xref: /linux/fs/file.c (revision 1cbfb828e05171ca2dd77b5988d068e6872480fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/file.c
4  *
5  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6  *
7  *  Manage the dynamic fd arrays in the process files_struct.
8  */
9 
10 #include <linux/syscalls.h>
11 #include <linux/export.h>
12 #include <linux/fs.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/close_range.h>
23 #include <linux/file_ref.h>
24 #include <net/sock.h>
25 #include <linux/init_task.h>
26 
27 #include "internal.h"
28 
29 /**
30  * __file_ref_put - Slowpath of file_ref_put()
31  * @ref:	Pointer to the reference count
32  * @cnt:	Current reference count
33  *
34  * Invoked when the reference count is outside of the valid zone.
35  *
36  * Return:
37  *	True if this was the last reference with no future references
38  *	possible. This signals the caller that it can safely schedule the
39  *	object, which is protected by the reference counter, for
40  *	deconstruction.
41  *
42  *	False if there are still active references or the put() raced
43  *	with a concurrent get()/put() pair. Caller is not allowed to
44  *	deconstruct the protected object.
45  */
46 bool __file_ref_put(file_ref_t *ref, unsigned long cnt)
47 {
48 	/* Did this drop the last reference? */
49 	if (likely(cnt == FILE_REF_NOREF)) {
50 		/*
51 		 * Carefully try to set the reference count to FILE_REF_DEAD.
52 		 *
53 		 * This can fail if a concurrent get() operation has
54 		 * elevated it again or the corresponding put() even marked
55 		 * it dead already. Both are valid situations and do not
56 		 * require a retry. If this fails the caller is not
57 		 * allowed to deconstruct the object.
58 		 */
59 		if (!atomic_long_try_cmpxchg_release(&ref->refcnt, &cnt, FILE_REF_DEAD))
60 			return false;
61 
62 		/*
63 		 * The caller can safely schedule the object for
64 		 * deconstruction. Provide acquire ordering.
65 		 */
66 		smp_acquire__after_ctrl_dep();
67 		return true;
68 	}
69 
70 	/*
71 	 * If the reference count was already in the dead zone, then this
72 	 * put() operation is imbalanced. Warn, put the reference count back to
73 	 * DEAD and tell the caller to not deconstruct the object.
74 	 */
75 	if (WARN_ONCE(cnt >= FILE_REF_RELEASED, "imbalanced put on file reference count")) {
76 		atomic_long_set(&ref->refcnt, FILE_REF_DEAD);
77 		return false;
78 	}
79 
80 	/*
81 	 * This is a put() operation on a saturated refcount. Restore the
82 	 * mean saturation value and tell the caller to not deconstruct the
83 	 * object.
84 	 */
85 	if (cnt > FILE_REF_MAXREF)
86 		atomic_long_set(&ref->refcnt, FILE_REF_SATURATED);
87 	return false;
88 }
89 EXPORT_SYMBOL_GPL(__file_ref_put);
90 
91 unsigned int sysctl_nr_open __read_mostly = 1024*1024;
92 unsigned int sysctl_nr_open_min = BITS_PER_LONG;
93 /* our min() is unusable in constant expressions ;-/ */
94 #define __const_min(x, y) ((x) < (y) ? (x) : (y))
95 unsigned int sysctl_nr_open_max =
96 	__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
97 
98 static void __free_fdtable(struct fdtable *fdt)
99 {
100 	kvfree(fdt->fd);
101 	kvfree(fdt->open_fds);
102 	kfree(fdt);
103 }
104 
105 static void free_fdtable_rcu(struct rcu_head *rcu)
106 {
107 	__free_fdtable(container_of(rcu, struct fdtable, rcu));
108 }
109 
110 #define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
111 #define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
112 
113 #define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds
114 /*
115  * Copy 'count' fd bits from the old table to the new table and clear the extra
116  * space if any.  This does not copy the file pointers.  Called with the files
117  * spinlock held for write.
118  */
119 static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
120 			    unsigned int copy_words)
121 {
122 	unsigned int nwords = fdt_words(nfdt);
123 
124 	bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds,
125 			copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
126 	bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec,
127 			copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
128 	bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits,
129 			copy_words, nwords);
130 }
131 
132 /*
133  * Copy all file descriptors from the old table to the new, expanded table and
134  * clear the extra space.  Called with the files spinlock held for write.
135  */
136 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
137 {
138 	size_t cpy, set;
139 
140 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
141 
142 	cpy = ofdt->max_fds * sizeof(struct file *);
143 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
144 	memcpy(nfdt->fd, ofdt->fd, cpy);
145 	memset((char *)nfdt->fd + cpy, 0, set);
146 
147 	copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt));
148 }
149 
150 /*
151  * Note how the fdtable bitmap allocations very much have to be a multiple of
152  * BITS_PER_LONG. This is not only because we walk those things in chunks of
153  * 'unsigned long' in some places, but simply because that is how the Linux
154  * kernel bitmaps are defined to work: they are not "bits in an array of bytes",
155  * they are very much "bits in an array of unsigned long".
156  */
157 static struct fdtable *alloc_fdtable(unsigned int slots_wanted)
158 {
159 	struct fdtable *fdt;
160 	unsigned int nr;
161 	void *data;
162 
163 	/*
164 	 * Figure out how many fds we actually want to support in this fdtable.
165 	 * Allocation steps are keyed to the size of the fdarray, since it
166 	 * grows far faster than any of the other dynamic data. We try to fit
167 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
168 	 * and growing in powers of two from there on.  Since we called only
169 	 * with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab
170 	 * already gives BITS_PER_LONG slots), the above boils down to
171 	 * 1.  use the smallest power of two large enough to give us that many
172 	 * slots.
173 	 * 2.  on 32bit skip 64 and 128 - the minimal capacity we want there is
174 	 * 256 slots (i.e. 1Kb fd array).
175 	 * 3.  on 64bit don't skip anything, 1Kb fd array means 128 slots there
176 	 * and we are never going to be asked for 64 or less.
