xref: /linux/fs/file.c (revision 41797f75486d8ca3b98d7658c2a506ac7879a8e5)
1 /*
2  *  linux/fs/file.c
3  *
4  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
5  *
6  *  Manage the dynamic fd arrays in the process files_struct.
7  */
8 
9 #include <linux/export.h>
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/mmzone.h>
13 #include <linux/time.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/rcupdate.h>
23 #include <linux/workqueue.h>
24 
25 struct fdtable_defer {
26 	spinlock_t lock;
27 	struct work_struct wq;
28 	struct fdtable *next;
29 };
30 
31 int sysctl_nr_open __read_mostly = 1024*1024;
32 int sysctl_nr_open_min = BITS_PER_LONG;
33 int sysctl_nr_open_max = 1024 * 1024; /* raised later */
34 
35 /*
36  * We use this list to defer free fdtables that have vmalloced
37  * sets/arrays. By keeping a per-cpu list, we avoid having to embed
38  * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
39  * this per-task structure.
40  */
41 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
42 
43 static void *alloc_fdmem(size_t size)
44 {
45 	/*
46 	 * Very large allocations can stress page reclaim, so fall back to
47 	 * vmalloc() if the allocation size will be considered "large" by the VM.
48 	 */
49 	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
50 		void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN);
51 		if (data != NULL)
52 			return data;
53 	}
54 	return vmalloc(size);
55 }
56 
57 static void free_fdmem(void *ptr)
58 {
59 	is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr);
60 }
61 
62 static void __free_fdtable(struct fdtable *fdt)
63 {
64 	free_fdmem(fdt->fd);
65 	free_fdmem(fdt->open_fds);
66 	kfree(fdt);
67 }
68 
69 static void free_fdtable_work(struct work_struct *work)
70 {
71 	struct fdtable_defer *f =
72 		container_of(work, struct fdtable_defer, wq);
73 	struct fdtable *fdt;
74 
75 	spin_lock_bh(&f->lock);
76 	fdt = f->next;
77 	f->next = NULL;
78 	spin_unlock_bh(&f->lock);
79 	while(fdt) {
80 		struct fdtable *next = fdt->next;
81 
82 		__free_fdtable(fdt);
83 		fdt = next;
84 	}
85 }
86 
87 void free_fdtable_rcu(struct rcu_head *rcu)
88 {
89 	struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
90 	struct fdtable_defer *fddef;
91 
92 	BUG_ON(!fdt);
93 
94 	if (fdt->max_fds <= NR_OPEN_DEFAULT) {
95 		/*
96 		 * This fdtable is embedded in the files structure and that
97 		 * structure itself is getting destroyed.
98 		 */
99 		kmem_cache_free(files_cachep,
100 				container_of(fdt, struct files_struct, fdtab));
101 		return;
102 	}
103 	if (!is_vmalloc_addr(fdt->fd) && !is_vmalloc_addr(fdt->open_fds)) {
104 		kfree(fdt->fd);
105 		kfree(fdt->open_fds);
106 		kfree(fdt);
107 	} else {
108 		fddef = &get_cpu_var(fdtable_defer_list);
109 		spin_lock(&fddef->lock);
110 		fdt->next = fddef->next;
111 		fddef->next = fdt;
112 		/* vmallocs are handled from the workqueue context */
113 		schedule_work(&fddef->wq);
114 		spin_unlock(&fddef->lock);
115 		put_cpu_var(fdtable_defer_list);
116 	}
117 }
118 
119 /*
120  * Expand the fdset in the files_struct.  Called with the files spinlock
121  * held for write.
