1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 #include <linux/part_stat.h> 28 #include <linux/zstd.h> 29 #include <linux/lz4.h> 30 31 #include "f2fs.h" 32 #include "node.h" 33 #include "segment.h" 34 #include "xattr.h" 35 #include "gc.h" 36 #include "iostat.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/f2fs.h> 40 41 static struct kmem_cache *f2fs_inode_cachep; 42 43 #ifdef CONFIG_F2FS_FAULT_INJECTION 44 45 const char *f2fs_fault_name[FAULT_MAX] = { 46 [FAULT_KMALLOC] = "kmalloc", 47 [FAULT_KVMALLOC] = "kvmalloc", 48 [FAULT_PAGE_ALLOC] = "page alloc", 49 [FAULT_PAGE_GET] = "page get", 50 [FAULT_ALLOC_BIO] = "alloc bio(obsolete)", 51 [FAULT_ALLOC_NID] = "alloc nid", 52 [FAULT_ORPHAN] = "orphan", 53 [FAULT_BLOCK] = "no more block", 54 [FAULT_DIR_DEPTH] = "too big dir depth", 55 [FAULT_EVICT_INODE] = "evict_inode fail", 56 [FAULT_TRUNCATE] = "truncate fail", 57 [FAULT_READ_IO] = "read IO error", 58 [FAULT_CHECKPOINT] = "checkpoint error", 59 [FAULT_DISCARD] = "discard error", 60 [FAULT_WRITE_IO] = "write IO error", 61 [FAULT_SLAB_ALLOC] = "slab alloc", 62 [FAULT_DQUOT_INIT] = "dquot initialize", 63 [FAULT_LOCK_OP] = "lock_op", 64 [FAULT_BLKADDR_VALIDITY] = "invalid blkaddr", 65 [FAULT_BLKADDR_CONSISTENCE] = "inconsistent blkaddr", 66 [FAULT_NO_SEGMENT] = "no free segment", 67 [FAULT_INCONSISTENT_FOOTER] = "inconsistent footer", 68 [FAULT_TIMEOUT] = "timeout", 69 [FAULT_VMALLOC] = "vmalloc", 70 }; 71 72 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 73 unsigned long type, enum fault_option fo) 74 { 75 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 76 77 if (fo & FAULT_ALL) { 78 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 79 return 0; 80 } 81 82 if (fo & FAULT_RATE) { 83 if (rate > INT_MAX) 84 return -EINVAL; 85 atomic_set(&ffi->inject_ops, 0); 86 ffi->inject_rate = (int)rate; 87 f2fs_info(sbi, "build fault injection rate: %lu", rate); 88 } 89 90 if (fo & FAULT_TYPE) { 91 if (type >= BIT(FAULT_MAX)) 92 return -EINVAL; 93 ffi->inject_type = (unsigned int)type; 94 f2fs_info(sbi, "build fault injection type: 0x%lx", type); 95 } 96 97 return 0; 98 } 99 #endif 100 101 /* f2fs-wide shrinker description */ 102 static struct shrinker *f2fs_shrinker_info; 103 104 static int __init f2fs_init_shrinker(void) 105 { 106 f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker"); 107 if (!f2fs_shrinker_info) 108 return -ENOMEM; 109 110 f2fs_shrinker_info->count_objects = f2fs_shrink_count; 111 f2fs_shrinker_info->scan_objects = f2fs_shrink_scan; 112 113 shrinker_register(f2fs_shrinker_info); 114 115 return 0; 116 } 117 118 static void f2fs_exit_shrinker(void) 119 { 120 shrinker_free(f2fs_shrinker_info); 121 } 122 123 enum { 124 Opt_gc_background, 125 Opt_disable_roll_forward, 126 Opt_norecovery, 127 Opt_discard, 128 Opt_nodiscard, 129 Opt_noheap, 130 Opt_heap, 131 Opt_user_xattr, 132 Opt_nouser_xattr, 133 Opt_acl, 134 Opt_noacl, 135 Opt_active_logs, 136 Opt_disable_ext_identify, 137 Opt_inline_xattr, 138 Opt_noinline_xattr, 139 Opt_inline_xattr_size, 140 Opt_inline_data, 141 Opt_inline_dentry, 142 Opt_noinline_dentry, 143 Opt_flush_merge, 144 Opt_noflush_merge, 145 Opt_barrier, 146 Opt_nobarrier, 147 Opt_fastboot, 148 Opt_extent_cache, 149 Opt_noextent_cache, 150 Opt_noinline_data, 151 Opt_data_flush, 152 Opt_reserve_root, 153 Opt_resgid, 154 Opt_resuid, 155 Opt_mode, 156 Opt_fault_injection, 157 Opt_fault_type, 158 Opt_lazytime, 159 Opt_nolazytime, 160 Opt_quota, 161 Opt_noquota, 162 Opt_usrquota, 163 Opt_grpquota, 164 Opt_prjquota, 165 Opt_usrjquota, 166 Opt_grpjquota, 167 Opt_prjjquota, 168 Opt_offusrjquota, 169 Opt_offgrpjquota, 170 Opt_offprjjquota, 171 Opt_jqfmt_vfsold, 172 Opt_jqfmt_vfsv0, 173 Opt_jqfmt_vfsv1, 174 Opt_alloc, 175 Opt_fsync, 176 Opt_test_dummy_encryption, 177 Opt_inlinecrypt, 178 Opt_checkpoint_disable, 179 Opt_checkpoint_disable_cap, 180 Opt_checkpoint_disable_cap_perc, 181 Opt_checkpoint_enable, 182 Opt_checkpoint_merge, 183 Opt_nocheckpoint_merge, 184 Opt_compress_algorithm, 185 Opt_compress_log_size, 186 Opt_compress_extension, 187 Opt_nocompress_extension, 188 Opt_compress_chksum, 189 Opt_compress_mode, 190 Opt_compress_cache, 191 Opt_atgc, 192 Opt_gc_merge, 193 Opt_nogc_merge, 194 Opt_discard_unit, 195 Opt_memory_mode, 196 Opt_age_extent_cache, 197 Opt_errors, 198 Opt_nat_bits, 199 Opt_err, 200 }; 201 202 static match_table_t f2fs_tokens = { 203 {Opt_gc_background, "background_gc=%s"}, 204 {Opt_disable_roll_forward, "disable_roll_forward"}, 205 {Opt_norecovery, "norecovery"}, 206 {Opt_discard, "discard"}, 207 {Opt_nodiscard, "nodiscard"}, 208 {Opt_noheap, "no_heap"}, 209 {Opt_heap, "heap"}, 210 {Opt_user_xattr, "user_xattr"}, 211 {Opt_nouser_xattr, "nouser_xattr"}, 212 {Opt_acl, "acl"}, 213 {Opt_noacl, "noacl"}, 214 {Opt_active_logs, "active_logs=%u"}, 215 {Opt_disable_ext_identify, "disable_ext_identify"}, 216 {Opt_inline_xattr, "inline_xattr"}, 217 {Opt_noinline_xattr, "noinline_xattr"}, 218 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 219 {Opt_inline_data, "inline_data"}, 220 {Opt_inline_dentry, "inline_dentry"}, 221 {Opt_noinline_dentry, "noinline_dentry"}, 222 {Opt_flush_merge, "flush_merge"}, 223 {Opt_noflush_merge, "noflush_merge"}, 224 {Opt_barrier, "barrier"}, 225 {Opt_nobarrier, "nobarrier"}, 226 {Opt_fastboot, "fastboot"}, 227 {Opt_extent_cache, "extent_cache"}, 228 {Opt_noextent_cache, "noextent_cache"}, 229 {Opt_noinline_data, "noinline_data"}, 230 {Opt_data_flush, "data_flush"}, 231 {Opt_reserve_root, "reserve_root=%u"}, 232 {Opt_resgid, "resgid=%u"}, 233 {Opt_resuid, "resuid=%u"}, 234 {Opt_mode, "mode=%s"}, 235 {Opt_fault_injection, "fault_injection=%u"}, 236 {Opt_fault_type, "fault_type=%u"}, 237 {Opt_lazytime, "lazytime"}, 238 {Opt_nolazytime, "nolazytime"}, 239 {Opt_quota, "quota"}, 240 {Opt_noquota, "noquota"}, 241 {Opt_usrquota, "usrquota"}, 242 {Opt_grpquota, "grpquota"}, 243 {Opt_prjquota, "prjquota"}, 244 {Opt_usrjquota, "usrjquota=%s"}, 245 {Opt_grpjquota, "grpjquota=%s"}, 246 {Opt_prjjquota, "prjjquota=%s"}, 247 {Opt_offusrjquota, "usrjquota="}, 248 {Opt_offgrpjquota, "grpjquota="}, 249 {Opt_offprjjquota, "prjjquota="}, 250 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 251 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 252 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 253 {Opt_alloc, "alloc_mode=%s"}, 254 {Opt_fsync, "fsync_mode=%s"}, 255 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 256 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 257 {Opt_inlinecrypt, "inlinecrypt"}, 258 {Opt_checkpoint_disable, "checkpoint=disable"}, 259 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 260 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 261 {Opt_checkpoint_enable, "checkpoint=enable"}, 262 {Opt_checkpoint_merge, "checkpoint_merge"}, 263 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 264 {Opt_compress_algorithm, "compress_algorithm=%s"}, 265 {Opt_compress_log_size, "compress_log_size=%u"}, 266 {Opt_compress_extension, "compress_extension=%s"}, 267 {Opt_nocompress_extension, "nocompress_extension=%s"}, 268 {Opt_compress_chksum, "compress_chksum"}, 269 {Opt_compress_mode, "compress_mode=%s"}, 270 {Opt_compress_cache, "compress_cache"}, 271 {Opt_atgc, "atgc"}, 272 {Opt_gc_merge, "gc_merge"}, 273 {Opt_nogc_merge, "nogc_merge"}, 274 {Opt_discard_unit, "discard_unit=%s"}, 275 {Opt_memory_mode, "memory=%s"}, 276 {Opt_age_extent_cache, "age_extent_cache"}, 277 {Opt_errors, "errors=%s"}, 278 {Opt_nat_bits, "nat_bits"}, 279 {Opt_err, NULL}, 280 }; 281 282 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, 283 const char *fmt, ...) 284 { 285 struct va_format vaf; 286 va_list args; 287 int level; 288 289 va_start(args, fmt); 290 291 level = printk_get_level(fmt); 292 vaf.fmt = printk_skip_level(fmt); 293 vaf.va = &args; 294 if (limit_rate) 295 printk_ratelimited("%c%cF2FS-fs (%s): %pV\n", 296 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 297 else 298 printk("%c%cF2FS-fs (%s): %pV\n", 299 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 300 301 va_end(args); 302 } 303 304 #if IS_ENABLED(CONFIG_UNICODE) 305 static const struct f2fs_sb_encodings { 306 __u16 magic; 307 char *name; 308 unsigned int version; 309 } f2fs_sb_encoding_map[] = { 310 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 311 }; 312 313 static const struct f2fs_sb_encodings * 314 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 315 { 316 __u16 magic = le16_to_cpu(sb->s_encoding); 317 int i; 318 319 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 320 if (magic == f2fs_sb_encoding_map[i].magic) 321 return &f2fs_sb_encoding_map[i]; 322 323 return NULL; 324 } 325 326 struct kmem_cache *f2fs_cf_name_slab; 327 static int __init f2fs_create_casefold_cache(void) 328 { 329 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 330 F2FS_NAME_LEN); 331 return f2fs_cf_name_slab ? 0 : -ENOMEM; 332 } 333 334 static void f2fs_destroy_casefold_cache(void) 335 { 336 kmem_cache_destroy(f2fs_cf_name_slab); 337 } 338 #else 339 static int __init f2fs_create_casefold_cache(void) { return 0; } 340 static void f2fs_destroy_casefold_cache(void) { } 341 #endif 342 343 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 344 { 345 block_t limit = min((sbi->user_block_count >> 3), 346 sbi->user_block_count - sbi->reserved_blocks); 347 348 /* limit is 12.5% */ 349 if (test_opt(sbi, RESERVE_ROOT) && 350 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 351 F2FS_OPTION(sbi).root_reserved_blocks = limit; 352 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 353 F2FS_OPTION(sbi).root_reserved_blocks); 354 } 355 if (!test_opt(sbi, RESERVE_ROOT) && 356 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 357 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 358 !gid_eq(F2FS_OPTION(sbi).s_resgid, 359 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 360 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 361 from_kuid_munged(&init_user_ns, 362 F2FS_OPTION(sbi).s_resuid), 363 from_kgid_munged(&init_user_ns, 364 F2FS_OPTION(sbi).s_resgid)); 365 } 366 367 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 368 { 369 if (!F2FS_OPTION(sbi).unusable_cap_perc) 370 return; 371 372 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 373 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 374 else 375 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 376 F2FS_OPTION(sbi).unusable_cap_perc; 377 378 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 379 F2FS_OPTION(sbi).unusable_cap, 380 F2FS_OPTION(sbi).unusable_cap_perc); 381 } 382 383 static void init_once(void *foo) 384 { 385 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 386 387 inode_init_once(&fi->vfs_inode); 388 } 389 390 #ifdef CONFIG_QUOTA 391 static const char * const quotatypes[] = INITQFNAMES; 392 #define QTYPE2NAME(t) (quotatypes[t]) 393 static int f2fs_set_qf_name(struct f2fs_sb_info *sbi, int qtype, 394 substring_t *args) 395 { 396 struct super_block *sb = sbi->sb; 397 char *qname; 398 int ret = -EINVAL; 399 400 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 401 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 402 return -EINVAL; 403 } 404 if (f2fs_sb_has_quota_ino(sbi)) { 405 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 406 return 0; 407 } 408 409 qname = match_strdup(args); 410 if (!qname) { 411 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 412 return -ENOMEM; 413 } 414 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 415 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 416 ret = 0; 417 else 418 f2fs_err(sbi, "%s quota file already specified", 419 QTYPE2NAME(qtype)); 420 goto errout; 421 } 422 if (strchr(qname, '/')) { 423 f2fs_err(sbi, "quotafile must be on filesystem root"); 424 goto errout; 425 } 426 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 427 set_opt(sbi, QUOTA); 428 return 0; 429 errout: 430 kfree(qname); 431 return ret; 432 } 433 434 static int f2fs_clear_qf_name(struct f2fs_sb_info *sbi, int qtype) 435 { 436 struct super_block *sb = sbi->sb; 437 438 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 439 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 440 return -EINVAL; 441 } 442 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 443 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 444 return 0; 445 } 446 447 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 448 { 449 /* 450 * We do the test below only for project quotas. 'usrquota' and 451 * 'grpquota' mount options are allowed even without quota feature 452 * to support legacy quotas in quota files. 453 */ 454 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 455 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 456 return -1; 457 } 458 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 459 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 460 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 461 if (test_opt(sbi, USRQUOTA) && 462 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 463 clear_opt(sbi, USRQUOTA); 464 465 if (test_opt(sbi, GRPQUOTA) && 466 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 467 clear_opt(sbi, GRPQUOTA); 468 469 if (test_opt(sbi, PRJQUOTA) && 470 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 471 clear_opt(sbi, PRJQUOTA); 472 473 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 474 test_opt(sbi, PRJQUOTA)) { 475 f2fs_err(sbi, "old and new quota format mixing"); 476 return -1; 477 } 478 479 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 480 f2fs_err(sbi, "journaled quota format not specified"); 481 return -1; 482 } 483 } 484 485 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 486 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 487 F2FS_OPTION(sbi).s_jquota_fmt = 0; 488 } 489 return 0; 490 } 491 #endif 492 493 static int f2fs_set_test_dummy_encryption(struct f2fs_sb_info *sbi, 494 const char *opt, 495 const substring_t *arg, 496 bool is_remount) 497 { 498 struct fs_parameter param = { 499 .type = fs_value_is_string, 500 .string = arg->from ? arg->from : "", 501 }; 502 struct fscrypt_dummy_policy *policy = 503 &F2FS_OPTION(sbi).dummy_enc_policy; 504 int err; 505 506 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 507 f2fs_warn(sbi, "test_dummy_encryption option not supported"); 508 return -EINVAL; 509 } 510 511 if (!f2fs_sb_has_encrypt(sbi)) { 512 f2fs_err(sbi, "Encrypt feature is off"); 513 return -EINVAL; 514 } 515 516 /* 517 * This mount option is just for testing, and it's not worthwhile to 518 * implement the extra complexity (e.g. RCU protection) that would be 519 * needed to allow it to be set or changed during remount. We do allow 520 * it to be specified during remount, but only if there is no change. 521 */ 522 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { 523 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 524 return -EINVAL; 525 } 526 527 err = fscrypt_parse_test_dummy_encryption(¶m, policy); 528 if (err) { 529 if (err == -EEXIST) 530 f2fs_warn(sbi, 531 "Can't change test_dummy_encryption on remount"); 532 else if (err == -EINVAL) 533 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 534 opt); 535 else 536 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 537 opt, err); 538 return -EINVAL; 539 } 540 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 541 return 0; 542 } 543 544 #ifdef CONFIG_F2FS_FS_COMPRESSION 545 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi, 546 const char *new_ext, bool is_ext) 547 { 548 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 549 int ext_cnt; 550 int i; 551 552 if (is_ext) { 553 ext = F2FS_OPTION(sbi).extensions; 554 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 555 } else { 556 ext = F2FS_OPTION(sbi).noextensions; 557 ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 558 } 559 560 for (i = 0; i < ext_cnt; i++) { 561 if (!strcasecmp(new_ext, ext[i])) 562 return true; 563 } 564 565 return false; 566 } 567 568 /* 569 * 1. The same extension name cannot not appear in both compress and non-compress extension 570 * at the same time. 571 * 2. If the compress extension specifies all files, the types specified by the non-compress 572 * extension will be treated as special cases and will not be compressed. 573 * 3. Don't allow the non-compress extension specifies all files. 574 */ 575 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 576 { 577 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 578 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 579 int ext_cnt, noext_cnt, index = 0, no_index = 0; 580 581 ext = F2FS_OPTION(sbi).extensions; 582 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 583 noext = F2FS_OPTION(sbi).noextensions; 584 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 585 586 if (!noext_cnt) 587 return 0; 588 589 for (no_index = 0; no_index < noext_cnt; no_index++) { 590 if (!strcasecmp("*", noext[no_index])) { 591 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 592 return -EINVAL; 593 } 594 for (index = 0; index < ext_cnt; index++) { 595 if (!strcasecmp(ext[index], noext[no_index])) { 596 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 597 ext[index]); 598 return -EINVAL; 599 } 600 } 601 } 602 return 0; 603 } 604 605 #ifdef CONFIG_F2FS_FS_LZ4 606 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 607 { 608 #ifdef CONFIG_F2FS_FS_LZ4HC 609 unsigned int level; 610 611 if (strlen(str) == 3) { 612 F2FS_OPTION(sbi).compress_level = 0; 613 return 0; 614 } 615 616 str += 3; 617 618 if (str[0] != ':') { 619 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 620 return -EINVAL; 621 } 622 if (kstrtouint(str + 1, 10, &level)) 623 return -EINVAL; 624 625 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { 626 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 627 return -EINVAL; 628 } 629 630 F2FS_OPTION(sbi).compress_level = level; 631 return 0; 632 #else 633 if (strlen(str) == 3) { 634 F2FS_OPTION(sbi).compress_level = 0; 635 return 0; 636 } 637 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 638 return -EINVAL; 639 #endif 640 } 641 #endif 642 643 #ifdef CONFIG_F2FS_FS_ZSTD 644 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 645 { 646 int level; 647 int len = 4; 648 649 if (strlen(str) == len) { 650 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 651 return 0; 652 } 653 654 str += len; 655 656 if (str[0] != ':') { 657 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 658 return -EINVAL; 659 } 660 if (kstrtoint(str + 1, 10, &level)) 661 return -EINVAL; 662 663 /* f2fs does not support negative compress level now */ 664 if (level < 0) { 665 f2fs_info(sbi, "do not support negative compress level: %d", level); 666 return -ERANGE; 667 } 668 669 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { 670 f2fs_info(sbi, "invalid zstd compress level: %d", level); 671 return -EINVAL; 672 } 673 674 F2FS_OPTION(sbi).compress_level = level; 675 return 0; 676 } 677 #endif 678 #endif 679 680 static int parse_options(struct f2fs_sb_info *sbi, char *options, bool is_remount) 681 { 682 substring_t args[MAX_OPT_ARGS]; 683 #ifdef CONFIG_F2FS_FS_COMPRESSION 684 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 685 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 686 int ext_cnt, noext_cnt; 687 #endif 688 char *p, *name; 689 int arg = 0; 690 kuid_t uid; 691 kgid_t gid; 692 int ret; 693 694 if (!options) 695 return 0; 696 697 while ((p = strsep(&options, ",")) != NULL) { 698 int token; 699 700 if (!