177 	 */
178 	if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256)
179 		nr = 256;
180 	else
181 		nr = roundup_pow_of_two(slots_wanted);
182 	/*
183 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
184 	 * had been set lower between the check in expand_files() and here.
185 	 *
186 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
187 	 * bitmaps handling below becomes unpleasant, to put it mildly...
188 	 */
189 	if (unlikely(nr > sysctl_nr_open)) {
190 		nr = round_down(sysctl_nr_open, BITS_PER_LONG);
191 		if (nr < slots_wanted)
192 			return ERR_PTR(-EMFILE);
193 	}
194 
195 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
196 	if (!fdt)
197 		goto out;
198 	fdt->max_fds = nr;
199 	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
200 	if (!data)
201 		goto out_fdt;
202 	fdt->fd = data;
203 
204 	data = kvmalloc(max_t(size_t,
205 				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
206 				 GFP_KERNEL_ACCOUNT);
207 	if (!data)
208 		goto out_arr;
209 	fdt->open_fds = data;
210 	data += nr / BITS_PER_BYTE;
211 	fdt->close_on_exec = data;
212 	data += nr / BITS_PER_BYTE;
213 	fdt->full_fds_bits = data;
214 
215 	return fdt;
216 
217 out_arr:
218 	kvfree(fdt->fd);
219 out_fdt:
220 	kfree(fdt);
221 out:
222 	return ERR_PTR(-ENOMEM);
223 }
224 
225 /*
226  * Expand the file descriptor table.
227  * This function will allocate a new fdtable and both fd array and fdset, of
228  * the given size.
229  * Return <0 error code on error; 0 on successful completion.
230  * The files->file_lock should be held on entry, and will be held on exit.
231  */
232 static int expand_fdtable(struct files_struct *files, unsigned int nr)
233 	__releases(files->file_lock)
234 	__acquires(files->file_lock)
235 {
236 	struct fdtable *new_fdt, *cur_fdt;
237 
238 	spin_unlock(&files->file_lock);
239 	new_fdt = alloc_fdtable(nr + 1);
240 
241 	/* make sure all fd_install() have seen resize_in_progress
242 	 * or have finished their rcu_read_lock_sched() section.
243 	 */
244 	if (atomic_read(&files->count) > 1)
245 		synchronize_rcu();
246 
247 	spin_lock(&files->file_lock);
248 	if (IS_ERR(new_fdt))
249 		return PTR_ERR(new_fdt);
250 	cur_fdt = files_fdtable(files);
251 	BUG_ON(nr < cur_fdt->max_fds);
252 	copy_fdtable(new_fdt, cur_fdt);
253 	rcu_assign_pointer(files->fdt, new_fdt);
254 	if (cur_fdt != &files->fdtab)
255 		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
256 	/* coupled with smp_rmb() in fd_install() */
257 	smp_wmb();
258 	return 0;
259 }
260 
261 /*
262  * Expand files.
263  * This function will expand the file structures, if the requested size exceeds
264  * the current capacity and there is room for expansion.
265  * Return <0 error code on error; 0 on success.
266  * The files->file_lock should be held on entry, and will be held on exit.
267  */
268 static int expand_files(struct files_struct *files, unsigned int nr)
269 	__releases(files->file_lock)
270 	__acquires(files->file_lock)
271 {
272 	struct fdtable *fdt;
273 	int error;
274 
275 repeat:
276 	fdt = files_fdtable(files);
277 
278 	/* Do we need to expand? */
279 	if (nr < fdt->max_fds)
280 		return 0;
281 
282 	if (unlikely(files->resize_in_progress)) {
283 		spin_unlock(&files->file_lock);
284 		wait_event(files->resize_wait, !files->resize_in_progress);
285 		spin_lock(&files->file_lock);
286 		goto repeat;
287 	}
288 
289 	/* Can we expand? */
290 	if (unlikely(nr >= sysctl_nr_open))
291 		return -EMFILE;
292 
293 	/* All good, so we try */
294 	files->resize_in_progress = true;
295 	error = expand_fdtable(files, nr);
296 	files->resize_in_progress = false;
297 
298 	wake_up_all(&files->resize_wait);
299 	return error;
300 }
301 
302 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt,
303 				       bool set)
304 {
305 	if (set) {
306 		__set_bit(fd, fdt->close_on_exec);
307 	} else {
308 		if (test_bit(fd, fdt->close_on_exec))
309 			__clear_bit(fd, fdt->close_on_exec);
310 	}
311 }
312 
313 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt, bool set)
314 {
315 	__set_bit(fd, fdt->open_fds);
316 	__set_close_on_exec(fd, fdt, set);
317 	fd /= BITS_PER_LONG;
318 	if (!~fdt->open_fds[fd])
319 		__set_bit(fd, fdt->full_fds_bits);
320 }
321 
322 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
323 {
324 	__clear_bit(fd, fdt->open_fds);
325 	fd /= BITS_PER_LONG;
326 	if (test_bit(fd, fdt->full_fds_bits))
327 		__clear_bit(fd, fdt->full_fds_bits);
328 }
329 
330 static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt)
331 {
332 	return test_bit(fd, fdt->open_fds);
333 }
334 
335 /*
336  * Note that a sane fdtable size always has to be a multiple of
337  * BITS_PER_LONG, since we have bitmaps that are sized by this.
338  *
339  * punch_hole is optional - when close_range() is asked to unshare
340  * and close, we don't need to copy descriptors in that range, so
341  * a smaller cloned descriptor table might suffice if the last
342  * currently opened descriptor falls into that range.
343  */
344 static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole)
345 {
346 	unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds);
347 
348 	if (last == fdt->max_fds)
349 		return NR_OPEN_DEFAULT;
350 	if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) {
351 		last = find_last_bit(fdt->open_fds, punch_hole->from);
352 		if (last == punch_hole->from)
353 			return NR_OPEN_DEFAULT;
354 	}
355 	return ALIGN(last + 1, BITS_PER_LONG);
356 }
357 
358 /*
359  * Allocate a new descriptor table and copy contents from the passed in
360  * instance.  Returns a pointer to cloned table on success, ERR_PTR()
361  * on failure.  For 'punch_hole' see sane_fdtable_size().