122  */
123 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
124 {
125 	unsigned int cpy, set;
126 
127 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
128 
129 	cpy = ofdt->max_fds * sizeof(struct file *);
130 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
131 	memcpy(nfdt->fd, ofdt->fd, cpy);
132 	memset((char *)(nfdt->fd) + cpy, 0, set);
133 
134 	cpy = ofdt->max_fds / BITS_PER_BYTE;
135 	set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
136 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
137 	memset((char *)(nfdt->open_fds) + cpy, 0, set);
138 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
139 	memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
140 }
141 
142 static struct fdtable * alloc_fdtable(unsigned int nr)
143 {
144 	struct fdtable *fdt;
145 	void *data;
146 
147 	/*
148 	 * Figure out how many fds we actually want to support in this fdtable.
149 	 * Allocation steps are keyed to the size of the fdarray, since it
150 	 * grows far faster than any of the other dynamic data. We try to fit
151 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
152 	 * and growing in powers of two from there on.
153 	 */
154 	nr /= (1024 / sizeof(struct file *));
155 	nr = roundup_pow_of_two(nr + 1);
156 	nr *= (1024 / sizeof(struct file *));
157 	/*
158 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
159 	 * had been set lower between the check in expand_files() and here.  Deal
160 	 * with that in caller, it's cheaper that way.
161 	 *
162 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
163 	 * bitmaps handling below becomes unpleasant, to put it mildly...
164 	 */
165 	if (unlikely(nr > sysctl_nr_open))
166 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
167 
168 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
169 	if (!fdt)
170 		goto out;
171 	fdt->max_fds = nr;
172 	data = alloc_fdmem(nr * sizeof(struct file *));
173 	if (!data)
174 		goto out_fdt;
175 	fdt->fd = data;
176 
177 	data = alloc_fdmem(max_t(size_t,
178 				 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
179 	if (!data)
180 		goto out_arr;
181 	fdt->open_fds = data;
182 	data += nr / BITS_PER_BYTE;
183 	fdt->close_on_exec = data;
184 	fdt->next = NULL;
185 
186 	return fdt;
187 
188 out_arr:
189 	free_fdmem(fdt->fd);
190 out_fdt:
191 	kfree(fdt);
192 out:
193 	return NULL;
194 }
195 
196 /*
197  * Expand the file descriptor table.
198  * This function will allocate a new fdtable and both fd array and fdset, of
199  * the given size.
200  * Return <0 error code on error; 1 on successful completion.
201  * The files->file_lock should be held on entry, and will be held on exit.
202  */
203 static int expand_fdtable(struct files_struct *files, int nr)
204 	__releases(files->file_lock)
205 	__acquires(files->file_lock)
206 {
207 	struct fdtable *new_fdt, *cur_fdt;
208 
209 	spin_unlock(&files->file_lock);
210 	new_fdt = alloc_fdtable(nr);
211 	spin_lock(&files->file_lock);
212 	if (!new_fdt)
213 		return -ENOMEM;
214 	/*
215 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
216 	 * caller and alloc_fdtable().  Cheaper to catch it here...
217 	 */
218 	if (unlikely(new_fdt->max_fds <= nr)) {
219 		__free_fdtable(new_fdt);
220 		return -EMFILE;
221 	}
222 	/*
223 	 * Check again since another task may have expanded the fd table while
224 	 * we dropped the lock
225 	 */
226 	cur_fdt = files_fdtable(files);
227 	if (nr >= cur_fdt->max_fds) {
228 		/* Continue as planned */
229 		copy_fdtable(new_fdt, cur_fdt);
230 		rcu_assign_pointer(files->fdt, new_fdt);
231 		if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
232 			free_fdtable(cur_fdt);
233 	} else {
234 		/* Somebody else expanded, so undo our attempt */
235 		__free_fdtable(new_fdt);
236 	}
237 	return 1;
238 }
239 
240 /*
241  * Expand files.
242  * This function will expand the file structures, if the requested size exceeds
243  * the current capacity and there is room for expansion.
244  * Return <0 error code on error; 0 when nothing done; 1 when files were
245  * expanded and execution may have blocked.
246  * The files->file_lock should be held on entry, and will be held on exit.
