xref: /linux/fs/file.c (revision 55d0969c451159cff86949b38c39171cab962069)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/file.c
4  *
5  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6  *
7  *  Manage the dynamic fd arrays in the process files_struct.
8  */
9 
10 #include <linux/syscalls.h>
11 #include <linux/export.h>
12 #include <linux/fs.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/close_range.h>
23 #include <net/sock.h>
24 
25 #include "internal.h"
26 
27 unsigned int sysctl_nr_open __read_mostly = 1024*1024;
28 unsigned int sysctl_nr_open_min = BITS_PER_LONG;
29 /* our min() is unusable in constant expressions ;-/ */
30 #define __const_min(x, y) ((x) < (y) ? (x) : (y))
31 unsigned int sysctl_nr_open_max =
32 	__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
33 
34 static void __free_fdtable(struct fdtable *fdt)
35 {
36 	kvfree(fdt->fd);
37 	kvfree(fdt->open_fds);
38 	kfree(fdt);
39 }
40 
41 static void free_fdtable_rcu(struct rcu_head *rcu)
42 {
43 	__free_fdtable(container_of(rcu, struct fdtable, rcu));
44 }
45 
46 #define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
47 #define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
48 
49 #define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds
50 /*
51  * Copy 'count' fd bits from the old table to the new table and clear the extra
52  * space if any.  This does not copy the file pointers.  Called with the files
53  * spinlock held for write.
54  */
55 static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
56 			    unsigned int copy_words)
57 {
58 	unsigned int nwords = fdt_words(nfdt);
59 
60 	bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds,
61 			copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
62 	bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec,
63 			copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
64 	bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits,
65 			copy_words, nwords);
66 }
67 
68 /*
69  * Copy all file descriptors from the old table to the new, expanded table and
70  * clear the extra space.  Called with the files spinlock held for write.
71  */
72 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
73 {
74 	size_t cpy, set;
75 
76 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
77 
78 	cpy = ofdt->max_fds * sizeof(struct file *);
79 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
80 	memcpy(nfdt->fd, ofdt->fd, cpy);
81 	memset((char *)nfdt->fd + cpy, 0, set);
82 
83 	copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt));
84 }
85 
86 /*
87  * Note how the fdtable bitmap allocations very much have to be a multiple of
88  * BITS_PER_LONG. This is not only because we walk those things in chunks of
89  * 'unsigned long' in some places, but simply because that is how the Linux
90  * kernel bitmaps are defined to work: they are not "bits in an array of bytes",
91  * they are very much "bits in an array of unsigned long".
92  *
93  * The ALIGN(nr, BITS_PER_LONG) here is for clarity: since we just multiplied
94  * by that "1024/sizeof(ptr)" before, we already know there are sufficient
95  * clear low bits. Clang seems to realize that, gcc ends up being confused.
96  *
97  * On a 128-bit machine, the ALIGN() would actually matter. In the meantime,
98  * let's consider it documentation (and maybe a test-case for gcc to improve
99  * its code generation ;)
100  */
101 static struct fdtable * alloc_fdtable(unsigned int nr)
102 {
103 	struct fdtable *fdt;
104 	void *data;
105 
106 	/*
107 	 * Figure out how many fds we actually want to support in this fdtable.
108 	 * Allocation steps are keyed to the size of the fdarray, since it
109 	 * grows far faster than any of the other dynamic data. We try to fit
110 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
111 	 * and growing in powers of two from there on.
112 	 */
113 	nr /= (1024 / sizeof(struct file *));
114 	nr = roundup_pow_of_two(nr + 1);
115 	nr *= (1024 / sizeof(struct file *));
116 	nr = ALIGN(nr, BITS_PER_LONG);
117 	/*
118 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
119 	 * had been set lower between the check in expand_files() and here.  Deal
120 	 * with that in caller, it's cheaper that way.
121 	 *
122 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
123 	 * bitmaps handling below becomes unpleasant, to put it mildly...
124 	 */
125 	if (unlikely(nr > sysctl_nr_open))
126 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
127 
128 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
129 	if (!fdt)
130 		goto out;
131 	fdt->max_fds = nr;
132 	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
133 	if (!data)
134 		goto out_fdt;
135 	fdt->fd = data;
136 
137 	data = kvmalloc(max_t(size_t,
138 				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
139 				 GFP_KERNEL_ACCOUNT);
140 	if (!data)
141 		goto out_arr;
142 	fdt->open_fds = data;
143 	data += nr / BITS_PER_BYTE;
144 	fdt->close_on_exec = data;
145 	data += nr / BITS_PER_BYTE;
146 	fdt->full_fds_bits = data;
147 
148 	return fdt;
149 
150 out_arr:
151 	kvfree(fdt->fd);
152 out_fdt:
153 	kfree(fdt);
154 out:
155 	return NULL;
156 }
157 
158 /*
159  * Expand the file descriptor table.
160  * This function will allocate a new fdtable and both fd array and fdset, of
161  * the given size.
162  * Return <0 error code on error; 1 on successful completion.
163  * The files->file_lock should be held on entry, and will be held on exit.
164  */
165 static int expand_fdtable(struct files_struct *files, unsigned int nr)
166 	__releases(files->file_lock)
167 	__acquires(files->file_lock)
168 {
169 	struct fdtable *new_fdt, *cur_fdt;
170 
171 	spin_unlock(&files->file_lock);
172 	new_fdt = alloc_fdtable(nr);
173 
174 	/* make sure all fd_install() have seen resize_in_progress
175 	 * or have finished their rcu_read_lock_sched() section.
176 	 */
177 	if (atomic_read(&files->count) > 1)
178 		synchronize_rcu();
179 
180 	spin_lock(&files->file_lock);
181 	if (!new_fdt)
182 		return -ENOMEM;
183 	/*
184 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
185 	 * caller and alloc_fdtable().  Cheaper to catch it here...
