1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/file.c 4 * 5 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes 6 * 7 * Manage the dynamic fd arrays in the process files_struct. 8 */ 9 10 #include <linux/syscalls.h> 11 #include <linux/export.h> 12 #include <linux/fs.h> 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/file.h> 18 #include <linux/fdtable.h> 19 #include <linux/bitops.h> 20 #include <linux/spinlock.h> 21 #include <linux/rcupdate.h> 22 #include <linux/close_range.h> 23 #include <linux/file_ref.h> 24 #include <net/sock.h> 25 #include <linux/init_task.h> 26 27 #include "internal.h" 28 29 static noinline bool __file_ref_put_badval(file_ref_t *ref, unsigned long cnt) 30 { 31 /* 32 * If the reference count was already in the dead zone, then this 33 * put() operation is imbalanced. Warn, put the reference count back to 34 * DEAD and tell the caller to not deconstruct the object. 35 */ 36 if (WARN_ONCE(cnt >= FILE_REF_RELEASED, "imbalanced put on file reference count")) { 37 atomic_long_set(&ref->refcnt, FILE_REF_DEAD); 38 return false; 39 } 40 41 /* 42 * This is a put() operation on a saturated refcount. Restore the 43 * mean saturation value and tell the caller to not deconstruct the 44 * object. 45 */ 46 if (cnt > FILE_REF_MAXREF) 47 atomic_long_set(&ref->refcnt, FILE_REF_SATURATED); 48 return false; 49 } 50 51 /** 52 * __file_ref_put - Slowpath of file_ref_put() 53 * @ref: Pointer to the reference count 54 * @cnt: Current reference count 55 * 56 * Invoked when the reference count is outside of the valid zone. 57 * 58 * Return: 59 * True if this was the last reference with no future references 60 * possible. This signals the caller that it can safely schedule the 61 * object, which is protected by the reference counter, for 62 * deconstruction. 63 * 64 * False if there are still active references or the put() raced 65 * with a concurrent get()/put() pair. Caller is not allowed to 66 * deconstruct the protected object. 67 */ 68 bool __file_ref_put(file_ref_t *ref, unsigned long cnt) 69 { 70 /* Did this drop the last reference? */ 71 if (likely(cnt == FILE_REF_NOREF)) { 72 /* 73 * Carefully try to set the reference count to FILE_REF_DEAD. 74 * 75 * This can fail if a concurrent get() operation has 76 * elevated it again or the corresponding put() even marked 77 * it dead already. Both are valid situations and do not 78 * require a retry. If this fails the caller is not 79 * allowed to deconstruct the object. 80 */ 81 if (!atomic_long_try_cmpxchg_release(&ref->refcnt, &cnt, FILE_REF_DEAD)) 82 return false; 83 84 /* 85 * The caller can safely schedule the object for 86 * deconstruction. Provide acquire ordering. 87 */ 88 smp_acquire__after_ctrl_dep(); 89 return true; 90 } 91 92 return __file_ref_put_badval(ref, cnt); 93 } 94 EXPORT_SYMBOL_GPL(__file_ref_put); 95 96 unsigned int sysctl_nr_open __read_mostly = 1024*1024; 97 unsigned int sysctl_nr_open_min = BITS_PER_LONG; 98 /* our min() is unusable in constant expressions ;-/ */ 99 #define __const_min(x, y) ((x) < (y) ? (x) : (y)) 100 unsigned int sysctl_nr_open_max = 101 __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG; 102 103 static void __free_fdtable(struct fdtable *fdt) 104 { 105 kvfree(fdt->fd); 106 kvfree(fdt->open_fds); 107 kfree(fdt); 108 } 109 110 static void free_fdtable_rcu(struct rcu_head *rcu) 111 { 112 __free_fdtable(container_of(rcu, struct fdtable, rcu)); 113 } 114 115 #define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr)) 116 #define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long)) 117 118 #define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds 119 /* 120 * Copy 'count' fd bits from the old table to the new table and clear the extra 121 * space if any. This does not copy the file pointers. Called with the files 122 * spinlock held for write. 123 */ 124 static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt, 125 unsigned int copy_words) 126 { 127 unsigned int nwords = fdt_words(nfdt); 128 129 bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds, 130 copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG); 131 bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec, 132 copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG); 133 bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits, 134 copy_words, nwords); 135 } 136 137 /* 138 * Copy all file descriptors from the old table to the new, expanded table and 139 * clear the extra space. Called with the files spinlock held for write. 140 */ 141 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) 142 { 143 size_t cpy, set; 144 145 BUG_ON(nfdt->max_fds < ofdt->max_fds); 146 147 cpy = ofdt->max_fds * sizeof(struct file *); 148 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); 149 memcpy(nfdt->fd, ofdt->fd, cpy); 150 memset((char *)nfdt->fd + cpy, 0, set); 151 152 copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt)); 153 } 154 155 /* 156 * Note how the fdtable bitmap allocations very much have to be a multiple of 157 * BITS_PER_LONG. This is not only because we walk those things in chunks of 158 * 'unsigned long' in some places, but simply because that is how the Linux 159 * kernel bitmaps are defined to work: they are not "bits in an array of bytes", 160 * they are very much "bits in an array of unsigned long". 161 */ 162 static struct fdtable *alloc_fdtable(unsigned int slots_wanted) 163 { 164 struct fdtable *fdt; 165 unsigned int nr; 166 void *data; 167 168 /* 169 * Figure out how many fds we actually want to support in this fdtable. 