247  */
248 int expand_files(struct files_struct *files, int nr)
249 {
250 	struct fdtable *fdt;
251 
252 	fdt = files_fdtable(files);
253 
254 	/*
255 	 * N.B. For clone tasks sharing a files structure, this test
256 	 * will limit the total number of files that can be opened.
257 	 */
258 	if (nr >= rlimit(RLIMIT_NOFILE))
259 		return -EMFILE;
260 
261 	/* Do we need to expand? */
262 	if (nr < fdt->max_fds)
263 		return 0;
264 
265 	/* Can we expand? */
266 	if (nr >= sysctl_nr_open)
267 		return -EMFILE;
268 
269 	/* All good, so we try */
270 	return expand_fdtable(files, nr);
271 }
272 
273 static int count_open_files(struct fdtable *fdt)
274 {
275 	int size = fdt->max_fds;
276 	int i;
277 
278 	/* Find the last open fd */
279 	for (i = size / BITS_PER_LONG; i > 0; ) {
280 		if (fdt->open_fds[--i])
281 			break;
282 	}
283 	i = (i + 1) * BITS_PER_LONG;
284 	return i;
285 }
286 
287 /*
288  * Allocate a new files structure and copy contents from the
289  * passed in files structure.
290  * errorp will be valid only when the returned files_struct is NULL.
291  */
292 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
293 {
294 	struct files_struct *newf;
295 	struct file **old_fds, **new_fds;
296 	int open_files, size, i;
297 	struct fdtable *old_fdt, *new_fdt;
298 
299 	*errorp = -ENOMEM;
300 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
301 	if (!newf)
302 		goto out;
303 
304 	atomic_set(&newf->count, 1);
305 
306 	spin_lock_init(&newf->file_lock);
307 	newf->next_fd = 0;
308 	new_fdt = &newf->fdtab;
309 	new_fdt->max_fds = NR_OPEN_DEFAULT;
310 	new_fdt->close_on_exec = newf->close_on_exec_init;
311 	new_fdt->open_fds = newf->open_fds_init;
312 	new_fdt->fd = &newf->fd_array[0];
313 	new_fdt->next = NULL;
314 
315 	spin_lock(&oldf->file_lock);
316 	old_fdt = files_fdtable(oldf);
317 	open_files = count_open_files(old_fdt);
318 
319 	/*
320 	 * Check whether we need to allocate a larger fd array and fd set.
321 	 */
322 	while (unlikely(open_files > new_fdt->max_fds)) {
323 		spin_unlock(&oldf->file_lock);
324 
325 		if (new_fdt != &newf->fdtab)
326 			__free_fdtable(new_fdt);
327 
328 		new_fdt = alloc_fdtable(open_files - 1);
329 		if (!new_fdt) {
330 			*errorp = -ENOMEM;
331 			goto out_release;
332 		}
333 
334 		/* beyond sysctl_nr_open; nothing to do */
335 		if (unlikely(new_fdt->max_fds < open_files)) {
336 			__free_fdtable(new_fdt);
337 			*errorp = -EMFILE;
338 			goto out_release;
339 		}
340 
341 		/*
342 		 * Reacquire the oldf lock and a pointer to its fd table
343 		 * who knows it may have a new bigger fd table. We need
344 		 * the latest pointer.
345 		 */
346 		spin_lock(&oldf->file_lock);
347 		old_fdt = files_fdtable(oldf);
348 		open_files = count_open_files(old_fdt);
349 	}
350 
351 	old_fds = old_fdt->fd;
352 	new_fds = new_fdt->fd;
353 
354 	memcpy(new_fdt->open_fds, old_fdt->open_fds, open_files / 8);
355 	memcpy(new_fdt->close_on_exec, old_fdt->close_on_exec, open_files / 8);
356 
357 	for (i = open_files; i != 0; i--) {
358 		struct file *f = *old_fds++;
359 		if (f) {
360 			get_file(f);
361 		} else {
362 			/*
363 			 * The fd may be claimed in the fd bitmap but not yet
364 			 * instantiated in the files array if a sibling thread
365 			 * is partway through open().  So make sure that this
366 			 * fd is available to the new process.