186 	 */
187 	if (unlikely(new_fdt->max_fds <= nr)) {
188 		__free_fdtable(new_fdt);
189 		return -EMFILE;
190 	}
191 	cur_fdt = files_fdtable(files);
192 	BUG_ON(nr < cur_fdt->max_fds);
193 	copy_fdtable(new_fdt, cur_fdt);
194 	rcu_assign_pointer(files->fdt, new_fdt);
195 	if (cur_fdt != &files->fdtab)
196 		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
197 	/* coupled with smp_rmb() in fd_install() */
198 	smp_wmb();
199 	return 1;
200 }
201 
202 /*
203  * Expand files.
204  * This function will expand the file structures, if the requested size exceeds
205  * the current capacity and there is room for expansion.
206  * Return <0 error code on error; 0 when nothing done; 1 when files were
207  * expanded and execution may have blocked.
208  * The files->file_lock should be held on entry, and will be held on exit.
209  */
210 static int expand_files(struct files_struct *files, unsigned int nr)
211 	__releases(files->file_lock)
212 	__acquires(files->file_lock)
213 {
214 	struct fdtable *fdt;
215 	int expanded = 0;
216 
217 repeat:
218 	fdt = files_fdtable(files);
219 
220 	/* Do we need to expand? */
221 	if (nr < fdt->max_fds)
222 		return expanded;
223 
224 	/* Can we expand? */
225 	if (nr >= sysctl_nr_open)
226 		return -EMFILE;
227 
228 	if (unlikely(files->resize_in_progress)) {
229 		spin_unlock(&files->file_lock);
230 		expanded = 1;
231 		wait_event(files->resize_wait, !files->resize_in_progress);
232 		spin_lock(&files->file_lock);
233 		goto repeat;
234 	}
235 
236 	/* All good, so we try */
237 	files->resize_in_progress = true;
238 	expanded = expand_fdtable(files, nr);
239 	files->resize_in_progress = false;
240 
241 	wake_up_all(&files->resize_wait);
242 	return expanded;
243 }
244 
245 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt)
246 {
247 	__set_bit(fd, fdt->close_on_exec);
248 }
249 
250 static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt)
251 {
252 	if (test_bit(fd, fdt->close_on_exec))
253 		__clear_bit(fd, fdt->close_on_exec);
254 }
255 
256 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt)
257 {
258 	__set_bit(fd, fdt->open_fds);
259 	fd /= BITS_PER_LONG;
260 	if (!~fdt->open_fds[fd])
261 		__set_bit(fd, fdt->full_fds_bits);
262 }
263 
264 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
265 {
266 	__clear_bit(fd, fdt->open_fds);
267 	__clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
268 }
269 
270 static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt)
271 {
272 	return test_bit(fd, fdt->open_fds);
273 }
274 
275 /*
276  * Note that a sane fdtable size always has to be a multiple of
277  * BITS_PER_LONG, since we have bitmaps that are sized by this.
278  *
279  * punch_hole is optional - when close_range() is asked to unshare
280  * and close, we don't need to copy descriptors in that range, so
281  * a smaller cloned descriptor table might suffice if the last
282  * currently opened descriptor falls into that range.
283  */
284 static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole)
285 {
286 	unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds);
287 
288 	if (last == fdt->max_fds)
289 		return NR_OPEN_DEFAULT;
290 	if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) {
291 		last = find_last_bit(fdt->open_fds, punch_hole->from);
292 		if (last == punch_hole->from)
293 			return NR_OPEN_DEFAULT;
294 	}
295 	return ALIGN(last + 1, BITS_PER_LONG);
296 }
297 
298 /*
299  * Allocate a new descriptor table and copy contents from the passed in
300  * instance.  Returns a pointer to cloned table on success, ERR_PTR()
301  * on failure.  For 'punch_hole' see sane_fdtable_size().
302  */
303 struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole)
304 {
305 	struct files_struct *newf;
306 	struct file **old_fds, **new_fds;
307 	unsigned int open_files, i;
308 	struct fdtable *old_fdt, *new_fdt;
309 	int error;
310 
311 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
312 	if (!newf)
313 		return ERR_PTR(-ENOMEM);
314 
315 	atomic_set(&newf->count, 1);
316 
317 	spin_lock_init(&newf->file_lock);
318 	newf->resize_in_progress = false;
319 	init_waitqueue_head(&newf->resize_wait);
320 	newf->next_fd = 0;
321 	new_fdt = &newf->fdtab;
322 	new_fdt->max_fds = NR_OPEN_DEFAULT;
323 	new_fdt->close_on_exec = newf->close_on_exec_init;
324 	new_fdt->open_fds = newf->open_fds_init;
325 	new_fdt->full_fds_bits = newf->full_fds_bits_init;
326 	new_fdt->fd = &newf->fd_array[0];
327 
328 	spin_lock(&oldf->file_lock);
329 	old_fdt = files_fdtable(oldf);
330 	open_files = sane_fdtable_size(old_fdt, punch_hole);
331 
332 	/*
333 	 * Check whether we need to allocate a larger fd array and fd set.
334 	 */
335 	while (unlikely(open_files > new_fdt->max_fds)) {
336 		spin_unlock(&oldf->file_lock);
337 
338 		if (new_fdt != &newf->fdtab)
339 			__free_fdtable(new_fdt);
340 
341 		new_fdt = alloc_fdtable(open_files - 1);
342 		if (!new_fdt) {
343 			error = -ENOMEM;
344 			goto out_release;
345 		}
346 
347 		/* beyond sysctl_nr_open; nothing to do */
348 		if (unlikely(new_fdt->max_fds < open_files)) {
349 			__free_fdtable(new_fdt);
350 			error = -EMFILE;
351 			goto out_release;
352 		}
353 
354 		/*
355 		 * Reacquire the oldf lock and a pointer to its fd table
356 		 * who knows it may have a new bigger fd table. We need
357 		 * the latest pointer.
