xref: /linux/fs/file.c (revision 47902f3611b392209e2a412bf7ec02dca95e666d)
1 /*
2  *  linux/fs/file.c
3  *
4  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
5  *
6  *  Manage the dynamic fd arrays in the process files_struct.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/time.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/file.h>
17 #include <linux/fdtable.h>
18 #include <linux/bitops.h>
19 #include <linux/interrupt.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/workqueue.h>
23 
24 struct fdtable_defer {
25 	spinlock_t lock;
26 	struct work_struct wq;
27 	struct fdtable *next;
28 };
29 
30 int sysctl_nr_open __read_mostly = 1024*1024;
31 int sysctl_nr_open_min = BITS_PER_LONG;
32 int sysctl_nr_open_max = 1024 * 1024; /* raised later */
33 
34 /*
35  * We use this list to defer free fdtables that have vmalloced
36  * sets/arrays. By keeping a per-cpu list, we avoid having to embed
37  * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
38  * this per-task structure.
39  */
40 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
41 
42 static inline void * alloc_fdmem(unsigned int size)
43 {
44 	if (size <= PAGE_SIZE)
45 		return kmalloc(size, GFP_KERNEL);
46 	else
47 		return vmalloc(size);
48 }
49 
50 static inline void free_fdarr(struct fdtable *fdt)
51 {
52 	if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *)))
53 		kfree(fdt->fd);
54 	else
55 		vfree(fdt->fd);
56 }
57 
58 static inline void free_fdset(struct fdtable *fdt)
59 {
60 	if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2))
61 		kfree(fdt->open_fds);
62 	else
63 		vfree(fdt->open_fds);
64 }
65 
66 static void free_fdtable_work(struct work_struct *work)
67 {
68 	struct fdtable_defer *f =
69 		container_of(work, struct fdtable_defer, wq);
70 	struct fdtable *fdt;
71 
72 	spin_lock_bh(&f->lock);
73 	fdt = f->next;
74 	f->next = NULL;
75 	spin_unlock_bh(&f->lock);
76 	while(fdt) {
77 		struct fdtable *next = fdt->next;
78 		vfree(fdt->fd);
79 		free_fdset(fdt);
80 		kfree(fdt);
81 		fdt = next;
82 	}
83 }
84 
85 void free_fdtable_rcu(struct rcu_head *rcu)
86 {
87 	struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
88 	struct fdtable_defer *fddef;
89 
90 	BUG_ON(!fdt);
91 
92 	if (fdt->max_fds <= NR_OPEN_DEFAULT) {
93 		/*
94 		 * This fdtable is embedded in the files structure and that
95 		 * structure itself is getting destroyed.
96 		 */
97 		kmem_cache_free(files_cachep,
98 				container_of(fdt, struct files_struct, fdtab));
99 		return;
100 	}
101 	if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) {
102 		kfree(fdt->fd);
103 		kfree(fdt->open_fds);
104 		kfree(fdt);
105 	} else {
106 		fddef = &get_cpu_var(fdtable_defer_list);
107 		spin_lock(&fddef->lock);
108 		fdt->next = fddef->next;
109 		fddef->next = fdt;
110 		/* vmallocs are handled from the workqueue context */
111 		schedule_work(&fddef->wq);
112 		spin_unlock(&fddef->lock);
113 		put_cpu_var(fdtable_defer_list);
114 	}
115 }
116 
117 /*
118  * Expand the fdset in the files_struct.  Called with the files spinlock
119  * held for write.
120  */
121 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
122 {
123 	unsigned int cpy, set;
124 
125 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
126 
127 	cpy = ofdt->max_fds * sizeof(struct file *);
128 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
129 	memcpy(nfdt->fd, ofdt->fd, cpy);
130 	memset((char *)(nfdt->fd) + cpy, 0, set);
131 
132 	cpy = ofdt->max_fds / BITS_PER_BYTE;
133 	set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
134 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
135 	memset((char *)(nfdt->open_fds) + cpy, 0, set);
136 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
137 	memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
138 }
139 
140 static struct fdtable * alloc_fdtable(unsigned int nr)
141 {
142 	struct fdtable *fdt;
143 	char *data;
144 
145 	/*
146 	 * Figure out how many fds we actually want to support in this fdtable.
