xref: /linux/fs/file.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/file.c
4  *
5  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6  *
7  *  Manage the dynamic fd arrays in the process files_struct.
8  */
9 
10 #include <linux/syscalls.h>
11 #include <linux/export.h>
12 #include <linux/fs.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/close_range.h>
23 #include <net/sock.h>
24 
25 unsigned int sysctl_nr_open __read_mostly = 1024*1024;
26 unsigned int sysctl_nr_open_min = BITS_PER_LONG;
27 /* our min() is unusable in constant expressions ;-/ */
28 #define __const_min(x, y) ((x) < (y) ? (x) : (y))
29 unsigned int sysctl_nr_open_max =
30 	__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
31 
32 static void __free_fdtable(struct fdtable *fdt)
33 {
34 	kvfree(fdt->fd);
35 	kvfree(fdt->open_fds);
36 	kfree(fdt);
37 }
38 
39 static void free_fdtable_rcu(struct rcu_head *rcu)
40 {
41 	__free_fdtable(container_of(rcu, struct fdtable, rcu));
42 }
43 
44 #define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
45 #define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
46 
47 /*
48  * Copy 'count' fd bits from the old table to the new table and clear the extra
49  * space if any.  This does not copy the file pointers.  Called with the files
50  * spinlock held for write.
51  */
52 static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
53 			    unsigned int count)
54 {
55 	unsigned int cpy, set;
56 
57 	cpy = count / BITS_PER_BYTE;
58 	set = (nfdt->max_fds - count) / BITS_PER_BYTE;
59 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
60 	memset((char *)nfdt->open_fds + cpy, 0, set);
61 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
62 	memset((char *)nfdt->close_on_exec + cpy, 0, set);
63 
64 	cpy = BITBIT_SIZE(count);
65 	set = BITBIT_SIZE(nfdt->max_fds) - cpy;
66 	memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy);
67 	memset((char *)nfdt->full_fds_bits + cpy, 0, set);
68 }
69 
70 /*
71  * Copy all file descriptors from the old table to the new, expanded table and
72  * clear the extra space.  Called with the files spinlock held for write.
73  */
74 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
75 {
76 	size_t cpy, set;
77 
78 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
79 
80 	cpy = ofdt->max_fds * sizeof(struct file *);
81 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
82 	memcpy(nfdt->fd, ofdt->fd, cpy);
83 	memset((char *)nfdt->fd + cpy, 0, set);
84 
85 	copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds);
86 }
87 
88 static struct fdtable * alloc_fdtable(unsigned int nr)
89 {
90 	struct fdtable *fdt;
91 	void *data;
92 
93 	/*
94 	 * Figure out how many fds we actually want to support in this fdtable.
95 	 * Allocation steps are keyed to the size of the fdarray, since it
96 	 * grows far faster than any of the other dynamic data. We try to fit
97 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
98 	 * and growing in powers of two from there on.
99 	 */
100 	nr /= (1024 / sizeof(struct file *));
101 	nr = roundup_pow_of_two(nr + 1);
102 	nr *= (1024 / sizeof(struct file *));
103 	/*
104 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
105 	 * had been set lower between the check in expand_files() and here.  Deal
106 	 * with that in caller, it's cheaper that way.
107 	 *
108 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
109 	 * bitmaps handling below becomes unpleasant, to put it mildly...
110 	 */
111 	if (unlikely(nr > sysctl_nr_open))
112 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
113 
114 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
115 	if (!fdt)
116 		goto out;
117 	fdt->max_fds = nr;
118 	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
119 	if (!data)
120 		goto out_fdt;
121 	fdt->fd = data;
122 
123 	data = kvmalloc(max_t(size_t,
124 				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
125 				 GFP_KERNEL_ACCOUNT);
126 	if (!data)
127 		goto out_arr;
128 	fdt->open_fds = data;
129 	data += nr / BITS_PER_BYTE;
130 	fdt->close_on_exec = data;
131 	data += nr / BITS_PER_BYTE;
132 	fdt->full_fds_bits = data;
133 
134 	return fdt;
135 
136 out_arr:
137 	kvfree(fdt->fd);
138 out_fdt:
139 	kfree(fdt);
140 out:
141 	return NULL;
142 }
143 
144 /*
145  * Expand the file descriptor table.
146  * This function will allocate a new fdtable and both fd array and fdset, of
147  * the given size.
148  * Return <0 error code on error; 1 on successful completion.
149  * The files->file_lock should be held on entry, and will be held on exit.
150  */
151 static int expand_fdtable(struct files_struct *files, unsigned int nr)
152 	__releases(files->file_lock)
153 	__acquires(files->file_lock)
154 {
155 	struct fdtable *new_fdt, *cur_fdt;
156 
157 	spin_unlock(&files->file_lock);
158 	new_fdt = alloc_fdtable(nr);
159 
160 	/* make sure all fd_install() have seen resize_in_progress
161 	 * or have finished their rcu_read_lock_sched() section.