358 		 */
359 		spin_lock(&oldf->file_lock);
360 		old_fdt = files_fdtable(oldf);
361 		open_files = sane_fdtable_size(old_fdt, punch_hole);
362 	}
363 
364 	copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG);
365 
366 	old_fds = old_fdt->fd;
367 	new_fds = new_fdt->fd;
368 
369 	for (i = open_files; i != 0; i--) {
370 		struct file *f = *old_fds++;
371 		if (f) {
372 			get_file(f);
373 		} else {
374 			/*
375 			 * The fd may be claimed in the fd bitmap but not yet
376 			 * instantiated in the files array if a sibling thread
377 			 * is partway through open().  So make sure that this
378 			 * fd is available to the new process.
379 			 */
380 			__clear_open_fd(open_files - i, new_fdt);
381 		}
382 		rcu_assign_pointer(*new_fds++, f);
383 	}
384 	spin_unlock(&oldf->file_lock);
385 
386 	/* clear the remainder */
387 	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
388 
389 	rcu_assign_pointer(newf->fdt, new_fdt);
390 
391 	return newf;
392 
393 out_release:
394 	kmem_cache_free(files_cachep, newf);
395 	return ERR_PTR(error);
396 }
397 
398 static struct fdtable *close_files(struct files_struct * files)
399 {
400 	/*
401 	 * It is safe to dereference the fd table without RCU or
402 	 * ->file_lock because this is the last reference to the
403 	 * files structure.
404 	 */
405 	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
406 	unsigned int i, j = 0;
407 
408 	for (;;) {
409 		unsigned long set;
410 		i = j * BITS_PER_LONG;
411 		if (i >= fdt->max_fds)
412 			break;
413 		set = fdt->open_fds[j++];
414 		while (set) {
415 			if (set & 1) {
416 				struct file * file = xchg(&fdt->fd[i], NULL);
417 				if (file) {
418 					filp_close(file, files);
419 					cond_resched();
420 				}
421 			}
422 			i++;
423 			set >>= 1;
424 		}
425 	}
426 
427 	return fdt;
428 }
429 
430 void put_files_struct(struct files_struct *files)
431 {
432 	if (atomic_dec_and_test(&files->count)) {
433 		struct fdtable *fdt = close_files(files);
434 
435 		/* free the arrays if they are not embedded */
436 		if (fdt != &files->fdtab)
437 			__free_fdtable(fdt);
438 		kmem_cache_free(files_cachep, files);
439 	}
440 }
441 
442 void exit_files(struct task_struct *tsk)
443 {
444 	struct files_struct * files = tsk->files;
445 
446 	if (files) {
447 		task_lock(tsk);
448 		tsk->files = NULL;
449 		task_unlock(tsk);
450 		put_files_struct(files);
451 	}
452 }
453 
454 struct files_struct init_files = {
455 	.count		= ATOMIC_INIT(1),
456 	.fdt		= &init_files.fdtab,
457 	.fdtab		= {
458 		.max_fds	= NR_OPEN_DEFAULT,
459 		.fd		= &init_files.fd_array[0],
460 		.close_on_exec	= init_files.close_on_exec_init,
461 		.open_fds	= init_files.open_fds_init,
462 		.full_fds_bits	= init_files.full_fds_bits_init,
463 	},
464 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
465 	.resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
466 };
467 
468 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
469 {
470 	unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */
471 	unsigned int maxbit = maxfd / BITS_PER_LONG;
472 	unsigned int bitbit = start / BITS_PER_LONG;
473 
474 	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
475 	if (bitbit >= maxfd)
476 		return maxfd;
477 	if (bitbit > start)
478 		start = bitbit;
479 	return find_next_zero_bit(fdt->open_fds, maxfd, start);
480 }
481 
482 /*
483  * allocate a file descriptor, mark it busy.
484  */
485 static int alloc_fd(unsigned start, unsigned end, unsigned flags)
486 {
487 	struct files_struct *files = current->files;
488 	unsigned int fd;
489 	int error;
490 	struct fdtable *fdt;
491 
492 	spin_lock(&files->file_lock);
493 repeat:
494 	fdt = files_fdtable(files);
495 	fd = start;
496 	if (fd < files->next_fd)
497 		fd = files->next_fd;
498 
499 	if (fd < fdt->max_fds)
500 		fd = find_next_fd(fdt, fd);
501 
502 	/*
503 	 * N.B. For clone tasks sharing a files structure, this test
504 	 * will limit the total number of files that can be opened.
505 	 */
506 	error = -EMFILE;
507 	if (fd >= end)
508 		goto out;
509 
510 	error = expand_files(files, fd);
511 	if (error < 0)
512 		goto out;
513 
514 	/*
515 	 * If we needed to expand the fs array we
516 	 * might have blocked - try again.
517 	 */
518 	if (error)
519 		goto repeat;
520 
521 	if (start <= files->next_fd)
522 		files->next_fd = fd + 1;
523 
524 	__set_open_fd(fd, fdt);
525 	if (flags & O_CLOEXEC)
526 		__set_close_on_exec(fd, fdt);
527 	else
528 		__clear_close_on_exec(fd, fdt);
529 	error = fd;
530 #if 1
531 	/* Sanity check */
532 	if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
533 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
534 		rcu_assign_pointer(fdt->fd[fd], NULL);
535 	}
536 #endif
537 
538 out:
539 	spin_unlock(&files->file_lock);
540 	return error;
541 }
542 
543 int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
544 {
545 	return alloc_fd(0, nofile, flags);
546 }
547 
548 int get_unused_fd_flags(unsigned flags)
549 {
550 	return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
551 }
552 EXPORT_SYMBOL(get_unused_fd_flags);
553 
554 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
555 {
556 	struct fdtable *fdt = files_fdtable(files);
557 	__clear_open_fd(fd, fdt);
558 	if (fd < files->next_fd)
559 		files->next_fd = fd;
560 }
561 
562 void put_unused_fd(unsigned int fd)
563 {
564 	struct files_struct *files = current->files;
565 	spin_lock(&files->file_lock);
566 	__put_unused_fd(files, fd);
567 	spin_unlock(&files->file_lock);
568 }
569 
570 EXPORT_SYMBOL(put_unused_fd);
571 
572 /*
573  * Install a file pointer in the fd array.