*p) 701 continue; 702 /* 703 * Initialize args struct so we know whether arg was 704 * found; some options take optional arguments. 705 */ 706 args[0].to = args[0].from = NULL; 707 token = match_token(p, f2fs_tokens, args); 708 709 switch (token) { 710 case Opt_gc_background: 711 name = match_strdup(&args[0]); 712 713 if (!name) 714 return -ENOMEM; 715 if (!strcmp(name, "on")) { 716 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 717 } else if (!strcmp(name, "off")) { 718 if (f2fs_sb_has_blkzoned(sbi)) { 719 f2fs_warn(sbi, "zoned devices need bggc"); 720 kfree(name); 721 return -EINVAL; 722 } 723 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 724 } else if (!strcmp(name, "sync")) { 725 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 726 } else { 727 kfree(name); 728 return -EINVAL; 729 } 730 kfree(name); 731 break; 732 case Opt_disable_roll_forward: 733 set_opt(sbi, DISABLE_ROLL_FORWARD); 734 break; 735 case Opt_norecovery: 736 /* requires ro mount, checked in f2fs_default_check */ 737 set_opt(sbi, NORECOVERY); 738 break; 739 case Opt_discard: 740 if (!f2fs_hw_support_discard(sbi)) { 741 f2fs_warn(sbi, "device does not support discard"); 742 break; 743 } 744 set_opt(sbi, DISCARD); 745 break; 746 case Opt_nodiscard: 747 if (f2fs_hw_should_discard(sbi)) { 748 f2fs_warn(sbi, "discard is required for zoned block devices"); 749 return -EINVAL; 750 } 751 clear_opt(sbi, DISCARD); 752 break; 753 case Opt_noheap: 754 case Opt_heap: 755 f2fs_warn(sbi, "heap/no_heap options were deprecated"); 756 break; 757 #ifdef CONFIG_F2FS_FS_XATTR 758 case Opt_user_xattr: 759 set_opt(sbi, XATTR_USER); 760 break; 761 case Opt_nouser_xattr: 762 clear_opt(sbi, XATTR_USER); 763 break; 764 case Opt_inline_xattr: 765 set_opt(sbi, INLINE_XATTR); 766 break; 767 case Opt_noinline_xattr: 768 clear_opt(sbi, INLINE_XATTR); 769 break; 770 case Opt_inline_xattr_size: 771 if (args->from && match_int(args, &arg)) 772 return -EINVAL; 773 set_opt(sbi, INLINE_XATTR_SIZE); 774 F2FS_OPTION(sbi).inline_xattr_size = arg; 775 break; 776 #else 777 case Opt_user_xattr: 778 case Opt_nouser_xattr: 779 case Opt_inline_xattr: 780 case Opt_noinline_xattr: 781 case Opt_inline_xattr_size: 782 f2fs_info(sbi, "xattr options not supported"); 783 break; 784 #endif 785 #ifdef CONFIG_F2FS_FS_POSIX_ACL 786 case Opt_acl: 787 set_opt(sbi, POSIX_ACL); 788 break; 789 case Opt_noacl: 790 clear_opt(sbi, POSIX_ACL); 791 break; 792 #else 793 case Opt_acl: 794 case Opt_noacl: 795 f2fs_info(sbi, "acl options not supported"); 796 break; 797 #endif 798 case Opt_active_logs: 799 if (args->from && match_int(args, &arg)) 800 return -EINVAL; 801 if (arg != 2 && arg != 4 && 802 arg != NR_CURSEG_PERSIST_TYPE) 803 return -EINVAL; 804 F2FS_OPTION(sbi).active_logs = arg; 805 break; 806 case Opt_disable_ext_identify: 807 set_opt(sbi, DISABLE_EXT_IDENTIFY); 808 break; 809 case Opt_inline_data: 810 set_opt(sbi, INLINE_DATA); 811 break; 812 case Opt_inline_dentry: 813 set_opt(sbi, INLINE_DENTRY); 814 break; 815 case Opt_noinline_dentry: 816 clear_opt(sbi, INLINE_DENTRY); 817 break; 818 case Opt_flush_merge: 819 set_opt(sbi, FLUSH_MERGE); 820 break; 821 case Opt_noflush_merge: 822 clear_opt(sbi, FLUSH_MERGE); 823 break; 824 case Opt_nobarrier: 825 set_opt(sbi, NOBARRIER); 826 break; 827 case Opt_barrier: 828 clear_opt(sbi, NOBARRIER); 829 break; 830 case Opt_fastboot: 831 set_opt(sbi, FASTBOOT); 832 break; 833 case Opt_extent_cache: 834 set_opt(sbi, READ_EXTENT_CACHE); 835 break; 836 case Opt_noextent_cache: 837 if (f2fs_sb_has_device_alias(sbi)) { 838 f2fs_err(sbi, "device aliasing requires extent cache"); 839 return -EINVAL; 840 } 841 clear_opt(sbi, READ_EXTENT_CACHE); 842 break; 843 case Opt_noinline_data: 844 clear_opt(sbi, INLINE_DATA); 845 break; 846 case Opt_data_flush: 847 set_opt(sbi, DATA_FLUSH); 848 break; 849 case Opt_reserve_root: 850 if (args->from && match_int(args, &arg)) 851 return -EINVAL; 852 if (test_opt(sbi, RESERVE_ROOT)) { 853 f2fs_info(sbi, "Preserve previous reserve_root=%u", 854 F2FS_OPTION(sbi).root_reserved_blocks); 855 } else { 856 F2FS_OPTION(sbi).root_reserved_blocks = arg; 857 set_opt(sbi, RESERVE_ROOT); 858 } 859 break; 860 case Opt_resuid: 861 if (args->from && match_int(args, &arg)) 862 return -EINVAL; 863 uid = make_kuid(current_user_ns(), arg); 864 if (!uid_valid(uid)) { 865 f2fs_err(sbi, "Invalid uid value %d", arg); 866 return -EINVAL; 867 } 868 F2FS_OPTION(sbi).s_resuid = uid; 869 break; 870 case Opt_resgid: 871 if (args->from && match_int(args, &arg)) 872 return -EINVAL; 873 gid = make_kgid(current_user_ns(), arg); 874 if (!gid_valid(gid)) { 875 f2fs_err(sbi, "Invalid gid value %d", arg); 876 return -EINVAL; 877 } 878 F2FS_OPTION(sbi).s_resgid = gid; 879 break; 880 case Opt_mode: 881 name = match_strdup(&args[0]); 882 883 if (!name) 884 return -ENOMEM; 885 if (!strcmp(name, "adaptive")) { 886 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 887 } else if (!strcmp(name, "lfs")) { 888 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 889 } else if (!strcmp(name, "fragment:segment")) { 890 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 891 } else if (!strcmp(name, "fragment:block")) { 892 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 893 } else { 894 kfree(name); 895 return -EINVAL; 896 } 897 kfree(name); 898 break; 899 #ifdef CONFIG_F2FS_FAULT_INJECTION 900 case Opt_fault_injection: 901 if (args->from && match_int(args, &arg)) 902 return -EINVAL; 903 if (f2fs_build_fault_attr(sbi, arg, 0, FAULT_RATE)) 904 return -EINVAL; 905 set_opt(sbi, FAULT_INJECTION); 906 break; 907 908 case Opt_fault_type: 909 if (args->from && match_int(args, &arg)) 910 return -EINVAL; 911 if (f2fs_build_fault_attr(sbi, 0, arg, FAULT_TYPE)) 912 return -EINVAL; 913 set_opt(sbi, FAULT_INJECTION); 914 break; 915 #else 916 case Opt_fault_injection: 917 case Opt_fault_type: 918 f2fs_info(sbi, "fault injection options not supported"); 919 break; 920 #endif 921 case Opt_lazytime: 922 set_opt(sbi, LAZYTIME); 923 break; 924 case Opt_nolazytime: 925 clear_opt(sbi, LAZYTIME); 926 break; 927 #ifdef CONFIG_QUOTA 928 case Opt_quota: 929 case Opt_usrquota: 930 set_opt(sbi, USRQUOTA); 931 break; 932 case Opt_grpquota: 933 set_opt(sbi, GRPQUOTA); 934 break; 935 case Opt_prjquota: 936 set_opt(sbi, PRJQUOTA); 937 break; 938 case Opt_usrjquota: 939 ret = f2fs_set_qf_name(sbi, USRQUOTA, &args[0]); 940 if (ret) 941 return ret; 942 break; 943 case Opt_grpjquota: 944 ret = f2fs_set_qf_name(sbi, GRPQUOTA, &args[0]); 945 if (ret) 946 return ret; 947 break; 948 case Opt_prjjquota: 949 ret = f2fs_set_qf_name(sbi, PRJQUOTA, &args[0]); 950 if (ret) 951 return ret; 952 break; 953 case Opt_offusrjquota: 954 ret = f2fs_clear_qf_name(sbi, USRQUOTA); 955 if (ret) 956 return ret; 957 break; 958 case Opt_offgrpjquota: 959 ret = f2fs_clear_qf_name(sbi, GRPQUOTA); 960 if (ret) 961 return ret; 962 break; 963 case Opt_offprjjquota: 964 ret = f2fs_clear_qf_name(sbi, PRJQUOTA); 965 if (ret) 966 return ret; 967 break; 968 case Opt_jqfmt_vfsold: 969 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 970 break; 971 case Opt_jqfmt_vfsv0: 972 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 973 break; 974 case Opt_jqfmt_vfsv1: 975 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 976 break; 977 case Opt_noquota: 978 clear_opt(sbi, QUOTA); 979 clear_opt(sbi, USRQUOTA); 980 clear_opt(sbi, GRPQUOTA); 981 clear_opt(sbi, PRJQUOTA); 982 break; 983 #else 984 case Opt_quota: 985 case Opt_usrquota: 986 case Opt_grpquota: 987 case Opt_prjquota: 988 case Opt_usrjquota: 989 case Opt_grpjquota: 990 case Opt_prjjquota: 991 case Opt_offusrjquota: 992 case Opt_offgrpjquota: 993 case Opt_offprjjquota: 994 case Opt_jqfmt_vfsold: 995 case Opt_jqfmt_vfsv0: 996 case Opt_jqfmt_vfsv1: 997 case Opt_noquota: 998 f2fs_info(sbi, "quota operations not supported"); 999 break; 1000 #endif 1001 case Opt_alloc: 1002 name = match_strdup(&args[0]); 1003 if (!name) 1004 return -ENOMEM; 1005 1006 if (!strcmp(name, "default")) { 1007 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1008 } else if (!strcmp(name, "reuse")) { 1009 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 1010 } else { 1011 kfree(name); 1012 return -EINVAL; 1013 } 1014 kfree(name); 1015 break; 1016 case Opt_fsync: 1017 name = match_strdup(&args[0]); 1018 if (!name) 1019 return -ENOMEM; 1020 if (!strcmp(name, "posix")) { 1021 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1022 } else if (!strcmp(name, "strict")) { 1023 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1024 } else if (!strcmp(name, "nobarrier")) { 1025 F2FS_OPTION(sbi).fsync_mode = 1026 FSYNC_MODE_NOBARRIER; 1027 } else { 1028 kfree(name); 1029 return -EINVAL; 1030 } 1031 kfree(name); 1032 break; 1033 case Opt_test_dummy_encryption: 1034 ret = f2fs_set_test_dummy_encryption(sbi, p, &args[0], 1035 is_remount); 1036 if (ret) 1037 return ret; 1038 break; 1039 case Opt_inlinecrypt: 1040 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1041 set_opt(sbi, INLINECRYPT); 1042 #else 1043 f2fs_info(sbi, "inline encryption not supported"); 1044 #endif 1045 break; 1046 case Opt_checkpoint_disable_cap_perc: 1047 if (args->from && match_int(args, &arg)) 1048 return -EINVAL; 1049 if (arg < 0 || arg > 100) 1050 return -EINVAL; 1051 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1052 set_opt(sbi, DISABLE_CHECKPOINT); 1053 break; 1054 case Opt_checkpoint_disable_cap: 1055 if (args->from && match_int(args, &arg)) 1056 return -EINVAL; 1057 F2FS_OPTION(sbi).unusable_cap = arg; 1058 set_opt(sbi, DISABLE_CHECKPOINT); 1059 break; 1060 case Opt_checkpoint_disable: 1061 set_opt(sbi, DISABLE_CHECKPOINT); 1062 break; 1063 case Opt_checkpoint_enable: 1064 clear_opt(sbi, DISABLE_CHECKPOINT); 1065 break; 1066 case Opt_checkpoint_merge: 1067 set_opt(sbi, MERGE_CHECKPOINT); 1068 break; 1069 case Opt_nocheckpoint_merge: 1070 clear_opt(sbi, MERGE_CHECKPOINT); 1071 break; 1072 #ifdef CONFIG_F2FS_FS_COMPRESSION 1073 case Opt_compress_algorithm: 1074 if (!f2fs_sb_has_compression(sbi)) { 1075 f2fs_info(sbi, "Image doesn't support compression"); 1076 break; 1077 } 1078 name = match_strdup(&args[0]); 1079 if (!name) 1080 return -ENOMEM; 1081 if (!strcmp(name, "lzo")) { 1082 #ifdef CONFIG_F2FS_FS_LZO 1083 F2FS_OPTION(sbi).compress_level = 0; 1084 F2FS_OPTION(sbi).compress_algorithm = 1085 COMPRESS_LZO; 1086 #else 1087 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1088 #endif 1089 } else if (!strncmp(name, "lz4", 3)) { 1090 #ifdef CONFIG_F2FS_FS_LZ4 1091 ret = f2fs_set_lz4hc_level(sbi, name); 1092 if (ret) { 1093 kfree(name); 1094 return -EINVAL; 1095 } 1096 F2FS_OPTION(sbi).compress_algorithm = 1097 COMPRESS_LZ4; 1098 #else 1099 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1100 #endif 1101 } else if (!strncmp(name, "zstd", 4)) { 1102 #ifdef CONFIG_F2FS_FS_ZSTD 1103 ret = f2fs_set_zstd_level(sbi, name); 1104 if (ret) { 1105 kfree(name); 1106 return -EINVAL; 1107 } 1108 F2FS_OPTION(sbi).compress_algorithm = 1109 COMPRESS_ZSTD; 1110 #else 1111 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1112 #endif 1113 } else if (!strcmp(name, "lzo-rle")) { 1114 #ifdef CONFIG_F2FS_FS_LZORLE 1115 F2FS_OPTION(sbi).compress_level = 0; 1116 F2FS_OPTION(sbi).compress_algorithm = 1117 COMPRESS_LZORLE; 1118 #else 1119 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1120 #endif 1121 } else { 1122 kfree(name); 1123 return -EINVAL; 1124 } 1125 kfree(name); 1126 break; 1127 case Opt_compress_log_size: 1128 if (!f2fs_sb_has_compression(sbi)) { 1129 f2fs_info(sbi, "Image doesn't support compression"); 1130 break; 1131 } 1132 if (args->from && match_int(args, &arg)) 1133 return -EINVAL; 1134 if (arg < MIN_COMPRESS_LOG_SIZE || 1135 arg > MAX_COMPRESS_LOG_SIZE) { 1136 f2fs_err(sbi, 1137 "Compress cluster log size is out of range"); 1138 return -EINVAL; 1139 } 1140 F2FS_OPTION(sbi).compress_log_size = arg; 1141 break; 1142 case Opt_compress_extension: 1143 if (!f2fs_sb_has_compression(sbi)) { 1144 f2fs_info(sbi, "Image doesn't support compression"); 1145 break; 1146 } 1147 name = match_strdup(&args[0]); 1148 if (!name) 1149 return -ENOMEM; 1150 1151 ext = F2FS_OPTION(sbi).extensions; 1152 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1153 1154 if (strlen(name) >= F2FS_EXTENSION_LEN || 1155 ext_cnt >= COMPRESS_EXT_NUM) { 1156 f2fs_err(sbi, 1157 "invalid extension length/number"); 1158 kfree(name); 1159 return -EINVAL; 1160 } 1161 1162 if (is_compress_extension_exist(sbi, name, true)) { 1163 kfree(name); 1164 break; 1165 } 1166 1167 ret = strscpy(ext[ext_cnt], name); 1168 if (ret < 0) { 1169 kfree(name); 1170 return ret; 1171 } 1172 F2FS_OPTION(sbi).compress_ext_cnt++; 1173 kfree(name); 1174 break; 1175 case Opt_nocompress_extension: 1176 if (!f2fs_sb_has_compression(sbi)) { 1177 f2fs_info(sbi, "Image doesn't support compression"); 1178 break; 1179 } 1180 name = match_strdup(&args[0]); 1181 if (!name) 1182 return -ENOMEM; 1183 1184 noext = F2FS_OPTION(sbi).noextensions; 1185 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1186 1187 if (strlen(name) >= F2FS_EXTENSION_LEN || 1188 noext_cnt >= COMPRESS_EXT_NUM) { 1189 f2fs_err(sbi, 1190 "invalid extension length/number"); 1191 kfree(name); 1192 return -EINVAL; 1193 } 1194 1195 if (is_compress_extension_exist(sbi, name, false)) { 1196 kfree(name); 1197 break; 1198 } 1199 1200 ret = strscpy(noext[noext_cnt], name); 1201 if (ret < 0) { 1202 kfree(name); 1203 return ret; 1204 } 1205 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1206 kfree(name); 1207 break; 1208 case Opt_compress_chksum: 1209 if (!f2fs_sb_has_compression(sbi)) { 1210 f2fs_info(sbi, "Image doesn't support compression"); 1211 break; 1212 } 1213 F2FS_OPTION(sbi).compress_chksum = true; 1214 break; 1215 case Opt_compress_mode: 1216 if (!f2fs_sb_has_compression(sbi)) { 1217 f2fs_info(sbi, "Image doesn't support compression"); 1218 break; 1219 } 1220 name = match_strdup(&args[0]); 1221 if (!name) 1222 return -ENOMEM; 1223 if (!strcmp(name, "fs")) { 1224 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1225 } else if (!strcmp(name, "user")) { 1226 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1227 } else { 1228 kfree(name); 1229 return -EINVAL; 1230 } 1231 kfree(name); 1232 break; 1233 case Opt_compress_cache: 1234 if (!f2fs_sb_has_compression(sbi)) { 1235 f2fs_info(sbi, "Image doesn't support compression"); 1236 break; 1237 } 1238 set_opt(sbi, COMPRESS_CACHE); 1239 break; 1240 #else 1241 case Opt_compress_algorithm: 1242 case Opt_compress_log_size: 1243 case Opt_compress_extension: 1244 case Opt_nocompress_extension: 1245 case Opt_compress_chksum: 1246 case Opt_compress_mode: 1247 case Opt_compress_cache: 1248 f2fs_info(sbi, "compression options not supported"); 1249 break; 1250 #endif 1251 case Opt_atgc: 1252 set_opt(sbi, ATGC); 1253 break; 1254 case Opt_gc_merge: 1255 set_opt(sbi, GC_MERGE); 1256 break; 1257 case Opt_nogc_merge: 1258 clear_opt(sbi, GC_MERGE); 1259 break; 1260 case Opt_discard_unit: 1261 name = match_strdup(&args[0]); 1262 if (!name) 1263 return -ENOMEM; 1264 if (!strcmp(name, "block")) { 1265 F2FS_OPTION(sbi).discard_unit = 1266 DISCARD_UNIT_BLOCK; 1267 } else if (!strcmp(name, "segment")) { 1268 F2FS_OPTION(sbi).discard_unit = 1269 DISCARD_UNIT_SEGMENT; 1270 } else if (!strcmp(name, "section")) { 1271 F2FS_OPTION(sbi).discard_unit = 1272 DISCARD_UNIT_SECTION; 1273 } else { 1274 kfree(name); 1275 return -EINVAL; 1276 } 1277 kfree(name); 1278 break; 1279 case Opt_memory_mode: 1280 name = match_strdup(&args[0]); 1281 if (!name) 1282 return -ENOMEM; 1283 if (!strcmp(name, "normal")) { 1284 F2FS_OPTION(sbi).memory_mode = 1285 MEMORY_MODE_NORMAL; 1286 } else if (!strcmp(name, "low")) { 1287 F2FS_OPTION(sbi).memory_mode = 1288 MEMORY_MODE_LOW; 1289 } else { 1290 kfree(name); 1291 return -EINVAL; 1292 } 1293 kfree(name); 1294 break; 1295 case Opt_age_extent_cache: 1296 set_opt(sbi, AGE_EXTENT_CACHE); 1297 break; 1298 case Opt_errors: 1299 name = match_strdup(&args[0]); 1300 if (!name) 1301 return -ENOMEM; 1302 if (!strcmp(name, "remount-ro")) { 1303 F2FS_OPTION(sbi).errors = 1304 MOUNT_ERRORS_READONLY; 1305 } else if (!strcmp(name, "continue")) { 1306 F2FS_OPTION(sbi).errors = 1307 MOUNT_ERRORS_CONTINUE; 1308 } else if (!strcmp(name, "panic")) { 1309 F2FS_OPTION(sbi).errors = 1310 MOUNT_ERRORS_PANIC; 1311 } else { 1312 kfree(name); 1313 return -EINVAL; 1314 } 1315 kfree(name); 1316 break; 1317 case Opt_nat_bits: 1318 set_opt(sbi, NAT_BITS); 1319 break; 1320 default: 1321 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1322 p); 1323 return -EINVAL; 1324 } 1325 } 1326 return 0; 1327 } 1328 1329 static int f2fs_default_check(struct f2fs_sb_info *sbi) 1330 { 1331 #ifdef CONFIG_QUOTA 1332 if (f2fs_check_quota_options(sbi)) 1333 return -EINVAL; 1334 #else 1335 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1336 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1337 return -EINVAL; 1338 } 1339 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1340 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1341 return -EINVAL; 1342 } 1343 #endif 1344 1345 if (!IS_ENABLED(CONFIG_UNICODE) && f2fs_sb_has_casefold(sbi)) { 1346 f2fs_err(sbi, 1347 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1348 return -EINVAL; 1349 } 1350 1351 /* 1352 * The BLKZONED feature indicates that the drive was formatted with 1353 * zone alignment optimization. This is optional for host-aware 1354 * devices, but mandatory for host-managed zoned block devices. 