170 * Allocation steps are keyed to the size of the fdarray, since it 171 * grows far faster than any of the other dynamic data. We try to fit 172 * the fdarray into comfortable page-tuned chunks: starting at 1024B 173 * and growing in powers of two from there on. Since we called only 174 * with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab 175 * already gives BITS_PER_LONG slots), the above boils down to 176 * 1. use the smallest power of two large enough to give us that many 177 * slots. 178 * 2. on 32bit skip 64 and 128 - the minimal capacity we want there is 179 * 256 slots (i.e. 1Kb fd array). 180 * 3. on 64bit don't skip anything, 1Kb fd array means 128 slots there 181 * and we are never going to be asked for 64 or less. 182 */ 183 if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256) 184 nr = 256; 185 else 186 nr = roundup_pow_of_two(slots_wanted); 187 /* 188 * Note that this can drive nr *below* what we had passed if sysctl_nr_open 189 * had been set lower between the check in expand_files() and here. 190 * 191 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise 192 * bitmaps handling below becomes unpleasant, to put it mildly... 193 */ 194 if (unlikely(nr > sysctl_nr_open)) { 195 nr = round_down(sysctl_nr_open, BITS_PER_LONG); 196 if (nr < slots_wanted) 197 return ERR_PTR(-EMFILE); 198 } 199 200 /* 201 * Check if the allocation size would exceed INT_MAX. kvmalloc_array() 202 * and kvmalloc() will warn if the allocation size is greater than 203 * INT_MAX, as filp_cachep objects are not __GFP_NOWARN. 204 * 205 * This can happen when sysctl_nr_open is set to a very high value and 206 * a process tries to use a file descriptor near that limit. For example, 207 * if sysctl_nr_open is set to 1073741816 (0x3ffffff8) - which is what 208 * systemd typically sets it to - then trying to use a file descriptor 209 * close to that value will require allocating a file descriptor table 210 * that exceeds 8GB in size. 211 */ 212 if (unlikely(nr > INT_MAX / sizeof(struct file *))) 213 return ERR_PTR(-EMFILE); 214 215 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT); 216 if (!fdt) 217 goto out; 218 fdt->max_fds = nr; 219 data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT); 220 if (!data) 221 goto out_fdt; 222 fdt->fd = data; 223 224 data = kvmalloc(max_t(size_t, 225 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES), 226 GFP_KERNEL_ACCOUNT); 227 if (!data) 228 goto out_arr; 229 fdt->open_fds = data; 230 data += nr / BITS_PER_BYTE; 231 fdt->close_on_exec = data; 232 data += nr / BITS_PER_BYTE; 233 fdt->full_fds_bits = data; 234 235 return fdt; 236 237 out_arr: 238 kvfree(fdt->fd); 239 out_fdt: 240 kfree(fdt); 241 out: 242 return ERR_PTR(-ENOMEM); 243 } 244 245 /* 246 * Expand the file descriptor table. 247 * This function will allocate a new fdtable and both fd array and fdset, of 248 * the given size. 249 * Return <0 error code on error; 0 on successful completion. 250 * The files->file_lock should be held on entry, and will be held on exit. 251 */ 252 static int expand_fdtable(struct files_struct *files, unsigned int nr) 253 __releases(files->file_lock) 254 __acquires(files->file_lock) 255 { 256 struct fdtable *new_fdt, *cur_fdt; 257 258 spin_unlock(&files->file_lock); 259 new_fdt = alloc_fdtable(nr + 1); 260 261 /* make sure all fd_install() have seen resize_in_progress 262 * or have finished their rcu_read_lock_sched() section. 263 */ 264 if (atomic_read(&files->count) > 1) 265 synchronize_rcu(); 266 267 spin_lock(&files->file_lock); 268 if (IS_ERR(new_fdt)) 269 return PTR_ERR(new_fdt); 270 cur_fdt = files_fdtable(files); 271 BUG_ON(nr < cur_fdt->max_fds); 272 copy_fdtable(new_fdt, cur_fdt); 273 rcu_assign_pointer(files->fdt, new_fdt); 274 if (cur_fdt != &files->fdtab) 275 call_rcu(&cur_fdt->rcu, free_fdtable_rcu); 276 /* coupled with smp_rmb() in fd_install() */ 277 smp_wmb(); 278 return 0; 279 } 280 281 /* 282 * Expand files. 283 * This function will expand the file structures, if the requested size exceeds 284 * the current capacity and there is room for expansion. 285 * Return <0 error code on error; 0 on success. 286 * The files->file_lock should be held on entry, and will be held on exit. 287 */ 288 static int expand_files(struct files_struct *files, unsigned int nr) 289 __releases(files->file_lock) 290 __acquires(files->file_lock) 291 { 292 struct fdtable *fdt; 293 int error; 294 295 repeat: 296 fdt = files_fdtable(files); 297 298 /* Do we need to expand? */ 299 if (nr < fdt->max_fds) 300 return 0; 301 302 if (unlikely(files->resize_in_progress)) { 303 spin_unlock(&files->file_lock); 304 wait_event(files->resize_wait, !files->resize_in_progress); 305 spin_lock(&files->file_lock); 306 goto repeat; 307 } 308 309 /* Can we expand? */ 310 if (unlikely(nr >= sysctl_nr_open)) 311 return -EMFILE; 312 313 /* All good, so we try */ 314 files->resize_in_progress = true; 315 error = expand_fdtable(files, nr); 316 files->resize_in_progress = false; 317 318 wake_up_all(&files->resize_wait); 319 return error; 320 } 321 322 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt, 323 bool set) 324 { 325 if (set) { 326 __set_bit(fd, fdt->close_on_exec); 327 } else { 328 if (test_bit(fd, fdt->close_on_exec)) 329 __clear_bit(fd, fdt->close_on_exec); 330 } 331 } 332 333 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt, bool set) 334 { 335 __set_bit(fd, fdt->open_fds); 336 __set_close_on_exec(fd, fdt, set); 337 fd /= BITS_PER_LONG; 338 if (!