162 	 */
163 	if (atomic_read(&files->count) > 1)
164 		synchronize_rcu();
165 
166 	spin_lock(&files->file_lock);
167 	if (!new_fdt)
168 		return -ENOMEM;
169 	/*
170 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
171 	 * caller and alloc_fdtable().  Cheaper to catch it here...
172 	 */
173 	if (unlikely(new_fdt->max_fds <= nr)) {
174 		__free_fdtable(new_fdt);
175 		return -EMFILE;
176 	}
177 	cur_fdt = files_fdtable(files);
178 	BUG_ON(nr < cur_fdt->max_fds);
179 	copy_fdtable(new_fdt, cur_fdt);
180 	rcu_assign_pointer(files->fdt, new_fdt);
181 	if (cur_fdt != &files->fdtab)
182 		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
183 	/* coupled with smp_rmb() in fd_install() */
184 	smp_wmb();
185 	return 1;
186 }
187 
188 /*
189  * Expand files.
190  * This function will expand the file structures, if the requested size exceeds
191  * the current capacity and there is room for expansion.
192  * Return <0 error code on error; 0 when nothing done; 1 when files were
193  * expanded and execution may have blocked.
194  * The files->file_lock should be held on entry, and will be held on exit.
195  */
196 static int expand_files(struct files_struct *files, unsigned int nr)
197 	__releases(files->file_lock)
198 	__acquires(files->file_lock)
199 {
200 	struct fdtable *fdt;
201 	int expanded = 0;
202 
203 repeat:
204 	fdt = files_fdtable(files);
205 
206 	/* Do we need to expand? */
207 	if (nr < fdt->max_fds)
208 		return expanded;
209 
210 	/* Can we expand? */
211 	if (nr >= sysctl_nr_open)
212 		return -EMFILE;
213 
214 	if (unlikely(files->resize_in_progress)) {
215 		spin_unlock(&files->file_lock);
216 		expanded = 1;
217 		wait_event(files->resize_wait, !files->resize_in_progress);
218 		spin_lock(&files->file_lock);
219 		goto repeat;
220 	}
221 
222 	/* All good, so we try */
223 	files->resize_in_progress = true;
224 	expanded = expand_fdtable(files, nr);
225 	files->resize_in_progress = false;
226 
227 	wake_up_all(&files->resize_wait);
228 	return expanded;
229 }
230 
231 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt)
232 {
233 	__set_bit(fd, fdt->close_on_exec);
234 }
235 
236 static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt)
237 {
238 	if (test_bit(fd, fdt->close_on_exec))
239 		__clear_bit(fd, fdt->close_on_exec);
240 }
241 
242 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt)
243 {
244 	__set_bit(fd, fdt->open_fds);
245 	fd /= BITS_PER_LONG;
246 	if (!~fdt->open_fds[fd])
247 		__set_bit(fd, fdt->full_fds_bits);
248 }
249 
250 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
251 {
252 	__clear_bit(fd, fdt->open_fds);
253 	__clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
254 }
255 
256 static unsigned int count_open_files(struct fdtable *fdt)
257 {
258 	unsigned int size = fdt->max_fds;
259 	unsigned int i;
260 
261 	/* Find the last open fd */
262 	for (i = size / BITS_PER_LONG; i > 0; ) {
263 		if (fdt->open_fds[--i])
264 			break;
265 	}
266 	i = (i + 1) * BITS_PER_LONG;
267 	return i;
268 }
269 
270 static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds)
271 {
272 	unsigned int count;
273 
274 	count = count_open_files(fdt);
275 	if (max_fds < NR_OPEN_DEFAULT)
276 		max_fds = NR_OPEN_DEFAULT;
277 	return min(count, max_fds);
278 }
279 
280 /*
281  * Allocate a new files structure and copy contents from the
282  * passed in files structure.
283  * errorp will be valid only when the returned files_struct is NULL.
284  */
285 struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp)
286 {
287 	struct files_struct *newf;
288 	struct file **old_fds, **new_fds;
289 	unsigned int open_files, i;
290 	struct fdtable *old_fdt, *new_fdt;
291 
292 	*errorp = -ENOMEM;
293 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
294 	if (!newf)
295 		goto out;
296 
297 	atomic_set(&newf->count, 1);
298 
299 	spin_lock_init(&newf->file_lock);
300 	newf->resize_in_progress = false;
301 	init_waitqueue_head(&newf->resize_wait);
302 	newf->next_fd = 0;
303 	new_fdt = &newf->fdtab;
304 	new_fdt->max_fds = NR_OPEN_DEFAULT;
305 	new_fdt->close_on_exec = newf->close_on_exec_init;
306 	new_fdt->open_fds = newf->open_fds_init;
307 	new_fdt->full_fds_bits = newf->full_fds_bits_init;
308 	new_fdt->fd = &newf->fd_array[0];
309 
310 	spin_lock(&oldf->file_lock);
311 	old_fdt = files_fdtable(oldf);
312 	open_files = sane_fdtable_size(old_fdt, max_fds);
313 
314 	/*
315 	 * Check whether we need to allocate a larger fd array and fd set.