574  *
575  * The VFS is full of places where we drop the files lock between
576  * setting the open_fds bitmap and installing the file in the file
577  * array.  At any such point, we are vulnerable to a dup2() race
578  * installing a file in the array before us.  We need to detect this and
579  * fput() the struct file we are about to overwrite in this case.
580  *
581  * It should never happen - if we allow dup2() do it, _really_ bad things
582  * will follow.
583  *
584  * This consumes the "file" refcount, so callers should treat it
585  * as if they had called fput(file).
586  */
587 
588 void fd_install(unsigned int fd, struct file *file)
589 {
590 	struct files_struct *files = current->files;
591 	struct fdtable *fdt;
592 
593 	if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING)))
594 		return;
595 
596 	rcu_read_lock_sched();
597 
598 	if (unlikely(files->resize_in_progress)) {
599 		rcu_read_unlock_sched();
600 		spin_lock(&files->file_lock);
601 		fdt = files_fdtable(files);
602 		BUG_ON(fdt->fd[fd] != NULL);
603 		rcu_assign_pointer(fdt->fd[fd], file);
604 		spin_unlock(&files->file_lock);
605 		return;
606 	}
607 	/* coupled with smp_wmb() in expand_fdtable() */
608 	smp_rmb();
609 	fdt = rcu_dereference_sched(files->fdt);
610 	BUG_ON(fdt->fd[fd] != NULL);
611 	rcu_assign_pointer(fdt->fd[fd], file);
612 	rcu_read_unlock_sched();
613 }
614 
615 EXPORT_SYMBOL(fd_install);
616 
617 /**
618  * file_close_fd_locked - return file associated with fd
619  * @files: file struct to retrieve file from
620  * @fd: file descriptor to retrieve file for
621  *
622  * Doesn't take a separate reference count.
623  *
624  * Context: files_lock must be held.
625  *
626  * Returns: The file associated with @fd (NULL if @fd is not open)
627  */
628 struct file *file_close_fd_locked(struct files_struct *files, unsigned fd)
629 {
630 	struct fdtable *fdt = files_fdtable(files);
631 	struct file *file;
632 
633 	lockdep_assert_held(&files->file_lock);
634 
635 	if (fd >= fdt->max_fds)
636 		return NULL;
637 
638 	fd = array_index_nospec(fd, fdt->max_fds);
639 	file = fdt->fd[fd];
640 	if (file) {
641 		rcu_assign_pointer(fdt->fd[fd], NULL);
642 		__put_unused_fd(files, fd);
643 	}
644 	return file;
645 }
646 
647 int close_fd(unsigned fd)
648 {
649 	struct files_struct *files = current->files;
650 	struct file *file;
651 
652 	spin_lock(&files->file_lock);
653 	file = file_close_fd_locked(files, fd);
654 	spin_unlock(&files->file_lock);
655 	if (!file)
656 		return -EBADF;
657 
658 	return filp_close(file, files);
659 }
660 EXPORT_SYMBOL(close_fd);
661 
662 /**
663  * last_fd - return last valid index into fd table
664  * @fdt: File descriptor table.
665  *
666  * Context: Either rcu read lock or files_lock must be held.
667  *
668  * Returns: Last valid index into fdtable.
669  */
670 static inline unsigned last_fd(struct fdtable *fdt)
671 {
672 	return fdt->max_fds - 1;
673 }
674 
675 static inline void __range_cloexec(struct files_struct *cur_fds,
676 				   unsigned int fd, unsigned int max_fd)
677 {
678 	struct fdtable *fdt;
679 
680 	/* make sure we're using the correct maximum value */
681 	spin_lock(&cur_fds->file_lock);
682 	fdt = files_fdtable(cur_fds);
683 	max_fd = min(last_fd(fdt), max_fd);
684 	if (fd <= max_fd)
685 		bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
686 	spin_unlock(&cur_fds->file_lock);
687 }
688 
689 static inline void __range_close(struct files_struct *files, unsigned int fd,
690 				 unsigned int max_fd)
691 {
692 	struct file *file;
693 	unsigned n;
694 
695 	spin_lock(&files->file_lock);
696 	n = last_fd(files_fdtable(files));
697 	max_fd = min(max_fd, n);
698 
699 	for (; fd <= max_fd; fd++) {
700 		file = file_close_fd_locked(files, fd);
701 		if (file) {
702 			spin_unlock(&files->file_lock);
703 			filp_close(file, files);
704 			cond_resched();
705 			spin_lock(&files->file_lock);
706 		} else if (need_resched()) {
707 			spin_unlock(&files->file_lock);
708 			cond_resched();
709 			spin_lock(&files->file_lock);
710 		}
711 	}
712 	spin_unlock(&files->file_lock);
713 }
714 
715 /**
716  * __close_range() - Close all file descriptors in a given range.
717  *
718  * @fd:     starting file descriptor to close
719  * @max_fd: last file descriptor to close
720  * @flags:  CLOSE_RANGE flags.
721  *
722  * This closes a range of file descriptors. All file descriptors
723  * from @fd up to and including @max_fd are closed.