~fdt->open_fds[fd]) 339 __set_bit(fd, fdt->full_fds_bits); 340 } 341 342 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt) 343 { 344 __clear_bit(fd, fdt->open_fds); 345 fd /= BITS_PER_LONG; 346 if (test_bit(fd, fdt->full_fds_bits)) 347 __clear_bit(fd, fdt->full_fds_bits); 348 } 349 350 static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt) 351 { 352 return test_bit(fd, fdt->open_fds); 353 } 354 355 /* 356 * Note that a sane fdtable size always has to be a multiple of 357 * BITS_PER_LONG, since we have bitmaps that are sized by this. 358 * 359 * punch_hole is optional - when close_range() is asked to unshare 360 * and close, we don't need to copy descriptors in that range, so 361 * a smaller cloned descriptor table might suffice if the last 362 * currently opened descriptor falls into that range. 363 */ 364 static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole) 365 { 366 unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds); 367 368 if (last == fdt->max_fds) 369 return NR_OPEN_DEFAULT; 370 if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) { 371 last = find_last_bit(fdt->open_fds, punch_hole->from); 372 if (last == punch_hole->from) 373 return NR_OPEN_DEFAULT; 374 } 375 return ALIGN(last + 1, BITS_PER_LONG); 376 } 377 378 /* 379 * Allocate a new descriptor table and copy contents from the passed in 380 * instance. Returns a pointer to cloned table on success, ERR_PTR() 381 * on failure. For 'punch_hole' see sane_fdtable_size(). 382 */ 383 struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole) 384 { 385 struct files_struct *newf; 386 struct file **old_fds, **new_fds; 387 unsigned int open_files, i; 388 struct fdtable *old_fdt, *new_fdt; 389 390 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); 391 if (!newf) 392 return ERR_PTR(-ENOMEM); 393 394 atomic_set(&newf->count, 1); 395 396 spin_lock_init(&newf->file_lock); 397 newf->resize_in_progress = false; 398 init_waitqueue_head(&newf->resize_wait); 399 newf->next_fd = 0; 400 new_fdt = &newf->fdtab; 401 new_fdt->max_fds = NR_OPEN_DEFAULT; 402 new_fdt->close_on_exec = newf->close_on_exec_init; 403 new_fdt->open_fds = newf->open_fds_init; 404 new_fdt->full_fds_bits = newf->full_fds_bits_init; 405 new_fdt->fd = &newf->fd_array[0]; 406 407 spin_lock(&oldf->file_lock); 408 old_fdt = files_fdtable(oldf); 409 open_files = sane_fdtable_size(old_fdt, punch_hole); 410 411 /* 412 * Check whether we need to allocate a larger fd array and fd set. 413 */ 414 while (unlikely(open_files > new_fdt->max_fds)) { 415 spin_unlock(&oldf->file_lock); 416 417 if (new_fdt != &newf->fdtab) 418 __free_fdtable(new_fdt); 419 420 new_fdt = alloc_fdtable(open_files); 421 if (IS_ERR(new_fdt)) { 422 kmem_cache_free(files_cachep, newf); 423 return ERR_CAST(new_fdt); 424 } 425 426 /* 427 * Reacquire the oldf lock and a pointer to its fd table 428 * who knows it may have a new bigger fd table. We need 429 * the latest pointer. 430 */ 431 spin_lock(&oldf->file_lock); 432 old_fdt = files_fdtable(oldf); 433 open_files = sane_fdtable_size(old_fdt, punch_hole); 434 } 435 436 copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG); 437 438 old_fds = old_fdt->fd; 439 new_fds = new_fdt->fd; 440 441 /* 442 * We may be racing against fd allocation from other threads using this 443 * files_struct, despite holding ->file_lock. 444 * 445 * alloc_fd() might have already claimed a slot, while fd_install() 446 * did not populate it yet. Note the latter operates locklessly, so 447 * the file can show up as we are walking the array below. 448 * 449 * At the same time we know no files will disappear as all other 450 * operations take the lock. 451 * 452 * Instead of trying to placate userspace racing with itself, we 453 * ref the file if we see it and mark the fd slot as unused otherwise. 454 */ 455 for (i = open_files; i != 0; i--) { 456 struct file *f = rcu_dereference_raw(*old_fds++); 457 if (f) { 458 get_file(f); 459 } else { 460 __clear_open_fd(open_files - i, new_fdt); 461 } 462 rcu_assign_pointer(*new_fds++, f); 463 } 464 spin_unlock(&oldf->file_lock); 465 466 /* clear the remainder */ 467 memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *)); 468 469 rcu_assign_pointer(newf->fdt, new_fdt); 470 471 return newf; 472 } 473 474 static struct fdtable *close_files(struct files_struct * files) 475 { 476 /* 477 * It is safe to dereference the fd table without RCU or 478 * ->file_lock because this is the last reference to the 479 * files structure. 480 */ 481 struct fdtable *fdt = rcu_dereference_raw(files->fdt); 482 unsigned int i, j = 0; 483 484 for (;;) { 485 unsigned long set; 486 i = j * BITS_PER_LONG; 487 if (i >= fdt->max_fds) 488 break; 489 set = fdt->open_fds[j++]; 490 while (set) { 491 if (set & 1) { 492 struct file *file = fdt->fd[i]; 493 if (file) { 494 filp_close(file, files); 495 cond_resched(); 496 } 497 } 498 i++; 499 set >>= 1; 500 } 501 } 502 503 return fdt; 504 } 505 506 void put_files_struct(struct files_struct *files) 507 { 508 if (atomic_dec_and_test(&files->count)) { 509 struct fdtable *fdt = close_files(files); 510 511 /* free the arrays if they are not embedded */ 512 if (fdt != &files->fdtab) 513 __free_fdtable(fdt); 514 kmem_cache_free(files_cachep, files); 515 } 516 } 517 518 void exit_files(struct task_struct *tsk) 519 { 520 struct files_struct * files = tsk->files; 521 522 if (files) { 523 task_lock(tsk); 524 tsk->files = NULL; 525 task_unlock(tsk); 526 put_files_struct(files); 527 } 528 } 529 530 struct files_struct init_files = { 531 .count = ATOMIC_INIT(1), 532 .fdt = &init_files.fdtab, 533 .fdtab = { 534 .max_fds = NR_OPEN_DEFAULT, 535 .fd = &init_files.fd_array[0], 536 .close_on_exec = init_files.close_on_exec_init, 537 .open_fds = init_files.open_fds_init, 538 .full_fds_bits = init_files.full_fds_bits_init, 539 }, 540 .