1355 */ 1356 if (f2fs_sb_has_blkzoned(sbi)) { 1357 #ifdef CONFIG_BLK_DEV_ZONED 1358 if (F2FS_OPTION(sbi).discard_unit != 1359 DISCARD_UNIT_SECTION) { 1360 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1361 F2FS_OPTION(sbi).discard_unit = 1362 DISCARD_UNIT_SECTION; 1363 } 1364 1365 if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) { 1366 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature"); 1367 return -EINVAL; 1368 } 1369 #else 1370 f2fs_err(sbi, "Zoned block device support is not enabled"); 1371 return -EINVAL; 1372 #endif 1373 } 1374 1375 #ifdef CONFIG_F2FS_FS_COMPRESSION 1376 if (f2fs_test_compress_extension(sbi)) { 1377 f2fs_err(sbi, "invalid compress or nocompress extension"); 1378 return -EINVAL; 1379 } 1380 #endif 1381 1382 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1383 int min_size, max_size; 1384 1385 if (!f2fs_sb_has_extra_attr(sbi) || 1386 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1387 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1388 return -EINVAL; 1389 } 1390 if (!test_opt(sbi, INLINE_XATTR)) { 1391 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1392 return -EINVAL; 1393 } 1394 1395 min_size = MIN_INLINE_XATTR_SIZE; 1396 max_size = MAX_INLINE_XATTR_SIZE; 1397 1398 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1399 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1400 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1401 min_size, max_size); 1402 return -EINVAL; 1403 } 1404 } 1405 1406 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) { 1407 f2fs_err(sbi, "LFS is not compatible with ATGC"); 1408 return -EINVAL; 1409 } 1410 1411 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) { 1412 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); 1413 return -EINVAL; 1414 } 1415 1416 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1417 f2fs_err(sbi, "Allow to mount readonly mode only"); 1418 return -EROFS; 1419 } 1420 1421 if (test_opt(sbi, NORECOVERY) && !f2fs_readonly(sbi->sb)) { 1422 f2fs_err(sbi, "norecovery requires readonly mount"); 1423 return -EINVAL; 1424 } 1425 1426 return 0; 1427 } 1428 1429 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1430 { 1431 struct f2fs_inode_info *fi; 1432 1433 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) 1434 return NULL; 1435 1436 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1437 if (!fi) 1438 return NULL; 1439 1440 init_once((void *) fi); 1441 1442 /* Initialize f2fs-specific inode info */ 1443 atomic_set(&fi->dirty_pages, 0); 1444 atomic_set(&fi->i_compr_blocks, 0); 1445 init_f2fs_rwsem(&fi->i_sem); 1446 spin_lock_init(&fi->i_size_lock); 1447 INIT_LIST_HEAD(&fi->dirty_list); 1448 INIT_LIST_HEAD(&fi->gdirty_list); 1449 INIT_LIST_HEAD(&fi->gdonate_list); 1450 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1451 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1452 init_f2fs_rwsem(&fi->i_xattr_sem); 1453 1454 /* Will be used by directory only */ 1455 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1456 1457 return &fi->vfs_inode; 1458 } 1459 1460 static int f2fs_drop_inode(struct inode *inode) 1461 { 1462 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1463 int ret; 1464 1465 /* 1466 * during filesystem shutdown, if checkpoint is disabled, 1467 * drop useless meta/node dirty pages. 1468 */ 1469 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1470 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1471 inode->i_ino == F2FS_META_INO(sbi)) { 1472 trace_f2fs_drop_inode(inode, 1); 1473 return 1; 1474 } 1475 } 1476 1477 /* 1478 * This is to avoid a deadlock condition like below. 1479 * writeback_single_inode(inode) 1480 * - f2fs_write_data_page 1481 * - f2fs_gc -> iput -> evict 1482 * - inode_wait_for_writeback(inode) 1483 */ 1484 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1485 if (!inode->i_nlink && !is_bad_inode(inode)) { 1486 /* to avoid evict_inode call simultaneously */ 1487 atomic_inc(&inode->i_count); 1488 spin_unlock(&inode->i_lock); 1489 1490 /* should remain fi->extent_tree for writepage */ 1491 f2fs_destroy_extent_node(inode); 1492 1493 sb_start_intwrite(inode->i_sb); 1494 f2fs_i_size_write(inode, 0); 1495 1496 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1497 inode, NULL, 0, DATA); 1498 truncate_inode_pages_final(inode->i_mapping); 1499 1500 if (F2FS_HAS_BLOCKS(inode)) 1501 f2fs_truncate(inode); 1502 1503 sb_end_intwrite(inode->i_sb); 1504 1505 spin_lock(&inode->i_lock); 1506 atomic_dec(&inode->i_count); 1507 } 1508 trace_f2fs_drop_inode(inode, 0); 1509 return 0; 1510 } 1511 ret = generic_drop_inode(inode); 1512 if (!ret) 1513 ret = fscrypt_drop_inode(inode); 1514 trace_f2fs_drop_inode(inode, ret); 1515 return ret; 1516 } 1517 1518 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1519 { 1520 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1521 int ret = 0; 1522 1523 spin_lock(&sbi->inode_lock[DIRTY_META]); 1524 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1525 ret = 1; 1526 } else { 1527 set_inode_flag(inode, FI_DIRTY_INODE); 1528 stat_inc_dirty_inode(sbi, DIRTY_META); 1529 } 1530 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1531 list_add_tail(&F2FS_I(inode)->gdirty_list, 1532 &sbi->inode_list[DIRTY_META]); 1533 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1534 } 1535 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1536 1537 /* if atomic write is not committed, set inode w/ atomic dirty */ 1538 if (!ret && f2fs_is_atomic_file(inode) && 1539 !is_inode_flag_set(inode, FI_ATOMIC_COMMITTED)) 1540 set_inode_flag(inode, FI_ATOMIC_DIRTIED); 1541 1542 return ret; 1543 } 1544 1545 void f2fs_inode_synced(struct inode *inode) 1546 { 1547 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1548 1549 spin_lock(&sbi->inode_lock[DIRTY_META]); 1550 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1551 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1552 return; 1553 } 1554 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1555 list_del_init(&F2FS_I(inode)->gdirty_list); 1556 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1557 } 1558 clear_inode_flag(inode, FI_DIRTY_INODE); 1559 clear_inode_flag(inode, FI_AUTO_RECOVER); 1560 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1561 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1562 } 1563 1564 /* 1565 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1566 * 1567 * We should call set_dirty_inode to write the dirty inode through write_inode. 1568 */ 1569 static void f2fs_dirty_inode(struct inode *inode, int flags) 1570 { 1571 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1572 1573 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1574 inode->i_ino == F2FS_META_INO(sbi)) 1575 return; 1576 1577 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1578 clear_inode_flag(inode, FI_AUTO_RECOVER); 1579 1580 f2fs_inode_dirtied(inode, false); 1581 } 1582 1583 static void f2fs_free_inode(struct inode *inode) 1584 { 1585 fscrypt_free_inode(inode); 1586 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1587 } 1588 1589 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1590 { 1591 percpu_counter_destroy(&sbi->total_valid_inode_count); 1592 percpu_counter_destroy(&sbi->rf_node_block_count); 1593 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1594 } 1595 1596 static void destroy_device_list(struct f2fs_sb_info *sbi) 1597 { 1598 int i; 1599 1600 for (i = 0; i < sbi->s_ndevs; i++) { 1601 if (i > 0) 1602 bdev_fput(FDEV(i).bdev_file); 1603 #ifdef CONFIG_BLK_DEV_ZONED 1604 kvfree(FDEV(i).blkz_seq); 1605 #endif 1606 } 1607 kvfree(sbi->devs); 1608 } 1609 1610 static void f2fs_put_super(struct super_block *sb) 1611 { 1612 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1613 int i; 1614 int err = 0; 1615 bool done; 1616 1617 /* unregister procfs/sysfs entries in advance to avoid race case */ 1618 f2fs_unregister_sysfs(sbi); 1619 1620 f2fs_quota_off_umount(sb); 1621 1622 /* prevent remaining shrinker jobs */ 1623 mutex_lock(&sbi->umount_mutex); 1624 1625 /* 1626 * flush all issued checkpoints and stop checkpoint issue thread. 1627 * after then, all checkpoints should be done by each process context. 1628 */ 1629 f2fs_stop_ckpt_thread(sbi); 1630 1631 /* 1632 * We don't need to do checkpoint when superblock is clean. 1633 * But, the previous checkpoint was not done by umount, it needs to do 1634 * clean checkpoint again. 1635 */ 1636 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1637 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1638 struct cp_control cpc = { 1639 .reason = CP_UMOUNT, 1640 }; 1641 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1642 err = f2fs_write_checkpoint(sbi, &cpc); 1643 } 1644 1645 /* be sure to wait for any on-going discard commands */ 1646 done = f2fs_issue_discard_timeout(sbi); 1647 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { 1648 struct cp_control cpc = { 1649 .reason = CP_UMOUNT | CP_TRIMMED, 1650 }; 1651 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1652 err = f2fs_write_checkpoint(sbi, &cpc); 1653 } 1654 1655 /* 1656 * normally superblock is clean, so we need to release this. 1657 * In addition, EIO will skip do checkpoint, we need this as well. 1658 */ 1659 f2fs_release_ino_entry(sbi, true); 1660 1661 f2fs_leave_shrinker(sbi); 1662 mutex_unlock(&sbi->umount_mutex); 1663 1664 /* our cp_error case, we can wait for any writeback page */ 1665 f2fs_flush_merged_writes(sbi); 1666 1667 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1668 1669 if (err || f2fs_cp_error(sbi)) { 1670 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1671 truncate_inode_pages_final(META_MAPPING(sbi)); 1672 } 1673 1674 for (i = 0; i < NR_COUNT_TYPE; i++) { 1675 if (!get_pages(sbi, i)) 1676 continue; 1677 f2fs_err(sbi, "detect filesystem reference count leak during " 1678 "umount, type: %d, count: %lld", i, get_pages(sbi, i)); 1679 f2fs_bug_on(sbi, 1); 1680 } 1681 1682 f2fs_bug_on(sbi, sbi->fsync_node_num); 1683 1684 f2fs_destroy_compress_inode(sbi); 1685 1686 iput(sbi->node_inode); 1687 sbi->node_inode = NULL; 1688 1689 iput(sbi->meta_inode); 1690 sbi->meta_inode = NULL; 1691 1692 /* 1693 * iput() can update stat information, if f2fs_write_checkpoint() 1694 * above failed with error. 1695 */ 1696 f2fs_destroy_stats(sbi); 1697 1698 /* destroy f2fs internal modules */ 1699 f2fs_destroy_node_manager(sbi); 1700 f2fs_destroy_segment_manager(sbi); 1701 1702 /* flush s_error_work before sbi destroy */ 1703 flush_work(&sbi->s_error_work); 1704 1705 f2fs_destroy_post_read_wq(sbi); 1706 1707 kvfree(sbi->ckpt); 1708 1709 kfree(sbi->raw_super); 1710 1711 f2fs_destroy_page_array_cache(sbi); 1712 f2fs_destroy_xattr_caches(sbi); 1713 #ifdef CONFIG_QUOTA 1714 for (i = 0; i < MAXQUOTAS; i++) 1715 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1716 #endif 1717 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1718 destroy_percpu_info(sbi); 1719 f2fs_destroy_iostat(sbi); 1720 for (i = 0; i < NR_PAGE_TYPE; i++) 1721 kvfree(sbi->write_io[i]); 1722 #if IS_ENABLED(CONFIG_UNICODE) 1723 utf8_unload(sb->s_encoding); 1724 #endif 1725 } 1726 1727 int f2fs_sync_fs(struct super_block *sb, int sync) 1728 { 1729 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1730 int err = 0; 1731 1732 if (unlikely(f2fs_cp_error(sbi))) 1733 return 0; 1734 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1735 return 0; 1736 1737 trace_f2fs_sync_fs(sb, sync); 1738 1739 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1740 return -EAGAIN; 1741 1742 if (sync) { 1743 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1744 err = f2fs_issue_checkpoint(sbi); 1745 } 1746 1747 return err; 1748 } 1749 1750 static int f2fs_freeze(struct super_block *sb) 1751 { 1752 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1753 1754 if (f2fs_readonly(sb)) 1755 return 0; 1756 1757 /* IO error happened before */ 1758 if (unlikely(f2fs_cp_error(sbi))) 1759 return -EIO; 1760 1761 /* must be clean, since sync_filesystem() was already called */ 1762 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY)) 1763 return -EINVAL; 1764 1765 sbi->umount_lock_holder = current; 1766 1767 /* Let's flush checkpoints and stop the thread. */ 1768 f2fs_flush_ckpt_thread(sbi); 1769 1770 sbi->umount_lock_holder = NULL; 1771 1772 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1773 set_sbi_flag(sbi, SBI_IS_FREEZING); 1774 return 0; 1775 } 1776 1777 static int f2fs_unfreeze(struct super_block *sb) 1778 { 1779 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1780 1781 /* 1782 * It will update discard_max_bytes of mounted lvm device to zero 1783 * after creating snapshot on this lvm device, let's drop all 1784 * remained discards. 1785 * We don't need to disable real-time discard because discard_max_bytes 1786 * will recover after removal of snapshot. 1787 */ 1788 if (test_opt(sbi, DISCARD) && !f2fs_hw_support_discard(sbi)) 1789 f2fs_issue_discard_timeout(sbi); 1790 1791 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1792 return 0; 1793 } 1794 1795 #ifdef CONFIG_QUOTA 1796 static int f2fs_statfs_project(struct super_block *sb, 1797 kprojid_t projid, struct kstatfs *buf) 1798 { 1799 struct kqid qid; 1800 struct dquot *dquot; 1801 u64 limit; 1802 u64 curblock; 1803 1804 qid = make_kqid_projid(projid); 1805 dquot = dqget(sb, qid); 1806 if (IS_ERR(dquot)) 1807 return PTR_ERR(dquot); 1808 spin_lock(&dquot->dq_dqb_lock); 1809 1810 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1811 dquot->dq_dqb.dqb_bhardlimit); 1812 limit >>= sb->s_blocksize_bits; 1813 1814 if (limit) { 1815 uint64_t remaining = 0; 1816 1817 curblock = (dquot->dq_dqb.dqb_curspace + 1818 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1819 if (limit > curblock) 1820 remaining = limit - curblock; 1821 1822 buf->f_blocks = min(buf->f_blocks, limit); 1823 buf->f_bfree = min(buf->f_bfree, remaining); 1824 buf->f_bavail = min(buf->f_bavail, remaining); 1825 } 1826 1827 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1828 dquot->dq_dqb.dqb_ihardlimit); 1829 1830 if (limit) { 1831 uint64_t remaining = 0; 1832 1833 if (limit > dquot->dq_dqb.dqb_curinodes) 1834 remaining = limit - dquot->dq_dqb.dqb_curinodes; 1835 1836 buf->f_files = min(buf->f_files, limit); 1837 buf->f_ffree = min(buf->f_ffree, remaining); 1838 } 1839 1840 spin_unlock(&dquot->dq_dqb_lock); 1841 dqput(dquot); 1842 return 0; 1843 } 1844 #endif 1845 1846 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1847 { 1848 struct super_block *sb = dentry->d_sb; 1849 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1850 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1851 block_t total_count, user_block_count, start_count; 1852 u64 avail_node_count; 1853 unsigned int total_valid_node_count; 1854 1855 total_count = le64_to_cpu(sbi->raw_super->block_count); 1856 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1857 buf->f_type = F2FS_SUPER_MAGIC; 1858 buf->f_bsize = sbi->blocksize; 1859 1860 buf->f_blocks = total_count - start_count; 1861 1862 spin_lock(&sbi->stat_lock); 1863 if (sbi->carve_out) 1864 buf->f_blocks -= sbi->current_reserved_blocks; 1865 user_block_count = sbi->user_block_count; 1866 total_valid_node_count = valid_node_count(sbi); 1867 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1868 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1869 sbi->current_reserved_blocks; 1870 1871 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1872 buf->f_bfree = 0; 1873 else 1874 buf->f_bfree -= sbi->unusable_block_count; 1875 spin_unlock(&sbi->stat_lock); 1876 1877 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1878 buf->f_bavail = buf->f_bfree - 1879 F2FS_OPTION(sbi).root_reserved_blocks; 1880 else 1881 buf->f_bavail = 0; 1882 1883 if (avail_node_count > user_block_count) { 1884 buf->f_files = user_block_count; 1885 buf->f_ffree = buf->f_bavail; 1886 } else { 1887 buf->f_files = avail_node_count; 1888 buf->f_ffree = min(avail_node_count - total_valid_node_count, 1889 buf->f_bavail); 1890 } 1891 1892 buf->f_namelen = F2FS_NAME_LEN; 1893 buf->f_fsid = u64_to_fsid(id); 1894 1895 #ifdef CONFIG_QUOTA 1896 if (is_inode_flag_set(d_inode(dentry), FI_PROJ_INHERIT) && 1897 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1898 f2fs_statfs_project(sb, F2FS_I(d_inode(dentry))->i_projid, buf); 1899 } 1900 #endif 1901 return 0; 1902 } 1903 1904 static inline void f2fs_show_quota_options(struct seq_file *seq, 1905 struct super_block *sb) 1906 { 1907 #ifdef CONFIG_QUOTA 1908 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1909 1910 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1911 char *fmtname = ""; 1912 1913 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1914 case QFMT_VFS_OLD: 1915 fmtname = "vfsold"; 1916 break; 1917 case QFMT_VFS_V0: 1918 fmtname = "vfsv0"; 1919 break; 1920 case QFMT_VFS_V1: 1921 fmtname = "vfsv1"; 1922 break; 1923 } 1924 seq_printf(seq, ",jqfmt=%s", fmtname); 1925 } 1926 1927 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1928 seq_show_option(seq, "usrjquota", 1929 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1930 1931 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1932 seq_show_option(seq, "grpjquota", 1933 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1934 1935 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1936 seq_show_option(seq, "prjjquota", 1937 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1938 #endif 1939 } 1940 1941 #ifdef CONFIG_F2FS_FS_COMPRESSION 1942 static inline void f2fs_show_compress_options(struct seq_file *seq, 1943 struct super_block *sb) 1944 { 1945 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1946 char *algtype = ""; 1947 int i; 1948 1949 if (!f2fs_sb_has_compression(sbi)) 1950 return; 1951 1952 switch (F2FS_OPTION(sbi).compress_algorithm) { 1953 case COMPRESS_LZO: 1954 algtype = "lzo"; 1955 break; 1956 case COMPRESS_LZ4: 1957 algtype = "lz4"; 1958 break; 1959 case COMPRESS_ZSTD: 1960 algtype = "zstd"; 1961 break; 1962 case COMPRESS_LZORLE: 1963 algtype = "lzo-rle"; 1964 break; 1965 } 1966 seq_printf(seq, ",compress_algorithm=%s", algtype); 1967 1968 if (F2FS_OPTION(sbi).compress_level) 1969 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1970 1971 seq_printf(seq, ",compress_log_size=%u", 1972 F2FS_OPTION(sbi).compress_log_size); 1973 1974 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1975 seq_printf(seq, ",compress_extension=%s", 1976 F2FS_OPTION(sbi).extensions[i]); 1977 } 1978 1979 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1980 seq_printf(seq, ",nocompress_extension=%s", 1981 F2FS_OPTION(sbi).noextensions[i]); 1982 } 1983 1984 if (F2FS_OPTION(sbi).compress_chksum) 1985 seq_puts(seq, ",compress_chksum"); 1986 1987 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1988 seq_printf(seq, ",compress_mode=%s", "fs"); 1989 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1990 seq_printf(seq, ",compress_mode=%s", "user"); 1991 1992 if (test_opt(sbi, COMPRESS_CACHE)) 1993 seq_puts(seq, ",compress_cache"); 1994 } 1995 #endif 1996 1997 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1998 { 1999 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 2000 2001 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 2002 seq_printf(seq, ",background_gc=%s", "sync"); 2003 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 2004 seq_printf(seq, ",background_gc=%s", "on"); 2005 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 2006 seq_printf(seq, ",background_gc=%s", "off"); 2007 2008 if (test_opt(sbi, GC_MERGE)) 2009 seq_puts(seq, ",gc_merge"); 2010 else 2011 seq_puts(seq, ",nogc_merge"); 2012 2013 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2014 seq_puts(seq, ",disable_roll_forward"); 2015 if (test_opt(sbi, NORECOVERY)) 2016 seq_puts(seq, ",norecovery"); 2017 if (test_opt(sbi, DISCARD)) { 2018 seq_puts(seq, ",discard"); 2019 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 2020 seq_printf(seq, ",discard_unit=%s", "block"); 2021 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2022 seq_printf(seq, ",discard_unit=%s", "segment"); 2023 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2024 seq_printf(seq, ",discard_unit=%s", "section"); 2025 } else { 2026 seq_puts(seq, ",nodiscard"); 2027 } 2028 #ifdef CONFIG_F2FS_FS_XATTR 2029 if (test_opt(sbi, XATTR_USER)) 2030 seq_puts(seq, ",user_xattr"); 2031 else 2032 seq_puts(seq, ",nouser_xattr"); 2033 if (test_opt(sbi, INLINE_XATTR)) 2034 seq_puts(seq, ",inline_xattr"); 2035 else 2036 seq_puts(seq, ",noinline_xattr"); 2037 if (test_opt(sbi, INLINE_XATTR_SIZE)) 2038 seq_printf(seq, ",inline_xattr_size=%u", 2039 F2FS_OPTION(sbi).inline_xattr_size); 2040 #endif 2041 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2042 if (test_opt(sbi, POSIX_ACL)) 2043 seq_puts(seq, ",acl"); 2044 else 2045 seq_puts(seq, ",noacl"); 2046 #endif 2047 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 