316 	 */
317 	while (unlikely(open_files > new_fdt->max_fds)) {
318 		spin_unlock(&oldf->file_lock);
319 
320 		if (new_fdt != &newf->fdtab)
321 			__free_fdtable(new_fdt);
322 
323 		new_fdt = alloc_fdtable(open_files - 1);
324 		if (!new_fdt) {
325 			*errorp = -ENOMEM;
326 			goto out_release;
327 		}
328 
329 		/* beyond sysctl_nr_open; nothing to do */
330 		if (unlikely(new_fdt->max_fds < open_files)) {
331 			__free_fdtable(new_fdt);
332 			*errorp = -EMFILE;
333 			goto out_release;
334 		}
335 
336 		/*
337 		 * Reacquire the oldf lock and a pointer to its fd table
338 		 * who knows it may have a new bigger fd table. We need
339 		 * the latest pointer.
340 		 */
341 		spin_lock(&oldf->file_lock);
342 		old_fdt = files_fdtable(oldf);
343 		open_files = sane_fdtable_size(old_fdt, max_fds);
344 	}
345 
346 	copy_fd_bitmaps(new_fdt, old_fdt, open_files);
347 
348 	old_fds = old_fdt->fd;
349 	new_fds = new_fdt->fd;
350 
351 	for (i = open_files; i != 0; i--) {
352 		struct file *f = *old_fds++;
353 		if (f) {
354 			get_file(f);
355 		} else {
356 			/*
357 			 * The fd may be claimed in the fd bitmap but not yet
358 			 * instantiated in the files array if a sibling thread
359 			 * is partway through open().  So make sure that this
360 			 * fd is available to the new process.
361 			 */
362 			__clear_open_fd(open_files - i, new_fdt);
363 		}
364 		rcu_assign_pointer(*new_fds++, f);
365 	}
366 	spin_unlock(&oldf->file_lock);
367 
368 	/* clear the remainder */
369 	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
370 
371 	rcu_assign_pointer(newf->fdt, new_fdt);
372 
373 	return newf;
374 
375 out_release:
376 	kmem_cache_free(files_cachep, newf);
377 out:
378 	return NULL;
379 }
380 
381 static struct fdtable *close_files(struct files_struct * files)
382 {
383 	/*
384 	 * It is safe to dereference the fd table without RCU or
385 	 * ->file_lock because this is the last reference to the
386 	 * files structure.
387 	 */
388 	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
389 	unsigned int i, j = 0;
390 
391 	for (;;) {
392 		unsigned long set;
393 		i = j * BITS_PER_LONG;
394 		if (i >= fdt->max_fds)
395 			break;
396 		set = fdt->open_fds[j++];
397 		while (set) {
398 			if (set & 1) {
399 				struct file * file = xchg(&fdt->fd[i], NULL);
400 				if (file) {
401 					filp_close(file, files);
402 					cond_resched();
403 				}
404 			}
405 			i++;
406 			set >>= 1;
407 		}
408 	}
409 
410 	return fdt;
411 }
412 
413 void put_files_struct(struct files_struct *files)
414 {
415 	if (atomic_dec_and_test(&files->count)) {
416 		struct fdtable *fdt = close_files(files);
417 
418 		/* free the arrays if they are not embedded */
419 		if (fdt != &files->fdtab)
420 			__free_fdtable(fdt);
421 		kmem_cache_free(files_cachep, files);
422 	}
423 }
424 
425 void exit_files(struct task_struct *tsk)
426 {
427 	struct files_struct * files = tsk->files;
428 
429 	if (files) {
430 		task_lock(tsk);
431 		tsk->files = NULL;
432 		task_unlock(tsk);
433 		put_files_struct(files);
434 	}
435 }
436 
437 struct files_struct init_files = {
438 	.count		= ATOMIC_INIT(1),
439 	.fdt		= &init_files.fdtab,
440 	.fdtab		= {
441 		.max_fds	= NR_OPEN_DEFAULT,
442 		.fd		= &init_files.fd_array[0],
443 		.close_on_exec	= init_files.close_on_exec_init,
444 		.open_fds	= init_files.open_fds_init,
445 		.full_fds_bits	= init_files.full_fds_bits_init,
446 	},
447 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
448 	.resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
449 };
450 
451 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
452 {
453 	unsigned int maxfd = fdt->max_fds;
454 	unsigned int maxbit = maxfd / BITS_PER_LONG;
455 	unsigned int bitbit = start / BITS_PER_LONG;
456 
457 	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
458 	if (bitbit > maxfd)
459 		return maxfd;
460 	if (bitbit > start)
461 		start = bitbit;
462 	return find_next_zero_bit(fdt->open_fds, maxfd, start);
463 }
464 
465 /*
466  * allocate a file descriptor, mark it busy.