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock), 541 .resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait), 542 }; 543 544 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start) 545 { 546 unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */ 547 unsigned int maxbit = maxfd / BITS_PER_LONG; 548 unsigned int bitbit = start / BITS_PER_LONG; 549 unsigned int bit; 550 551 /* 552 * Try to avoid looking at the second level bitmap 553 */ 554 bit = find_next_zero_bit(&fdt->open_fds[bitbit], BITS_PER_LONG, 555 start & (BITS_PER_LONG - 1)); 556 if (bit < BITS_PER_LONG) 557 return bit + bitbit * BITS_PER_LONG; 558 559 bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG; 560 if (bitbit >= maxfd) 561 return maxfd; 562 if (bitbit > start) 563 start = bitbit; 564 return find_next_zero_bit(fdt->open_fds, maxfd, start); 565 } 566 567 /* 568 * allocate a file descriptor, mark it busy. 569 */ 570 static int alloc_fd(unsigned start, unsigned end, unsigned flags) 571 { 572 struct files_struct *files = current->files; 573 unsigned int fd; 574 int error; 575 struct fdtable *fdt; 576 577 spin_lock(&files->file_lock); 578 repeat: 579 fdt = files_fdtable(files); 580 fd = start; 581 if (fd < files->next_fd) 582 fd = files->next_fd; 583 584 if (likely(fd < fdt->max_fds)) 585 fd = find_next_fd(fdt, fd); 586 587 /* 588 * N.B. For clone tasks sharing a files structure, this test 589 * will limit the total number of files that can be opened. 590 */ 591 error = -EMFILE; 592 if (unlikely(fd >= end)) 593 goto out; 594 595 if (unlikely(fd >= fdt->max_fds)) { 596 error = expand_files(files, fd); 597 if (error < 0) 598 goto out; 599 600 goto repeat; 601 } 602 603 if (start <= files->next_fd) 604 files->next_fd = fd + 1; 605 606 __set_open_fd(fd, fdt, flags & O_CLOEXEC); 607 error = fd; 608 VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL); 609 610 out: 611 spin_unlock(&files->file_lock); 612 return error; 613 } 614 615 int __get_unused_fd_flags(unsigned flags, unsigned long nofile) 616 { 617 return alloc_fd(0, nofile, flags); 618 } 619 620 int get_unused_fd_flags(unsigned flags) 621 { 622 return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE)); 623 } 624 EXPORT_SYMBOL(get_unused_fd_flags); 625 626 static void __put_unused_fd(struct files_struct *files, unsigned int fd) 627 { 628 struct fdtable *fdt = files_fdtable(files); 629 __clear_open_fd(fd, fdt); 630 if (fd < files->next_fd) 631 files->next_fd = fd; 632 } 633 634 void put_unused_fd(unsigned int fd) 635 { 636 struct files_struct *files = current->files; 637 spin_lock(&files->file_lock); 638 __put_unused_fd(files, fd); 639 spin_unlock(&files->file_lock); 640 } 641 642 EXPORT_SYMBOL(put_unused_fd); 643 644 /* 645 * Install a file pointer in the fd array while it is being resized. 646 * 647 * We need to make sure our update to the array does not get lost as the resizing 648 * thread can be copying the content as we modify it. 649 * 650 * We have two ways to do it: 651 * - go off CPU waiting for resize_in_progress to clear 652 * - take the spin lock 653 * 654 * The latter is trivial to implement and saves us from having to might_sleep() 655 * for debugging purposes. 656 * 657 * This is moved out of line from fd_install() to convince gcc to optimize that 658 * routine better. 659 */ 660 static void noinline fd_install_slowpath(unsigned int fd, struct file *file) 661 { 662 struct files_struct *files = current->files; 663 struct fdtable *fdt; 664 665 spin_lock(&files->file_lock); 666 fdt = files_fdtable(files); 667 VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL); 668 rcu_assign_pointer(fdt->fd[fd], file); 669 spin_unlock(&files->file_lock); 670 } 671 672 /** 673 * fd_install - install a file pointer in the fd array 674 * @fd: file descriptor to install the file in 675 * @file: the file to install 676 * 677 * This consumes the "file" refcount, so callers should treat it 678 * as if they had called fput(file). 679 */ 680 void fd_install(unsigned int fd, struct file *file) 681 { 682 struct files_struct *files = current->files; 683 struct fdtable *fdt; 684 685 if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING))) 686 return; 687 688 rcu_read_lock_sched(); 689 if (unlikely(files->resize_in_progress)) { 690 rcu_read_unlock_sched(); 691 fd_install_slowpath(fd, file); 692 return; 693 } 694 /* coupled with smp_wmb() in expand_fdtable() */ 695 smp_rmb(); 696 fdt = rcu_dereference_sched(files->fdt); 697 VFS_BUG_ON(rcu_access_pointer(fdt->fd[fd]) != NULL); 698 rcu_assign_pointer(fdt->fd[fd], file); 699 rcu_read_unlock_sched(); 700 } 701 702 EXPORT_SYMBOL(fd_install); 703 704 /** 705 * file_close_fd_locked - return file associated with fd 706 * @files: file struct to retrieve file from 707 * @fd: file descriptor to retrieve file for 708 * 709 * Doesn't take a separate reference count. 710 * 711 * Context: files_lock must be held. 712 * 713 * Returns: The file associated with @fd (NULL if @fd is not open) 714 */ 715 struct file *file_close_fd_locked(struct files_struct *files, unsigned fd) 716 { 717 struct fdtable *fdt = files_fdtable(files); 718 struct file *file; 719 720 lockdep_assert_held(&files->file_lock); 721 722 if (fd >= fdt->max_fds) 723 return NULL; 724 725 fd = array_index_nospec(fd, fdt->max_fds); 726 file = rcu_dereference_raw(fdt->fd[fd]); 727 if (file) { 728 rcu_assign_pointer(fdt->fd[fd], NULL); 729 __put_unused_fd(files, fd); 730 } 731 return file; 732 } 733 734 int close_fd(unsigned fd) 735 { 736 struct files_struct *files = current->files; 737 struct file *file; 738 739 spin_lock(&files->file_lock); 740 file = file_close_fd_locked(files, fd); 741 spin_unlock(&files->file_lock); 742 if (!file) 743 return -EBADF; 744 745 return filp_close(file, files); 746 } 747 EXPORT_SYMBOL(close_fd); 748 749 /** 750 * last_fd - return last valid index into fd table 751 * @fdt: File descriptor table. 