362  */
363 struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole)
364 {
365 	struct files_struct *newf;
366 	struct file **old_fds, **new_fds;
367 	unsigned int open_files, i;
368 	struct fdtable *old_fdt, *new_fdt;
369 
370 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
371 	if (!newf)
372 		return ERR_PTR(-ENOMEM);
373 
374 	atomic_set(&newf->count, 1);
375 
376 	spin_lock_init(&newf->file_lock);
377 	newf->resize_in_progress = false;
378 	init_waitqueue_head(&newf->resize_wait);
379 	newf->next_fd = 0;
380 	new_fdt = &newf->fdtab;
381 	new_fdt->max_fds = NR_OPEN_DEFAULT;
382 	new_fdt->close_on_exec = newf->close_on_exec_init;
383 	new_fdt->open_fds = newf->open_fds_init;
384 	new_fdt->full_fds_bits = newf->full_fds_bits_init;
385 	new_fdt->fd = &newf->fd_array[0];
386 
387 	spin_lock(&oldf->file_lock);
388 	old_fdt = files_fdtable(oldf);
389 	open_files = sane_fdtable_size(old_fdt, punch_hole);
390 
391 	/*
392 	 * Check whether we need to allocate a larger fd array and fd set.
393 	 */
394 	while (unlikely(open_files > new_fdt->max_fds)) {
395 		spin_unlock(&oldf->file_lock);
396 
397 		if (new_fdt != &newf->fdtab)
398 			__free_fdtable(new_fdt);
399 
400 		new_fdt = alloc_fdtable(open_files);
401 		if (IS_ERR(new_fdt)) {
402 			kmem_cache_free(files_cachep, newf);
403 			return ERR_CAST(new_fdt);
404 		}
405 
406 		/*
407 		 * Reacquire the oldf lock and a pointer to its fd table
408 		 * who knows it may have a new bigger fd table. We need
409 		 * the latest pointer.
410 		 */
411 		spin_lock(&oldf->file_lock);
412 		old_fdt = files_fdtable(oldf);
413 		open_files = sane_fdtable_size(old_fdt, punch_hole);
414 	}
415 
416 	copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG);
417 
418 	old_fds = old_fdt->fd;
419 	new_fds = new_fdt->fd;
420 
421 	for (i = open_files; i != 0; i--) {
422 		struct file *f = *old_fds++;
423 		if (f) {
424 			get_file(f);
425 		} else {
426 			/*
427 			 * The fd may be claimed in the fd bitmap but not yet
428 			 * instantiated in the files array if a sibling thread
429 			 * is partway through open().  So make sure that this
430 			 * fd is available to the new process.
431 			 */
432 			__clear_open_fd(open_files - i, new_fdt);
433 		}
434 		rcu_assign_pointer(*new_fds++, f);
435 	}
436 	spin_unlock(&oldf->file_lock);
437 
438 	/* clear the remainder */
439 	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
440 
441 	rcu_assign_pointer(newf->fdt, new_fdt);
442 
443 	return newf;
444 }
445 
446 static struct fdtable *close_files(struct files_struct * files)
447 {
448 	/*
449 	 * It is safe to dereference the fd table without RCU or
450 	 * ->file_lock because this is the last reference to the
451 	 * files structure.
452 	 */
453 	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
454 	unsigned int i, j = 0;
455 
456 	for (;;) {
457 		unsigned long set;
458 		i = j * BITS_PER_LONG;
459 		if (i >= fdt->max_fds)
460 			break;
461 		set = fdt->open_fds[j++];
462 		while (set) {
463 			if (set & 1) {
464 				struct file *file = fdt->fd[i];
465 				if (file) {
466 					filp_close(file, files);
467 					cond_resched();
468 				}
469 			}
470 			i++;
471 			set >>= 1;
472 		}
473 	}
474 
475 	return fdt;
476 }
477 
478 void put_files_struct(struct files_struct *files)
479 {
480 	if (atomic_dec_and_test(&files->count)) {
481 		struct fdtable *fdt = close_files(files);
482 
483 		/* free the arrays if they are not embedded */
484 		if (fdt != &files->fdtab)
485 			__free_fdtable(fdt);
486 		kmem_cache_free(files_cachep, files);
487 	}
488 }
489 
490 void exit_files(struct task_struct *tsk)
491 {
492 	struct files_struct * files = tsk->files;
493 
494 	if (files) {
495 		task_lock(tsk);
496 		tsk->files = NULL;
497 		task_unlock(tsk);
498 		put_files_struct(files);
499 	}
500 }
501 
502 struct files_struct init_files = {
503 	.count		= ATOMIC_INIT(1),
504 	.fdt		= &init_files.fdtab,
505 	.fdtab		= {
506 		.max_fds	= NR_OPEN_DEFAULT,
507 		.fd		= &init_files.fd_array[0],
508 		.close_on_exec	= init_files.close_on_exec_init,
509 		.open_fds	= init_files.open_fds_init,
510 		.full_fds_bits	= init_files.full_fds_bits_init,
511 	},
512 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
513 	.resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
514 };
515 
516 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
517 {
518 	unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */
519 	unsigned int maxbit = maxfd / BITS_PER_LONG;
520 	unsigned int bitbit = start / BITS_PER_LONG;
521 	unsigned int bit;
522 
523 	/*
524 	 * Try to avoid looking at the second level bitmap
525 	 */
526 	bit = find_next_zero_bit(&fdt->open_fds[bitbit], BITS_PER_LONG,
527 				 start & (BITS_PER_LONG - 1));
528 	if (bit < BITS_PER_LONG)
529 		return bit + bitbit * BITS_PER_LONG;
530 
531 	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
532 	if (bitbit >= maxfd)
533 		return maxfd;
534 	if (bitbit > start)
535 		start = bitbit;
536 	return find_next_zero_bit(fdt->open_fds, maxfd, start);
537 }
538 
539 /*
540  * allocate a file descriptor, mark it busy.