467  */
468 static int alloc_fd(unsigned start, unsigned end, unsigned flags)
469 {
470 	struct files_struct *files = current->files;
471 	unsigned int fd;
472 	int error;
473 	struct fdtable *fdt;
474 
475 	spin_lock(&files->file_lock);
476 repeat:
477 	fdt = files_fdtable(files);
478 	fd = start;
479 	if (fd < files->next_fd)
480 		fd = files->next_fd;
481 
482 	if (fd < fdt->max_fds)
483 		fd = find_next_fd(fdt, fd);
484 
485 	/*
486 	 * N.B. For clone tasks sharing a files structure, this test
487 	 * will limit the total number of files that can be opened.
488 	 */
489 	error = -EMFILE;
490 	if (fd >= end)
491 		goto out;
492 
493 	error = expand_files(files, fd);
494 	if (error < 0)
495 		goto out;
496 
497 	/*
498 	 * If we needed to expand the fs array we
499 	 * might have blocked - try again.
500 	 */
501 	if (error)
502 		goto repeat;
503 
504 	if (start <= files->next_fd)
505 		files->next_fd = fd + 1;
506 
507 	__set_open_fd(fd, fdt);
508 	if (flags & O_CLOEXEC)
509 		__set_close_on_exec(fd, fdt);
510 	else
511 		__clear_close_on_exec(fd, fdt);
512 	error = fd;
513 #if 1
514 	/* Sanity check */
515 	if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
516 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
517 		rcu_assign_pointer(fdt->fd[fd], NULL);
518 	}
519 #endif
520 
521 out:
522 	spin_unlock(&files->file_lock);
523 	return error;
524 }
525 
526 int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
527 {
528 	return alloc_fd(0, nofile, flags);
529 }
530 
531 int get_unused_fd_flags(unsigned flags)
532 {
533 	return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
534 }
535 EXPORT_SYMBOL(get_unused_fd_flags);
536 
537 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
538 {
539 	struct fdtable *fdt = files_fdtable(files);
540 	__clear_open_fd(fd, fdt);
541 	if (fd < files->next_fd)
542 		files->next_fd = fd;
543 }
544 
545 void put_unused_fd(unsigned int fd)
546 {
547 	struct files_struct *files = current->files;
548 	spin_lock(&files->file_lock);
549 	__put_unused_fd(files, fd);
550 	spin_unlock(&files->file_lock);
551 }
552 
553 EXPORT_SYMBOL(put_unused_fd);
554 
555 /*
556  * Install a file pointer in the fd array.
557  *
558  * The VFS is full of places where we drop the files lock between
559  * setting the open_fds bitmap and installing the file in the file
560  * array.  At any such point, we are vulnerable to a dup2() race
561  * installing a file in the array before us.  We need to detect this and
562  * fput() the struct file we are about to overwrite in this case.
563  *
564  * It should never happen - if we allow dup2() do it, _really_ bad things
565  * will follow.
566  *
567  * This consumes the "file" refcount, so callers should treat it
568  * as if they had called fput(file).
569  */
570 
571 void fd_install(unsigned int fd, struct file *file)
572 {
573 	struct files_struct *files = current->files;
574 	struct fdtable *fdt;
575 
576 	rcu_read_lock_sched();
577 
578 	if (unlikely(files->resize_in_progress)) {
579 		rcu_read_unlock_sched();
580 		spin_lock(&files->file_lock);
581 		fdt = files_fdtable(files);
582 		BUG_ON(fdt->fd[fd] != NULL);
583 		rcu_assign_pointer(fdt->fd[fd], file);
584 		spin_unlock(&files->file_lock);
585 		return;
586 	}
587 	/* coupled with smp_wmb() in expand_fdtable() */
588 	smp_rmb();
589 	fdt = rcu_dereference_sched(files->fdt);
590 	BUG_ON(fdt->fd[fd] != NULL);
591 	rcu_assign_pointer(fdt->fd[fd], file);
592 	rcu_read_unlock_sched();
593 }
594 
595 EXPORT_SYMBOL(fd_install);
596 
597 static struct file *pick_file(struct files_struct *files, unsigned fd)
598 {
599 	struct file *file = NULL;
600 	struct fdtable *fdt;
601 
602 	spin_lock(&files->file_lock);
603 	fdt = files_fdtable(files);
604 	if (fd >= fdt->max_fds)
605 		goto out_unlock;
606 	file = fdt->fd[fd];
607 	if (!file)
608 		goto out_unlock;
609 	rcu_assign_pointer(fdt->fd[fd], NULL);
610 	__put_unused_fd(files, fd);
611 
612 out_unlock:
613 	spin_unlock(&files->file_lock);
614 	return file;
615 }
616 
617 int close_fd(unsigned fd)
618 {
619 	struct files_struct *files = current->files;
620 	struct file *file;
621 
622 	file = pick_file(files, fd);
623 	if (!file)
624 		return -EBADF;
625 
626 	return filp_close(file, files);
627 }
628 EXPORT_SYMBOL(close_fd); /* for ksys_close() */
629 
630 static inline void __range_cloexec(struct files_struct *cur_fds,
631 				   unsigned int fd, unsigned int max_fd)
632 {
633 	struct fdtable *fdt;
634 
635 	if (fd > max_fd)
636 		return;
637 
638 	spin_lock(&cur_fds->file_lock);
639 	fdt = files_fdtable(cur_fds);
640 	bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
641 	spin_unlock(&cur_fds->file_lock);
642 }
643 
644 static inline void __range_close(struct files_struct *cur_fds, unsigned int fd,
645 				 unsigned int max_fd)
646 {
647 	while (fd <= max_fd) {
648 		struct file *file;
649 
650 		file = pick_file(cur_fds, fd++);
651 		if (!file)
652 			continue;
653 
654 		filp_close(file, cur_fds);
655 		cond_resched();
656 	}
657 }
658 
659 /**
660  * __close_range() - Close all file descriptors in a given range.