752 * 753 * Context: Either rcu read lock or files_lock must be held. 754 * 755 * Returns: Last valid index into fdtable. 756 */ 757 static inline unsigned last_fd(struct fdtable *fdt) 758 { 759 return fdt->max_fds - 1; 760 } 761 762 static inline void __range_cloexec(struct files_struct *cur_fds, 763 unsigned int fd, unsigned int max_fd) 764 { 765 struct fdtable *fdt; 766 767 /* make sure we're using the correct maximum value */ 768 spin_lock(&cur_fds->file_lock); 769 fdt = files_fdtable(cur_fds); 770 max_fd = min(last_fd(fdt), max_fd); 771 if (fd <= max_fd) 772 bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1); 773 spin_unlock(&cur_fds->file_lock); 774 } 775 776 static inline void __range_close(struct files_struct *files, unsigned int fd, 777 unsigned int max_fd) 778 { 779 struct file *file; 780 struct fdtable *fdt; 781 unsigned n; 782 783 spin_lock(&files->file_lock); 784 fdt = files_fdtable(files); 785 n = last_fd(fdt); 786 max_fd = min(max_fd, n); 787 788 for (fd = find_next_bit(fdt->open_fds, max_fd + 1, fd); 789 fd <= max_fd; 790 fd = find_next_bit(fdt->open_fds, max_fd + 1, fd + 1)) { 791 file = file_close_fd_locked(files, fd); 792 if (file) { 793 spin_unlock(&files->file_lock); 794 filp_close(file, files); 795 cond_resched(); 796 spin_lock(&files->file_lock); 797 fdt = files_fdtable(files); 798 } else if (need_resched()) { 799 spin_unlock(&files->file_lock); 800 cond_resched(); 801 spin_lock(&files->file_lock); 802 fdt = files_fdtable(files); 803 } 804 } 805 spin_unlock(&files->file_lock); 806 } 807 808 /** 809 * sys_close_range() - Close all file descriptors in a given range. 810 * 811 * @fd: starting file descriptor to close 812 * @max_fd: last file descriptor to close 813 * @flags: CLOSE_RANGE flags. 814 * 815 * This closes a range of file descriptors. All file descriptors 816 * from @fd up to and including @max_fd are closed. 817 * Currently, errors to close a given file descriptor are ignored. 818 */ 819 SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd, 820 unsigned int, flags) 821 { 822 struct task_struct *me = current; 823 struct files_struct *cur_fds = me->files, *fds = NULL; 824 825 if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC)) 826 return -EINVAL; 827 828 if (fd > max_fd) 829 return -EINVAL; 830 831 if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) { 832 struct fd_range range = {fd, max_fd}, *punch_hole = ⦥ 833 834 /* 835 * If the caller requested all fds to be made cloexec we always 836 * copy all of the file descriptors since they still want to 837 * use them. 838 */ 839 if (flags & CLOSE_RANGE_CLOEXEC) 840 punch_hole = NULL; 841 842 fds = dup_fd(cur_fds, punch_hole); 843 if (IS_ERR(fds)) 844 return PTR_ERR(fds); 845 /* 846 * We used to share our file descriptor table, and have now 847 * created a private one, make sure we're using it below. 848 */ 849 swap(cur_fds, fds); 850 } 851 852 if (flags & CLOSE_RANGE_CLOEXEC) 853 __range_cloexec(cur_fds, fd, max_fd); 854 else 855 __range_close(cur_fds, fd, max_fd); 856 857 if (fds) { 858 /* 859 * We're done closing the files we were supposed to. Time to install 860 * the new file descriptor table and drop the old one. 861 */ 862 task_lock(me); 863 me->files = cur_fds; 864 task_unlock(me); 865 put_files_struct(fds); 866 } 867 868 return 0; 869 } 870 871 /** 872 * file_close_fd - return file associated with fd 873 * @fd: file descriptor to retrieve file for 874 * 875 * Doesn't take a separate reference count. 876 * 877 * Returns: The file associated with @fd (NULL if @fd is not open) 878 */ 879 struct file *file_close_fd(unsigned int fd) 880 { 881 struct files_struct *files = current->files; 882 struct file *file; 883 884 spin_lock(&files->file_lock); 885 file = file_close_fd_locked(files, fd); 886 spin_unlock(&files->file_lock); 887 888 return file; 889 } 890 891 void do_close_on_exec(struct files_struct *files) 892 { 893 unsigned i; 894 struct fdtable *fdt; 895 896 /* exec unshares first */ 897 spin_lock(&files->file_lock); 898 for (i = 0; ; i++) { 899 unsigned long set; 900 unsigned fd = i * BITS_PER_LONG; 901 fdt = files_fdtable(files); 902 if (fd >= fdt->max_fds) 903 break; 904 set = fdt->close_on_exec[i]; 905 if (!set) 906 continue; 907 fdt->close_on_exec[i] = 0; 908 for ( ; set ; fd++, set >>= 1) { 909 struct file *file; 910 if (!(set & 1)) 911 continue; 912 file = fdt->fd[fd]; 913 if (!file) 914 continue; 915 rcu_assign_pointer(fdt->fd[fd], NULL); 916 __put_unused_fd(files, fd); 917 spin_unlock(&files->file_lock); 918 filp_close(file, files); 919 cond_resched(); 920 spin_lock(&files->file_lock); 921 } 922 923 } 924 spin_unlock(&files->file_lock); 925 } 926 927 static struct file *__get_file_rcu(struct file __rcu **f) 928 { 929 struct file __rcu *file; 930 struct file __rcu *file_reloaded; 931 struct file __rcu *file_reloaded_cmp; 932 933 file = rcu_dereference_raw(*f); 934 if (!file) 935 return NULL; 936 937 if (unlikely(!file_ref_get(&file->f_ref))) 938 return ERR_PTR(-EAGAIN); 939 940 file_reloaded = rcu_dereference_raw(*f); 941 942 /* 943 * Ensure that all accesses have a dependency on the load from 944 * rcu_dereference_raw() above so we get correct ordering 945 * between reuse/allocation and the pointer check below. 