724  */
725 int __close_range(unsigned fd, unsigned max_fd, unsigned int flags)
726 {
727 	struct task_struct *me = current;
728 	struct files_struct *cur_fds = me->files, *fds = NULL;
729 
730 	if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
731 		return -EINVAL;
732 
733 	if (fd > max_fd)
734 		return -EINVAL;
735 
736 	if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) {
737 		struct fd_range range = {fd, max_fd}, *punch_hole = &range;
738 
739 		/*
740 		 * If the caller requested all fds to be made cloexec we always
741 		 * copy all of the file descriptors since they still want to
742 		 * use them.
743 		 */
744 		if (flags & CLOSE_RANGE_CLOEXEC)
745 			punch_hole = NULL;
746 
747 		fds = dup_fd(cur_fds, punch_hole);
748 		if (IS_ERR(fds))
749 			return PTR_ERR(fds);
750 		/*
751 		 * We used to share our file descriptor table, and have now
752 		 * created a private one, make sure we're using it below.
753 		 */
754 		swap(cur_fds, fds);
755 	}
756 
757 	if (flags & CLOSE_RANGE_CLOEXEC)
758 		__range_cloexec(cur_fds, fd, max_fd);
759 	else
760 		__range_close(cur_fds, fd, max_fd);
761 
762 	if (fds) {
763 		/*
764 		 * We're done closing the files we were supposed to. Time to install
765 		 * the new file descriptor table and drop the old one.
766 		 */
767 		task_lock(me);
768 		me->files = cur_fds;
769 		task_unlock(me);
770 		put_files_struct(fds);
771 	}
772 
773 	return 0;
774 }
775 
776 /**
777  * file_close_fd - return file associated with fd
778  * @fd: file descriptor to retrieve file for
779  *
780  * Doesn't take a separate reference count.
781  *
782  * Returns: The file associated with @fd (NULL if @fd is not open)
783  */
784 struct file *file_close_fd(unsigned int fd)
785 {
786 	struct files_struct *files = current->files;
787 	struct file *file;
788 
789 	spin_lock(&files->file_lock);
790 	file = file_close_fd_locked(files, fd);
791 	spin_unlock(&files->file_lock);
792 
793 	return file;
794 }
795 
796 void do_close_on_exec(struct files_struct *files)
797 {
798 	unsigned i;
799 	struct fdtable *fdt;
800 
801 	/* exec unshares first */
802 	spin_lock(&files->file_lock);
803 	for (i = 0; ; i++) {
804 		unsigned long set;
805 		unsigned fd = i * BITS_PER_LONG;
806 		fdt = files_fdtable(files);
807 		if (fd >= fdt->max_fds)
808 			break;
809 		set = fdt->close_on_exec[i];
810 		if (!set)
811 			continue;
812 		fdt->close_on_exec[i] = 0;
813 		for ( ; set ; fd++, set >>= 1) {
814 			struct file *file;
815 			if (!(set & 1))
816 				continue;
817 			file = fdt->fd[fd];
818 			if (!file)
819 				continue;
820 			rcu_assign_pointer(fdt->fd[fd], NULL);
821 			__put_unused_fd(files, fd);
822 			spin_unlock(&files->file_lock);
823 			filp_close(file, files);
824 			cond_resched();
825 			spin_lock(&files->file_lock);
826 		}
827 
828 	}
829 	spin_unlock(&files->file_lock);
830 }
831 
832 static struct file *__get_file_rcu(struct file __rcu **f)
833 {
834 	struct file __rcu *file;
835 	struct file __rcu *file_reloaded;
836 	struct file __rcu *file_reloaded_cmp;
837 
838 	file = rcu_dereference_raw(*f);
839 	if (!file)
840 		return NULL;
841 
842 	if (unlikely(!atomic_long_inc_not_zero(&file->f_count)))
843 		return ERR_PTR(-EAGAIN);
844 
845 	file_reloaded = rcu_dereference_raw(*f);
846 
847 	/*
848 	 * Ensure that all accesses have a dependency on the load from
849 	 * rcu_dereference_raw() above so we get correct ordering
850 	 * between reuse/allocation and the pointer check below.
851 	 */
852 	file_reloaded_cmp = file_reloaded;
853 	OPTIMIZER_HIDE_VAR(file_reloaded_cmp);
854 
855 	/*
856 	 * atomic_long_inc_not_zero() above provided a full memory
857 	 * barrier when we acquired a reference.
858 	 *
859 	 * This is paired with the write barrier from assigning to the
860 	 * __rcu protected file pointer so that if that pointer still
861 	 * matches the current file, we know we have successfully
862 	 * acquired a reference to the right file.
863 	 *
864 	 * If the pointers don't match the file has been reallocated by
865 	 * SLAB_TYPESAFE_BY_RCU.
866 	 */
867 	if (file == file_reloaded_cmp)
868 		return file_reloaded;
869 
870 	fput(file);
871 	return ERR_PTR(-EAGAIN);
872 }
873 
874 /**
875  * get_file_rcu - try go get a reference to a file under rcu
876  * @f: the file to get a reference on
877  *
878  * This function tries to get a reference on @f carefully verifying that
879  * @f hasn't been reused.
880  *
881  * This function should rarely have to be used and only by users who
882  * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
883  *
884  * Return: Returns @f with the reference count increased or NULL.
885  */
886 struct file *get_file_rcu(struct file __rcu **f)
887 {
888 	for (;;) {
889 		struct file __rcu *file;
890 
891 		file = __get_file_rcu(f);
892 		if (!IS_ERR(file))
893 			return file;
894 	}
895 }
896 EXPORT_SYMBOL_GPL(get_file_rcu);
897 
898 /**
899  * get_file_active - try go get a reference to a file
900  * @f: the file to get a reference on
901  *
902  * In contast to get_file_rcu() the pointer itself isn't part of the
903  * reference counting.
904  *
905  * This function should rarely have to be used and only by users who
906  * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
907  *
908  * Return: Returns @f with the reference count increased or NULL.