2048 seq_puts(seq, ",disable_ext_identify"); 2049 if (test_opt(sbi, INLINE_DATA)) 2050 seq_puts(seq, ",inline_data"); 2051 else 2052 seq_puts(seq, ",noinline_data"); 2053 if (test_opt(sbi, INLINE_DENTRY)) 2054 seq_puts(seq, ",inline_dentry"); 2055 else 2056 seq_puts(seq, ",noinline_dentry"); 2057 if (test_opt(sbi, FLUSH_MERGE)) 2058 seq_puts(seq, ",flush_merge"); 2059 else 2060 seq_puts(seq, ",noflush_merge"); 2061 if (test_opt(sbi, NOBARRIER)) 2062 seq_puts(seq, ",nobarrier"); 2063 else 2064 seq_puts(seq, ",barrier"); 2065 if (test_opt(sbi, FASTBOOT)) 2066 seq_puts(seq, ",fastboot"); 2067 if (test_opt(sbi, READ_EXTENT_CACHE)) 2068 seq_puts(seq, ",extent_cache"); 2069 else 2070 seq_puts(seq, ",noextent_cache"); 2071 if (test_opt(sbi, AGE_EXTENT_CACHE)) 2072 seq_puts(seq, ",age_extent_cache"); 2073 if (test_opt(sbi, DATA_FLUSH)) 2074 seq_puts(seq, ",data_flush"); 2075 2076 seq_puts(seq, ",mode="); 2077 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 2078 seq_puts(seq, "adaptive"); 2079 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 2080 seq_puts(seq, "lfs"); 2081 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 2082 seq_puts(seq, "fragment:segment"); 2083 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2084 seq_puts(seq, "fragment:block"); 2085 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 2086 if (test_opt(sbi, RESERVE_ROOT)) 2087 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 2088 F2FS_OPTION(sbi).root_reserved_blocks, 2089 from_kuid_munged(&init_user_ns, 2090 F2FS_OPTION(sbi).s_resuid), 2091 from_kgid_munged(&init_user_ns, 2092 F2FS_OPTION(sbi).s_resgid)); 2093 #ifdef CONFIG_F2FS_FAULT_INJECTION 2094 if (test_opt(sbi, FAULT_INJECTION)) { 2095 seq_printf(seq, ",fault_injection=%u", 2096 F2FS_OPTION(sbi).fault_info.inject_rate); 2097 seq_printf(seq, ",fault_type=%u", 2098 F2FS_OPTION(sbi).fault_info.inject_type); 2099 } 2100 #endif 2101 #ifdef CONFIG_QUOTA 2102 if (test_opt(sbi, QUOTA)) 2103 seq_puts(seq, ",quota"); 2104 if (test_opt(sbi, USRQUOTA)) 2105 seq_puts(seq, ",usrquota"); 2106 if (test_opt(sbi, GRPQUOTA)) 2107 seq_puts(seq, ",grpquota"); 2108 if (test_opt(sbi, PRJQUOTA)) 2109 seq_puts(seq, ",prjquota"); 2110 #endif 2111 f2fs_show_quota_options(seq, sbi->sb); 2112 2113 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 2114 2115 if (sbi->sb->s_flags & SB_INLINECRYPT) 2116 seq_puts(seq, ",inlinecrypt"); 2117 2118 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 2119 seq_printf(seq, ",alloc_mode=%s", "default"); 2120 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2121 seq_printf(seq, ",alloc_mode=%s", "reuse"); 2122 2123 if (test_opt(sbi, DISABLE_CHECKPOINT)) 2124 seq_printf(seq, ",checkpoint=disable:%u", 2125 F2FS_OPTION(sbi).unusable_cap); 2126 if (test_opt(sbi, MERGE_CHECKPOINT)) 2127 seq_puts(seq, ",checkpoint_merge"); 2128 else 2129 seq_puts(seq, ",nocheckpoint_merge"); 2130 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2131 seq_printf(seq, ",fsync_mode=%s", "posix"); 2132 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2133 seq_printf(seq, ",fsync_mode=%s", "strict"); 2134 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2135 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2136 2137 #ifdef CONFIG_F2FS_FS_COMPRESSION 2138 f2fs_show_compress_options(seq, sbi->sb); 2139 #endif 2140 2141 if (test_opt(sbi, ATGC)) 2142 seq_puts(seq, ",atgc"); 2143 2144 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2145 seq_printf(seq, ",memory=%s", "normal"); 2146 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2147 seq_printf(seq, ",memory=%s", "low"); 2148 2149 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2150 seq_printf(seq, ",errors=%s", "remount-ro"); 2151 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) 2152 seq_printf(seq, ",errors=%s", "continue"); 2153 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) 2154 seq_printf(seq, ",errors=%s", "panic"); 2155 2156 if (test_opt(sbi, NAT_BITS)) 2157 seq_puts(seq, ",nat_bits"); 2158 2159 return 0; 2160 } 2161 2162 static void default_options(struct f2fs_sb_info *sbi, bool remount) 2163 { 2164 /* init some FS parameters */ 2165 if (!remount) { 2166 set_opt(sbi, READ_EXTENT_CACHE); 2167 clear_opt(sbi, DISABLE_CHECKPOINT); 2168 2169 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2170 set_opt(sbi, DISCARD); 2171 2172 if (f2fs_sb_has_blkzoned(sbi)) 2173 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2174 else 2175 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2176 } 2177 2178 if (f2fs_sb_has_readonly(sbi)) 2179 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2180 else 2181 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2182 2183 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2184 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= 2185 SMALL_VOLUME_SEGMENTS) 2186 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2187 else 2188 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2189 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2190 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2191 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2192 if (f2fs_sb_has_compression(sbi)) { 2193 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2194 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2195 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2196 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2197 } 2198 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2199 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2200 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; 2201 2202 set_opt(sbi, INLINE_XATTR); 2203 set_opt(sbi, INLINE_DATA); 2204 set_opt(sbi, INLINE_DENTRY); 2205 set_opt(sbi, MERGE_CHECKPOINT); 2206 set_opt(sbi, LAZYTIME); 2207 F2FS_OPTION(sbi).unusable_cap = 0; 2208 if (!f2fs_is_readonly(sbi)) 2209 set_opt(sbi, FLUSH_MERGE); 2210 if (f2fs_sb_has_blkzoned(sbi)) 2211 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2212 else 2213 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2214 2215 #ifdef CONFIG_F2FS_FS_XATTR 2216 set_opt(sbi, XATTR_USER); 2217 #endif 2218 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2219 set_opt(sbi, POSIX_ACL); 2220 #endif 2221 2222 f2fs_build_fault_attr(sbi, 0, 0, FAULT_ALL); 2223 } 2224 2225 #ifdef CONFIG_QUOTA 2226 static int f2fs_enable_quotas(struct super_block *sb); 2227 #endif 2228 2229 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2230 { 2231 unsigned int s_flags = sbi->sb->s_flags; 2232 struct cp_control cpc; 2233 unsigned int gc_mode = sbi->gc_mode; 2234 int err = 0; 2235 int ret; 2236 block_t unusable; 2237 2238 if (s_flags & SB_RDONLY) { 2239 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2240 return -EINVAL; 2241 } 2242 sbi->sb->s_flags |= SB_ACTIVE; 2243 2244 /* check if we need more GC first */ 2245 unusable = f2fs_get_unusable_blocks(sbi); 2246 if (!f2fs_disable_cp_again(sbi, unusable)) 2247 goto skip_gc; 2248 2249 f2fs_update_time(sbi, DISABLE_TIME); 2250 2251 sbi->gc_mode = GC_URGENT_HIGH; 2252 2253 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2254 struct f2fs_gc_control gc_control = { 2255 .victim_segno = NULL_SEGNO, 2256 .init_gc_type = FG_GC, 2257 .should_migrate_blocks = false, 2258 .err_gc_skipped = true, 2259 .no_bg_gc = true, 2260 .nr_free_secs = 1 }; 2261 2262 f2fs_down_write(&sbi->gc_lock); 2263 stat_inc_gc_call_count(sbi, FOREGROUND); 2264 err = f2fs_gc(sbi, &gc_control); 2265 if (err == -ENODATA) { 2266 err = 0; 2267 break; 2268 } 2269 if (err && err != -EAGAIN) 2270 break; 2271 } 2272 2273 ret = sync_filesystem(sbi->sb); 2274 if (ret || err) { 2275 err = ret ? ret : err; 2276 goto restore_flag; 2277 } 2278 2279 unusable = f2fs_get_unusable_blocks(sbi); 2280 if (f2fs_disable_cp_again(sbi, unusable)) { 2281 err = -EAGAIN; 2282 goto restore_flag; 2283 } 2284 2285 skip_gc: 2286 f2fs_down_write(&sbi->gc_lock); 2287 cpc.reason = CP_PAUSE; 2288 set_sbi_flag(sbi, SBI_CP_DISABLED); 2289 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2290 err = f2fs_write_checkpoint(sbi, &cpc); 2291 if (err) 2292 goto out_unlock; 2293 2294 spin_lock(&sbi->stat_lock); 2295 sbi->unusable_block_count = unusable; 2296 spin_unlock(&sbi->stat_lock); 2297 2298 out_unlock: 2299 f2fs_up_write(&sbi->gc_lock); 2300 restore_flag: 2301 sbi->gc_mode = gc_mode; 2302 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2303 return err; 2304 } 2305 2306 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2307 { 2308 int retry = DEFAULT_RETRY_IO_COUNT; 2309 2310 /* we should flush all the data to keep data consistency */ 2311 do { 2312 sync_inodes_sb(sbi->sb); 2313 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2314 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2315 2316 if (unlikely(retry < 0)) 2317 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2318 2319 f2fs_down_write(&sbi->gc_lock); 2320 f2fs_dirty_to_prefree(sbi); 2321 2322 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2323 set_sbi_flag(sbi, SBI_IS_DIRTY); 2324 f2fs_up_write(&sbi->gc_lock); 2325 2326 f2fs_sync_fs(sbi->sb, 1); 2327 2328 /* Let's ensure there's no pending checkpoint anymore */ 2329 f2fs_flush_ckpt_thread(sbi); 2330 } 2331 2332 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2333 { 2334 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2335 struct f2fs_mount_info org_mount_opt; 2336 unsigned long old_sb_flags; 2337 int err; 2338 bool need_restart_gc = false, need_stop_gc = false; 2339 bool need_restart_flush = false, need_stop_flush = false; 2340 bool need_restart_discard = false, need_stop_discard = false; 2341 bool need_enable_checkpoint = false, need_disable_checkpoint = false; 2342 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); 2343 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); 2344 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2345 bool no_atgc = !test_opt(sbi, ATGC); 2346 bool no_discard = !test_opt(sbi, DISCARD); 2347 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2348 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2349 bool no_nat_bits = !test_opt(sbi, NAT_BITS); 2350 #ifdef CONFIG_QUOTA 2351 int i, j; 2352 #endif 2353 2354 /* 2355 * Save the old mount options in case we 2356 * need to restore them. 2357 */ 2358 org_mount_opt = sbi->mount_opt; 2359 old_sb_flags = sb->s_flags; 2360 2361 sbi->umount_lock_holder = current; 2362 2363 #ifdef CONFIG_QUOTA 2364 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2365 for (i = 0; i < MAXQUOTAS; i++) { 2366 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2367 org_mount_opt.s_qf_names[i] = 2368 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2369 GFP_KERNEL); 2370 if (!org_mount_opt.s_qf_names[i]) { 2371 for (j = 0; j < i; j++) 2372 kfree(org_mount_opt.s_qf_names[j]); 2373 return -ENOMEM; 2374 } 2375 } else { 2376 org_mount_opt.s_qf_names[i] = NULL; 2377 } 2378 } 2379 #endif 2380 2381 /* recover superblocks we couldn't write due to previous RO mount */ 2382 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2383 err = f2fs_commit_super(sbi, false); 2384 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2385 err); 2386 if (!err) 2387 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2388 } 2389 2390 default_options(sbi, true); 2391 2392 /* parse mount options */ 2393 err = parse_options(sbi, data, true); 2394 if (err) 2395 goto restore_opts; 2396 2397 #ifdef CONFIG_BLK_DEV_ZONED 2398 if (f2fs_sb_has_blkzoned(sbi) && 2399 sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { 2400 f2fs_err(sbi, 2401 "zoned: max open zones %u is too small, need at least %u open zones", 2402 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); 2403 err = -EINVAL; 2404 goto restore_opts; 2405 } 2406 #endif 2407 2408 err = f2fs_default_check(sbi); 2409 if (err) 2410 goto restore_opts; 2411 2412 /* flush outstanding errors before changing fs state */ 2413 flush_work(&sbi->s_error_work); 2414 2415 /* 2416 * Previous and new state of filesystem is RO, 2417 * so skip checking GC and FLUSH_MERGE conditions. 2418 */ 2419 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2420 goto skip; 2421 2422 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) { 2423 err = -EROFS; 2424 goto restore_opts; 2425 } 2426 2427 #ifdef CONFIG_QUOTA 2428 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2429 err = dquot_suspend(sb, -1); 2430 if (err < 0) 2431 goto restore_opts; 2432 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2433 /* dquot_resume needs RW */ 2434 sb->s_flags &= ~SB_RDONLY; 2435 if (sb_any_quota_suspended(sb)) { 2436 dquot_resume(sb, -1); 2437 } else if (f2fs_sb_has_quota_ino(sbi)) { 2438 err = f2fs_enable_quotas(sb); 2439 if (err) 2440 goto restore_opts; 2441 } 2442 } 2443 #endif 2444 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { 2445 err = -EINVAL; 2446 f2fs_warn(sbi, "LFS is not compatible with IPU"); 2447 goto restore_opts; 2448 } 2449 2450 /* disallow enable atgc dynamically */ 2451 if (no_atgc == !!test_opt(sbi, ATGC)) { 2452 err = -EINVAL; 2453 f2fs_warn(sbi, "switch atgc option is not allowed"); 2454 goto restore_opts; 2455 } 2456 2457 /* disallow enable/disable extent_cache dynamically */ 2458 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { 2459 err = -EINVAL; 2460 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2461 goto restore_opts; 2462 } 2463 /* disallow enable/disable age extent_cache dynamically */ 2464 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { 2465 err = -EINVAL; 2466 f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); 2467 goto restore_opts; 2468 } 2469 2470 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2471 err = -EINVAL; 2472 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2473 goto restore_opts; 2474 } 2475 2476 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2477 err = -EINVAL; 2478 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2479 goto restore_opts; 2480 } 2481 2482 if (no_nat_bits == !!test_opt(sbi, NAT_BITS)) { 2483 err = -EINVAL; 2484 f2fs_warn(sbi, "switch nat_bits option is not allowed"); 2485 goto restore_opts; 2486 } 2487 2488 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2489 err = -EINVAL; 2490 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2491 goto restore_opts; 2492 } 2493 2494 /* 2495 * We stop the GC thread if FS is mounted as RO 2496 * or if background_gc = off is passed in mount 2497 * option. Also sync the filesystem. 2498 */ 2499 if ((*flags & SB_RDONLY) || 2500 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2501 !test_opt(sbi, GC_MERGE))) { 2502 if (sbi->gc_thread) { 2503 f2fs_stop_gc_thread(sbi); 2504 need_restart_gc = true; 2505 } 2506 } else if (!sbi->gc_thread) { 2507 err = f2fs_start_gc_thread(sbi); 2508 if (err) 2509 goto restore_opts; 2510 need_stop_gc = true; 2511 } 2512 2513 if (*flags & SB_RDONLY) { 2514 sync_inodes_sb(sb); 2515 2516 set_sbi_flag(sbi, SBI_IS_DIRTY); 2517 set_sbi_flag(sbi, SBI_IS_CLOSE); 2518 f2fs_sync_fs(sb, 1); 2519 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2520 } 2521 2522 /* 2523 * We stop issue flush thread if FS is mounted as RO 2524 * or if flush_merge is not passed in mount option. 2525 */ 2526 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2527 clear_opt(sbi, FLUSH_MERGE); 2528 f2fs_destroy_flush_cmd_control(sbi, false); 2529 need_restart_flush = true; 2530 } else { 2531 err = f2fs_create_flush_cmd_control(sbi); 2532 if (err) 2533 goto restore_gc; 2534 need_stop_flush = true; 2535 } 2536 2537 if (no_discard == !!test_opt(sbi, DISCARD)) { 2538 if (test_opt(sbi, DISCARD)) { 2539 err = f2fs_start_discard_thread(sbi); 2540 if (err) 2541 goto restore_flush; 2542 need_stop_discard = true; 2543 } else { 2544 f2fs_stop_discard_thread(sbi); 2545 f2fs_issue_discard_timeout(sbi); 2546 need_restart_discard = true; 2547 } 2548 } 2549 2550 adjust_unusable_cap_perc(sbi); 2551 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2552 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2553 err = f2fs_disable_checkpoint(sbi); 2554 if (err) 2555 goto restore_discard; 2556 need_enable_checkpoint = true; 2557 } else { 2558 f2fs_enable_checkpoint(sbi); 2559 need_disable_checkpoint = true; 2560 } 2561 } 2562 2563 /* 2564 * Place this routine at the end, since a new checkpoint would be 2565 * triggered while remount and we need to take care of it before 2566 * returning from remount. 2567 */ 2568 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2569 !test_opt(sbi, MERGE_CHECKPOINT)) { 2570 f2fs_stop_ckpt_thread(sbi); 2571 } else { 2572 /* Flush if the prevous checkpoint, if exists. */ 2573 f2fs_flush_ckpt_thread(sbi); 2574 2575 err = f2fs_start_ckpt_thread(sbi); 2576 if (err) { 2577 f2fs_err(sbi, 2578 "Failed to start F2FS issue_checkpoint_thread (%d)", 2579 err); 2580 goto restore_checkpoint; 2581 } 2582 } 2583 2584 skip: 2585 #ifdef CONFIG_QUOTA 2586 /* Release old quota file names */ 2587 for (i = 0; i < MAXQUOTAS; i++) 2588 kfree(org_mount_opt.s_qf_names[i]); 2589 #endif 2590 /* Update the POSIXACL Flag */ 2591 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2592 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2593 2594 limit_reserve_root(sbi); 2595 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2596 2597 sbi->umount_lock_holder = NULL; 2598 return 0; 2599 restore_checkpoint: 2600 if (need_enable_checkpoint) { 2601 f2fs_enable_checkpoint(sbi); 2602 } else if (need_disable_checkpoint) { 2603 if (f2fs_disable_checkpoint(sbi)) 2604 f2fs_warn(sbi, "checkpoint has not been disabled"); 2605 } 2606 restore_discard: 2607 if (need_restart_discard) { 2608 if (f2fs_start_discard_thread(sbi)) 2609 f2fs_warn(sbi, "discard has been stopped"); 2610 } else if (need_stop_discard) { 2611 f2fs_stop_discard_thread(sbi); 2612 } 2613 restore_flush: 2614 if (need_restart_flush) { 2615 if (f2fs_create_flush_cmd_control(sbi)) 2616 f2fs_warn(sbi, "background flush thread has stopped"); 2617 } else if (need_stop_flush) { 2618 clear_opt(sbi, FLUSH_MERGE); 2619 f2fs_destroy_flush_cmd_control(sbi, false); 2620 } 2621 restore_gc: 2622 if (need_restart_gc) { 2623 if (f2fs_start_gc_thread(sbi)) 2624 f2fs_warn(sbi, "background gc thread has stopped"); 2625 } else if (need_stop_gc) { 2626 f2fs_stop_gc_thread(sbi); 2627 } 2628 restore_opts: 2629 #ifdef CONFIG_QUOTA 2630 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2631 for (i = 0; i < MAXQUOTAS; i++) { 2632 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2633 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2634 } 2635 #endif 2636 sbi->mount_opt = org_mount_opt; 2637 sb->s_flags = old_sb_flags; 2638 2639 sbi->umount_lock_holder = NULL; 2640 return err; 2641 } 2642 2643 static void f2fs_shutdown(struct super_block *sb) 2644 { 2645 f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false, false); 2646 } 2647 2648 #ifdef CONFIG_QUOTA 2649 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) 2650 { 2651 /* need to recovery orphan */ 2652 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 2653 return true; 2654 /* need to recovery data */ 2655 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2656 return false; 2657 if (test_opt(sbi, NORECOVERY)) 2658 return false; 2659 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); 2660 } 2661 2662 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) 2663 { 2664 bool readonly = f2fs_readonly(sbi->sb); 2665 2666 if (!f2fs_need_recovery(sbi)) 2667 return false; 2668 2669 /* it doesn't need to check f2fs_sb_has_readonly() */ 2670 if (f2fs_hw_is_readonly(sbi)) 2671 return false; 2672 2673 if (readonly) { 2674 sbi->sb->s_flags &= ~SB_RDONLY; 2675 set_sbi_flag(sbi, SBI_IS_WRITABLE); 2676 } 2677 2678 /* 2679 * Turn on quotas which were not enabled for read-only mounts if 2680 * filesystem has quota feature, so that they are updated correctly. 