946 */ 947 file_reloaded_cmp = file_reloaded; 948 OPTIMIZER_HIDE_VAR(file_reloaded_cmp); 949 950 /* 951 * file_ref_get() above provided a full memory barrier when we 952 * acquired a reference. 953 * 954 * This is paired with the write barrier from assigning to the 955 * __rcu protected file pointer so that if that pointer still 956 * matches the current file, we know we have successfully 957 * acquired a reference to the right file. 958 * 959 * If the pointers don't match the file has been reallocated by 960 * SLAB_TYPESAFE_BY_RCU. 961 */ 962 if (file == file_reloaded_cmp) 963 return file_reloaded; 964 965 fput(file); 966 return ERR_PTR(-EAGAIN); 967 } 968 969 /** 970 * get_file_rcu - try go get a reference to a file under rcu 971 * @f: the file to get a reference on 972 * 973 * This function tries to get a reference on @f carefully verifying that 974 * @f hasn't been reused. 975 * 976 * This function should rarely have to be used and only by users who 977 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it. 978 * 979 * Return: Returns @f with the reference count increased or NULL. 980 */ 981 struct file *get_file_rcu(struct file __rcu **f) 982 { 983 for (;;) { 984 struct file __rcu *file; 985 986 file = __get_file_rcu(f); 987 if (!IS_ERR(file)) 988 return file; 989 } 990 } 991 EXPORT_SYMBOL_GPL(get_file_rcu); 992 993 /** 994 * get_file_active - try go get a reference to a file 995 * @f: the file to get a reference on 996 * 997 * In contast to get_file_rcu() the pointer itself isn't part of the 998 * reference counting. 999 * 1000 * This function should rarely have to be used and only by users who 1001 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it. 1002 * 1003 * Return: Returns @f with the reference count increased or NULL. 1004 */ 1005 struct file *get_file_active(struct file **f) 1006 { 1007 struct file __rcu *file; 1008 1009 rcu_read_lock(); 1010 file = __get_file_rcu(f); 1011 rcu_read_unlock(); 1012 if (IS_ERR(file)) 1013 file = NULL; 1014 return file; 1015 } 1016 EXPORT_SYMBOL_GPL(get_file_active); 1017 1018 static inline struct file *__fget_files_rcu(struct files_struct *files, 1019 unsigned int fd, fmode_t mask) 1020 { 1021 for (;;) { 1022 struct file *file; 1023 struct fdtable *fdt = rcu_dereference_raw(files->fdt); 1024 struct file __rcu **fdentry; 1025 unsigned long nospec_mask; 1026 1027 /* Mask is a 0 for invalid fd's, ~0 for valid ones */ 1028 nospec_mask = array_index_mask_nospec(fd, fdt->max_fds); 1029 1030 /* 1031 * fdentry points to the 'fd' offset, or fdt->fd[0]. 1032 * Loading from fdt->fd[0] is always safe, because the 1033 * array always exists. 1034 */ 1035 fdentry = fdt->fd + (fd & nospec_mask); 1036 1037 /* Do the load, then mask any invalid result */ 1038 file = rcu_dereference_raw(*fdentry); 1039 file = (void *)(nospec_mask & (unsigned long)file); 1040 if (unlikely(!file)) 1041 return NULL; 1042 1043 /* 1044 * Ok, we have a file pointer that was valid at 1045 * some point, but it might have become stale since. 1046 * 1047 * We need to confirm it by incrementing the refcount 1048 * and then check the lookup again. 1049 * 1050 * file_ref_get() gives us a full memory barrier. We 1051 * only really need an 'acquire' one to protect the 1052 * loads below, but we don't have that. 1053 */ 1054 if (unlikely(!file_ref_get(&file->f_ref))) 1055 continue; 1056 1057 /* 1058 * Such a race can take two forms: 1059 * 1060 * (a) the file ref already went down to zero and the 1061 * file hasn't been reused yet or the file count 1062 * isn't zero but the file has already been reused. 1063 * 1064 * (b) the file table entry has changed under us. 1065 * Note that we don't need to re-check the 'fdt->fd' 1066 * pointer having changed, because it always goes 1067 * hand-in-hand with 'fdt'. 1068 * 1069 * If so, we need to put our ref and try again. 1070 */ 1071 if (unlikely(file != rcu_dereference_raw(*fdentry)) || 1072 unlikely(rcu_dereference_raw(files->fdt) != fdt)) { 1073 fput(file); 1074 continue; 1075 } 1076 1077 /* 1078 * This isn't the file we're looking for or we're not 1079 * allowed to get a reference to it. 1080 */ 1081 if (unlikely(file->f_mode & mask)) { 1082 fput(file); 1083 return NULL; 1084 } 1085 1086 /* 1087 * Ok, we have a ref to the file, and checked that it 1088 * still exists. 1089 */ 1090 return file; 1091 } 1092 } 1093 1094 static struct file *__fget_files(struct files_struct *files, unsigned int fd, 1095 fmode_t mask) 1096 { 1097 struct file *file; 1098 1099 rcu_read_lock(); 1100 file = __fget_files_rcu(files, fd, mask); 1101 rcu_read_unlock(); 1102 1103 return file; 1104 } 1105 1106 static inline struct file *__fget(unsigned int fd, fmode_t mask) 1107 { 1108 return __fget_files(current->files, fd, mask); 1109 } 1110 1111 struct file *fget(unsigned int fd) 1112 { 1113 return __fget(fd, FMODE_PATH); 1114 } 1115 EXPORT_SYMBOL(fget); 1116 1117 struct file *fget_raw(unsigned int fd) 1118 { 1119 return __fget(fd, 0); 1120 } 1121 EXPORT_SYMBOL(fget_raw); 1122 1123 struct file *fget_task(struct task_struct *task, unsigned int fd) 1124 { 1125 struct file *file = NULL; 1126 1127 task_lock(task); 1128 if (task->files) 1129 file = __fget_files(task->files, fd, 0); 1130 task_unlock(task); 1131 1132 return file; 1133 } 1134 1135 struct file *fget_task_next(struct task_struct *task, unsigned int *ret_fd) 1136 { 1137 /* Must be called with rcu_read_lock held */ 1138 struct files_struct *files; 1139 unsigned int fd = *ret_fd; 1140 struct file *file = NULL; 1141 1142 task_lock(task); 1143 files = task->files; 1144 if (files) { 1145 rcu_read_lock(); 1146 for (; fd < files_fdtable(files)->max_fds; fd++) { 1147 file = __fget_files_rcu(files, fd, 0); 1148 if (file) 1149 break; 1150 } 1151 rcu_read_unlock(); 1152 } 1153 task_unlock(task); 1154 *ret_fd = fd; 1155 return file; 1156 } 1157 EXPORT_SYMBOL(fget_task_next); 1158 1159 /* 1160 * Lightweight file lookup - no refcnt increment if fd table isn't shared. 