147 	 * Allocation steps are keyed to the size of the fdarray, since it
148 	 * grows far faster than any of the other dynamic data. We try to fit
149 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
150 	 * and growing in powers of two from there on.
151 	 */
152 	nr /= (1024 / sizeof(struct file *));
153 	nr = roundup_pow_of_two(nr + 1);
154 	nr *= (1024 / sizeof(struct file *));
155 	/*
156 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
157 	 * had been set lower between the check in expand_files() and here.  Deal
158 	 * with that in caller, it's cheaper that way.
159 	 *
160 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
161 	 * bitmaps handling below becomes unpleasant, to put it mildly...
162 	 */
163 	if (unlikely(nr > sysctl_nr_open))
164 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
165 
166 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
167 	if (!fdt)
168 		goto out;
169 	fdt->max_fds = nr;
170 	data = alloc_fdmem(nr * sizeof(struct file *));
171 	if (!data)
172 		goto out_fdt;
173 	fdt->fd = (struct file **)data;
174 	data = alloc_fdmem(max_t(unsigned int,
175 				 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
176 	if (!data)
177 		goto out_arr;
178 	fdt->open_fds = (fd_set *)data;
179 	data += nr / BITS_PER_BYTE;
180 	fdt->close_on_exec = (fd_set *)data;
181 	INIT_RCU_HEAD(&fdt->rcu);
182 	fdt->next = NULL;
183 
184 	return fdt;
185 
186 out_arr:
187 	free_fdarr(fdt);
188 out_fdt:
189 	kfree(fdt);
190 out:
191 	return NULL;
192 }
193 
194 /*
195  * Expand the file descriptor table.
196  * This function will allocate a new fdtable and both fd array and fdset, of
197  * the given size.
198  * Return <0 error code on error; 1 on successful completion.
199  * The files->file_lock should be held on entry, and will be held on exit.
200  */
201 static int expand_fdtable(struct files_struct *files, int nr)
202 	__releases(files->file_lock)
203 	__acquires(files->file_lock)
204 {
205 	struct fdtable *new_fdt, *cur_fdt;
206 
207 	spin_unlock(&files->file_lock);
208 	new_fdt = alloc_fdtable(nr);
209 	spin_lock(&files->file_lock);
210 	if (!new_fdt)
211 		return -ENOMEM;
212 	/*
213 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
214 	 * caller and alloc_fdtable().  Cheaper to catch it here...
215 	 */
216 	if (unlikely(new_fdt->max_fds <= nr)) {
217 		free_fdarr(new_fdt);
218 		free_fdset(new_fdt);
219 		kfree(new_fdt);
220 		return -EMFILE;
221 	}
222 	/*
223 	 * Check again since another task may have expanded the fd table while
224 	 * we dropped the lock
225 	 */
226 	cur_fdt = files_fdtable(files);
227 	if (nr >= cur_fdt->max_fds) {
228 		/* Continue as planned */
229 		copy_fdtable(new_fdt, cur_fdt);
230 		rcu_assign_pointer(files->fdt, new_fdt);
231 		if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
232 			free_fdtable(cur_fdt);
233 	} else {
234 		/* Somebody else expanded, so undo our attempt */
235 		free_fdarr(new_fdt);
236 		free_fdset(new_fdt);
237 		kfree(new_fdt);
238 	}
239 	return 1;
240 }
241 
242 /*
243  * Expand files.
244  * This function will expand the file structures, if the requested size exceeds
245  * the current capacity and there is room for expansion.
246  * Return <0 error code on error; 0 when nothing done; 1 when files were
247  * expanded and execution may have blocked.
248  * The files->file_lock should be held on entry, and will be held on exit.