909  */
910 struct file *get_file_active(struct file **f)
911 {
912 	struct file __rcu *file;
913 
914 	rcu_read_lock();
915 	file = __get_file_rcu(f);
916 	rcu_read_unlock();
917 	if (IS_ERR(file))
918 		file = NULL;
919 	return file;
920 }
921 EXPORT_SYMBOL_GPL(get_file_active);
922 
923 static inline struct file *__fget_files_rcu(struct files_struct *files,
924        unsigned int fd, fmode_t mask)
925 {
926 	for (;;) {
927 		struct file *file;
928 		struct fdtable *fdt = rcu_dereference_raw(files->fdt);
929 		struct file __rcu **fdentry;
930 		unsigned long nospec_mask;
931 
932 		/* Mask is a 0 for invalid fd's, ~0 for valid ones */
933 		nospec_mask = array_index_mask_nospec(fd, fdt->max_fds);
934 
935 		/*
936 		 * fdentry points to the 'fd' offset, or fdt->fd[0].
937 		 * Loading from fdt->fd[0] is always safe, because the
938 		 * array always exists.
939 		 */
940 		fdentry = fdt->fd + (fd & nospec_mask);
941 
942 		/* Do the load, then mask any invalid result */
943 		file = rcu_dereference_raw(*fdentry);
944 		file = (void *)(nospec_mask & (unsigned long)file);
945 		if (unlikely(!file))
946 			return NULL;
947 
948 		/*
949 		 * Ok, we have a file pointer that was valid at
950 		 * some point, but it might have become stale since.
951 		 *
952 		 * We need to confirm it by incrementing the refcount
953 		 * and then check the lookup again.
954 		 *
955 		 * atomic_long_inc_not_zero() gives us a full memory
956 		 * barrier. We only really need an 'acquire' one to
957 		 * protect the loads below, but we don't have that.
958 		 */
959 		if (unlikely(!atomic_long_inc_not_zero(&file->f_count)))
960 			continue;
961 
962 		/*
963 		 * Such a race can take two forms:
964 		 *
965 		 *  (a) the file ref already went down to zero and the
966 		 *      file hasn't been reused yet or the file count
967 		 *      isn't zero but the file has already been reused.
968 		 *
969 		 *  (b) the file table entry has changed under us.
970 		 *       Note that we don't need to re-check the 'fdt->fd'
971 		 *       pointer having changed, because it always goes
972 		 *       hand-in-hand with 'fdt'.
973 		 *
974 		 * If so, we need to put our ref and try again.
975 		 */
976 		if (unlikely(file != rcu_dereference_raw(*fdentry)) ||
977 		    unlikely(rcu_dereference_raw(files->fdt) != fdt)) {
978 			fput(file);
979 			continue;
980 		}
981 
982 		/*
983 		 * This isn't the file we're looking for or we're not
984 		 * allowed to get a reference to it.
985 		 */
986 		if (unlikely(file->f_mode & mask)) {
987 			fput(file);
988 			return NULL;
989 		}
990 
991 		/*
992 		 * Ok, we have a ref to the file, and checked that it
993 		 * still exists.
994 		 */
995 		return file;
996 	}
997 }
998 
999 static struct file *__fget_files(struct files_struct *files, unsigned int fd,
1000 				 fmode_t mask)
1001 {
1002 	struct file *file;
1003 
1004 	rcu_read_lock();
1005 	file = __fget_files_rcu(files, fd, mask);
1006 	rcu_read_unlock();
1007 
1008 	return file;
1009 }
1010 
1011 static inline struct file *__fget(unsigned int fd, fmode_t mask)
1012 {
1013 	return __fget_files(current->files, fd, mask);
1014 }
1015 
1016 struct file *fget(unsigned int fd)
1017 {
1018 	return __fget(fd, FMODE_PATH);
1019 }
1020 EXPORT_SYMBOL(fget);
1021 
1022 struct file *fget_raw(unsigned int fd)
1023 {
1024 	return __fget(fd, 0);
1025 }
1026 EXPORT_SYMBOL(fget_raw);
1027 
1028 struct file *fget_task(struct task_struct *task, unsigned int fd)
1029 {
1030 	struct file *file = NULL;
1031 
1032 	task_lock(task);
1033 	if (task->files)
1034 		file = __fget_files(task->files, fd, 0);
1035 	task_unlock(task);
1036 
1037 	return file;
1038 }
1039 
1040 struct file *lookup_fdget_rcu(unsigned int fd)
1041 {
1042 	return __fget_files_rcu(current->files, fd, 0);
1043 
1044 }
1045 EXPORT_SYMBOL_GPL(lookup_fdget_rcu);
1046 
1047 struct file *task_lookup_fdget_rcu(struct task_struct *task, unsigned int fd)
1048 {
1049 	/* Must be called with rcu_read_lock held */
1050 	struct files_struct *files;
1051 	struct file *file = NULL;
1052 
1053 	task_lock(task);
1054 	files = task->files;
1055 	if (files)
1056 		file = __fget_files_rcu(files, fd, 0);
1057 	task_unlock(task);
1058 
1059 	return file;
1060 }
1061 
1062 struct file *task_lookup_next_fdget_rcu(struct task_struct *task, unsigned int *ret_fd)
1063 {
1064 	/* Must be called with rcu_read_lock held */
1065 	struct files_struct *files;
1066 	unsigned int fd = *ret_fd;
1067 	struct file *file = NULL;
1068 
1069 	task_lock(task);
1070 	files = task->files;
1071 	if (files) {
1072 		for (; fd < files_fdtable(files)->max_fds; fd++) {
1073 			file = __fget_files_rcu(files, fd, 0);
1074 			if (file)
1075 				break;
1076 		}
1077 	}
1078 	task_unlock(task);
1079 	*ret_fd = fd;
1080 	return file;
1081 }
1082 EXPORT_SYMBOL(task_lookup_next_fdget_rcu);
1083 
1084 /*
1085  * Lightweight file lookup - no refcnt increment if fd table isn't shared.