541  */
542 static int alloc_fd(unsigned start, unsigned end, unsigned flags)
543 {
544 	struct files_struct *files = current->files;
545 	unsigned int fd;
546 	int error;
547 	struct fdtable *fdt;
548 
549 	spin_lock(&files->file_lock);
550 repeat:
551 	fdt = files_fdtable(files);
552 	fd = start;
553 	if (fd < files->next_fd)
554 		fd = files->next_fd;
555 
556 	if (likely(fd < fdt->max_fds))
557 		fd = find_next_fd(fdt, fd);
558 
559 	/*
560 	 * N.B. For clone tasks sharing a files structure, this test
561 	 * will limit the total number of files that can be opened.
562 	 */
563 	error = -EMFILE;
564 	if (unlikely(fd >= end))
565 		goto out;
566 
567 	if (unlikely(fd >= fdt->max_fds)) {
568 		error = expand_files(files, fd);
569 		if (error < 0)
570 			goto out;
571 
572 		goto repeat;
573 	}
574 
575 	if (start <= files->next_fd)
576 		files->next_fd = fd + 1;
577 
578 	__set_open_fd(fd, fdt, flags & O_CLOEXEC);
579 	error = fd;
580 
581 out:
582 	spin_unlock(&files->file_lock);
583 	return error;
584 }
585 
586 int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
587 {
588 	return alloc_fd(0, nofile, flags);
589 }
590 
591 int get_unused_fd_flags(unsigned flags)
592 {
593 	return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
594 }
595 EXPORT_SYMBOL(get_unused_fd_flags);
596 
597 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
598 {
599 	struct fdtable *fdt = files_fdtable(files);
600 	__clear_open_fd(fd, fdt);
601 	if (fd < files->next_fd)
602 		files->next_fd = fd;
603 }
604 
605 void put_unused_fd(unsigned int fd)
606 {
607 	struct files_struct *files = current->files;
608 	spin_lock(&files->file_lock);
609 	__put_unused_fd(files, fd);
610 	spin_unlock(&files->file_lock);
611 }
612 
613 EXPORT_SYMBOL(put_unused_fd);
614 
615 /*
616  * Install a file pointer in the fd array.
617  *
618  * The VFS is full of places where we drop the files lock between
619  * setting the open_fds bitmap and installing the file in the file
620  * array.  At any such point, we are vulnerable to a dup2() race
621  * installing a file in the array before us.  We need to detect this and
622  * fput() the struct file we are about to overwrite in this case.
623  *
624  * It should never happen - if we allow dup2() do it, _really_ bad things
625  * will follow.
626  *
627  * This consumes the "file" refcount, so callers should treat it
628  * as if they had called fput(file).
629  */
630 
631 void fd_install(unsigned int fd, struct file *file)
632 {
633 	struct files_struct *files = current->files;
634 	struct fdtable *fdt;
635 
636 	if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING)))
637 		return;
638 
639 	rcu_read_lock_sched();
640 
641 	if (unlikely(files->resize_in_progress)) {
642 		rcu_read_unlock_sched();
643 		spin_lock(&files->file_lock);
644 		fdt = files_fdtable(files);
645 		WARN_ON(fdt->fd[fd] != NULL);
646 		rcu_assign_pointer(fdt->fd[fd], file);
647 		spin_unlock(&files->file_lock);
648 		return;
649 	}
650 	/* coupled with smp_wmb() in expand_fdtable() */
651 	smp_rmb();
652 	fdt = rcu_dereference_sched(files->fdt);
653 	BUG_ON(fdt->fd[fd] != NULL);
654 	rcu_assign_pointer(fdt->fd[fd], file);
655 	rcu_read_unlock_sched();
656 }
657 
658 EXPORT_SYMBOL(fd_install);
659 
660 /**
661  * file_close_fd_locked - return file associated with fd
662  * @files: file struct to retrieve file from
663  * @fd: file descriptor to retrieve file for
664  *
665  * Doesn't take a separate reference count.
666  *
667  * Context: files_lock must be held.
668  *
669  * Returns: The file associated with @fd (NULL if @fd is not open)
670  */
671 struct file *file_close_fd_locked(struct files_struct *files, unsigned fd)
672 {
673 	struct fdtable *fdt = files_fdtable(files);
674 	struct file *file;
675 
676 	lockdep_assert_held(&files->file_lock);
677 
678 	if (fd >= fdt->max_fds)
679 		return NULL;
680 
681 	fd = array_index_nospec(fd, fdt->max_fds);
682 	file = fdt->fd[fd];
683 	if (file) {
684 		rcu_assign_pointer(fdt->fd[fd], NULL);
685 		__put_unused_fd(files, fd);
686 	}
687 	return file;
688 }
689 
690 int close_fd(unsigned fd)
691 {
692 	struct files_struct *files = current->files;
693 	struct file *file;
694 
695 	spin_lock(&files->file_lock);
696 	file = file_close_fd_locked(files, fd);
697 	spin_unlock(&files->file_lock);
698 	if (!file)
699 		return -EBADF;
700 
701 	return filp_close(file, files);
702 }
703 EXPORT_SYMBOL(close_fd);
704 
705 /**
706  * last_fd - return last valid index into fd table
707  * @fdt: File descriptor table.
708  *
709  * Context: Either rcu read lock or files_lock must be held.
710  *
711  * Returns: Last valid index into fdtable.