2681 */ 2682 return f2fs_enable_quota_files(sbi, readonly); 2683 } 2684 2685 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, 2686 bool quota_enabled) 2687 { 2688 if (quota_enabled) 2689 f2fs_quota_off_umount(sbi->sb); 2690 2691 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { 2692 clear_sbi_flag(sbi, SBI_IS_WRITABLE); 2693 sbi->sb->s_flags |= SB_RDONLY; 2694 } 2695 } 2696 2697 /* Read data from quotafile */ 2698 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2699 size_t len, loff_t off) 2700 { 2701 struct inode *inode = sb_dqopt(sb)->files[type]; 2702 struct address_space *mapping = inode->i_mapping; 2703 int tocopy; 2704 size_t toread; 2705 loff_t i_size = i_size_read(inode); 2706 2707 if (off > i_size) 2708 return 0; 2709 2710 if (off + len > i_size) 2711 len = i_size - off; 2712 toread = len; 2713 while (toread > 0) { 2714 struct folio *folio; 2715 size_t offset; 2716 2717 repeat: 2718 folio = mapping_read_folio_gfp(mapping, off >> PAGE_SHIFT, 2719 GFP_NOFS); 2720 if (IS_ERR(folio)) { 2721 if (PTR_ERR(folio) == -ENOMEM) { 2722 memalloc_retry_wait(GFP_NOFS); 2723 goto repeat; 2724 } 2725 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2726 return PTR_ERR(folio); 2727 } 2728 offset = offset_in_folio(folio, off); 2729 tocopy = min(folio_size(folio) - offset, toread); 2730 2731 folio_lock(folio); 2732 2733 if (unlikely(folio->mapping != mapping)) { 2734 f2fs_folio_put(folio, true); 2735 goto repeat; 2736 } 2737 2738 /* 2739 * should never happen, just leave f2fs_bug_on() here to catch 2740 * any potential bug. 2741 */ 2742 f2fs_bug_on(F2FS_SB(sb), !folio_test_uptodate(folio)); 2743 2744 memcpy_from_folio(data, folio, offset, tocopy); 2745 f2fs_folio_put(folio, true); 2746 2747 toread -= tocopy; 2748 data += tocopy; 2749 off += tocopy; 2750 } 2751 return len; 2752 } 2753 2754 /* Write to quotafile */ 2755 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2756 const char *data, size_t len, loff_t off) 2757 { 2758 struct inode *inode = sb_dqopt(sb)->files[type]; 2759 struct address_space *mapping = inode->i_mapping; 2760 const struct address_space_operations *a_ops = mapping->a_ops; 2761 int offset = off & (sb->s_blocksize - 1); 2762 size_t towrite = len; 2763 struct folio *folio; 2764 void *fsdata = NULL; 2765 int err = 0; 2766 int tocopy; 2767 2768 while (towrite > 0) { 2769 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2770 towrite); 2771 retry: 2772 err = a_ops->write_begin(NULL, mapping, off, tocopy, 2773 &folio, &fsdata); 2774 if (unlikely(err)) { 2775 if (err == -ENOMEM) { 2776 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2777 goto retry; 2778 } 2779 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2780 break; 2781 } 2782 2783 memcpy_to_folio(folio, offset_in_folio(folio, off), data, tocopy); 2784 2785 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2786 folio, fsdata); 2787 offset = 0; 2788 towrite -= tocopy; 2789 off += tocopy; 2790 data += tocopy; 2791 cond_resched(); 2792 } 2793 2794 if (len == towrite) 2795 return err; 2796 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2797 f2fs_mark_inode_dirty_sync(inode, false); 2798 return len - towrite; 2799 } 2800 2801 int f2fs_dquot_initialize(struct inode *inode) 2802 { 2803 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) 2804 return -ESRCH; 2805 2806 return dquot_initialize(inode); 2807 } 2808 2809 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode) 2810 { 2811 return F2FS_I(inode)->i_dquot; 2812 } 2813 2814 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2815 { 2816 return &F2FS_I(inode)->i_reserved_quota; 2817 } 2818 2819 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2820 { 2821 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2822 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2823 return 0; 2824 } 2825 2826 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2827 F2FS_OPTION(sbi).s_jquota_fmt, type); 2828 } 2829 2830 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2831 { 2832 int enabled = 0; 2833 int i, err; 2834 2835 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2836 err = f2fs_enable_quotas(sbi->sb); 2837 if (err) { 2838 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2839 return 0; 2840 } 2841 return 1; 2842 } 2843 2844 for (i = 0; i < MAXQUOTAS; i++) { 2845 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2846 err = f2fs_quota_on_mount(sbi, i); 2847 if (!err) { 2848 enabled = 1; 2849 continue; 2850 } 2851 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2852 err, i); 2853 } 2854 } 2855 return enabled; 2856 } 2857 2858 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2859 unsigned int flags) 2860 { 2861 struct inode *qf_inode; 2862 unsigned long qf_inum; 2863 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; 2864 int err; 2865 2866 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2867 2868 qf_inum = f2fs_qf_ino(sb, type); 2869 if (!qf_inum) 2870 return -EPERM; 2871 2872 qf_inode = f2fs_iget(sb, qf_inum); 2873 if (IS_ERR(qf_inode)) { 2874 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2875 return PTR_ERR(qf_inode); 2876 } 2877 2878 /* Don't account quota for quota files to avoid recursion */ 2879 inode_lock(qf_inode); 2880 qf_inode->i_flags |= S_NOQUOTA; 2881 2882 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { 2883 F2FS_I(qf_inode)->i_flags |= qf_flag; 2884 f2fs_set_inode_flags(qf_inode); 2885 } 2886 inode_unlock(qf_inode); 2887 2888 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2889 iput(qf_inode); 2890 return err; 2891 } 2892 2893 static int f2fs_enable_quotas(struct super_block *sb) 2894 { 2895 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2896 int type, err = 0; 2897 unsigned long qf_inum; 2898 bool quota_mopt[MAXQUOTAS] = { 2899 test_opt(sbi, USRQUOTA), 2900 test_opt(sbi, GRPQUOTA), 2901 test_opt(sbi, PRJQUOTA), 2902 }; 2903 2904 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2905 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2906 return 0; 2907 } 2908 2909 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2910 2911 for (type = 0; type < MAXQUOTAS; type++) { 2912 qf_inum = f2fs_qf_ino(sb, type); 2913 if (qf_inum) { 2914 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2915 DQUOT_USAGE_ENABLED | 2916 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2917 if (err) { 2918 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2919 type, err); 2920 for (type--; type >= 0; type--) 2921 dquot_quota_off(sb, type); 2922 set_sbi_flag(F2FS_SB(sb), 2923 SBI_QUOTA_NEED_REPAIR); 2924 return err; 2925 } 2926 } 2927 } 2928 return 0; 2929 } 2930 2931 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2932 { 2933 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2934 struct address_space *mapping = dqopt->files[type]->i_mapping; 2935 int ret = 0; 2936 2937 ret = dquot_writeback_dquots(sbi->sb, type); 2938 if (ret) 2939 goto out; 2940 2941 ret = filemap_fdatawrite(mapping); 2942 if (ret) 2943 goto out; 2944 2945 /* if we are using journalled quota */ 2946 if (is_journalled_quota(sbi)) 2947 goto out; 2948 2949 ret = filemap_fdatawait(mapping); 2950 2951 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2952 out: 2953 if (ret) 2954 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2955 return ret; 2956 } 2957 2958 int f2fs_do_quota_sync(struct super_block *sb, int type) 2959 { 2960 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2961 struct quota_info *dqopt = sb_dqopt(sb); 2962 int cnt; 2963 int ret = 0; 2964 2965 /* 2966 * Now when everything is written we can discard the pagecache so 2967 * that userspace sees the changes. 2968 */ 2969 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2970 2971 if (type != -1 && cnt != type) 2972 continue; 2973 2974 if (!sb_has_quota_active(sb, cnt)) 2975 continue; 2976 2977 if (!f2fs_sb_has_quota_ino(sbi)) 2978 inode_lock(dqopt->files[cnt]); 2979 2980 /* 2981 * do_quotactl 2982 * f2fs_quota_sync 2983 * f2fs_down_read(quota_sem) 2984 * dquot_writeback_dquots() 2985 * f2fs_dquot_commit 2986 * block_operation 2987 * f2fs_down_read(quota_sem) 2988 */ 2989 f2fs_lock_op(sbi); 2990 f2fs_down_read(&sbi->quota_sem); 2991 2992 ret = f2fs_quota_sync_file(sbi, cnt); 2993 2994 f2fs_up_read(&sbi->quota_sem); 2995 f2fs_unlock_op(sbi); 2996 2997 if (!f2fs_sb_has_quota_ino(sbi)) 2998 inode_unlock(dqopt->files[cnt]); 2999 3000 if (ret) 3001 break; 3002 } 3003 return ret; 3004 } 3005 3006 static int f2fs_quota_sync(struct super_block *sb, int type) 3007 { 3008 int ret; 3009 3010 F2FS_SB(sb)->umount_lock_holder = current; 3011 ret = f2fs_do_quota_sync(sb, type); 3012 F2FS_SB(sb)->umount_lock_holder = NULL; 3013 return ret; 3014 } 3015 3016 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 3017 const struct path *path) 3018 { 3019 struct inode *inode; 3020 int err = 0; 3021 3022 /* if quota sysfile exists, deny enabling quota with specific file */ 3023 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 3024 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 3025 return -EBUSY; 3026 } 3027 3028 if (path->dentry->d_sb != sb) 3029 return -EXDEV; 3030 3031 F2FS_SB(sb)->umount_lock_holder = current; 3032 3033 err = f2fs_do_quota_sync(sb, type); 3034 if (err) 3035 goto out; 3036 3037 inode = d_inode(path->dentry); 3038 3039 err = filemap_fdatawrite(inode->i_mapping); 3040 if (err) 3041 goto out; 3042 3043 err = filemap_fdatawait(inode->i_mapping); 3044 if (err) 3045 goto out; 3046 3047 err = dquot_quota_on(sb, type, format_id, path); 3048 if (err) 3049 goto out; 3050 3051 inode_lock(inode); 3052 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; 3053 f2fs_set_inode_flags(inode); 3054 inode_unlock(inode); 3055 f2fs_mark_inode_dirty_sync(inode, false); 3056 out: 3057 F2FS_SB(sb)->umount_lock_holder = NULL; 3058 return err; 3059 } 3060 3061 static int __f2fs_quota_off(struct super_block *sb, int type) 3062 { 3063 struct inode *inode = sb_dqopt(sb)->files[type]; 3064 int err; 3065 3066 if (!inode || !igrab(inode)) 3067 return dquot_quota_off(sb, type); 3068 3069 err = f2fs_do_quota_sync(sb, type); 3070 if (err) 3071 goto out_put; 3072 3073 err = dquot_quota_off(sb, type); 3074 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 3075 goto out_put; 3076 3077 inode_lock(inode); 3078 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; 3079 f2fs_set_inode_flags(inode); 3080 inode_unlock(inode); 3081 f2fs_mark_inode_dirty_sync(inode, false); 3082 out_put: 3083 iput(inode); 3084 return err; 3085 } 3086 3087 static int f2fs_quota_off(struct super_block *sb, int type) 3088 { 3089 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3090 int err; 3091 3092 F2FS_SB(sb)->umount_lock_holder = current; 3093 3094 err = __f2fs_quota_off(sb, type); 3095 3096 /* 3097 * quotactl can shutdown journalled quota, result in inconsistence 3098 * between quota record and fs data by following updates, tag the 3099 * flag to let fsck be aware of it. 3100 */ 3101 if (is_journalled_quota(sbi)) 3102 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3103 3104 F2FS_SB(sb)->umount_lock_holder = NULL; 3105 3106 return err; 3107 } 3108 3109 void f2fs_quota_off_umount(struct super_block *sb) 3110 { 3111 int type; 3112 int err; 3113 3114 for (type = 0; type < MAXQUOTAS; type++) { 3115 err = __f2fs_quota_off(sb, type); 3116 if (err) { 3117 int ret = dquot_quota_off(sb, type); 3118 3119 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 3120 type, err, ret); 3121 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3122 } 3123 } 3124 /* 3125 * In case of checkpoint=disable, we must flush quota blocks. 3126 * This can cause NULL exception for node_inode in end_io, since 3127 * put_super already dropped it. 3128 */ 3129 sync_filesystem(sb); 3130 } 3131 3132 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 3133 { 3134 struct quota_info *dqopt = sb_dqopt(sb); 3135 int type; 3136 3137 for (type = 0; type < MAXQUOTAS; type++) { 3138 if (!dqopt->files[type]) 3139 continue; 3140 f2fs_inode_synced(dqopt->files[type]); 3141 } 3142 } 3143 3144 static int f2fs_dquot_commit(struct dquot *dquot) 3145 { 3146 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3147 int ret; 3148 3149 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 3150 ret = dquot_commit(dquot); 3151 if (ret < 0) 3152 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3153 f2fs_up_read(&sbi->quota_sem); 3154 return ret; 3155 } 3156 3157 static int f2fs_dquot_acquire(struct dquot *dquot) 3158 { 3159 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3160 int ret; 3161 3162 f2fs_down_read(&sbi->quota_sem); 3163 ret = dquot_acquire(dquot); 3164 if (ret < 0) 3165 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3166 f2fs_up_read(&sbi->quota_sem); 3167 return ret; 3168 } 3169 3170 static int f2fs_dquot_release(struct dquot *dquot) 3171 { 3172 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3173 int ret = dquot_release(dquot); 3174 3175 if (ret < 0) 3176 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3177 return ret; 3178 } 3179 3180 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 3181 { 3182 struct super_block *sb = dquot->dq_sb; 3183 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3184 int ret = dquot_mark_dquot_dirty(dquot); 3185 3186 /* if we are using journalled quota */ 3187 if (is_journalled_quota(sbi)) 3188 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 3189 3190 return ret; 3191 } 3192 3193 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 3194 { 3195 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3196 int ret = dquot_commit_info(sb, type); 3197 3198 if (ret < 0) 3199 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3200 return ret; 3201 } 3202 3203 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 3204 { 3205 *projid = F2FS_I(inode)->i_projid; 3206 return 0; 3207 } 3208 3209 static const struct dquot_operations f2fs_quota_operations = { 3210 .get_reserved_space = f2fs_get_reserved_space, 3211 .write_dquot = f2fs_dquot_commit, 3212 .acquire_dquot = f2fs_dquot_acquire, 3213 .release_dquot = f2fs_dquot_release, 3214 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 3215 .write_info = f2fs_dquot_commit_info, 3216 .alloc_dquot = dquot_alloc, 3217 .destroy_dquot = dquot_destroy, 3218 .get_projid = f2fs_get_projid, 3219 .get_next_id = dquot_get_next_id, 3220 }; 3221 3222 static const struct quotactl_ops f2fs_quotactl_ops = { 3223 .quota_on = f2fs_quota_on, 3224 .quota_off = f2fs_quota_off, 3225 .quota_sync = f2fs_quota_sync, 3226 .get_state = dquot_get_state, 3227 .set_info = dquot_set_dqinfo, 3228 .get_dqblk = dquot_get_dqblk, 3229 .set_dqblk = dquot_set_dqblk, 3230 .get_nextdqblk = dquot_get_next_dqblk, 3231 }; 3232 #else 3233 int f2fs_dquot_initialize(struct inode *inode) 3234 { 3235 return 0; 3236 } 3237 3238 int f2fs_do_quota_sync(struct super_block *sb, int type) 3239 { 3240 return 0; 3241 } 3242 3243 void f2fs_quota_off_umount(struct super_block *sb) 3244 { 3245 } 3246 #endif 3247 3248 static const struct super_operations f2fs_sops = { 3249 .alloc_inode = f2fs_alloc_inode, 3250 .free_inode = f2fs_free_inode, 3251 .drop_inode = f2fs_drop_inode, 3252 .write_inode = f2fs_write_inode, 3253 .dirty_inode = f2fs_dirty_inode, 3254 .show_options = f2fs_show_options, 3255 #ifdef CONFIG_QUOTA 3256 .quota_read = f2fs_quota_read, 3257 .quota_write = f2fs_quota_write, 3258 .get_dquots = f2fs_get_dquots, 3259 #endif 3260 .evict_inode = f2fs_evict_inode, 3261 .put_super = f2fs_put_super, 3262 .sync_fs = f2fs_sync_fs, 3263 .freeze_fs = f2fs_freeze, 3264 .unfreeze_fs = f2fs_unfreeze, 3265 .statfs = f2fs_statfs, 3266 .remount_fs = f2fs_remount, 3267 .shutdown = f2fs_shutdown, 3268 }; 3269 3270 #ifdef CONFIG_FS_ENCRYPTION 3271 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 3272 { 3273 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3274 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3275 ctx, len, NULL); 3276 } 3277 3278 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3279 void *fs_data) 3280 { 3281 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3282 3283 /* 3284 * Encrypting the root directory is not allowed because fsck 3285 * expects lost+found directory to exist and remain unencrypted 3286 * if LOST_FOUND feature is enabled. 3287 * 3288 */ 3289 if (f2fs_sb_has_lost_found(sbi) && 3290 inode->i_ino == F2FS_ROOT_INO(sbi)) 3291 return -EPERM; 3292 3293 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3294 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3295 ctx, len, fs_data, XATTR_CREATE); 3296 } 3297 3298 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3299 { 3300 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3301 } 3302 3303 static bool f2fs_has_stable_inodes(struct super_block *sb) 3304 { 3305 return true; 3306 } 3307 3308 static struct block_device **f2fs_get_devices(struct super_block *sb, 3309 unsigned int *num_devs) 3310 { 3311 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3312 struct block_device **devs; 3313 int i; 3314 3315 if (!f2fs_is_multi_device(sbi)) 3316 return NULL; 3317 3318 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); 3319 if (!devs) 3320 return ERR_PTR(-ENOMEM); 3321 3322 for (i = 0; i < sbi->s_ndevs; i++) 3323 devs[i] = FDEV(i).bdev; 3324 *num_devs = sbi->s_ndevs; 3325 return devs; 3326 } 3327 3328 static const struct fscrypt_operations f2fs_cryptops = { 3329 .needs_bounce_pages = 1, 3330 .has_32bit_inodes = 1, 3331 .supports_subblock_data_units = 1, 3332 .legacy_key_prefix = "f2fs:", 3333 .get_context = f2fs_get_context, 3334 .set_context = f2fs_set_context, 3335 .get_dummy_policy = f2fs_get_dummy_policy, 3336 .empty_dir = f2fs_empty_dir, 3337 .has_stable_inodes = f2fs_has_stable_inodes, 3338 .get_devices = f2fs_get_devices, 3339 }; 3340 #endif 3341 3342 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3343 u64 ino, u32 generation) 3344 { 3345 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3346 struct inode *inode; 3347 3348 if (f2fs_check_nid_range(sbi, ino)) 3349 return ERR_PTR(-ESTALE); 3350 3351 /* 3352 * f2fs_iget isn't quite right if the inode is currently unallocated! 