1086  *
1087  * You can use this instead of fget if you satisfy all of the following
1088  * conditions:
1089  * 1) You must call fput_light before exiting the syscall and returning control
1090  *    to userspace (i.e. you cannot remember the returned struct file * after
1091  *    returning to userspace).
1092  * 2) You must not call filp_close on the returned struct file * in between
1093  *    calls to fget_light and fput_light.
1094  * 3) You must not clone the current task in between the calls to fget_light
1095  *    and fput_light.
1096  *
1097  * The fput_needed flag returned by fget_light should be passed to the
1098  * corresponding fput_light.
1099  */
1100 static inline struct fd __fget_light(unsigned int fd, fmode_t mask)
1101 {
1102 	struct files_struct *files = current->files;
1103 	struct file *file;
1104 
1105 	/*
1106 	 * If another thread is concurrently calling close_fd() followed
1107 	 * by put_files_struct(), we must not observe the old table
1108 	 * entry combined with the new refcount - otherwise we could
1109 	 * return a file that is concurrently being freed.
1110 	 *
1111 	 * atomic_read_acquire() pairs with atomic_dec_and_test() in
1112 	 * put_files_struct().
1113 	 */
1114 	if (likely(atomic_read_acquire(&files->count) == 1)) {
1115 		file = files_lookup_fd_raw(files, fd);
1116 		if (!file || unlikely(file->f_mode & mask))
1117 			return EMPTY_FD;
1118 		return BORROWED_FD(file);
1119 	} else {
1120 		file = __fget_files(files, fd, mask);
1121 		if (!file)
1122 			return EMPTY_FD;
1123 		return CLONED_FD(file);
1124 	}
1125 }
1126 struct fd fdget(unsigned int fd)
1127 {
1128 	return __fget_light(fd, FMODE_PATH);
1129 }
1130 EXPORT_SYMBOL(fdget);
1131 
1132 struct fd fdget_raw(unsigned int fd)
1133 {
1134 	return __fget_light(fd, 0);
1135 }
1136 
1137 /*
1138  * Try to avoid f_pos locking. We only need it if the
1139  * file is marked for FMODE_ATOMIC_POS, and it can be
1140  * accessed multiple ways.
1141  *
1142  * Always do it for directories, because pidfd_getfd()
1143  * can make a file accessible even if it otherwise would
1144  * not be, and for directories this is a correctness
1145  * issue, not a "POSIX requirement".
1146  */
1147 static inline bool file_needs_f_pos_lock(struct file *file)
1148 {
1149 	return (file->f_mode & FMODE_ATOMIC_POS) &&
1150 		(file_count(file) > 1 || file->f_op->iterate_shared);
1151 }
1152 
1153 struct fd fdget_pos(unsigned int fd)
1154 {
1155 	struct fd f = fdget(fd);
1156 	struct file *file = fd_file(f);
1157 
1158 	if (file && file_needs_f_pos_lock(file)) {
1159 		f.word |= FDPUT_POS_UNLOCK;
1160 		mutex_lock(&file->f_pos_lock);
1161 	}
1162 	return f;
1163 }
1164 
1165 void __f_unlock_pos(struct file *f)
1166 {
1167 	mutex_unlock(&f->f_pos_lock);
1168 }
1169 
1170 /*
1171  * We only lock f_pos if we have threads or if the file might be
1172  * shared with another process. In both cases we'll have an elevated
1173  * file count (done either by fdget() or by fork()).
1174  */
1175 
1176 void set_close_on_exec(unsigned int fd, int flag)
1177 {
1178 	struct files_struct *files = current->files;
1179 	struct fdtable *fdt;
1180 	spin_lock(&files->file_lock);
1181 	fdt = files_fdtable(files);
1182 	if (flag)
1183 		__set_close_on_exec(fd, fdt);
1184 	else
1185 		__clear_close_on_exec(fd, fdt);
1186 	spin_unlock(&files->file_lock);
1187 }
1188 
1189 bool get_close_on_exec(unsigned int fd)
1190 {
1191 	bool res;
1192 	rcu_read_lock();
1193 	res = close_on_exec(fd, current->files);
1194 	rcu_read_unlock();
1195 	return res;
1196 }
1197 
1198 static int do_dup2(struct files_struct *files,
1199 	struct file *file, unsigned fd, unsigned flags)
1200 __releases(&files->file_lock)
1201 {
1202 	struct file *tofree;
1203 	struct fdtable *fdt;
1204 
1205 	/*
1206 	 * We need to detect attempts to do dup2() over allocated but still
1207 	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
1208 	 * extra work in their equivalent of fget() - they insert struct
1209 	 * file immediately after grabbing descriptor, mark it larval if
1210 	 * more work (e.g. actual opening) is needed and make sure that
1211 	 * fget() treats larval files as absent.  Potentially interesting,
1212 	 * but while extra work in fget() is trivial, locking implications
1213 	 * and amount of surgery on open()-related paths in VFS are not.
1214 	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
1215 	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
1216 	 * scope of POSIX or SUS, since neither considers shared descriptor
1217 	 * tables and this condition does not arise without those.