712  */
713 static inline unsigned last_fd(struct fdtable *fdt)
714 {
715 	return fdt->max_fds - 1;
716 }
717 
718 static inline void __range_cloexec(struct files_struct *cur_fds,
719 				   unsigned int fd, unsigned int max_fd)
720 {
721 	struct fdtable *fdt;
722 
723 	/* make sure we're using the correct maximum value */
724 	spin_lock(&cur_fds->file_lock);
725 	fdt = files_fdtable(cur_fds);
726 	max_fd = min(last_fd(fdt), max_fd);
727 	if (fd <= max_fd)
728 		bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
729 	spin_unlock(&cur_fds->file_lock);
730 }
731 
732 static inline void __range_close(struct files_struct *files, unsigned int fd,
733 				 unsigned int max_fd)
734 {
735 	struct file *file;
736 	unsigned n;
737 
738 	spin_lock(&files->file_lock);
739 	n = last_fd(files_fdtable(files));
740 	max_fd = min(max_fd, n);
741 
742 	for (; fd <= max_fd; fd++) {
743 		file = file_close_fd_locked(files, fd);
744 		if (file) {
745 			spin_unlock(&files->file_lock);
746 			filp_close(file, files);
747 			cond_resched();
748 			spin_lock(&files->file_lock);
749 		} else if (need_resched()) {
750 			spin_unlock(&files->file_lock);
751 			cond_resched();
752 			spin_lock(&files->file_lock);
753 		}
754 	}
755 	spin_unlock(&files->file_lock);
756 }
757 
758 /**
759  * sys_close_range() - Close all file descriptors in a given range.
760  *
761  * @fd:     starting file descriptor to close
762  * @max_fd: last file descriptor to close
763  * @flags:  CLOSE_RANGE flags.
764  *
765  * This closes a range of file descriptors. All file descriptors
766  * from @fd up to and including @max_fd are closed.
767  * Currently, errors to close a given file descriptor are ignored.
768  */
769 SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd,
770 		unsigned int, flags)
771 {
772 	struct task_struct *me = current;
773 	struct files_struct *cur_fds = me->files, *fds = NULL;
774 
775 	if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
776 		return -EINVAL;
777 
778 	if (fd > max_fd)
779 		return -EINVAL;
780 
781 	if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) {
782 		struct fd_range range = {fd, max_fd}, *punch_hole = &range;
783 
784 		/*
785 		 * If the caller requested all fds to be made cloexec we always
786 		 * copy all of the file descriptors since they still want to
787 		 * use them.
788 		 */
789 		if (flags & CLOSE_RANGE_CLOEXEC)
790 			punch_hole = NULL;
791 
792 		fds = dup_fd(cur_fds, punch_hole);
793 		if (IS_ERR(fds))
794 			return PTR_ERR(fds);
795 		/*
796 		 * We used to share our file descriptor table, and have now
797 		 * created a private one, make sure we're using it below.
798 		 */
799 		swap(cur_fds, fds);
800 	}
801 
802 	if (flags & CLOSE_RANGE_CLOEXEC)
803 		__range_cloexec(cur_fds, fd, max_fd);
804 	else
805 		__range_close(cur_fds, fd, max_fd);
806 
807 	if (fds) {
808 		/*
809 		 * We're done closing the files we were supposed to. Time to install
810 		 * the new file descriptor table and drop the old one.
811 		 */
812 		task_lock(me);
813 		me->files = cur_fds;
814 		task_unlock(me);
815 		put_files_struct(fds);
816 	}
817 
818 	return 0;
819 }
820 
821 /**
822  * file_close_fd - return file associated with fd
823  * @fd: file descriptor to retrieve file for
824  *
825  * Doesn't take a separate reference count.
826  *
827  * Returns: The file associated with @fd (NULL if @fd is not open)
828  */
829 struct file *file_close_fd(unsigned int fd)
830 {
831 	struct files_struct *files = current->files;
832 	struct file *file;
833 
834 	spin_lock(&files->file_lock);
835 	file = file_close_fd_locked(files, fd);
836 	spin_unlock(&files->file_lock);
837 
838 	return file;
839 }
840 
841 void do_close_on_exec(struct files_struct *files)
842 {
843 	unsigned i;
844 	struct fdtable *fdt;
845 
846 	/* exec unshares first */
847 	spin_lock(&files->file_lock);
848 	for (i = 0; ; i++) {
849 		unsigned long set;
850 		unsigned fd = i * BITS_PER_LONG;
851 		fdt = files_fdtable(files);
852 		if (fd >= fdt->max_fds)
853 			break;
854 		set = fdt->close_on_exec[i];
855 		if (!set)
856 			continue;
857 		fdt->close_on_exec[i] = 0;
858 		for ( ; set ; fd++, set >>= 1) {
859 			struct file *file;
860 			if (!(set & 1))
861 				continue;
862 			file = fdt->fd[fd];
863 			if (!file)
864 				continue;
865 			rcu_assign_pointer(fdt->fd[fd], NULL);
866 			__put_unused_fd(files, fd);
867 			spin_unlock(&files->file_lock);
868 			filp_close(file, files);
869 			cond_resched();
870 			spin_lock(&files->file_lock);
871 		}
872 
873 	}
874 	spin_unlock(&files->file_lock);
875 }
876 
877 static struct file *__get_file_rcu(struct file __rcu **f)
878 {
879 	struct file __rcu *file;
880 	struct file __rcu *file_reloaded;
881 	struct file __rcu *file_reloaded_cmp;
882 
883 	file = rcu_dereference_raw(*f);
884 	if (!file)
885 		return NULL;
886 
887 	if (unlikely(!file_ref_get(&file->f_ref)))
888 		return ERR_PTR(-EAGAIN);
889 
890 	file_reloaded = rcu_dereference_raw(*f);
891 
892 	/*
893 	 * Ensure that all accesses have a dependency on the load from
894 	 * rcu_dereference_raw() above so we get correct ordering
895 	 * between reuse/allocation and the pointer check below.
896 	 */
897 	file_reloaded_cmp = file_reloaded;
898 	OPTIMIZER_HIDE_VAR(file_reloaded_cmp);
899 
900 	/*
901 	 * file_ref_get() above provided a full memory barrier when we
902 	 * acquired a reference.
903 	 *
904 	 * This is paired with the write barrier from assigning to the
905 	 * __rcu protected file pointer so that if that pointer still
906 	 * matches the current file, we know we have successfully
907 	 * acquired a reference to the right file.