661  *
662  * @fd:     starting file descriptor to close
663  * @max_fd: last file descriptor to close
664  *
665  * This closes a range of file descriptors. All file descriptors
666  * from @fd up to and including @max_fd are closed.
667  */
668 int __close_range(unsigned fd, unsigned max_fd, unsigned int flags)
669 {
670 	unsigned int cur_max;
671 	struct task_struct *me = current;
672 	struct files_struct *cur_fds = me->files, *fds = NULL;
673 
674 	if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
675 		return -EINVAL;
676 
677 	if (fd > max_fd)
678 		return -EINVAL;
679 
680 	rcu_read_lock();
681 	cur_max = files_fdtable(cur_fds)->max_fds;
682 	rcu_read_unlock();
683 
684 	/* cap to last valid index into fdtable */
685 	cur_max--;
686 
687 	if (flags & CLOSE_RANGE_UNSHARE) {
688 		int ret;
689 		unsigned int max_unshare_fds = NR_OPEN_MAX;
690 
691 		/*
692 		 * If the requested range is greater than the current maximum,
693 		 * we're closing everything so only copy all file descriptors
694 		 * beneath the lowest file descriptor.
695 		 * If the caller requested all fds to be made cloexec copy all
696 		 * of the file descriptors since they still want to use them.
697 		 */
698 		if (!(flags & CLOSE_RANGE_CLOEXEC) && (max_fd >= cur_max))
699 			max_unshare_fds = fd;
700 
701 		ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds);
702 		if (ret)
703 			return ret;
704 
705 		/*
706 		 * We used to share our file descriptor table, and have now
707 		 * created a private one, make sure we're using it below.
708 		 */
709 		if (fds)
710 			swap(cur_fds, fds);
711 	}
712 
713 	max_fd = min(max_fd, cur_max);
714 
715 	if (flags & CLOSE_RANGE_CLOEXEC)
716 		__range_cloexec(cur_fds, fd, max_fd);
717 	else
718 		__range_close(cur_fds, fd, max_fd);
719 
720 	if (fds) {
721 		/*
722 		 * We're done closing the files we were supposed to. Time to install
723 		 * the new file descriptor table and drop the old one.
724 		 */
725 		task_lock(me);
726 		me->files = cur_fds;
727 		task_unlock(me);
728 		put_files_struct(fds);
729 	}
730 
731 	return 0;
732 }
733 
734 /*
735  * variant of close_fd that gets a ref on the file for later fput.
736  * The caller must ensure that filp_close() called on the file, and then
737  * an fput().