249  */
250 int expand_files(struct files_struct *files, int nr)
251 {
252 	struct fdtable *fdt;
253 
254 	fdt = files_fdtable(files);
255 
256 	/*
257 	 * N.B. For clone tasks sharing a files structure, this test
258 	 * will limit the total number of files that can be opened.
259 	 */
260 	if (nr >= rlimit(RLIMIT_NOFILE))
261 		return -EMFILE;
262 
263 	/* Do we need to expand? */
264 	if (nr < fdt->max_fds)
265 		return 0;
266 
267 	/* Can we expand? */
268 	if (nr >= sysctl_nr_open)
269 		return -EMFILE;
270 
271 	/* All good, so we try */
272 	return expand_fdtable(files, nr);
273 }
274 
275 static int count_open_files(struct fdtable *fdt)
276 {
277 	int size = fdt->max_fds;
278 	int i;
279 
280 	/* Find the last open fd */
281 	for (i = size/(8*sizeof(long)); i > 0; ) {
282 		if (fdt->open_fds->fds_bits[--i])
283 			break;
284 	}
285 	i = (i+1) * 8 * sizeof(long);
286 	return i;
287 }
288 
289 /*
290  * Allocate a new files structure and copy contents from the
291  * passed in files structure.
292  * errorp will be valid only when the returned files_struct is NULL.
293  */
294 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
295 {
296 	struct files_struct *newf;
297 	struct file **old_fds, **new_fds;
298 	int open_files, size, i;
299 	struct fdtable *old_fdt, *new_fdt;
300 
301 	*errorp = -ENOMEM;
302 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
303 	if (!newf)
304 		goto out;
305 
306 	atomic_set(&newf->count, 1);
307 
308 	spin_lock_init(&newf->file_lock);
309 	newf->next_fd = 0;
310 	new_fdt = &newf->fdtab;
311 	new_fdt->max_fds = NR_OPEN_DEFAULT;
312 	new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
313 	new_fdt->open_fds = (fd_set *)&newf->open_fds_init;
314 	new_fdt->fd = &newf->fd_array[0];
315 	INIT_RCU_HEAD(&new_fdt->rcu);
316 	new_fdt->next = NULL;
317 
318 	spin_lock(&oldf->file_lock);
319 	old_fdt = files_fdtable(oldf);
320 	open_files = count_open_files(old_fdt);
321 
322 	/*
323 	 * Check whether we need to allocate a larger fd array and fd set.
324 	 */
325 	while (unlikely(open_files > new_fdt->max_fds)) {
326 		spin_unlock(&oldf->file_lock);
327 
328 		if (new_fdt != &newf->fdtab) {
329 			free_fdarr(new_fdt);
330 			free_fdset(new_fdt);
331 			kfree(new_fdt);
332 		}
333 
334 		new_fdt = alloc_fdtable(open_files - 1);
335 		if (!new_fdt) {
336 			*errorp = -ENOMEM;
337 			goto out_release;
338 		}
339 
340 		/* beyond sysctl_nr_open; nothing to do */
341 		if (unlikely(new_fdt->max_fds < open_files)) {
342 			free_fdarr(new_fdt);
343 			free_fdset(new_fdt);
344 			kfree(new_fdt);
345 			*errorp = -EMFILE;
346 			goto out_release;
347 		}
348 
349 		/*
350 		 * Reacquire the oldf lock and a pointer to its fd table
351 		 * who knows it may have a new bigger fd table. We need
352 		 * the latest pointer.
353 		 */
354 		spin_lock(&oldf->file_lock);
355 		old_fdt = files_fdtable(oldf);
356 		open_files = count_open_files(old_fdt);
357 	}
358 
359 	old_fds = old_fdt->fd;
360 	new_fds = new_fdt->fd;
361 
362 	memcpy(new_fdt->open_fds->fds_bits,
363 		old_fdt->open_fds->fds_bits, open_files/8);
364 	memcpy(new_fdt->close_on_exec->fds_bits,
365 		old_fdt->close_on_exec->fds_bits, open_files/8);
366 
367 	for (i = open_files; i != 0; i--) {
368 		struct file *f = *old_fds++;
369 		if (f) {
370 			get_file(f);
371 		} else {
372 			/*
373 			 * The fd may be claimed in the fd bitmap but not yet
374 			 * instantiated in the files array if a sibling thread
375 			 * is partway through open().  So make sure that this
376 			 * fd is available to the new process.