1218 	 */
1219 	fdt = files_fdtable(files);
1220 	fd = array_index_nospec(fd, fdt->max_fds);
1221 	tofree = fdt->fd[fd];
1222 	if (!tofree && fd_is_open(fd, fdt))
1223 		goto Ebusy;
1224 	get_file(file);
1225 	rcu_assign_pointer(fdt->fd[fd], file);
1226 	__set_open_fd(fd, fdt);
1227 	if (flags & O_CLOEXEC)
1228 		__set_close_on_exec(fd, fdt);
1229 	else
1230 		__clear_close_on_exec(fd, fdt);
1231 	spin_unlock(&files->file_lock);
1232 
1233 	if (tofree)
1234 		filp_close(tofree, files);
1235 
1236 	return fd;
1237 
1238 Ebusy:
1239 	spin_unlock(&files->file_lock);
1240 	return -EBUSY;
1241 }
1242 
1243 int replace_fd(unsigned fd, struct file *file, unsigned flags)
1244 {
1245 	int err;
1246 	struct files_struct *files = current->files;
1247 
1248 	if (!file)
1249 		return close_fd(fd);
1250 
1251 	if (fd >= rlimit(RLIMIT_NOFILE))
1252 		return -EBADF;
1253 
1254 	spin_lock(&files->file_lock);
1255 	err = expand_files(files, fd);
1256 	if (unlikely(err < 0))
1257 		goto out_unlock;
1258 	return do_dup2(files, file, fd, flags);
1259 
1260 out_unlock:
1261 	spin_unlock(&files->file_lock);
1262 	return err;
1263 }
1264 
1265 /**
1266  * receive_fd() - Install received file into file descriptor table
1267  * @file: struct file that was received from another process
1268  * @ufd: __user pointer to write new fd number to
1269  * @o_flags: the O_* flags to apply to the new fd entry
1270  *
1271  * Installs a received file into the file descriptor table, with appropriate
1272  * checks and count updates. Optionally writes the fd number to userspace, if
1273  * @ufd is non-NULL.
1274  *
1275  * This helper handles its own reference counting of the incoming
1276  * struct file.
1277  *
1278  * Returns newly install fd or -ve on error.
1279  */
1280 int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
1281 {
1282 	int new_fd;
1283 	int error;
1284 
1285 	error = security_file_receive(file);
1286 	if (error)
1287 		return error;
1288 
1289 	new_fd = get_unused_fd_flags(o_flags);
1290 	if (new_fd < 0)
1291 		return new_fd;
1292 
1293 	if (ufd) {
1294 		error = put_user(new_fd, ufd);
1295 		if (error) {
1296 			put_unused_fd(new_fd);
1297 			return error;
1298 		}
1299 	}
1300 
1301 	fd_install(new_fd, get_file(file));
1302 	__receive_sock(file);
1303 	return new_fd;
1304 }
1305 EXPORT_SYMBOL_GPL(receive_fd);
1306 
1307 int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
1308 {
1309 	int error;
1310 
1311 	error = security_file_receive(file);
1312 	if (error)
1313 		return error;
1314 	error = replace_fd(new_fd, file, o_flags);
1315 	if (error)
1316 		return error;
1317 	__receive_sock(file);
1318 	return new_fd;
1319 }
1320 
1321 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1322 {
1323 	int err = -EBADF;
1324 	struct file *file;
1325 	struct files_struct *files = current->files;
1326 
1327 	if ((flags & ~O_CLOEXEC) != 0)
1328 		return -EINVAL;
1329 
1330 	if (unlikely(oldfd == newfd))
1331 		return -EINVAL;
1332 
1333 	if (newfd >= rlimit(RLIMIT_NOFILE))
1334 		return -EBADF;
1335 
1336 	spin_lock(&files->file_lock);
1337 	err = expand_files(files, newfd);
1338 	file = files_lookup_fd_locked(files, oldfd);
1339 	if (unlikely(!file))
1340 		goto Ebadf;
1341 	if (unlikely(err < 0)) {
1342 		if (err == -EMFILE)
1343 			goto Ebadf;
1344 		goto out_unlock;
1345 	}
1346 	return do_dup2(files, file, newfd, flags);
1347 
1348 Ebadf:
1349 	err = -EBADF;
1350 out_unlock:
1351 	spin_unlock(&files->file_lock);
1352 	return err;
1353 }
1354 
1355 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1356 {
1357 	return ksys_dup3(oldfd, newfd, flags);
1358 }
1359 
1360 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1361 {
1362 	if (unlikely(newfd == oldfd)) { /* corner case */
1363 		struct files_struct *files = current->files;
1364 		struct file *f;
1365 		int retval = oldfd;
1366 
1367 		rcu_read_lock();
1368 		f = __fget_files_rcu(files, oldfd, 0);
1369 		if (!f)
1370 			retval = -EBADF;
1371 		rcu_read_unlock();
1372 		if (f)
1373 			fput(f);
1374 		return retval;
1375 	}
1376 	return ksys_dup3(oldfd, newfd, 0);
1377 }
1378 
1379 SYSCALL_DEFINE1(dup, unsigned int, fildes)
1380 {
1381 	int ret = -EBADF;
1382 	struct file *file = fget_raw(fildes);
1383 
1384 	if (file) {
1385 		ret = get_unused_fd_flags(0);
1386 		if (ret >= 0)
1387 			fd_install(ret, file);
1388 		else
1389 			fput(file);
1390 	}
1391 	return ret;
1392 }
1393 
1394 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1395 {
1396 	unsigned long nofile = rlimit(RLIMIT_NOFILE);
1397 	int err;
1398 	if (from >= nofile)
1399 		return -EINVAL;
1400 	err = alloc_fd(from, nofile, flags);
1401 	if (err >= 0) {
1402 		get_file(file);
1403 		fd_install(err, file);
1404 	}
1405 	return err;
1406 }
1407 
1408 int iterate_fd(struct files_struct *files, unsigned n,
1409 		int (*f)(const void *, struct file *, unsigned),
1410 		const void *p)
1411 {
1412 	struct fdtable *fdt;
1413 	int res = 0;
1414 	if (!files)
1415 		return 0;
1416 	spin_lock(&files->file_lock);
1417 	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1418 		struct file *file;
1419 		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1420 		if (!file)
1421 			continue;
1422 		res = f(p, file, n);
1423 		if (res)
1424 			break;
1425 	}
1426 	spin_unlock(&files->file_lock);
1427 	return res;
1428 }
1429 EXPORT_SYMBOL(iterate_fd);
1430