1161 * 1162 * You can use this instead of fget if you satisfy all of the following 1163 * conditions: 1164 * 1) You must call fput_light before exiting the syscall and returning control 1165 * to userspace (i.e. you cannot remember the returned struct file * after 1166 * returning to userspace). 1167 * 2) You must not call filp_close on the returned struct file * in between 1168 * calls to fget_light and fput_light. 1169 * 3) You must not clone the current task in between the calls to fget_light 1170 * and fput_light. 1171 * 1172 * The fput_needed flag returned by fget_light should be passed to the 1173 * corresponding fput_light. 1174 * 1175 * (As an exception to rule 2, you can call filp_close between fget_light and 1176 * fput_light provided that you capture a real refcount with get_file before 1177 * the call to filp_close, and ensure that this real refcount is fput *after* 1178 * the fput_light call.) 1179 * 1180 * See also the documentation in rust/kernel/file.rs. 1181 */ 1182 static inline struct fd __fget_light(unsigned int fd, fmode_t mask) 1183 { 1184 struct files_struct *files = current->files; 1185 struct file *file; 1186 1187 /* 1188 * If another thread is concurrently calling close_fd() followed 1189 * by put_files_struct(), we must not observe the old table 1190 * entry combined with the new refcount - otherwise we could 1191 * return a file that is concurrently being freed. 1192 * 1193 * atomic_read_acquire() pairs with atomic_dec_and_test() in 1194 * put_files_struct(). 1195 */ 1196 if (likely(atomic_read_acquire(&files->count) == 1)) { 1197 file = files_lookup_fd_raw(files, fd); 1198 if (!file || unlikely(file->f_mode & mask)) 1199 return EMPTY_FD; 1200 return BORROWED_FD(file); 1201 } else { 1202 file = __fget_files(files, fd, mask); 1203 if (!file) 1204 return EMPTY_FD; 1205 return CLONED_FD(file); 1206 } 1207 } 1208 struct fd fdget(unsigned int fd) 1209 { 1210 return __fget_light(fd, FMODE_PATH); 1211 } 1212 EXPORT_SYMBOL(fdget); 1213 1214 struct fd fdget_raw(unsigned int fd) 1215 { 1216 return __fget_light(fd, 0); 1217 } 1218 1219 /* 1220 * Try to avoid f_pos locking. We only need it if the 1221 * file is marked for FMODE_ATOMIC_POS, and it can be 1222 * accessed multiple ways. 1223 * 1224 * Always do it for directories, because pidfd_getfd() 1225 * can make a file accessible even if it otherwise would 1226 * not be, and for directories this is a correctness 1227 * issue, not a "POSIX requirement". 1228 */ 1229 static inline bool file_needs_f_pos_lock(struct file *file) 1230 { 1231 if (!(file->f_mode & FMODE_ATOMIC_POS)) 1232 return false; 1233 if (__file_ref_read_raw(&file->f_ref) != FILE_REF_ONEREF) 1234 return true; 1235 if (file->f_op->iterate_shared) 1236 return true; 1237 return false; 1238 } 1239 1240 bool file_seek_cur_needs_f_lock(struct file *file) 1241 { 1242 if (!(file->f_mode & FMODE_ATOMIC_POS) && !file->f_op->iterate_shared) 1243 return false; 1244 1245 /* 1246 * Note that we are not guaranteed to be called after fdget_pos() on 1247 * this file obj, in which case the caller is expected to provide the 1248 * appropriate locking. 1249 */ 1250 1251 return true; 1252 } 1253 1254 struct fd fdget_pos(unsigned int fd) 1255 { 1256 struct fd f = fdget(fd); 1257 struct file *file = fd_file(f); 1258 1259 if (likely(file) && file_needs_f_pos_lock(file)) { 1260 f.word |= FDPUT_POS_UNLOCK; 1261 mutex_lock(&file->f_pos_lock); 1262 } 1263 return f; 1264 } 1265 1266 void __f_unlock_pos(struct file *f) 1267 { 1268 mutex_unlock(&f->f_pos_lock); 1269 } 1270 1271 /* 1272 * We only lock f_pos if we have threads or if the file might be 1273 * shared with another process. In both cases we'll have an elevated 1274 * file count (done either by fdget() or by fork()). 1275 */ 1276 1277 void set_close_on_exec(unsigned int fd, int flag) 1278 { 1279 struct files_struct *files = current->files; 1280 spin_lock(&files->file_lock); 1281 __set_close_on_exec(fd, files_fdtable(files), flag); 1282 spin_unlock(&files->file_lock); 1283 } 1284 1285 bool get_close_on_exec(unsigned int fd) 1286 { 1287 bool res; 1288 rcu_read_lock(); 1289 res = close_on_exec(fd, current->files); 1290 rcu_read_unlock(); 1291 return res; 1292 } 1293 1294 static int do_dup2(struct files_struct *files, 1295 struct file *file, unsigned fd, unsigned flags) 1296 __releases(&files->file_lock) 1297 { 1298 struct file *tofree; 1299 struct fdtable *fdt; 1300 1301 /* 1302 * dup2() is expected to close the file installed in the target fd slot 1303 * (if any). However, userspace hand-picking a fd may be racing against 1304 * its own threads which happened to allocate it in open() et al but did 1305 * not populate it yet. 1306 * 1307 * Broadly speaking we may be racing against the following: 1308 * fd = get_unused_fd_flags(); // fd slot reserved, ->fd[fd] == NULL 1309 * file = hard_work_goes_here(); 1310 * fd_install(fd, file); // only now ->fd[fd] == file 1311 * 1312 * It is an invariant that a successfully allocated fd has a NULL entry 1313 * in the array until the matching fd_install(). 