 static void __free_fdtable(struct fdtable *fdt)
70 {
71 	free_fdset(fdt->open_fds, fdt->max_fdset);
72 	free_fdset(fdt->close_on_exec, fdt->max_fdset);
73 	free_fd_array(fdt->fd, fdt->max_fds);
74 	kfree(fdt);
75 }
76 
77 static void free_fdtable_work(struct work_struct *work)
78 {
79 	struct fdtable_defer *f =
80 		container_of(work, struct fdtable_defer, wq);
81 	struct fdtable *fdt;
82 
83 	spin_lock_bh(&f->lock);
84 	fdt = f->next;
85 	f->next = NULL;
86 	spin_unlock_bh(&f->lock);
87 	while(fdt) {
88 		struct fdtable *next = fdt->next;
89 		__free_fdtable(fdt);
90 		fdt = next;
91 	}
92 }
93 
94 static void free_fdtable_rcu(struct rcu_head *rcu)
95 {
96 	struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
97 	int fdset_size, fdarray_size;
98 	struct fdtable_defer *fddef;
99 
100 	BUG_ON(!fdt);
101 	fdset_size = fdt->max_fdset / 8;
102 	fdarray_size = fdt->max_fds * sizeof(struct file *);
103 
104 	if (fdt->free_files) {
105 		/*
106 		 * The this fdtable was embedded in the files structure
107 		 * and the files structure itself was getting destroyed.
108 		 * It is now safe to free the files structure.
109 		 */
110 		kmem_cache_free(files_cachep, fdt->free_files);
111 		return;
112 	}
113 	if (fdt->max_fdset <= EMBEDDED_FD_SET_SIZE &&
114 		fdt->max_fds <= NR_OPEN_DEFAULT) {
115 		/*
116 		 * The fdtable was embedded
117 		 */
118 		return;
119 	}
120 	if (fdset_size <= PAGE_SIZE && fdarray_size <= PAGE_SIZE) {
121 		kfree(fdt->open_fds);
122 		kfree(fdt->close_on_exec);
123 		kfree(fdt->fd);
124 		kfree(fdt);
125 	} else {
126 		fddef = &get_cpu_var(fdtable_defer_list);
127 		spin_lock(&fddef->lock);
128 		fdt->next = fddef->next;
129 		fddef->next = fdt;
130 		/* vmallocs are handled from the workqueue context */
131 		schedule_work(&fddef->wq);
132 		spin_unlock(&fddef->lock);
133 		put_cpu_var(fdtable_defer_list);
134 	}
135 }
136 
137 void free_fdtable(struct fdtable *fdt)
138 {
139 	if (fdt->free_files ||
140 		fdt->max_fdset > EMBEDDED_FD_SET_SIZE ||
141 		fdt->max_fds > NR_OPEN_DEFAULT)
142 		call_rcu(&fdt->rcu, free_fdtable_rcu);
143 }
144 
145 /*
146  * Expand the fdset in the files_struct.  Called with the files spinlock
147  * held for write.
148  */
149 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *fdt)
150 {
151 	int i;
152 	int count;
153 
154 	BUG_ON(nfdt->max_fdset < fdt->max_fdset);
155 	BUG_ON(nfdt->max_fds < fdt->max_fds);
156 	/* Copy the existing tables and install the new pointers */
157 
158 	i = fdt->max_fdset / (sizeof(unsigned long) * 8);
159 	count = (nfdt->max_fdset - fdt->max_fdset) / 8;
160 
161 	/*
162 	 * Don't copy the entire array if the current fdset is
163 	 * not yet initialised.
164 	 */
165 	if (i) {
166 		memcpy (nfdt->open_fds, fdt->open_fds,
167 						fdt->max_fdset/8);
168 		memcpy (nfdt->close_on_exec, fdt->close_on_exec,
169 						fdt->max_fdset/8);
170 		memset (&nfdt->open_fds->fds_bits[i], 0, count);
171 		memset (&nfdt->close_on_exec->fds_bits[i], 0, count);
172 	}
173 
174 	/* Don't copy/clear the array if we are creating a new
175 	   fd array for fork() */
176 	if (fdt->max_fds) {
177 		memcpy(nfdt->fd, fdt->fd,
178 			fdt->max_fds * sizeof(struct file *));
179 		/* clear the remainder of the array */
180 		memset(&nfdt->fd[fdt->max_fds], 0,
181 		       (nfdt->max_fds - fdt->max_fds) *
182 					sizeof(struct file *));
183 	}
184 }
185 
186 /*
187  * Allocate an fdset array, using kmalloc or vmalloc.
188  * Note: the array isn't cleared at allocation time.