377 			 */
378 			FD_CLR(open_files - i, new_fdt->open_fds);
379 		}
380 		rcu_assign_pointer(*new_fds++, f);
381 	}
382 	spin_unlock(&oldf->file_lock);
383 
384 	/* compute the remainder to be cleared */
385 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
386 
387 	/* This is long word aligned thus could use a optimized version */
388 	memset(new_fds, 0, size);
389 
390 	if (new_fdt->max_fds > open_files) {
391 		int left = (new_fdt->max_fds-open_files)/8;
392 		int start = open_files / (8 * sizeof(unsigned long));
393 
394 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
395 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
396 	}
397 
398 	rcu_assign_pointer(newf->fdt, new_fdt);
399 
400 	return newf;
401 
402 out_release:
403 	kmem_cache_free(files_cachep, newf);
404 out:
405 	return NULL;
406 }
407 
408 static void __devinit fdtable_defer_list_init(int cpu)
409 {
410 	struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
411 	spin_lock_init(&fddef->lock);
412 	INIT_WORK(&fddef->wq, free_fdtable_work);
413 	fddef->next = NULL;
414 }
415 
416 void __init files_defer_init(void)
417 {
418 	int i;
419 	for_each_possible_cpu(i)
420 		fdtable_defer_list_init(i);
421 	sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
422 			     -BITS_PER_LONG;
423 }
424 
425 struct files_struct init_files = {
426 	.count		= ATOMIC_INIT(1),
427 	.fdt		= &init_files.fdtab,
428 	.fdtab		= {
429 		.max_fds	= NR_OPEN_DEFAULT,
430 		.fd		= &init_files.fd_array[0],
431 		.close_on_exec	= (fd_set *)&init_files.close_on_exec_init,
432 		.open_fds	= (fd_set *)&init_files.open_fds_init,
433 		.rcu		= RCU_HEAD_INIT,
434 	},
435 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock),
436 };
437 
438 /*
439  * allocate a file descriptor, mark it busy.
440  */
441 int alloc_fd(unsigned start, unsigned flags)
442 {
443 	struct files_struct *files = current->files;
444 	unsigned int fd;
445 	int error;
446 	struct fdtable *fdt;
447 
448 	spin_lock(&files->file_lock);
449 repeat:
450 	fdt = files_fdtable(files);
451 	fd = start;
452 	if (fd < files->next_fd)
453 		fd = files->next_fd;
454 
455 	if (fd < fdt->max_fds)
456 		fd = find_next_zero_bit(fdt->open_fds->fds_bits,
457 					   fdt->max_fds, fd);
458 
459 	error = expand_files(files, fd);
460 	if (error < 0)
461 		goto out;
462 
463 	/*
464 	 * If we needed to expand the fs array we
465 	 * might have blocked - try again.
466 	 */
467 	if (error)
468 		goto repeat;
469 
470 	if (start <= files->next_fd)
471 		files->next_fd = fd + 1;
472 
473 	FD_SET(fd, fdt->open_fds);
474 	if (flags & O_CLOEXEC)
475 		FD_SET(fd, fdt->close_on_exec);
476 	else
477 		FD_CLR(fd, fdt->close_on_exec);
478 	error = fd;
479 #if 1
480 	/* Sanity check */
481 	if (rcu_dereference_raw(fdt->fd[fd]) != NULL) {
482 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
483 		rcu_assign_pointer(fdt->fd[fd], NULL);
484 	}
485 #endif
486 
487 out:
488 	spin_unlock(&files->file_lock);
489 	return error;
490 }
491 
492 int get_unused_fd(void)
493 {
494 	return alloc_fd(0, 0);
495 }
496 EXPORT_SYMBOL(get_unused_fd);
497