908 	 *
909 	 * If the pointers don't match the file has been reallocated by
910 	 * SLAB_TYPESAFE_BY_RCU.
911 	 */
912 	if (file == file_reloaded_cmp)
913 		return file_reloaded;
914 
915 	fput(file);
916 	return ERR_PTR(-EAGAIN);
917 }
918 
919 /**
920  * get_file_rcu - try go get a reference to a file under rcu
921  * @f: the file to get a reference on
922  *
923  * This function tries to get a reference on @f carefully verifying that
924  * @f hasn't been reused.
925  *
926  * This function should rarely have to be used and only by users who
927  * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
928  *
929  * Return: Returns @f with the reference count increased or NULL.
930  */
931 struct file *get_file_rcu(struct file __rcu **f)
932 {
933 	for (;;) {
934 		struct file __rcu *file;
935 
936 		file = __get_file_rcu(f);
937 		if (!IS_ERR(file))
938 			return file;
939 	}
940 }
941 EXPORT_SYMBOL_GPL(get_file_rcu);
942 
943 /**
944  * get_file_active - try go get a reference to a file
945  * @f: the file to get a reference on
946  *
947  * In contast to get_file_rcu() the pointer itself isn't part of the
948  * reference counting.
949  *
950  * This function should rarely have to be used and only by users who
951  * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
952  *
953  * Return: Returns @f with the reference count increased or NULL.
954  */
955 struct file *get_file_active(struct file **f)
956 {
957 	struct file __rcu *file;
958 
959 	rcu_read_lock();
960 	file = __get_file_rcu(f);
961 	rcu_read_unlock();
962 	if (IS_ERR(file))
963 		file = NULL;
964 	return file;
965 }
966 EXPORT_SYMBOL_GPL(get_file_active);
967 
968 static inline struct file *__fget_files_rcu(struct files_struct *files,
969        unsigned int fd, fmode_t mask)
970 {
971 	for (;;) {
972 		struct file *file;
973 		struct fdtable *fdt = rcu_dereference_raw(files->fdt);
974 		struct file __rcu **fdentry;
975 		unsigned long nospec_mask;
976 
977 		/* Mask is a 0 for invalid fd's, ~0 for valid ones */
978 		nospec_mask = array_index_mask_nospec(fd, fdt->max_fds);
979 
980 		/*
981 		 * fdentry points to the 'fd' offset, or fdt->fd[0].
982 		 * Loading from fdt->fd[0] is always safe, because the
983 		 * array always exists.
984 		 */
985 		fdentry = fdt->fd + (fd & nospec_mask);
986 
987 		/* Do the load, then mask any invalid result */
988 		file = rcu_dereference_raw(*fdentry);
989 		file = (void *)(nospec_mask & (unsigned long)file);
990 		if (unlikely(!file))
991 			return NULL;
992 
993 		/*
994 		 * Ok, we have a file pointer that was valid at
995 		 * some point, but it might have become stale since.
996 		 *
997 		 * We need to confirm it by incrementing the refcount
998 		 * and then check the lookup again.
999 		 *
1000 		 * file_ref_get() gives us a full memory barrier. We
1001 		 * only really need an 'acquire' one to protect the
1002 		 * loads below, but we don't have that.
1003 		 */
1004 		if (unlikely(!file_ref_get(&file->f_ref)))
1005 			continue;
1006 
1007 		/*
1008 		 * Such a race can take two forms:
1009 		 *
1010 		 *  (a) the file ref already went down to zero and the
1011 		 *      file hasn't been reused yet or the file count
1012 		 *      isn't zero but the file has already been reused.
1013 		 *
1014 		 *  (b) the file table entry has changed under us.
1015 		 *       Note that we don't need to re-check the 'fdt->fd'
1016 		 *       pointer having changed, because it always goes
1017 		 *       hand-in-hand with 'fdt'.
1018 		 *
1019 		 * If so, we need to put our ref and try again.
1020 		 */
1021 		if (unlikely(file != rcu_dereference_raw(*fdentry)) ||
1022 		    unlikely(rcu_dereference_raw(files->fdt) != fdt)) {
1023 			fput(file);
1024 			continue;
1025 		}
1026 
1027 		/*
1028 		 * This isn't the file we're looking for or we're not
1029 		 * allowed to get a reference to it.
1030 		 */
1031 		if (unlikely(file->f_mode & mask)) {
1032 			fput(file);
1033 			return NULL;
1034 		}
1035 
1036 		/*
1037 		 * Ok, we have a ref to the file, and checked that it
1038 		 * still exists.
1039 		 */
1040 		return file;
1041 	}
1042 }
1043 
1044 static struct file *__fget_files(struct files_struct *files, unsigned int fd,
1045 				 fmode_t mask)
1046 {
1047 	struct file *file;
1048 
1049 	rcu_read_lock();
1050 	file = __fget_files_rcu(files, fd, mask);
1051 	rcu_read_unlock();
1052 
1053 	return file;
1054 }
1055 
1056 static inline struct file *__fget(unsigned int fd, fmode_t mask)
1057 {
1058 	return __fget_files(current->files, fd, mask);
1059 }
1060 
1061 struct file *fget(unsigned int fd)
1062 {
1063 	return __fget(fd, FMODE_PATH);
1064 }
1065 EXPORT_SYMBOL(fget);
1066 
1067 struct file *fget_raw(unsigned int fd)
1068 {
1069 	return __fget(fd, 0);
1070 }
1071 EXPORT_SYMBOL(fget_raw);
1072 
1073 struct file *fget_task(struct task_struct *task, unsigned int fd)
1074 {
1075 	struct file *file = NULL;
1076 
1077 	task_lock(task);
1078 	if (task->files)
1079 		file = __fget_files(task->files, fd, 0);
1080 	task_unlock(task);
1081 
1082 	return file;
1083 }
1084 
1085 struct file *fget_task_next(struct task_struct *task, unsigned int *ret_fd)
1086 {
1087 	/* Must be called with rcu_read_lock held */
1088 	struct files_struct *files;
1089 	unsigned int fd = *ret_fd;
1090 	struct file *file = NULL;
1091 
1092 	task_lock(task);
1093 	files = task->files;
1094 	if (files) {
1095 		rcu_read_lock();
1096 		for (; fd < files_fdtable(files)->max_fds; fd++) {
1097 			file = __fget_files_rcu(files, fd, 0);
1098 			if (file)
1099 				break;
1100 		}
1101 		rcu_read_unlock();
1102 	}
1103 	task_unlock(task);
1104 	*ret_fd = fd;
1105 	return file;
1106 }
1107 EXPORT_SYMBOL(fget_task_next);
1108 
1109 /*
1110  * Lightweight file lookup - no refcnt increment if fd table isn't shared.