738  */
739 int close_fd_get_file(unsigned int fd, struct file **res)
740 {
741 	struct files_struct *files = current->files;
742 	struct file *file;
743 	struct fdtable *fdt;
744 
745 	spin_lock(&files->file_lock);
746 	fdt = files_fdtable(files);
747 	if (fd >= fdt->max_fds)
748 		goto out_unlock;
749 	file = fdt->fd[fd];
750 	if (!file)
751 		goto out_unlock;
752 	rcu_assign_pointer(fdt->fd[fd], NULL);
753 	__put_unused_fd(files, fd);
754 	spin_unlock(&files->file_lock);
755 	get_file(file);
756 	*res = file;
757 	return 0;
758 
759 out_unlock:
760 	spin_unlock(&files->file_lock);
761 	*res = NULL;
762 	return -ENOENT;
763 }
764 
765 void do_close_on_exec(struct files_struct *files)
766 {
767 	unsigned i;
768 	struct fdtable *fdt;
769 
770 	/* exec unshares first */
771 	spin_lock(&files->file_lock);
772 	for (i = 0; ; i++) {
773 		unsigned long set;
774 		unsigned fd = i * BITS_PER_LONG;
775 		fdt = files_fdtable(files);
776 		if (fd >= fdt->max_fds)
777 			break;
778 		set = fdt->close_on_exec[i];
779 		if (!set)
780 			continue;
781 		fdt->close_on_exec[i] = 0;
782 		for ( ; set ; fd++, set >>= 1) {
783 			struct file *file;
784 			if (!(set & 1))
785 				continue;
786 			file = fdt->fd[fd];
787 			if (!file)
788 				continue;
789 			rcu_assign_pointer(fdt->fd[fd], NULL);
790 			__put_unused_fd(files, fd);
791 			spin_unlock(&files->file_lock);
792 			filp_close(file, files);
793 			cond_resched();
794 			spin_lock(&files->file_lock);
795 		}
796 
797 	}
798 	spin_unlock(&files->file_lock);
799 }
800 
801 static struct file *__fget_files(struct files_struct *files, unsigned int fd,
802 				 fmode_t mask, unsigned int refs)
803 {
804 	struct file *file;
805 
806 	rcu_read_lock();
807 loop:
808 	file = files_lookup_fd_rcu(files, fd);
809 	if (file) {
810 		/* File object ref couldn't be taken.
811 		 * dup2() atomicity guarantee is the reason
812 		 * we loop to catch the new file (or NULL pointer)
813 		 */
814 		if (file->f_mode & mask)
815 			file = NULL;
816 		else if (!get_file_rcu_many(file, refs))
817 			goto loop;
818 	}
819 	rcu_read_unlock();
820 
821 	return file;
822 }
823 
824 static inline struct file *__fget(unsigned int fd, fmode_t mask,
825 				  unsigned int refs)
826 {
827 	return __fget_files(current->files, fd, mask, refs);
828 }
829 
830 struct file *fget_many(unsigned int fd, unsigned int refs)
831 {
832 	return __fget(fd, FMODE_PATH, refs);
833 }
834 
835 struct file *fget(unsigned int fd)
836 {
837 	return __fget(fd, FMODE_PATH, 1);
838 }
839 EXPORT_SYMBOL(fget);
840 
841 struct file *fget_raw(unsigned int fd)
842 {
843 	return __fget(fd, 0, 1);
844 }
845 EXPORT_SYMBOL(fget_raw);
846 
847 struct file *fget_task(struct task_struct *task, unsigned int fd)
848 {
849 	struct file *file = NULL;
850 
851 	task_lock(task);
852 	if (task->files)
853 		file = __fget_files(task->files, fd, 0, 1);
854 	task_unlock(task);
855 
856 	return file;
857 }
858 
859 struct file *task_lookup_fd_rcu(struct task_struct *task, unsigned int fd)
860 {
861 	/* Must be called with rcu_read_lock held */
862 	struct files_struct *files;
863 	struct file *file = NULL;
864 
865 	task_lock(task);
866 	files = task->files;
867 	if (files)
868 		file = files_lookup_fd_rcu(files, fd);
869 	task_unlock(task);
870 
871 	return file;
872 }
873 
874 struct file *task_lookup_next_fd_rcu(struct task_struct *task, unsigned int *ret_fd)
875 {
876 	/* Must be called with rcu_read_lock held */
877 	struct files_struct *files;
878 	unsigned int fd = *ret_fd;
879 	struct file *file = NULL;
880 
881 	task_lock(task);
882 	files = task->files;
883 	if (files) {
884 		for (; fd < files_fdtable(files)->max_fds; fd++) {
885 			file = files_lookup_fd_rcu(files, fd);
886 			if (file)
887 				break;
888 		}
889 	}
890 	task_unlock(task);
891 	*ret_fd = fd;
892 	return file;
893 }
894 
895 /*
896  * Lightweight file lookup - no refcnt increment if fd table isn't shared.
897  *
898  * You can use this instead of fget if you satisfy all of the following
899  * conditions:
900  * 1) You must call fput_light before exiting the syscall and returning control
901  *    to userspace (i.e. you cannot remember the returned struct file * after
902  *    returning to userspace).
903  * 2) You must not call filp_close on the returned struct file * in between
904  *    calls to fget_light and fput_light.
905  * 3) You must not clone the current task in between the calls to fget_light
906  *    and fput_light.
907  *
908  * The fput_needed flag returned by fget_light should be passed to the
909  * corresponding fput_light.