3353 * However f2fs_iget currently does appropriate checks to handle stale 3354 * inodes so everything is OK. 3355 */ 3356 inode = f2fs_iget(sb, ino); 3357 if (IS_ERR(inode)) 3358 return ERR_CAST(inode); 3359 if (unlikely(generation && inode->i_generation != generation)) { 3360 /* we didn't find the right inode.. */ 3361 iput(inode); 3362 return ERR_PTR(-ESTALE); 3363 } 3364 return inode; 3365 } 3366 3367 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3368 int fh_len, int fh_type) 3369 { 3370 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3371 f2fs_nfs_get_inode); 3372 } 3373 3374 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3375 int fh_len, int fh_type) 3376 { 3377 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3378 f2fs_nfs_get_inode); 3379 } 3380 3381 static const struct export_operations f2fs_export_ops = { 3382 .encode_fh = generic_encode_ino32_fh, 3383 .fh_to_dentry = f2fs_fh_to_dentry, 3384 .fh_to_parent = f2fs_fh_to_parent, 3385 .get_parent = f2fs_get_parent, 3386 }; 3387 3388 loff_t max_file_blocks(struct inode *inode) 3389 { 3390 loff_t result = 0; 3391 loff_t leaf_count; 3392 3393 /* 3394 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3395 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3396 * space in inode.i_addr, it will be more safe to reassign 3397 * result as zero. 3398 */ 3399 3400 if (inode && f2fs_compressed_file(inode)) 3401 leaf_count = ADDRS_PER_BLOCK(inode); 3402 else 3403 leaf_count = DEF_ADDRS_PER_BLOCK; 3404 3405 /* two direct node blocks */ 3406 result += (leaf_count * 2); 3407 3408 /* two indirect node blocks */ 3409 leaf_count *= NIDS_PER_BLOCK; 3410 result += (leaf_count * 2); 3411 3412 /* one double indirect node block */ 3413 leaf_count *= NIDS_PER_BLOCK; 3414 result += leaf_count; 3415 3416 /* 3417 * For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with 3418 * a 4K crypto data unit, we must restrict the max filesize to what can 3419 * fit within U32_MAX + 1 data units. 3420 */ 3421 3422 result = umin(result, F2FS_BYTES_TO_BLK(((loff_t)U32_MAX + 1) * 4096)); 3423 3424 return result; 3425 } 3426 3427 static int __f2fs_commit_super(struct f2fs_sb_info *sbi, struct folio *folio, 3428 pgoff_t index, bool update) 3429 { 3430 struct bio *bio; 3431 /* it's rare case, we can do fua all the time */ 3432 blk_opf_t opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA; 3433 int ret; 3434 3435 folio_lock(folio); 3436 folio_wait_writeback(folio); 3437 if (update) 3438 memcpy(F2FS_SUPER_BLOCK(folio, index), F2FS_RAW_SUPER(sbi), 3439 sizeof(struct f2fs_super_block)); 3440 folio_mark_dirty(folio); 3441 folio_clear_dirty_for_io(folio); 3442 folio_start_writeback(folio); 3443 folio_unlock(folio); 3444 3445 bio = bio_alloc(sbi->sb->s_bdev, 1, opf, GFP_NOFS); 3446 3447 /* it doesn't need to set crypto context for superblock update */ 3448 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(folio->index); 3449 3450 if (!bio_add_folio(bio, folio, folio_size(folio), 0)) 3451 f2fs_bug_on(sbi, 1); 3452 3453 ret = submit_bio_wait(bio); 3454 folio_end_writeback(folio); 3455 3456 return ret; 3457 } 3458 3459 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3460 struct folio *folio, pgoff_t index) 3461 { 3462 struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index); 3463 struct super_block *sb = sbi->sb; 3464 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3465 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3466 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3467 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3468 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3469 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3470 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3471 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3472 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3473 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3474 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3475 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3476 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3477 u64 main_end_blkaddr = main_blkaddr + 3478 ((u64)segment_count_main << log_blocks_per_seg); 3479 u64 seg_end_blkaddr = segment0_blkaddr + 3480 ((u64)segment_count << log_blocks_per_seg); 3481 3482 if (segment0_blkaddr != cp_blkaddr) { 3483 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3484 segment0_blkaddr, cp_blkaddr); 3485 return true; 3486 } 3487 3488 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3489 sit_blkaddr) { 3490 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3491 cp_blkaddr, sit_blkaddr, 3492 segment_count_ckpt << log_blocks_per_seg); 3493 return true; 3494 } 3495 3496 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3497 nat_blkaddr) { 3498 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3499 sit_blkaddr, nat_blkaddr, 3500 segment_count_sit << log_blocks_per_seg); 3501 return true; 3502 } 3503 3504 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3505 ssa_blkaddr) { 3506 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3507 nat_blkaddr, ssa_blkaddr, 3508 segment_count_nat << log_blocks_per_seg); 3509 return true; 3510 } 3511 3512 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3513 main_blkaddr) { 3514 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3515 ssa_blkaddr, main_blkaddr, 3516 segment_count_ssa << log_blocks_per_seg); 3517 return true; 3518 } 3519 3520 if (main_end_blkaddr > seg_end_blkaddr) { 3521 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3522 main_blkaddr, seg_end_blkaddr, 3523 segment_count_main << log_blocks_per_seg); 3524 return true; 3525 } else if (main_end_blkaddr < seg_end_blkaddr) { 3526 int err = 0; 3527 char *res; 3528 3529 /* fix in-memory information all the time */ 3530 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3531 segment0_blkaddr) >> log_blocks_per_seg); 3532 3533 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { 3534 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3535 res = "internally"; 3536 } else { 3537 err = __f2fs_commit_super(sbi, folio, index, false); 3538 res = err ? "failed" : "done"; 3539 } 3540 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3541 res, main_blkaddr, seg_end_blkaddr, 3542 segment_count_main << log_blocks_per_seg); 3543 if (err) 3544 return true; 3545 } 3546 return false; 3547 } 3548 3549 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3550 struct folio *folio, pgoff_t index) 3551 { 3552 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3553 block_t total_sections, blocks_per_seg; 3554 struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index); 3555 size_t crc_offset = 0; 3556 __u32 crc = 0; 3557 3558 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3559 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3560 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3561 return -EINVAL; 3562 } 3563 3564 /* Check checksum_offset and crc in superblock */ 3565 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3566 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3567 if (crc_offset != 3568 offsetof(struct f2fs_super_block, crc)) { 3569 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3570 crc_offset); 3571 return -EFSCORRUPTED; 3572 } 3573 crc = le32_to_cpu(raw_super->crc); 3574 if (crc != f2fs_crc32(raw_super, crc_offset)) { 3575 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3576 return -EFSCORRUPTED; 3577 } 3578 } 3579 3580 /* only support block_size equals to PAGE_SIZE */ 3581 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3582 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3583 le32_to_cpu(raw_super->log_blocksize), 3584 F2FS_BLKSIZE_BITS); 3585 return -EFSCORRUPTED; 3586 } 3587 3588 /* check log blocks per segment */ 3589 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3590 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3591 le32_to_cpu(raw_super->log_blocks_per_seg)); 3592 return -EFSCORRUPTED; 3593 } 3594 3595 /* Currently, support 512/1024/2048/4096/16K bytes sector size */ 3596 if (le32_to_cpu(raw_super->log_sectorsize) > 3597 F2FS_MAX_LOG_SECTOR_SIZE || 3598 le32_to_cpu(raw_super->log_sectorsize) < 3599 F2FS_MIN_LOG_SECTOR_SIZE) { 3600 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3601 le32_to_cpu(raw_super->log_sectorsize)); 3602 return -EFSCORRUPTED; 3603 } 3604 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3605 le32_to_cpu(raw_super->log_sectorsize) != 3606 F2FS_MAX_LOG_SECTOR_SIZE) { 3607 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3608 le32_to_cpu(raw_super->log_sectors_per_block), 3609 le32_to_cpu(raw_super->log_sectorsize)); 3610 return -EFSCORRUPTED; 3611 } 3612 3613 segment_count = le32_to_cpu(raw_super->segment_count); 3614 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3615 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3616 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3617 total_sections = le32_to_cpu(raw_super->section_count); 3618 3619 /* blocks_per_seg should be 512, given the above check */ 3620 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); 3621 3622 if (segment_count > F2FS_MAX_SEGMENT || 3623 segment_count < F2FS_MIN_SEGMENTS) { 3624 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3625 return -EFSCORRUPTED; 3626 } 3627 3628 if (total_sections > segment_count_main || total_sections < 1 || 3629 segs_per_sec > segment_count || !segs_per_sec) { 3630 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3631 segment_count, total_sections, segs_per_sec); 3632 return -EFSCORRUPTED; 3633 } 3634 3635 if (segment_count_main != total_sections * segs_per_sec) { 3636 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3637 segment_count_main, total_sections, segs_per_sec); 3638 return -EFSCORRUPTED; 3639 } 3640 3641 if ((segment_count / segs_per_sec) < total_sections) { 3642 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3643 segment_count, segs_per_sec, total_sections); 3644 return -EFSCORRUPTED; 3645 } 3646 3647 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3648 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3649 segment_count, le64_to_cpu(raw_super->block_count)); 3650 return -EFSCORRUPTED; 3651 } 3652 3653 if (RDEV(0).path[0]) { 3654 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3655 int i = 1; 3656 3657 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3658 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3659 i++; 3660 } 3661 if (segment_count != dev_seg_count) { 3662 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3663 segment_count, dev_seg_count); 3664 return -EFSCORRUPTED; 3665 } 3666 } else { 3667 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3668 !bdev_is_zoned(sbi->sb->s_bdev)) { 3669 f2fs_info(sbi, "Zoned block device path is missing"); 3670 return -EFSCORRUPTED; 3671 } 3672 } 3673 3674 if (secs_per_zone > total_sections || !secs_per_zone) { 3675 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3676 secs_per_zone, total_sections); 3677 return -EFSCORRUPTED; 3678 } 3679 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3680 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3681 (le32_to_cpu(raw_super->extension_count) + 3682 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3683 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3684 le32_to_cpu(raw_super->extension_count), 3685 raw_super->hot_ext_count, 3686 F2FS_MAX_EXTENSION); 3687 return -EFSCORRUPTED; 3688 } 3689 3690 if (le32_to_cpu(raw_super->cp_payload) >= 3691 (blocks_per_seg - F2FS_CP_PACKS - 3692 NR_CURSEG_PERSIST_TYPE)) { 3693 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3694 le32_to_cpu(raw_super->cp_payload), 3695 blocks_per_seg - F2FS_CP_PACKS - 3696 NR_CURSEG_PERSIST_TYPE); 3697 return -EFSCORRUPTED; 3698 } 3699 3700 /* check reserved ino info */ 3701 if (le32_to_cpu(raw_super->node_ino) != 1 || 3702 le32_to_cpu(raw_super->meta_ino) != 2 || 3703 le32_to_cpu(raw_super->root_ino) != 3) { 3704 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3705 le32_to_cpu(raw_super->node_ino), 3706 le32_to_cpu(raw_super->meta_ino), 3707 le32_to_cpu(raw_super->root_ino)); 3708 return -EFSCORRUPTED; 3709 } 3710 3711 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3712 if (sanity_check_area_boundary(sbi, folio, index)) 3713 return -EFSCORRUPTED; 3714 3715 return 0; 3716 } 3717 3718 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3719 { 3720 unsigned int total, fsmeta; 3721 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3722 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3723 unsigned int ovp_segments, reserved_segments; 3724 unsigned int main_segs, blocks_per_seg; 3725 unsigned int sit_segs, nat_segs; 3726 unsigned int sit_bitmap_size, nat_bitmap_size; 3727 unsigned int log_blocks_per_seg; 3728 unsigned int segment_count_main; 3729 unsigned int cp_pack_start_sum, cp_payload; 3730 block_t user_block_count, valid_user_blocks; 3731 block_t avail_node_count, valid_node_count; 3732 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3733 unsigned int sit_blk_cnt; 3734 int i, j; 3735 3736 total = le32_to_cpu(raw_super->segment_count); 3737 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3738 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3739 fsmeta += sit_segs; 3740 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3741 fsmeta += nat_segs; 3742 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3743 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3744 3745 if (unlikely(fsmeta >= total)) 3746 return 1; 3747 3748 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3749 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3750 3751 if (!f2fs_sb_has_readonly(sbi) && 3752 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3753 ovp_segments == 0 || reserved_segments == 0)) { 3754 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3755 return 1; 3756 } 3757 user_block_count = le64_to_cpu(ckpt->user_block_count); 3758 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3759 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3760 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3761 if (!user_block_count || user_block_count >= 3762 segment_count_main << log_blocks_per_seg) { 3763 f2fs_err(sbi, "Wrong user_block_count: %u", 3764 user_block_count); 3765 return 1; 3766 } 3767 3768 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3769 if (valid_user_blocks > user_block_count) { 3770 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3771 valid_user_blocks, user_block_count); 3772 return 1; 3773 } 3774 3775 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3776 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3777 if (valid_node_count > avail_node_count) { 3778 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3779 valid_node_count, avail_node_count); 3780 return 1; 3781 } 3782 3783 main_segs = le32_to_cpu(raw_super->segment_count_main); 3784 blocks_per_seg = BLKS_PER_SEG(sbi); 3785 3786 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3787 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3788 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3789 return 1; 3790 3791 if (f2fs_sb_has_readonly(sbi)) 3792 goto check_data; 3793 3794 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3795 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3796 le32_to_cpu(ckpt->cur_node_segno[j])) { 3797 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3798 i, j, 3799 le32_to_cpu(ckpt->cur_node_segno[i])); 3800 return 1; 3801 } 3802 } 3803 } 3804 check_data: 3805 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3806 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3807 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3808 return 1; 3809 3810 if (f2fs_sb_has_readonly(sbi)) 3811 goto skip_cross; 3812 3813 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3814 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3815 le32_to_cpu(ckpt->cur_data_segno[j])) { 3816 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3817 i, j, 3818 le32_to_cpu(ckpt->cur_data_segno[i])); 3819 return 1; 3820 } 3821 } 3822 } 3823 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3824 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3825 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3826 le32_to_cpu(ckpt->cur_data_segno[j])) { 3827 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3828 i, j, 3829 le32_to_cpu(ckpt->cur_node_segno[i])); 3830 return 1; 3831 } 3832 } 3833 } 3834 skip_cross: 3835 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3836 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3837 3838 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3839 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3840 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3841 sit_bitmap_size, nat_bitmap_size); 3842 return 1; 3843 } 3844 3845 sit_blk_cnt = DIV_ROUND_UP(main_segs, SIT_ENTRY_PER_BLOCK); 3846 if (sit_bitmap_size * 8 < sit_blk_cnt) { 3847 f2fs_err(sbi, "Wrong bitmap size: sit: %u, sit_blk_cnt:%u", 3848 sit_bitmap_size, sit_blk_cnt); 3849 return 1; 3850 } 3851 3852 cp_pack_start_sum = __start_sum_addr(sbi); 3853 cp_payload = __cp_payload(sbi); 3854 if (cp_pack_start_sum < cp_payload + 1 || 3855 cp_pack_start_sum > blocks_per_seg - 1 - 3856 NR_CURSEG_PERSIST_TYPE) { 3857 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3858 cp_pack_start_sum); 3859 return 1; 3860 } 3861 3862 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3863 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3864 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3865 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3866 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3867 le32_to_cpu(ckpt->checksum_offset)); 3868 return 1; 3869 } 3870 3871 nat_blocks = nat_segs << log_blocks_per_seg; 3872 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3873 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3874 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3875 (cp_payload + F2FS_CP_PACKS + 3876 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3877 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3878 cp_payload, nat_bits_blocks); 3879 return 1; 3880 } 3881 3882 if (unlikely(f2fs_cp_error(sbi))) { 3883 f2fs_err(sbi, "A bug case: need to run fsck"); 3884 return 1; 3885 } 3886 return 0; 3887 } 3888 3889 static void init_sb_info(struct f2fs_sb_info *sbi) 3890 { 3891 struct f2fs_super_block *raw_super = sbi->raw_super; 3892 int i; 3893 3894 sbi->log_sectors_per_block = 3895 le32_to_cpu(raw_super->log_sectors_per_block); 3896 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3897 sbi->blocksize = BIT(sbi->log_blocksize); 3898 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3899 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); 3900 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3901 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3902 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3903 sbi->total_node_count = SEGS_TO_BLKS(sbi, 3904 ((le32_to_cpu(raw_super->segment_count_nat) / 2) * 3905 NAT_ENTRY_PER_BLOCK)); 3906 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3907 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3908 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3909 sbi->cur_victim_sec = NULL_SECNO; 3910 sbi->gc_mode = GC_NORMAL; 3911 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3912 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3913 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3914 sbi->migration_granularity = SEGS_PER_SEC(sbi); 3915 sbi->migration_window_granularity = f2fs_sb_has_blkzoned(sbi) ? 