xref: /linux/fs/f2fs/super.c (revision f3539c12d8196ce0a1993364d30b3a18908470d1)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37 
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44 
45 char *fault_name[FAULT_MAX] = {
46 	[FAULT_KMALLOC]		= "kmalloc",
47 	[FAULT_PAGE_ALLOC]	= "page alloc",
48 	[FAULT_ALLOC_NID]	= "alloc nid",
49 	[FAULT_ORPHAN]		= "orphan",
50 	[FAULT_BLOCK]		= "no more block",
51 	[FAULT_DIR_DEPTH]	= "too big dir depth",
52 	[FAULT_EVICT_INODE]	= "evict_inode fail",
53 };
54 
55 static void f2fs_build_fault_attr(unsigned int rate)
56 {
57 	if (rate) {
58 		atomic_set(&f2fs_fault.inject_ops, 0);
59 		f2fs_fault.inject_rate = rate;
60 		f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
61 	} else {
62 		memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
63 	}
64 }
65 #endif
66 
67 /* f2fs-wide shrinker description */
68 static struct shrinker f2fs_shrinker_info = {
69 	.scan_objects = f2fs_shrink_scan,
70 	.count_objects = f2fs_shrink_count,
71 	.seeks = DEFAULT_SEEKS,
72 };
73 
74 enum {
75 	Opt_gc_background,
76 	Opt_disable_roll_forward,
77 	Opt_norecovery,
78 	Opt_discard,
79 	Opt_nodiscard,
80 	Opt_noheap,
81 	Opt_user_xattr,
82 	Opt_nouser_xattr,
83 	Opt_acl,
84 	Opt_noacl,
85 	Opt_active_logs,
86 	Opt_disable_ext_identify,
87 	Opt_inline_xattr,
88 	Opt_inline_data,
89 	Opt_inline_dentry,
90 	Opt_flush_merge,
91 	Opt_noflush_merge,
92 	Opt_nobarrier,
93 	Opt_fastboot,
94 	Opt_extent_cache,
95 	Opt_noextent_cache,
96 	Opt_noinline_data,
97 	Opt_data_flush,
98 	Opt_mode,
99 	Opt_fault_injection,
100 	Opt_lazytime,
101 	Opt_nolazytime,
102 	Opt_err,
103 };
104 
105 static match_table_t f2fs_tokens = {
106 	{Opt_gc_background, "background_gc=%s"},
107 	{Opt_disable_roll_forward, "disable_roll_forward"},
108 	{Opt_norecovery, "norecovery"},
109 	{Opt_discard, "discard"},
110 	{Opt_nodiscard, "nodiscard"},
111 	{Opt_noheap, "no_heap"},
112 	{Opt_user_xattr, "user_xattr"},
113 	{Opt_nouser_xattr, "nouser_xattr"},
114 	{Opt_acl, "acl"},
115 	{Opt_noacl, "noacl"},
116 	{Opt_active_logs, "active_logs=%u"},
117 	{Opt_disable_ext_identify, "disable_ext_identify"},
118 	{Opt_inline_xattr, "inline_xattr"},
119 	{Opt_inline_data, "inline_data"},
120 	{Opt_inline_dentry, "inline_dentry"},
121 	{Opt_flush_merge, "flush_merge"},
122 	{Opt_noflush_merge, "noflush_merge"},
123 	{Opt_nobarrier, "nobarrier"},
124 	{Opt_fastboot, "fastboot"},
125 	{Opt_extent_cache, "extent_cache"},
126 	{Opt_noextent_cache, "noextent_cache"},
127 	{Opt_noinline_data, "noinline_data"},
128 	{Opt_data_flush, "data_flush"},
129 	{Opt_mode, "mode=%s"},
130 	{Opt_fault_injection, "fault_injection=%u"},
131 	{Opt_lazytime, "lazytime"},
132 	{Opt_nolazytime, "nolazytime"},
133 	{Opt_err, NULL},
134 };
135 
136 /* Sysfs support for f2fs */
137 enum {
138 	GC_THREAD,	/* struct f2fs_gc_thread */
139 	SM_INFO,	/* struct f2fs_sm_info */
140 	NM_INFO,	/* struct f2fs_nm_info */
141 	F2FS_SBI,	/* struct f2fs_sb_info */
142 #ifdef CONFIG_F2FS_FAULT_INJECTION
143 	FAULT_INFO_RATE,	/* struct f2fs_fault_info */
144 	FAULT_INFO_TYPE,	/* struct f2fs_fault_info */
145 #endif
146 };
147 
148 struct f2fs_attr {
149 	struct attribute attr;
150 	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
151 	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
152 			 const char *, size_t);
153 	int struct_type;
154 	int offset;
155 };
156 
157 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
158 {
159 	if (struct_type == GC_THREAD)
160 		return (unsigned char *)sbi->gc_thread;
161 	else if (struct_type == SM_INFO)
162 		return (unsigned char *)SM_I(sbi);
163 	else if (struct_type == NM_INFO)
164 		return (unsigned char *)NM_I(sbi);
165 	else if (struct_type == F2FS_SBI)
166 		return (unsigned char *)sbi;
167 #ifdef CONFIG_F2FS_FAULT_INJECTION
168 	else if (struct_type == FAULT_INFO_RATE ||
169 					struct_type == FAULT_INFO_TYPE)
170 		return (unsigned char *)&f2fs_fault;
171 #endif
172 	return NULL;
173 }
174 
175 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