1111  *
1112  * You can use this instead of fget if you satisfy all of the following
1113  * conditions:
1114  * 1) You must call fput_light before exiting the syscall and returning control
1115  *    to userspace (i.e. you cannot remember the returned struct file * after
1116  *    returning to userspace).
1117  * 2) You must not call filp_close on the returned struct file * in between
1118  *    calls to fget_light and fput_light.
1119  * 3) You must not clone the current task in between the calls to fget_light
1120  *    and fput_light.
1121  *
1122  * The fput_needed flag returned by fget_light should be passed to the
1123  * corresponding fput_light.
1124  *
1125  * (As an exception to rule 2, you can call filp_close between fget_light and
1126  * fput_light provided that you capture a real refcount with get_file before
1127  * the call to filp_close, and ensure that this real refcount is fput *after*
1128  * the fput_light call.)
1129  *
1130  * See also the documentation in rust/kernel/file.rs.
1131  */
1132 static inline struct fd __fget_light(unsigned int fd, fmode_t mask)
1133 {
1134 	struct files_struct *files = current->files;
1135 	struct file *file;
1136 
1137 	/*
1138 	 * If another thread is concurrently calling close_fd() followed
1139 	 * by put_files_struct(), we must not observe the old table
1140 	 * entry combined with the new refcount - otherwise we could
1141 	 * return a file that is concurrently being freed.
1142 	 *
1143 	 * atomic_read_acquire() pairs with atomic_dec_and_test() in
1144 	 * put_files_struct().
1145 	 */
1146 	if (likely(atomic_read_acquire(&files->count) == 1)) {
1147 		file = files_lookup_fd_raw(files, fd);
1148 		if (!file || unlikely(file->f_mode & mask))
1149 			return EMPTY_FD;
1150 		return BORROWED_FD(file);
1151 	} else {
1152 		file = __fget_files(files, fd, mask);
1153 		if (!file)
1154 			return EMPTY_FD;
1155 		return CLONED_FD(file);
1156 	}
1157 }
1158 struct fd fdget(unsigned int fd)
1159 {
1160 	return __fget_light(fd, FMODE_PATH);
1161 }
1162 EXPORT_SYMBOL(fdget);
1163 
1164 struct fd fdget_raw(unsigned int fd)
1165 {
1166 	return __fget_light(fd, 0);
1167 }
1168 
1169 /*
1170  * Try to avoid f_pos locking. We only need it if the
1171  * file is marked for FMODE_ATOMIC_POS, and it can be
1172  * accessed multiple ways.
1173  *
1174  * Always do it for directories, because pidfd_getfd()
1175  * can make a file accessible even if it otherwise would
1176  * not be, and for directories this is a correctness
1177  * issue, not a "POSIX requirement".
1178  */
1179 static inline bool file_needs_f_pos_lock(struct file *file)
1180 {
1181 	return (file->f_mode & FMODE_ATOMIC_POS) &&
1182 		(file_count(file) > 1 || file->f_op->iterate_shared);
1183 }
1184 
1185 struct fd fdget_pos(unsigned int fd)
1186 {
1187 	struct fd f = fdget(fd);
1188 	struct file *file = fd_file(f);
1189 
1190 	if (file && file_needs_f_pos_lock(file)) {
1191 		f.word |= FDPUT_POS_UNLOCK;
1192 		mutex_lock(&file->f_pos_lock);
1193 	}
1194 	return f;
1195 }
1196 
1197 void __f_unlock_pos(struct file *f)
1198 {
1199 	mutex_unlock(&f->f_pos_lock);
1200 }
1201 
1202 /*
1203  * We only lock f_pos if we have threads or if the file might be
1204  * shared with another process. In both cases we'll have an elevated
1205  * file count (done either by fdget() or by fork()).
1206  */
1207 
1208 void set_close_on_exec(unsigned int fd, int flag)
1209 {
1210 	struct files_struct *files = current->files;
1211 	spin_lock(&files->file_lock);
1212 	__set_close_on_exec(fd, files_fdtable(files), flag);
1213 	spin_unlock(&files->file_lock);
1214 }
1215 
1216 bool get_close_on_exec(unsigned int fd)
1217 {
1218 	bool res;
1219 	rcu_read_lock();
1220 	res = close_on_exec(fd, current->files);
1221 	rcu_read_unlock();
1222 	return res;
1223 }
1224 
1225 static int do_dup2(struct files_struct *files,
1226 	struct file *file, unsigned fd, unsigned flags)
1227 __releases(&files->file_lock)
1228 {
1229 	struct file *tofree;
1230 	struct fdtable *fdt;
1231 
1232 	/*
1233 	 * We need to detect attempts to do dup2() over allocated but still
1234 	 * not finished descriptor.
1235 	 *
1236 	 * POSIX is silent on the issue, we return -EBUSY.