367 			 */
368 			__clear_open_fd(open_files - i, new_fdt);
369 		}
370 		rcu_assign_pointer(*new_fds++, f);
371 	}
372 	spin_unlock(&oldf->file_lock);
373 
374 	/* compute the remainder to be cleared */
375 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
376 
377 	/* This is long word aligned thus could use a optimized version */
378 	memset(new_fds, 0, size);
379 
380 	if (new_fdt->max_fds > open_files) {
381 		int left = (new_fdt->max_fds - open_files) / 8;
382 		int start = open_files / BITS_PER_LONG;
383 
384 		memset(&new_fdt->open_fds[start], 0, left);
385 		memset(&new_fdt->close_on_exec[start], 0, left);
386 	}
387 
388 	rcu_assign_pointer(newf->fdt, new_fdt);
389 
390 	return newf;
391 
392 out_release:
393 	kmem_cache_free(files_cachep, newf);
394 out:
395 	return NULL;
396 }
397 
398 static void __devinit fdtable_defer_list_init(int cpu)
399 {
400 	struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
401 	spin_lock_init(&fddef->lock);
402 	INIT_WORK(&fddef->wq, free_fdtable_work);
403 	fddef->next = NULL;
404 }
405 
406 void __init files_defer_init(void)
407 {
408 	int i;
409 	for_each_possible_cpu(i)
410 		fdtable_defer_list_init(i);
411 	sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
412 			     -BITS_PER_LONG;
413 }
414 
415 struct files_struct init_files = {
416 	.count		= ATOMIC_INIT(1),
417 	.fdt		= &init_files.fdtab,
418 	.fdtab		= {
419 		.max_fds	= NR_OPEN_DEFAULT,
420 		.fd		= &init_files.fd_array[0],
421 		.close_on_exec	= init_files.close_on_exec_init,
422 		.open_fds	= init_files.open_fds_init,
423 	},
424 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock),
425 };
426 
427 /*
428  * allocate a file descriptor, mark it busy.
429  */
430 int alloc_fd(unsigned start, unsigned flags)
431 {
432 	struct files_struct *files = current->files;
433 	unsigned int fd;
434 	int error;
435 	struct fdtable *fdt;
436 
437 	spin_lock(&files->file_lock);
438 repeat:
439 	fdt = files_fdtable(files);
440 	fd = start;
441 	if (fd < files->next_fd)
442 		fd = files->next_fd;
443 
444 	if (fd < fdt->max_fds)
445 		fd = find_next_zero_bit(fdt->open_fds, fdt->max_fds, fd);
446 
447 	error = expand_files(files, fd);
448 	if (error < 0)
449 		goto out;
450 
451 	/*
452 	 * If we needed to expand the fs array we
453 	 * might have blocked - try again.
454 	 */
455 	if (error)
456 		goto repeat;
457 
458 	if (start <= files->next_fd)
459 		files->next_fd = fd + 1;
460 
461 	__set_open_fd(fd, fdt);
462 	if (flags & O_CLOEXEC)
463 		__set_close_on_exec(fd, fdt);
464 	else
465 		__clear_close_on_exec(fd, fdt);
466 	error = fd;
467 #if 1
468 	/* Sanity check */
469 	if (rcu_dereference_raw(fdt->fd[fd]) != NULL) {
470 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
471 		rcu_assign_pointer(fdt->fd[fd], NULL);
472 	}
473 #endif
474 
475 out:
476 	spin_unlock(&files->file_lock);
477 	return error;
478 }
479 
480 int get_unused_fd(void)
481 {
482 	return alloc_fd(0, 0);
483 }
484 EXPORT_SYMBOL(get_unused_fd);
485