910  */
911 static unsigned long __fget_light(unsigned int fd, fmode_t mask)
912 {
913 	struct files_struct *files = current->files;
914 	struct file *file;
915 
916 	if (atomic_read(&files->count) == 1) {
917 		file = files_lookup_fd_raw(files, fd);
918 		if (!file || unlikely(file->f_mode & mask))
919 			return 0;
920 		return (unsigned long)file;
921 	} else {
922 		file = __fget(fd, mask, 1);
923 		if (!file)
924 			return 0;
925 		return FDPUT_FPUT | (unsigned long)file;
926 	}
927 }
928 unsigned long __fdget(unsigned int fd)
929 {
930 	return __fget_light(fd, FMODE_PATH);
931 }
932 EXPORT_SYMBOL(__fdget);
933 
934 unsigned long __fdget_raw(unsigned int fd)
935 {
936 	return __fget_light(fd, 0);
937 }
938 
939 unsigned long __fdget_pos(unsigned int fd)
940 {
941 	unsigned long v = __fdget(fd);
942 	struct file *file = (struct file *)(v & ~3);
943 
944 	if (file && (file->f_mode & FMODE_ATOMIC_POS)) {
945 		if (file_count(file) > 1) {
946 			v |= FDPUT_POS_UNLOCK;
947 			mutex_lock(&file->f_pos_lock);
948 		}
949 	}
950 	return v;
951 }
952 
953 void __f_unlock_pos(struct file *f)
954 {
955 	mutex_unlock(&f->f_pos_lock);
956 }
957 
958 /*
959  * We only lock f_pos if we have threads or if the file might be
960  * shared with another process. In both cases we'll have an elevated
961  * file count (done either by fdget() or by fork()).
962  */
963 
964 void set_close_on_exec(unsigned int fd, int flag)
965 {
966 	struct files_struct *files = current->files;
967 	struct fdtable *fdt;
968 	spin_lock(&files->file_lock);
969 	fdt = files_fdtable(files);
970 	if (flag)
971 		__set_close_on_exec(fd, fdt);
972 	else
973 		__clear_close_on_exec(fd, fdt);
974 	spin_unlock(&files->file_lock);
975 }
976 
977 bool get_close_on_exec(unsigned int fd)
978 {
979 	struct files_struct *files = current->files;
980 	struct fdtable *fdt;
981 	bool res;
982 	rcu_read_lock();
983 	fdt = files_fdtable(files);
984 	res = close_on_exec(fd, fdt);
985 	rcu_read_unlock();
986 	return res;
987 }
988 
989 static int do_dup2(struct files_struct *files,
990 	struct file *file, unsigned fd, unsigned flags)
991 __releases(&files->file_lock)
992 {
993 	struct file *tofree;
994 	struct fdtable *fdt;
995 
996 	/*
997 	 * We need to detect attempts to do dup2() over allocated but still
998 	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
999 	 * extra work in their equivalent of fget() - they insert struct
1000 	 * file immediately after grabbing descriptor, mark it larval if
1001 	 * more work (e.g. actual opening) is needed and make sure that
1002 	 * fget() treats larval files as absent.  Potentially interesting,
1003 	 * but while extra work in fget() is trivial, locking implications
1004 	 * and amount of surgery on open()-related paths in VFS are not.
1005 	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
1006 	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
1007 	 * scope of POSIX or SUS, since neither considers shared descriptor
1008 	 * tables and this condition does not arise without those.
1009 	 */
1010 	fdt = files_fdtable(files);
1011 	tofree = fdt->fd[fd];
1012 	if (!tofree && fd_is_open(fd, fdt))
1013 		goto Ebusy;
1014 	get_file(file);
1015 	rcu_assign_pointer(fdt->fd[fd], file);
1016 	__set_open_fd(fd, fdt);
1017 	if (flags & O_CLOEXEC)
1018 		__set_close_on_exec(fd, fdt);
1019 	else
1020 		__clear_close_on_exec(fd, fdt);
1021 	spin_unlock(&files->file_lock);
1022 
1023 	if (tofree)
1024 		filp_close(tofree, files);
1025 
1026 	return fd;
1027 
1028 Ebusy:
1029 	spin_unlock(&files->file_lock);
1030 	return -EBUSY;
1031 }
1032 
1033 int replace_fd(unsigned fd, struct file *file, unsigned flags)
1034 {
1035 	int err;
1036 	struct files_struct *files = current->files;
1037 
1038 	if (!file)
1039 		return close_fd(fd);
1040 
1041 	if (fd >= rlimit(RLIMIT_NOFILE))
1042 		return -EBADF;
1043 
1044 	spin_lock(&files->file_lock);
1045 	err = expand_files(files, fd);
1046 	if (unlikely(err < 0))
1047 		goto out_unlock;
1048 	return do_dup2(files, file, fd, flags);
1049 
1050 out_unlock:
1051 	spin_unlock(&files->file_lock);
1052 	return err;
1053 }
1054 
1055 /**
1056  * __receive_fd() - Install received file into file descriptor table
1057  *
1058  * @fd: fd to install into (if negative, a new fd will be allocated)
1059  * @file: struct file that was received from another process
1060  * @ufd: __user pointer to write new fd number to
1061  * @o_flags: the O_* flags to apply to the new fd entry
1062  *
1063  * Installs a received file into the file descriptor table, with appropriate
1064  * checks and count updates. Optionally writes the fd number to userspace, if
1065  * @ufd is non-NULL.