3916 DEF_MIGRATION_WINDOW_GRANULARITY_ZONED : SEGS_PER_SEC(sbi); 3917 sbi->seq_file_ra_mul = MIN_RA_MUL; 3918 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3919 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3920 spin_lock_init(&sbi->gc_remaining_trials_lock); 3921 atomic64_set(&sbi->current_atomic_write, 0); 3922 3923 sbi->dir_level = DEF_DIR_LEVEL; 3924 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3925 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3926 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3927 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3928 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3929 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3930 DEF_UMOUNT_DISCARD_TIMEOUT; 3931 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3932 3933 for (i = 0; i < NR_COUNT_TYPE; i++) 3934 atomic_set(&sbi->nr_pages[i], 0); 3935 3936 for (i = 0; i < META; i++) 3937 atomic_set(&sbi->wb_sync_req[i], 0); 3938 3939 INIT_LIST_HEAD(&sbi->s_list); 3940 mutex_init(&sbi->umount_mutex); 3941 init_f2fs_rwsem(&sbi->io_order_lock); 3942 spin_lock_init(&sbi->cp_lock); 3943 3944 sbi->dirty_device = 0; 3945 spin_lock_init(&sbi->dev_lock); 3946 3947 init_f2fs_rwsem(&sbi->sb_lock); 3948 init_f2fs_rwsem(&sbi->pin_sem); 3949 } 3950 3951 static int init_percpu_info(struct f2fs_sb_info *sbi) 3952 { 3953 int err; 3954 3955 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3956 if (err) 3957 return err; 3958 3959 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3960 if (err) 3961 goto err_valid_block; 3962 3963 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3964 GFP_KERNEL); 3965 if (err) 3966 goto err_node_block; 3967 return 0; 3968 3969 err_node_block: 3970 percpu_counter_destroy(&sbi->rf_node_block_count); 3971 err_valid_block: 3972 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3973 return err; 3974 } 3975 3976 #ifdef CONFIG_BLK_DEV_ZONED 3977 3978 struct f2fs_report_zones_args { 3979 struct f2fs_sb_info *sbi; 3980 struct f2fs_dev_info *dev; 3981 }; 3982 3983 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3984 void *data) 3985 { 3986 struct f2fs_report_zones_args *rz_args = data; 3987 block_t unusable_blocks = (zone->len - zone->capacity) >> 3988 F2FS_LOG_SECTORS_PER_BLOCK; 3989 3990 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3991 return 0; 3992 3993 set_bit(idx, rz_args->dev->blkz_seq); 3994 if (!rz_args->sbi->unusable_blocks_per_sec) { 3995 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3996 return 0; 3997 } 3998 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3999 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 4000 return -EINVAL; 4001 } 4002 return 0; 4003 } 4004 4005 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 4006 { 4007 struct block_device *bdev = FDEV(devi).bdev; 4008 sector_t nr_sectors = bdev_nr_sectors(bdev); 4009 struct f2fs_report_zones_args rep_zone_arg; 4010 u64 zone_sectors; 4011 unsigned int max_open_zones; 4012 int ret; 4013 4014 if (!f2fs_sb_has_blkzoned(sbi)) 4015 return 0; 4016 4017 if (bdev_is_zoned(FDEV(devi).bdev)) { 4018 max_open_zones = bdev_max_open_zones(bdev); 4019 if (max_open_zones && (max_open_zones < sbi->max_open_zones)) 4020 sbi->max_open_zones = max_open_zones; 4021 if (sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { 4022 f2fs_err(sbi, 4023 "zoned: max open zones %u is too small, need at least %u open zones", 4024 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); 4025 return -EINVAL; 4026 } 4027 } 4028 4029 zone_sectors = bdev_zone_sectors(bdev); 4030 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 4031 SECTOR_TO_BLOCK(zone_sectors)) 4032 return -EINVAL; 4033 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 4034 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), 4035 sbi->blocks_per_blkz); 4036 if (nr_sectors & (zone_sectors - 1)) 4037 FDEV(devi).nr_blkz++; 4038 4039 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 4040 BITS_TO_LONGS(FDEV(devi).nr_blkz) 4041 * sizeof(unsigned long), 4042 GFP_KERNEL); 4043 if (!FDEV(devi).blkz_seq) 4044 return -ENOMEM; 4045 4046 rep_zone_arg.sbi = sbi; 4047 rep_zone_arg.dev = &FDEV(devi); 4048 4049 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 4050 &rep_zone_arg); 4051 if (ret < 0) 4052 return ret; 4053 return 0; 4054 } 4055 #endif 4056 4057 /* 4058 * Read f2fs raw super block. 4059 * Because we have two copies of super block, so read both of them 4060 * to get the first valid one. If any one of them is broken, we pass 4061 * them recovery flag back to the caller. 4062 */ 4063 static int read_raw_super_block(struct f2fs_sb_info *sbi, 4064 struct f2fs_super_block **raw_super, 4065 int *valid_super_block, int *recovery) 4066 { 4067 struct super_block *sb = sbi->sb; 4068 int block; 4069 struct folio *folio; 4070 struct f2fs_super_block *super; 4071 int err = 0; 4072 4073 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 4074 if (!super) 4075 return -ENOMEM; 4076 4077 for (block = 0; block < 2; block++) { 4078 folio = read_mapping_folio(sb->s_bdev->bd_mapping, block, NULL); 4079 if (IS_ERR(folio)) { 4080 f2fs_err(sbi, "Unable to read %dth superblock", 4081 block + 1); 4082 err = PTR_ERR(folio); 4083 *recovery = 1; 4084 continue; 4085 } 4086 4087 /* sanity checking of raw super */ 4088 err = sanity_check_raw_super(sbi, folio, block); 4089 if (err) { 4090 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 4091 block + 1); 4092 folio_put(folio); 4093 *recovery = 1; 4094 continue; 4095 } 4096 4097 if (!*raw_super) { 4098 memcpy(super, F2FS_SUPER_BLOCK(folio, block), 4099 sizeof(*super)); 4100 *valid_super_block = block; 4101 *raw_super = super; 4102 } 4103 folio_put(folio); 4104 } 4105 4106 /* No valid superblock */ 4107 if (!*raw_super) 4108 kfree(super); 4109 else 4110 err = 0; 4111 4112 return err; 4113 } 4114 4115 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 4116 { 4117 struct folio *folio; 4118 pgoff_t index; 4119 __u32 crc = 0; 4120 int err; 4121 4122 if ((recover && f2fs_readonly(sbi->sb)) || 4123 f2fs_hw_is_readonly(sbi)) { 4124 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 4125 return -EROFS; 4126 } 4127 4128 /* we should update superblock crc here */ 4129 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 4130 crc = f2fs_crc32(F2FS_RAW_SUPER(sbi), 4131 offsetof(struct f2fs_super_block, crc)); 4132 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 4133 } 4134 4135 /* write back-up superblock first */ 4136 index = sbi->valid_super_block ? 0 : 1; 4137 folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL); 4138 if (IS_ERR(folio)) 4139 return PTR_ERR(folio); 4140 err = __f2fs_commit_super(sbi, folio, index, true); 4141 folio_put(folio); 4142 4143 /* if we are in recovery path, skip writing valid superblock */ 4144 if (recover || err) 4145 return err; 4146 4147 /* write current valid superblock */ 4148 index = sbi->valid_super_block; 4149 folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL); 4150 if (IS_ERR(folio)) 4151 return PTR_ERR(folio); 4152 err = __f2fs_commit_super(sbi, folio, index, true); 4153 folio_put(folio); 4154 return err; 4155 } 4156 4157 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) 4158 { 4159 unsigned long flags; 4160 4161 spin_lock_irqsave(&sbi->error_lock, flags); 4162 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) 4163 sbi->stop_reason[reason]++; 4164 spin_unlock_irqrestore(&sbi->error_lock, flags); 4165 } 4166 4167 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) 4168 { 4169 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4170 unsigned long flags; 4171 int err; 4172 4173 f2fs_down_write(&sbi->sb_lock); 4174 4175 spin_lock_irqsave(&sbi->error_lock, flags); 4176 if (sbi->error_dirty) { 4177 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4178 MAX_F2FS_ERRORS); 4179 sbi->error_dirty = false; 4180 } 4181 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); 4182 spin_unlock_irqrestore(&sbi->error_lock, flags); 4183 4184 err = f2fs_commit_super(sbi, false); 4185 4186 f2fs_up_write(&sbi->sb_lock); 4187 if (err) 4188 f2fs_err_ratelimited(sbi, 4189 "f2fs_commit_super fails to record stop_reason, err:%d", 4190 err); 4191 } 4192 4193 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) 4194 { 4195 unsigned long flags; 4196 4197 spin_lock_irqsave(&sbi->error_lock, flags); 4198 if (!test_bit(flag, (unsigned long *)sbi->errors)) { 4199 set_bit(flag, (unsigned long *)sbi->errors); 4200 sbi->error_dirty = true; 4201 } 4202 spin_unlock_irqrestore(&sbi->error_lock, flags); 4203 } 4204 4205 static bool f2fs_update_errors(struct f2fs_sb_info *sbi) 4206 { 4207 unsigned long flags; 4208 bool need_update = false; 4209 4210 spin_lock_irqsave(&sbi->error_lock, flags); 4211 if (sbi->error_dirty) { 4212 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4213 MAX_F2FS_ERRORS); 4214 sbi->error_dirty = false; 4215 need_update = true; 4216 } 4217 spin_unlock_irqrestore(&sbi->error_lock, flags); 4218 4219 return need_update; 4220 } 4221 4222 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error) 4223 { 4224 int err; 4225 4226 f2fs_down_write(&sbi->sb_lock); 4227 4228 if (!f2fs_update_errors(sbi)) 4229 goto out_unlock; 4230 4231 err = f2fs_commit_super(sbi, false); 4232 if (err) 4233 f2fs_err_ratelimited(sbi, 4234 "f2fs_commit_super fails to record errors:%u, err:%d", 4235 error, err); 4236 out_unlock: 4237 f2fs_up_write(&sbi->sb_lock); 4238 } 4239 4240 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) 4241 { 4242 f2fs_save_errors(sbi, error); 4243 f2fs_record_errors(sbi, error); 4244 } 4245 4246 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error) 4247 { 4248 f2fs_save_errors(sbi, error); 4249 4250 if (!sbi->error_dirty) 4251 return; 4252 if (!test_bit(error, (unsigned long *)sbi->errors)) 4253 return; 4254 schedule_work(&sbi->s_error_work); 4255 } 4256 4257 static bool system_going_down(void) 4258 { 4259 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 4260 || system_state == SYSTEM_RESTART; 4261 } 4262 4263 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason) 4264 { 4265 struct super_block *sb = sbi->sb; 4266 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; 4267 bool continue_fs = !shutdown && 4268 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; 4269 4270 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4271 4272 if (!f2fs_hw_is_readonly(sbi)) { 4273 save_stop_reason(sbi, reason); 4274 4275 /* 4276 * always create an asynchronous task to record stop_reason 4277 * in order to avoid potential deadlock when running into 4278 * f2fs_record_stop_reason() synchronously. 4279 */ 4280 schedule_work(&sbi->s_error_work); 4281 } 4282 4283 /* 4284 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 4285 * could panic during 'reboot -f' as the underlying device got already 4286 * disabled. 4287 */ 4288 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && 4289 !shutdown && !system_going_down() && 4290 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) 4291 panic("F2FS-fs (device %s): panic forced after error\n", 4292 sb->s_id); 4293 4294 if (shutdown) 4295 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 4296 else 4297 dump_stack(); 4298 4299 /* 4300 * Continue filesystem operators if errors=continue. Should not set 4301 * RO by shutdown, since RO bypasses thaw_super which can hang the 4302 * system. 4303 */ 4304 if (continue_fs || f2fs_readonly(sb) || shutdown) { 4305 f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason); 4306 return; 4307 } 4308 4309 f2fs_warn(sbi, "Remounting filesystem read-only"); 4310 4311 /* 4312 * We have already set CP_ERROR_FLAG flag to stop all updates 4313 * to filesystem, so it doesn't need to set SB_RDONLY flag here 4314 * because the flag should be set covered w/ sb->s_umount semaphore 4315 * via remount procedure, otherwise, it will confuse code like 4316 * freeze_super() which will lead to deadlocks and other problems. 4317 */ 4318 } 4319 4320 static void f2fs_record_error_work(struct work_struct *work) 4321 { 4322 struct f2fs_sb_info *sbi = container_of(work, 4323 struct f2fs_sb_info, s_error_work); 4324 4325 f2fs_record_stop_reason(sbi); 4326 } 4327 4328 static inline unsigned int get_first_seq_zone_segno(struct f2fs_sb_info *sbi) 4329 { 4330 #ifdef CONFIG_BLK_DEV_ZONED 4331 unsigned int zoneno, total_zones; 4332 int devi; 4333 4334 if (!f2fs_sb_has_blkzoned(sbi)) 4335 return NULL_SEGNO; 4336 4337 for (devi = 0; devi < sbi->s_ndevs; devi++) { 4338 if (!bdev_is_zoned(FDEV(devi).bdev)) 4339 continue; 4340 4341 total_zones = GET_ZONE_FROM_SEG(sbi, FDEV(devi).total_segments); 4342 4343 for (zoneno = 0; zoneno < total_zones; zoneno++) { 4344 unsigned int segs, blks; 4345 4346 if (!f2fs_zone_is_seq(sbi, devi, zoneno)) 4347 continue; 4348 4349 segs = GET_SEG_FROM_SEC(sbi, 4350 zoneno * sbi->secs_per_zone); 4351 blks = SEGS_TO_BLKS(sbi, segs); 4352 return GET_SEGNO(sbi, FDEV(devi).start_blk + blks); 4353 } 4354 } 4355 #endif 4356 return NULL_SEGNO; 4357 } 4358 4359 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 4360 { 4361 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4362 unsigned int max_devices = MAX_DEVICES; 4363 unsigned int logical_blksize; 4364 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); 4365 int i; 4366 4367 /* Initialize single device information */ 4368 if (!RDEV(0).path[0]) { 4369 if (!bdev_is_zoned(sbi->sb->s_bdev)) 4370 return 0; 4371 max_devices = 1; 4372 } 4373 4374 /* 4375 * Initialize multiple devices information, or single 4376 * zoned block device information. 4377 */ 4378 sbi->devs = f2fs_kzalloc(sbi, 4379 array_size(max_devices, 4380 sizeof(struct f2fs_dev_info)), 4381 GFP_KERNEL); 4382 if (!sbi->devs) 4383 return -ENOMEM; 4384 4385 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 4386 sbi->aligned_blksize = true; 4387 #ifdef CONFIG_BLK_DEV_ZONED 4388 sbi->max_open_zones = UINT_MAX; 4389 sbi->blkzone_alloc_policy = BLKZONE_ALLOC_PRIOR_SEQ; 4390 #endif 4391 4392 for (i = 0; i < max_devices; i++) { 4393 if (max_devices == 1) { 4394 FDEV(i).total_segments = 4395 le32_to_cpu(raw_super->segment_count_main); 4396 FDEV(i).start_blk = 0; 4397 FDEV(i).end_blk = FDEV(i).total_segments * 4398 BLKS_PER_SEG(sbi); 4399 } 4400 4401 if (i == 0) 4402 FDEV(0).bdev_file = sbi->sb->s_bdev_file; 4403 else if (!RDEV(i).path[0]) 4404 break; 4405 4406 if (max_devices > 1) { 4407 /* Multi-device mount */ 4408 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 4409 FDEV(i).total_segments = 4410 le32_to_cpu(RDEV(i).total_segments); 4411 if (i == 0) { 4412 FDEV(i).start_blk = 0; 4413 FDEV(i).end_blk = FDEV(i).start_blk + 4414 SEGS_TO_BLKS(sbi, 4415 FDEV(i).total_segments) - 1 + 4416 le32_to_cpu(raw_super->segment0_blkaddr); 4417 } else { 4418 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 4419 FDEV(i).end_blk = FDEV(i).start_blk + 4420 SEGS_TO_BLKS(sbi, 4421 FDEV(i).total_segments) - 1; 4422 FDEV(i).bdev_file = bdev_file_open_by_path( 4423 FDEV(i).path, mode, sbi->sb, NULL); 4424 } 4425 } 4426 if (IS_ERR(FDEV(i).bdev_file)) 4427 return PTR_ERR(FDEV(i).bdev_file); 4428 4429 FDEV(i).bdev = file_bdev(FDEV(i).bdev_file); 4430 /* to release errored devices */ 4431 sbi->s_ndevs = i + 1; 4432 4433 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 4434 sbi->aligned_blksize = false; 4435 4436 #ifdef CONFIG_BLK_DEV_ZONED 4437 if (bdev_is_zoned(FDEV(i).bdev)) { 4438 if (!f2fs_sb_has_blkzoned(sbi)) { 4439 f2fs_err(sbi, "Zoned block device feature not enabled"); 4440 return -EINVAL; 4441 } 4442 if (init_blkz_info(sbi, i)) { 4443 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 4444 return -EINVAL; 4445 } 4446 if (max_devices == 1) 4447 break; 4448 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)", 4449 i, FDEV(i).path, 4450 FDEV(i).total_segments, 4451 FDEV(i).start_blk, FDEV(i).end_blk); 4452 continue; 4453 } 4454 #endif 4455 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 4456 i, FDEV(i).path, 4457 FDEV(i).total_segments, 4458 FDEV(i).start_blk, FDEV(i).end_blk); 4459 } 4460 return 0; 4461 } 4462 4463 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 4464 { 4465 #if IS_ENABLED(CONFIG_UNICODE) 4466 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 4467 const struct f2fs_sb_encodings *encoding_info; 4468 struct unicode_map *encoding; 4469 __u16 encoding_flags; 4470 4471 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 4472 if (!encoding_info) { 4473 f2fs_err(sbi, 4474 "Encoding requested by superblock is unknown"); 4475 return -EINVAL; 4476 } 4477 4478 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 4479 encoding = utf8_load(encoding_info->version); 4480 if (IS_ERR(encoding)) { 4481 f2fs_err(sbi, 4482 "can't mount with superblock charset: %s-%u.%u.