1314 * 1315 * If we fit the window, we have the fd to populate, yet no target file 1316 * to close. Trying to ignore it and install our new file would violate 1317 * the invariant and make fd_install() overwrite our file. 1318 * 1319 * Things can be done(tm) to handle this. However, the issue does not 1320 * concern legitimate programs and we only need to make sure the kernel 1321 * does not trip over it. 1322 * 1323 * The simplest way out is to return an error if we find ourselves here. 1324 * 1325 * POSIX is silent on the issue, we return -EBUSY. 1326 */ 1327 fdt = files_fdtable(files); 1328 fd = array_index_nospec(fd, fdt->max_fds); 1329 tofree = rcu_dereference_raw(fdt->fd[fd]); 1330 if (!tofree && fd_is_open(fd, fdt)) 1331 goto Ebusy; 1332 get_file(file); 1333 rcu_assign_pointer(fdt->fd[fd], file); 1334 __set_open_fd(fd, fdt, flags & O_CLOEXEC); 1335 spin_unlock(&files->file_lock); 1336 1337 if (tofree) 1338 filp_close(tofree, files); 1339 1340 return fd; 1341 1342 Ebusy: 1343 spin_unlock(&files->file_lock); 1344 return -EBUSY; 1345 } 1346 1347 int replace_fd(unsigned fd, struct file *file, unsigned flags) 1348 { 1349 int err; 1350 struct files_struct *files = current->files; 1351 1352 if (!file) 1353 return close_fd(fd); 1354 1355 if (fd >= rlimit(RLIMIT_NOFILE)) 1356 return -EBADF; 1357 1358 spin_lock(&files->file_lock); 1359 err = expand_files(files, fd); 1360 if (unlikely(err < 0)) 1361 goto out_unlock; 1362 err = do_dup2(files, file, fd, flags); 1363 if (err < 0) 1364 return err; 1365 return 0; 1366 1367 out_unlock: 1368 spin_unlock(&files->file_lock); 1369 return err; 1370 } 1371 1372 /** 1373 * receive_fd() - Install received file into file descriptor table 1374 * @file: struct file that was received from another process 1375 * @ufd: __user pointer to write new fd number to 1376 * @o_flags: the O_* flags to apply to the new fd entry 1377 * 1378 * Installs a received file into the file descriptor table, with appropriate 1379 * checks and count updates. Optionally writes the fd number to userspace, if 1380 * @ufd is non-NULL. 1381 * 1382 * This helper handles its own reference counting of the incoming 1383 * struct file. 1384 * 1385 * Returns newly install fd or -ve on error. 1386 */ 1387 int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags) 1388 { 1389 int error; 1390 1391 error = security_file_receive(file); 1392 if (error) 1393 return error; 1394 1395 FD_PREPARE(fdf, o_flags, file); 1396 if (fdf.err) 1397 return fdf.err; 1398 get_file(file); 1399 1400 if (ufd) { 1401 error = put_user(fd_prepare_fd(fdf), ufd); 1402 if (error) 1403 return error; 1404 } 1405 1406 __receive_sock(fd_prepare_file(fdf)); 1407 return fd_publish(fdf); 1408 } 1409 EXPORT_SYMBOL_GPL(receive_fd); 1410 1411 int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags) 1412 { 1413 int error; 1414 1415 error = security_file_receive(file); 1416 if (error) 1417 return error; 1418 error = replace_fd(new_fd, file, o_flags); 1419 if (error) 1420 return error; 1421 __receive_sock(file); 1422 return new_fd; 1423 } 1424 1425 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags) 1426 { 1427 int err = -EBADF; 1428 struct file *file; 1429 struct files_struct *files = current->files; 1430 1431 if ((flags & ~O_CLOEXEC) != 0) 1432 return -EINVAL; 1433 1434 if (unlikely(oldfd == newfd)) 1435 return -EINVAL; 1436 1437 if (newfd >= rlimit(RLIMIT_NOFILE)) 1438 return -EBADF; 1439 1440 spin_lock(&files->file_lock); 1441 err = expand_files(files, newfd); 1442 file = files_lookup_fd_locked(files, oldfd); 1443 if (unlikely(!file)) 1444 goto Ebadf; 1445 if (unlikely(err < 0)) { 1446 if (err == -EMFILE) 1447 goto Ebadf; 1448 goto out_unlock; 1449 } 1450 return do_dup2(files, file, newfd, flags); 1451 1452 Ebadf: 1453 err = -EBADF; 1454 out_unlock: 1455 spin_unlock(&files->file_lock); 1456 return err; 1457 } 1458 1459 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags) 1460 { 1461 return ksys_dup3(oldfd, newfd, flags); 1462 } 1463 1464 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd) 1465 { 1466 if (unlikely(newfd == oldfd)) { /* corner case */ 1467 struct files_struct *files = current->files; 1468 struct file *f; 1469 int retval = oldfd; 1470 1471 rcu_read_lock(); 1472 f = __fget_files_rcu(files, oldfd, 0); 1473 if (!f) 1474 retval = -EBADF; 1475 rcu_read_unlock(); 1476 if (f) 1477 fput(f); 1478 return retval; 1479 } 1480 return ksys_dup3(oldfd, newfd, 0); 1481 } 1482 1483 SYSCALL_DEFINE1(dup, unsigned int, fildes) 1484 { 1485 int ret = -EBADF; 1486 struct file *file = fget_raw(fildes); 1487 1488 if (file) { 1489 ret = get_unused_fd_flags(0); 1490 if (ret >= 0) 1491 fd_install(ret, file); 1492 else 1493 fput(file); 1494 } 1495 return ret; 1496 } 1497 1498 int f_dupfd(unsigned int from, struct file *file, unsigned flags) 1499 { 1500 unsigned long nofile = rlimit(RLIMIT_NOFILE); 1501 int err; 1502 if (from >= nofile) 1503 return -EINVAL; 1504 err = alloc_fd(from, nofile, flags); 1505 if (err >= 0) { 1506 get_file(file); 1507 fd_install(err, file); 1508 } 1509 return err; 1510 } 1511 1512 int iterate_fd(struct files_struct *files, unsigned n, 1513 int (*f)(const void *, struct file *, unsigned), 1514 const void *p) 1515 { 1516 struct fdtable *fdt; 1517 int res = 0; 1518 if (!files) 1519 return 0; 1520 spin_lock(&files->file_lock); 1521 for (fdt = files_fdtable(files); n < fdt->max_fds; n++) { 1522 struct file *file; 1523 file = rcu_dereference_check_fdtable(files, fdt->fd[n]); 1524 if (!file) 1525 continue; 1526 res = f(p, file, n); 1527 if (res) 1528 break; 1529 } 1530 spin_unlock(&files->file_lock); 1531 return res; 1532 } 1533 EXPORT_SYMBOL(iterate_fd); 1534