189  */
190 fd_set * alloc_fdset(int num)
191 {
192 	fd_set *new_fdset;
193 	int size = num / 8;
194 
195 	if (size <= PAGE_SIZE)
196 		new_fdset = (fd_set *) kmalloc(size, GFP_KERNEL);
197 	else
198 		new_fdset = (fd_set *) vmalloc(size);
199 	return new_fdset;
200 }
201 
202 void free_fdset(fd_set *array, int num)
203 {
204 	if (num <= EMBEDDED_FD_SET_SIZE) /* Don't free an embedded fdset */
205 		return;
206 	else if (num <= 8 * PAGE_SIZE)
207 		kfree(array);
208 	else
209 		vfree(array);
210 }
211 
212 static struct fdtable *alloc_fdtable(int nr)
213 {
214 	struct fdtable *fdt = NULL;
215 	int nfds = 0;
216   	fd_set *new_openset = NULL, *new_execset = NULL;
217 	struct file **new_fds;
218 
219 	fdt = kzalloc(sizeof(*fdt), GFP_KERNEL);
220 	if (!fdt)
221   		goto out;
222 
223 	nfds = max_t(int, 8 * L1_CACHE_BYTES, roundup_pow_of_two(nr + 1));
224 	if (nfds > NR_OPEN)
225 		nfds = NR_OPEN;
226 
227   	new_openset = alloc_fdset(nfds);
228   	new_execset = alloc_fdset(nfds);
229   	if (!new_openset || !new_execset)
230   		goto out;
231 	fdt->open_fds = new_openset;
232 	fdt->close_on_exec = new_execset;
233 	fdt->max_fdset = nfds;
234 
235 	nfds = NR_OPEN_DEFAULT;
236 	/*
237 	 * Expand to the max in easy steps, and keep expanding it until
238 	 * we have enough for the requested fd array size.
239 	 */
240 	do {
241 #if NR_OPEN_DEFAULT < 256
242 		if (nfds < 256)
243 			nfds = 256;
244 		else
245 #endif
246 		if (nfds < (PAGE_SIZE / sizeof(struct file *)))
247 			nfds = PAGE_SIZE / sizeof(struct file *);
248 		else {
249 			nfds = nfds * 2;
250 			if (nfds > NR_OPEN)
251 				nfds = NR_OPEN;
252   		}
253 	} while (nfds <= nr);
254 	new_fds = alloc_fd_array(nfds);
255 	if (!new_fds)
256 		goto out2;
257 	fdt->fd = new_fds;
258 	fdt->max_fds = nfds;
259 	fdt->free_files = NULL;
260 	return fdt;
261 out2:
262 	nfds = fdt->max_fdset;
263 out:
264 	free_fdset(new_openset, nfds);
265 	free_fdset(new_execset, nfds);
266 	kfree(fdt);
267 	return NULL;
268 }
269 
270 /*
271  * Expand the file descriptor table.
272  * This function will allocate a new fdtable and both fd array and fdset, of
273  * the given size.
274  * Return <0 error code on error; 1 on successful completion.
275  * The files->file_lock should be held on entry, and will be held on exit.
276  */
277 static int expand_fdtable(struct files_struct *files, int nr)
278 	__releases(files->file_lock)
279 	__acquires(files->file_lock)
280 {
281 	struct fdtable *new_fdt, *cur_fdt;
282 
283 	spin_unlock(&files->file_lock);
284 	new_fdt = alloc_fdtable(nr);
285 	spin_lock(&files->file_lock);
286 	if (!new_fdt)
287 		return -ENOMEM;
288 	/*
289 	 * Check again since another task may have expanded the fd table while
290 	 * we dropped the lock
291 	 */
292 	cur_fdt = files_fdtable(files);
293 	if (nr >= cur_fdt->max_fds || nr >= cur_fdt->max_fdset) {
294 		/* Continue as planned */
295 		copy_fdtable(new_fdt, cur_fdt);
296 		rcu_assign_pointer(files->fdt, new_fdt);
297 		free_fdtable(cur_fdt);
298 	} else {
299 		/* Somebody else expanded, so undo our attempt */
300 		__free_fdtable(new_fdt);
301 	}
302 	return 1;
303 }
304 
305 /*
306  * Expand files.
307  * This function will expand the file structures, if the requested size exceeds
308  * the current capacity and there is room for expansion.
309  * Return <0 error code on error; 0 when nothing done; 1 when files were
310  * expanded and execution may have blocked.
311  * The files->file_lock should be held on entry, and will be held on exit.
312  */
313 int expand_files(struct files_struct *files, int nr)
314 {
315 	struct fdtable *fdt;
316 
317 	fdt = files_fdtable(files);
318 	/* Do we need to expand? */
319 	if (nr < fdt->max_fdset && nr < fdt->max_fds)
320 		return 0;
321 	/* Can we expand? */
322 	if (fdt->max_fdset >= NR_OPEN || fdt->max_fds >= NR_OPEN ||
323 	    nr >= NR_OPEN)
324 		return -EMFILE;
325 
326 	/* All good, so we try */
327 	return expand_fdtable(files, nr);
328 }
329 
330 static void __devinit fdtable_defer_list_init(int cpu)
331 {
332 	struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
333 	spin_lock_init(&fddef->lock);
334 	INIT_WORK(&fddef->wq, free_fdtable_work);
335 	fddef->next = NULL;
336 }
337 
338 void __init files_defer_init(void)
339 {
340 	int i;
341 	for_each_possible_cpu(i)
342 		fdtable_defer_list_init(i);
343 }
344