%u " 4483 "not supported by the kernel. flags: 0x%x.", 4484 encoding_info->name, 4485 unicode_major(encoding_info->version), 4486 unicode_minor(encoding_info->version), 4487 unicode_rev(encoding_info->version), 4488 encoding_flags); 4489 return PTR_ERR(encoding); 4490 } 4491 f2fs_info(sbi, "Using encoding defined by superblock: " 4492 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4493 unicode_major(encoding_info->version), 4494 unicode_minor(encoding_info->version), 4495 unicode_rev(encoding_info->version), 4496 encoding_flags); 4497 4498 sbi->sb->s_encoding = encoding; 4499 sbi->sb->s_encoding_flags = encoding_flags; 4500 } 4501 #else 4502 if (f2fs_sb_has_casefold(sbi)) { 4503 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 4504 return -EINVAL; 4505 } 4506 #endif 4507 return 0; 4508 } 4509 4510 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 4511 { 4512 /* adjust parameters according to the volume size */ 4513 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { 4514 if (f2fs_block_unit_discard(sbi)) 4515 SM_I(sbi)->dcc_info->discard_granularity = 4516 MIN_DISCARD_GRANULARITY; 4517 if (!f2fs_lfs_mode(sbi)) 4518 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | 4519 BIT(F2FS_IPU_HONOR_OPU_WRITE); 4520 } 4521 4522 sbi->readdir_ra = true; 4523 } 4524 4525 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 4526 { 4527 struct f2fs_sb_info *sbi; 4528 struct f2fs_super_block *raw_super; 4529 struct inode *root; 4530 int err; 4531 bool skip_recovery = false, need_fsck = false; 4532 char *options = NULL; 4533 int recovery, i, valid_super_block; 4534 struct curseg_info *seg_i; 4535 int retry_cnt = 1; 4536 #ifdef CONFIG_QUOTA 4537 bool quota_enabled = false; 4538 #endif 4539 4540 try_onemore: 4541 err = -EINVAL; 4542 raw_super = NULL; 4543 valid_super_block = -1; 4544 recovery = 0; 4545 4546 /* allocate memory for f2fs-specific super block info */ 4547 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4548 if (!sbi) 4549 return -ENOMEM; 4550 4551 sbi->sb = sb; 4552 4553 /* initialize locks within allocated memory */ 4554 init_f2fs_rwsem(&sbi->gc_lock); 4555 mutex_init(&sbi->writepages); 4556 init_f2fs_rwsem(&sbi->cp_global_sem); 4557 init_f2fs_rwsem(&sbi->node_write); 4558 init_f2fs_rwsem(&sbi->node_change); 4559 spin_lock_init(&sbi->stat_lock); 4560 init_f2fs_rwsem(&sbi->cp_rwsem); 4561 init_f2fs_rwsem(&sbi->quota_sem); 4562 init_waitqueue_head(&sbi->cp_wait); 4563 spin_lock_init(&sbi->error_lock); 4564 4565 for (i = 0; i < NR_INODE_TYPE; i++) { 4566 INIT_LIST_HEAD(&sbi->inode_list[i]); 4567 spin_lock_init(&sbi->inode_lock[i]); 4568 } 4569 mutex_init(&sbi->flush_lock); 4570 4571 /* set a block size */ 4572 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4573 f2fs_err(sbi, "unable to set blocksize"); 4574 goto free_sbi; 4575 } 4576 4577 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4578 &recovery); 4579 if (err) 4580 goto free_sbi; 4581 4582 sb->s_fs_info = sbi; 4583 sbi->raw_super = raw_super; 4584 4585 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); 4586 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); 4587 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); 4588 4589 /* precompute checksum seed for metadata */ 4590 if (f2fs_sb_has_inode_chksum(sbi)) 4591 sbi->s_chksum_seed = f2fs_chksum(~0, raw_super->uuid, 4592 sizeof(raw_super->uuid)); 4593 4594 default_options(sbi, false); 4595 /* parse mount options */ 4596 options = kstrdup((const char *)data, GFP_KERNEL); 4597 if (data && !options) { 4598 err = -ENOMEM; 4599 goto free_sb_buf; 4600 } 4601 4602 err = parse_options(sbi, options, false); 4603 if (err) 4604 goto free_options; 4605 4606 err = f2fs_default_check(sbi); 4607 if (err) 4608 goto free_options; 4609 4610 sb->s_maxbytes = max_file_blocks(NULL) << 4611 le32_to_cpu(raw_super->log_blocksize); 4612 sb->s_max_links = F2FS_LINK_MAX; 4613 4614 err = f2fs_setup_casefold(sbi); 4615 if (err) 4616 goto free_options; 4617 4618 #ifdef CONFIG_QUOTA 4619 sb->dq_op = &f2fs_quota_operations; 4620 sb->s_qcop = &f2fs_quotactl_ops; 4621 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4622 4623 if (f2fs_sb_has_quota_ino(sbi)) { 4624 for (i = 0; i < MAXQUOTAS; i++) { 4625 if (f2fs_qf_ino(sbi->sb, i)) 4626 sbi->nquota_files++; 4627 } 4628 } 4629 #endif 4630 4631 sb->s_op = &f2fs_sops; 4632 #ifdef CONFIG_FS_ENCRYPTION 4633 sb->s_cop = &f2fs_cryptops; 4634 #endif 4635 #ifdef CONFIG_FS_VERITY 4636 sb->s_vop = &f2fs_verityops; 4637 #endif 4638 sb->s_xattr = f2fs_xattr_handlers; 4639 sb->s_export_op = &f2fs_export_ops; 4640 sb->s_magic = F2FS_SUPER_MAGIC; 4641 sb->s_time_gran = 1; 4642 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4643 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4644 if (test_opt(sbi, INLINECRYPT)) 4645 sb->s_flags |= SB_INLINECRYPT; 4646 4647 if (test_opt(sbi, LAZYTIME)) 4648 sb->s_flags |= SB_LAZYTIME; 4649 else 4650 sb->s_flags &= ~SB_LAZYTIME; 4651 4652 super_set_uuid(sb, (void *) raw_super->uuid, sizeof(raw_super->uuid)); 4653 super_set_sysfs_name_bdev(sb); 4654 sb->s_iflags |= SB_I_CGROUPWB; 4655 4656 /* init f2fs-specific super block info */ 4657 sbi->valid_super_block = valid_super_block; 4658 4659 /* disallow all the data/node/meta page writes */ 4660 set_sbi_flag(sbi, SBI_POR_DOING); 4661 4662 err = f2fs_init_write_merge_io(sbi); 4663 if (err) 4664 goto free_bio_info; 4665 4666 init_sb_info(sbi); 4667 4668 err = f2fs_init_iostat(sbi); 4669 if (err) 4670 goto free_bio_info; 4671 4672 err = init_percpu_info(sbi); 4673 if (err) 4674 goto free_iostat; 4675 4676 /* init per sbi slab cache */ 4677 err = f2fs_init_xattr_caches(sbi); 4678 if (err) 4679 goto free_percpu; 4680 err = f2fs_init_page_array_cache(sbi); 4681 if (err) 4682 goto free_xattr_cache; 4683 4684 /* get an inode for meta space */ 4685 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4686 if (IS_ERR(sbi->meta_inode)) { 4687 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4688 err = PTR_ERR(sbi->meta_inode); 4689 goto free_page_array_cache; 4690 } 4691 4692 err = f2fs_get_valid_checkpoint(sbi); 4693 if (err) { 4694 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4695 goto free_meta_inode; 4696 } 4697 4698 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4699 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4700 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4701 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4702 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4703 } 4704 4705 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4706 set_sbi_flag(sbi, SBI_NEED_FSCK); 4707 4708 /* Initialize device list */ 4709 err = f2fs_scan_devices(sbi); 4710 if (err) { 4711 f2fs_err(sbi, "Failed to find devices"); 4712 goto free_devices; 4713 } 4714 4715 err = f2fs_init_post_read_wq(sbi); 4716 if (err) { 4717 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4718 goto free_devices; 4719 } 4720 4721 sbi->total_valid_node_count = 4722 le32_to_cpu(sbi->ckpt->valid_node_count); 4723 percpu_counter_set(&sbi->total_valid_inode_count, 4724 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4725 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4726 sbi->total_valid_block_count = 4727 le64_to_cpu(sbi->ckpt->valid_block_count); 4728 sbi->last_valid_block_count = sbi->total_valid_block_count; 4729 sbi->reserved_blocks = 0; 4730 sbi->current_reserved_blocks = 0; 4731 limit_reserve_root(sbi); 4732 adjust_unusable_cap_perc(sbi); 4733 4734 f2fs_init_extent_cache_info(sbi); 4735 4736 f2fs_init_ino_entry_info(sbi); 4737 4738 f2fs_init_fsync_node_info(sbi); 4739 4740 /* setup checkpoint request control and start checkpoint issue thread */ 4741 f2fs_init_ckpt_req_control(sbi); 4742 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4743 test_opt(sbi, MERGE_CHECKPOINT)) { 4744 err = f2fs_start_ckpt_thread(sbi); 4745 if (err) { 4746 f2fs_err(sbi, 4747 "Failed to start F2FS issue_checkpoint_thread (%d)", 4748 err); 4749 goto stop_ckpt_thread; 4750 } 4751 } 4752 4753 /* setup f2fs internal modules */ 4754 err = f2fs_build_segment_manager(sbi); 4755 if (err) { 4756 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4757 err); 4758 goto free_sm; 4759 } 4760 err = f2fs_build_node_manager(sbi); 4761 if (err) { 4762 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4763 err); 4764 goto free_nm; 4765 } 4766 4767 /* For write statistics */ 4768 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4769 4770 /* get segno of first zoned block device */ 4771 sbi->first_seq_zone_segno = get_first_seq_zone_segno(sbi); 4772 4773 /* Read accumulated write IO statistics if exists */ 4774 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4775 if (__exist_node_summaries(sbi)) 4776 sbi->kbytes_written = 4777 le64_to_cpu(seg_i->journal->info.kbytes_written); 4778 4779 f2fs_build_gc_manager(sbi); 4780 4781 err = f2fs_build_stats(sbi); 4782 if (err) 4783 goto free_nm; 4784 4785 /* get an inode for node space */ 4786 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4787 if (IS_ERR(sbi->node_inode)) { 4788 f2fs_err(sbi, "Failed to read node inode"); 4789 err = PTR_ERR(sbi->node_inode); 4790 goto free_stats; 4791 } 4792 4793 /* read root inode and dentry */ 4794 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4795 if (IS_ERR(root)) { 4796 f2fs_err(sbi, "Failed to read root inode"); 4797 err = PTR_ERR(root); 4798 goto free_node_inode; 4799 } 4800 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4801 !root->i_size || !root->i_nlink) { 4802 iput(root); 4803 err = -EINVAL; 4804 goto free_node_inode; 4805 } 4806 4807 generic_set_sb_d_ops(sb); 4808 sb->s_root = d_make_root(root); /* allocate root dentry */ 4809 if (!sb->s_root) { 4810 err = -ENOMEM; 4811 goto free_node_inode; 4812 } 4813 4814 err = f2fs_init_compress_inode(sbi); 4815 if (err) 4816 goto free_root_inode; 4817 4818 err = f2fs_register_sysfs(sbi); 4819 if (err) 4820 goto free_compress_inode; 4821 4822 sbi->umount_lock_holder = current; 4823 #ifdef CONFIG_QUOTA 4824 /* Enable quota usage during mount */ 4825 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4826 err = f2fs_enable_quotas(sb); 4827 if (err) 4828 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4829 } 4830 4831 quota_enabled = f2fs_recover_quota_begin(sbi); 4832 #endif 4833 /* if there are any orphan inodes, free them */ 4834 err = f2fs_recover_orphan_inodes(sbi); 4835 if (err) 4836 goto free_meta; 4837 4838 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) { 4839 skip_recovery = true; 4840 goto reset_checkpoint; 4841 } 4842 4843 /* recover fsynced data */ 4844 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4845 !test_opt(sbi, NORECOVERY)) { 4846 /* 4847 * mount should be failed, when device has readonly mode, and 4848 * previous checkpoint was not done by clean system shutdown. 4849 */ 4850 if (f2fs_hw_is_readonly(sbi)) { 4851 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4852 err = f2fs_recover_fsync_data(sbi, true); 4853 if (err > 0) { 4854 err = -EROFS; 4855 f2fs_err(sbi, "Need to recover fsync data, but " 4856 "write access unavailable, please try " 4857 "mount w/ disable_roll_forward or norecovery"); 4858 } 4859 if (err < 0) 4860 goto free_meta; 4861 } 4862 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4863 goto reset_checkpoint; 4864 } 4865 4866 if (need_fsck) 4867 set_sbi_flag(sbi, SBI_NEED_FSCK); 4868 4869 if (skip_recovery) 4870 goto reset_checkpoint; 4871 4872 err = f2fs_recover_fsync_data(sbi, false); 4873 if (err < 0) { 4874 if (err != -ENOMEM) 4875 skip_recovery = true; 4876 need_fsck = true; 4877 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4878 err); 4879 goto free_meta; 4880 } 4881 } else { 4882 err = f2fs_recover_fsync_data(sbi, true); 4883 4884 if (!f2fs_readonly(sb) && err > 0) { 4885 err = -EINVAL; 4886 f2fs_err(sbi, "Need to recover fsync data"); 4887 goto free_meta; 4888 } 4889 } 4890 4891 reset_checkpoint: 4892 #ifdef CONFIG_QUOTA 4893 f2fs_recover_quota_end(sbi, quota_enabled); 4894 #endif 4895 /* 4896 * If the f2fs is not readonly and fsync data recovery succeeds, 4897 * write pointer consistency of cursegs and other zones are already 4898 * checked and fixed during recovery. However, if recovery fails, 4899 * write pointers are left untouched, and retry-mount should check 4900 * them here. 4901 */ 4902 if (skip_recovery) 4903 err = f2fs_check_and_fix_write_pointer(sbi); 4904 if (err) 4905 goto free_meta; 4906 4907 /* f2fs_recover_fsync_data() cleared this already */ 4908 clear_sbi_flag(sbi, SBI_POR_DOING); 4909 4910 err = f2fs_init_inmem_curseg(sbi); 4911 if (err) 4912 goto sync_free_meta; 4913 4914 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4915 err = f2fs_disable_checkpoint(sbi); 4916 if (err) 4917 goto sync_free_meta; 4918 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4919 f2fs_enable_checkpoint(sbi); 4920 } 4921 4922 /* 4923 * If filesystem is not mounted as read-only then 4924 * do start the gc_thread. 4925 */ 4926 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4927 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4928 /* After POR, we can run background GC thread.*/ 4929 err = f2fs_start_gc_thread(sbi); 4930 if (err) 4931 goto sync_free_meta; 4932 } 4933 kvfree(options); 4934 4935 /* recover broken superblock */ 4936 if (recovery) { 4937 err = f2fs_commit_super(sbi, true); 4938 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4939 sbi->valid_super_block ? 1 : 2, err); 4940 } 4941 4942 f2fs_join_shrinker(sbi); 4943 4944 f2fs_tuning_parameters(sbi); 4945 4946 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4947 cur_cp_version(F2FS_CKPT(sbi))); 4948 f2fs_update_time(sbi, CP_TIME); 4949 f2fs_update_time(sbi, REQ_TIME); 4950 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4951 4952 sbi->umount_lock_holder = NULL; 4953 return 0; 4954 4955 sync_free_meta: 4956 /* safe to flush all the data */ 4957 sync_filesystem(sbi->sb); 4958 retry_cnt = 0; 4959 4960 free_meta: 4961 #ifdef CONFIG_QUOTA 4962 f2fs_truncate_quota_inode_pages(sb); 4963 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4964 f2fs_quota_off_umount(sbi->sb); 4965 #endif 4966 /* 4967 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4968 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4969 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4970 * falls into an infinite loop in f2fs_sync_meta_pages(). 4971 */ 4972 truncate_inode_pages_final(META_MAPPING(sbi)); 4973 /* evict some inodes being cached by GC */ 4974 evict_inodes(sb); 4975 f2fs_unregister_sysfs(sbi); 4976 free_compress_inode: 4977 f2fs_destroy_compress_inode(sbi); 4978 free_root_inode: 4979 dput(sb->s_root); 4980 sb->s_root = NULL; 4981 free_node_inode: 4982 f2fs_release_ino_entry(sbi, true); 4983 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4984 iput(sbi->node_inode); 4985 sbi->node_inode = NULL; 4986 free_stats: 4987 f2fs_destroy_stats(sbi); 4988 free_nm: 4989 /* stop discard thread before destroying node manager */ 4990 f2fs_stop_discard_thread(sbi); 4991 f2fs_destroy_node_manager(sbi); 4992 free_sm: 4993 f2fs_destroy_segment_manager(sbi); 4994 stop_ckpt_thread: 4995 f2fs_stop_ckpt_thread(sbi); 4996 /* flush s_error_work before sbi destroy */ 4997 flush_work(&sbi->s_error_work); 4998 f2fs_destroy_post_read_wq(sbi); 4999 free_devices: 5000 destroy_device_list(sbi); 5001 kvfree(sbi->ckpt); 5002 free_meta_inode: 5003 make_bad_inode(sbi->meta_inode); 5004 iput(sbi->meta_inode); 5005 sbi->meta_inode = NULL; 5006 free_page_array_cache: 5007 f2fs_destroy_page_array_cache(sbi); 5008 free_xattr_cache: 5009 f2fs_destroy_xattr_caches(sbi); 5010 free_percpu: 5011 destroy_percpu_info(sbi); 5012 free_iostat: 5013 f2fs_destroy_iostat(sbi); 5014 free_bio_info: 5015 for (i = 0; i < NR_PAGE_TYPE; i++) 5016 kvfree(sbi->write_io[i]); 5017 5018 #if IS_ENABLED(CONFIG_UNICODE) 5019 utf8_unload(sb->s_encoding); 5020 sb->s_encoding = NULL; 5021 #endif 5022 free_options: 5023 #ifdef CONFIG_QUOTA 5024 for (i = 0; i < MAXQUOTAS; i++) 5025 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 5026 #endif 5027 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 5028 kvfree(options); 5029 free_sb_buf: 5030 kfree(raw_super); 5031 free_sbi: 5032 kfree(sbi); 5033 sb->s_fs_info = NULL; 5034 5035 /* give only one another chance */ 5036 if (retry_cnt > 0 && skip_recovery) { 5037 retry_cnt--; 5038 shrink_dcache_sb(sb); 5039 goto try_onemore; 5040 } 5041 return err; 5042 } 5043 5044 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 5045 const char *dev_name, void *data) 5046 { 5047 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 5048 } 5049 5050 static void kill_f2fs_super(struct super_block *sb) 5051 { 5052 struct f2fs_sb_info *sbi = F2FS_SB(sb); 5053 5054 if (sb->s_root) { 5055 sbi->umount_lock_holder = current; 5056 5057 set_sbi_flag(sbi, SBI_IS_CLOSE); 5058 f2fs_stop_gc_thread(sbi); 5059 f2fs_stop_discard_thread(sbi); 5060 5061 #ifdef CONFIG_F2FS_FS_COMPRESSION 5062 /* 5063 * latter evict_inode() can bypass checking and invalidating 5064 * compress inode cache. 5065 */ 5066 if (test_opt(sbi, COMPRESS_CACHE)) 5067 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 5068 #endif 5069 5070 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 5071 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 5072 struct cp_control cpc = { 5073 .reason = CP_UMOUNT, 5074 }; 5075 stat_inc_cp_call_count(sbi, TOTAL_CALL); 5076 f2fs_write_checkpoint(sbi, &cpc); 5077 } 5078 5079 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 5080 sb->s_flags &= ~SB_RDONLY; 5081 } 5082 kill_block_super(sb); 5083 /* Release block devices last, after fscrypt_destroy_keyring(). */ 5084 if (sbi) { 5085 destroy_device_list(sbi); 5086 kfree(sbi); 5087 sb->s_fs_info = NULL; 5088 } 5089 } 5090 5091 static struct file_system_type f2fs_fs_type = { 5092 .owner = THIS_MODULE, 5093 .name = "f2fs", 5094 .mount = f2fs_mount, 5095 .kill_sb = kill_f2fs_super, 5096 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 5097 }; 5098 MODULE_ALIAS_FS("f2fs"); 5099 5100 static int __init init_inodecache(void) 5101 { 5102 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 5103 sizeof(struct f2fs_inode_info), 0, 5104 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 5105 return f2fs_inode_cachep ? 0 : -ENOMEM; 5106 } 5107 5108 static void destroy_inodecache(void) 5109 { 5110 /* 5111 * Make sure all delayed rcu free inodes are flushed before we 5112 * destroy cache. 5113 */ 5114 rcu_barrier(); 5115 kmem_cache_destroy(f2fs_inode_cachep); 5116 } 5117 5118 static int __init init_f2fs_fs(void) 5119 { 5120 int err; 5121 5122 err = init_inodecache(); 5123 if (err) 5124 goto fail; 5125 err = f2fs_create_node_manager_caches(); 5126 if (err) 5127 goto free_inodecache; 5128 err = f2fs_create_segment_manager_caches(); 5129 if (err) 5130 goto free_node_manager_caches; 5131 err = f2fs_create_checkpoint_caches(); 5132 if (err) 5133 goto free_segment_manager_caches; 5134 err = f2fs_create_recovery_cache(); 5135 if (err) 5136 goto free_checkpoint_caches; 5137 err = f2fs_create_extent_cache(); 5138 if (err) 5139 goto free_recovery_cache; 5140 err = f2fs_create_garbage_collection_cache(); 5141 if (err) 5142 goto free_extent_cache; 5143 err = f2fs_init_sysfs(); 5144 if (err) 5145 goto free_garbage_collection_cache; 5146 err = f2fs_init_shrinker(); 5147 if (err) 5148 goto free_sysfs; 5149 f2fs_create_root_stats(); 5150 err = f2fs_init_post_read_processing(); 5151 if (err) 5152 goto free_root_stats; 5153 err = f2fs_init_iostat_processing(); 5154 if (err) 5155 goto free_post_read; 5156 err = f2fs_init_bio_entry_cache(); 5157 if (err) 5158 goto free_iostat; 5159 err = f2fs_init_bioset(); 5160 if (err) 5161 goto free_bio_entry_cache; 5162 err = f2fs_init_compress_mempool(); 5163 if (err) 5164 goto free_bioset; 5165 err = f2fs_init_compress_cache(); 5166 if (err) 5167 goto free_compress_mempool; 5168 err = f2fs_create_casefold_cache(); 5169 if (err) 5170 goto free_compress_cache; 5171 err = register_filesystem(&f2fs_fs_type); 5172 if (err) 5173 goto free_casefold_cache; 5174 return 0; 5175 free_casefold_cache: 5176 f2fs_destroy_casefold_cache(); 5177 free_compress_cache: 5178 f2fs_destroy_compress_cache(); 5179 free_compress_mempool: 5180 f2fs_destroy_compress_mempool(); 5181 free_bioset: 5182 f2fs_destroy_bioset(); 5183 free_bio_entry_cache: 5184 f2fs_destroy_bio_entry_cache(); 5185 free_iostat: 5186 f2fs_destroy_iostat_processing(); 5187 free_post_read: 5188 f2fs_destroy_post_read_processing(); 5189 free_root_stats: 5190 f2fs_destroy_root_stats(); 5191 f2fs_exit_shrinker(); 5192 free_sysfs: 5193 f2fs_exit_sysfs(); 5194 free_garbage_collection_cache: 5195 f2fs_destroy_garbage_collection_cache(); 5196 free_extent_cache: 5197 f2fs_destroy_extent_cache(); 5198 free_recovery_cache: 5199 f2fs_destroy_recovery_cache(); 5200 free_checkpoint_caches: 5201 f2fs_destroy_checkpoint_caches(); 5202 free_segment_manager_caches: 5203 f2fs_destroy_segment_manager_caches(); 5204 free_node_manager_caches: 5205 f2fs_destroy_node_manager_caches(); 5206 free_inodecache: 5207 destroy_inodecache(); 5208 fail: 5209 return err; 5210 } 5211 5212 static void __exit exit_f2fs_fs(void) 5213 { 5214 unregister_filesystem(&f2fs_fs_type); 5215 f2fs_destroy_casefold_cache(); 5216 f2fs_destroy_compress_cache(); 5217 f2fs_destroy_compress_mempool(); 5218 f2fs_destroy_bioset(); 5219 f2fs_destroy_bio_entry_cache(); 5220 f2fs_destroy_iostat_processing(); 5221 f2fs_destroy_post_read_processing(); 5222 f2fs_destroy_root_stats(); 5223 f2fs_exit_shrinker(); 5224 f2fs_exit_sysfs(); 5225 f2fs_destroy_garbage_collection_cache(); 5226 f2fs_destroy_extent_cache(); 5227 f2fs_destroy_recovery_cache(); 5228 f2fs_destroy_checkpoint_caches(); 5229 f2fs_destroy_segment_manager_caches(); 5230 f2fs_destroy_node_manager_caches(); 5231 destroy_inodecache(); 5232 } 5233 5234 module_init(init_f2fs_fs) 5235 module_exit(exit_f2fs_fs) 5236 5237 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 5238 MODULE_DESCRIPTION("Flash Friendly File System"); 5239 MODULE_LICENSE("GPL"); 5240