1066  *
1067  * This helper handles its own reference counting of the incoming
1068  * struct file.
1069  *
1070  * Returns newly install fd or -ve on error.
1071  */
1072 int __receive_fd(int fd, struct file *file, int __user *ufd, unsigned int o_flags)
1073 {
1074 	int new_fd;
1075 	int error;
1076 
1077 	error = security_file_receive(file);
1078 	if (error)
1079 		return error;
1080 
1081 	if (fd < 0) {
1082 		new_fd = get_unused_fd_flags(o_flags);
1083 		if (new_fd < 0)
1084 			return new_fd;
1085 	} else {
1086 		new_fd = fd;
1087 	}
1088 
1089 	if (ufd) {
1090 		error = put_user(new_fd, ufd);
1091 		if (error) {
1092 			if (fd < 0)
1093 				put_unused_fd(new_fd);
1094 			return error;
1095 		}
1096 	}
1097 
1098 	if (fd < 0) {
1099 		fd_install(new_fd, get_file(file));
1100 	} else {
1101 		error = replace_fd(new_fd, file, o_flags);
1102 		if (error)
1103 			return error;
1104 	}
1105 
1106 	/* Bump the sock usage counts, if any. */
1107 	__receive_sock(file);
1108 	return new_fd;
1109 }
1110 
1111 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1112 {
1113 	int err = -EBADF;
1114 	struct file *file;
1115 	struct files_struct *files = current->files;
1116 
1117 	if ((flags & ~O_CLOEXEC) != 0)
1118 		return -EINVAL;
1119 
1120 	if (unlikely(oldfd == newfd))
1121 		return -EINVAL;
1122 
1123 	if (newfd >= rlimit(RLIMIT_NOFILE))
1124 		return -EBADF;
1125 
1126 	spin_lock(&files->file_lock);
1127 	err = expand_files(files, newfd);
1128 	file = files_lookup_fd_locked(files, oldfd);
1129 	if (unlikely(!file))
1130 		goto Ebadf;
1131 	if (unlikely(err < 0)) {
1132 		if (err == -EMFILE)
1133 			goto Ebadf;
1134 		goto out_unlock;
1135 	}
1136 	return do_dup2(files, file, newfd, flags);
1137 
1138 Ebadf:
1139 	err = -EBADF;
1140 out_unlock:
1141 	spin_unlock(&files->file_lock);
1142 	return err;
1143 }
1144 
1145 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1146 {
1147 	return ksys_dup3(oldfd, newfd, flags);
1148 }
1149 
1150 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1151 {
1152 	if (unlikely(newfd == oldfd)) { /* corner case */
1153 		struct files_struct *files = current->files;
1154 		int retval = oldfd;
1155 
1156 		rcu_read_lock();
1157 		if (!files_lookup_fd_rcu(files, oldfd))
1158 			retval = -EBADF;
1159 		rcu_read_unlock();
1160 		return retval;
1161 	}
1162 	return ksys_dup3(oldfd, newfd, 0);
1163 }
1164 
1165 SYSCALL_DEFINE1(dup, unsigned int, fildes)
1166 {
1167 	int ret = -EBADF;
1168 	struct file *file = fget_raw(fildes);
1169 
1170 	if (file) {
1171 		ret = get_unused_fd_flags(0);
1172 		if (ret >= 0)
1173 			fd_install(ret, file);
1174 		else
1175 			fput(file);
1176 	}
1177 	return ret;
1178 }
1179 
1180 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1181 {
1182 	unsigned long nofile = rlimit(RLIMIT_NOFILE);
1183 	int err;
1184 	if (from >= nofile)
1185 		return -EINVAL;
1186 	err = alloc_fd(from, nofile, flags);
1187 	if (err >= 0) {
1188 		get_file(file);
1189 		fd_install(err, file);
1190 	}
1191 	return err;
1192 }
1193 
1194 int iterate_fd(struct files_struct *files, unsigned n,
1195 		int (*f)(const void *, struct file *, unsigned),
1196 		const void *p)
1197 {
1198 	struct fdtable *fdt;
1199 	int res = 0;
1200 	if (!files)
1201 		return 0;
1202 	spin_lock(&files->file_lock);
1203 	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1204 		struct file *file;
1205 		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1206 		if (!file)
1207 			continue;
1208 		res = f(p, file, n);
1209 		if (res)
1210 			break;
1211 	}
1212 	spin_unlock(&files->file_lock);
1213 	return res;
1214 }
1215 EXPORT_SYMBOL(iterate_fd);
1216