1237 	 */
1238 	fdt = files_fdtable(files);
1239 	fd = array_index_nospec(fd, fdt->max_fds);
1240 	tofree = fdt->fd[fd];
1241 	if (!tofree && fd_is_open(fd, fdt))
1242 		goto Ebusy;
1243 	get_file(file);
1244 	rcu_assign_pointer(fdt->fd[fd], file);
1245 	__set_open_fd(fd, fdt, flags & O_CLOEXEC);
1246 	spin_unlock(&files->file_lock);
1247 
1248 	if (tofree)
1249 		filp_close(tofree, files);
1250 
1251 	return fd;
1252 
1253 Ebusy:
1254 	spin_unlock(&files->file_lock);
1255 	return -EBUSY;
1256 }
1257 
1258 int replace_fd(unsigned fd, struct file *file, unsigned flags)
1259 {
1260 	int err;
1261 	struct files_struct *files = current->files;
1262 
1263 	if (!file)
1264 		return close_fd(fd);
1265 
1266 	if (fd >= rlimit(RLIMIT_NOFILE))
1267 		return -EBADF;
1268 
1269 	spin_lock(&files->file_lock);
1270 	err = expand_files(files, fd);
1271 	if (unlikely(err < 0))
1272 		goto out_unlock;
1273 	return do_dup2(files, file, fd, flags);
1274 
1275 out_unlock:
1276 	spin_unlock(&files->file_lock);
1277 	return err;
1278 }
1279 
1280 /**
1281  * receive_fd() - Install received file into file descriptor table
1282  * @file: struct file that was received from another process
1283  * @ufd: __user pointer to write new fd number to
1284  * @o_flags: the O_* flags to apply to the new fd entry
1285  *
1286  * Installs a received file into the file descriptor table, with appropriate
1287  * checks and count updates. Optionally writes the fd number to userspace, if
1288  * @ufd is non-NULL.
1289  *
1290  * This helper handles its own reference counting of the incoming
1291  * struct file.
1292  *
1293  * Returns newly install fd or -ve on error.
1294  */
1295 int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
1296 {
1297 	int new_fd;
1298 	int error;
1299 
1300 	error = security_file_receive(file);
1301 	if (error)
1302 		return error;
1303 
1304 	new_fd = get_unused_fd_flags(o_flags);
1305 	if (new_fd < 0)
1306 		return new_fd;
1307 
1308 	if (ufd) {
1309 		error = put_user(new_fd, ufd);
1310 		if (error) {
1311 			put_unused_fd(new_fd);
1312 			return error;
1313 		}
1314 	}
1315 
1316 	fd_install(new_fd, get_file(file));
1317 	__receive_sock(file);
1318 	return new_fd;
1319 }
1320 EXPORT_SYMBOL_GPL(receive_fd);
1321 
1322 int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
1323 {
1324 	int error;
1325 
1326 	error = security_file_receive(file);
1327 	if (error)
1328 		return error;
1329 	error = replace_fd(new_fd, file, o_flags);
1330 	if (error)
1331 		return error;
1332 	__receive_sock(file);
1333 	return new_fd;
1334 }
1335 
1336 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1337 {
1338 	int err = -EBADF;
1339 	struct file *file;
1340 	struct files_struct *files = current->files;
1341 
1342 	if ((flags & ~O_CLOEXEC) != 0)
1343 		return -EINVAL;
1344 
1345 	if (unlikely(oldfd == newfd))
1346 		return -EINVAL;
1347 
1348 	if (newfd >= rlimit(RLIMIT_NOFILE))
1349 		return -EBADF;
1350 
1351 	spin_lock(&files->file_lock);
1352 	err = expand_files(files, newfd);
1353 	file = files_lookup_fd_locked(files, oldfd);
1354 	if (unlikely(!file))
1355 		goto Ebadf;
1356 	if (unlikely(err < 0)) {
1357 		if (err == -EMFILE)
1358 			goto Ebadf;
1359 		goto out_unlock;
1360 	}
1361 	return do_dup2(files, file, newfd, flags);
1362 
1363 Ebadf:
1364 	err = -EBADF;
1365 out_unlock:
1366 	spin_unlock(&files->file_lock);
1367 	return err;
1368 }
1369 
1370 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1371 {
1372 	return ksys_dup3(oldfd, newfd, flags);
1373 }
1374 
1375 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1376 {
1377 	if (unlikely(newfd == oldfd)) { /* corner case */
1378 		struct files_struct *files = current->files;
1379 		struct file *f;
1380 		int retval = oldfd;
1381 
1382 		rcu_read_lock();
1383 		f = __fget_files_rcu(files, oldfd, 0);
1384 		if (!f)
1385 			retval = -EBADF;
1386 		rcu_read_unlock();
1387 		if (f)
1388 			fput(f);
1389 		return retval;
1390 	}
1391 	return ksys_dup3(oldfd, newfd, 0);
1392 }
1393 
1394 SYSCALL_DEFINE1(dup, unsigned int, fildes)
1395 {
1396 	int ret = -EBADF;
1397 	struct file *file = fget_raw(fildes);
1398 
1399 	if (file) {
1400 		ret = get_unused_fd_flags(0);
1401 		if (ret >= 0)
1402 			fd_install(ret, file);
1403 		else
1404 			fput(file);
1405 	}
1406 	return ret;
1407 }
1408 
1409 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1410 {
1411 	unsigned long nofile = rlimit(RLIMIT_NOFILE);
1412 	int err;
1413 	if (from >= nofile)
1414 		return -EINVAL;
1415 	err = alloc_fd(from, nofile, flags);
1416 	if (err >= 0) {
1417 		get_file(file);
1418 		fd_install(err, file);
1419 	}
1420 	return err;
1421 }
1422 
1423 int iterate_fd(struct files_struct *files, unsigned n,
1424 		int (*f)(const void *, struct file *, unsigned),
1425 		const void *p)
1426 {
1427 	struct fdtable *fdt;
1428 	int res = 0;
1429 	if (!files)
1430 		return 0;
1431 	spin_lock(&files->file_lock);
1432 	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1433 		struct file *file;
1434 		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1435 		if (!file)
1436 			continue;
1437 		res = f(p, file, n);
1438 		if (res)
1439 			break;
1440 	}
1441 	spin_unlock(&files->file_lock);
1442 	return res;
1443 }
1444 EXPORT_SYMBOL(iterate_fd);
1445