176 		struct f2fs_sb_info *sbi, char *buf)
177 {
178 	struct super_block *sb = sbi->sb;
179 
180 	if (!sb->s_bdev->bd_part)
181 		return snprintf(buf, PAGE_SIZE, "0\n");
182 
183 	return snprintf(buf, PAGE_SIZE, "%llu\n",
184 		(unsigned long long)(sbi->kbytes_written +
185 			BD_PART_WRITTEN(sbi)));
186 }
187 
188 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
189 			struct f2fs_sb_info *sbi, char *buf)
190 {
191 	unsigned char *ptr = NULL;
192 	unsigned int *ui;
193 
194 	ptr = __struct_ptr(sbi, a->struct_type);
195 	if (!ptr)
196 		return -EINVAL;
197 
198 	ui = (unsigned int *)(ptr + a->offset);
199 
200 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
201 }
202 
203 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
204 			struct f2fs_sb_info *sbi,
205 			const char *buf, size_t count)
206 {
207 	unsigned char *ptr;
208 	unsigned long t;
209 	unsigned int *ui;
210 	ssize_t ret;
211 
212 	ptr = __struct_ptr(sbi, a->struct_type);
213 	if (!ptr)
214 		return -EINVAL;
215 
216 	ui = (unsigned int *)(ptr + a->offset);
217 
218 	ret = kstrtoul(skip_spaces(buf), 0, &t);
219 	if (ret < 0)
220 		return ret;
221 #ifdef CONFIG_F2FS_FAULT_INJECTION
222 	if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
223 		return -EINVAL;
224 #endif
225 	*ui = t;
226 	return count;
227 }
228 
229 static ssize_t f2fs_attr_show(struct kobject *kobj,
230 				struct attribute *attr, char *buf)
231 {
232 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
233 								s_kobj);
234 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
235 
236 	return a->show ? a->show(a, sbi, buf) : 0;
237 }
238 
239 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
240 						const char *buf, size_t len)
241 {
242 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
243 									s_kobj);
244 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
245 
246 	return a->store ? a->store(a, sbi, buf, len) : 0;
247 }
248 
249 static void f2fs_sb_release(struct kobject *kobj)
250 {
251 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
252 								s_kobj);
253 	complete(&sbi->s_kobj_unregister);
254 }
255 
256 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
257 static struct f2fs_attr f2fs_attr_##_name = {			\
258 	.attr = {.name = __stringify(_name), .mode = _mode },	\
259 	.show	= _show,					\
260 	.store	= _store,					\
261 	.struct_type = _struct_type,				\
262 	.offset = _offset					\
263 }
264 
265 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
266 	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
267 		f2fs_sbi_show, f2fs_sbi_store,			\
268 		offsetof(struct struct_name, elname))
269 
270 #define F2FS_GENERAL_RO_ATTR(name) \
271 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
272 
273 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
274 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
275 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
276 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
277 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
278 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
279 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
280 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
281 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
282 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
283 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
284 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
285 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
286 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
287 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
288 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
289 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
290 #ifdef CONFIG_F2FS_FAULT_INJECTION
291 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
292 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
293 #endif
294 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
295 
296 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
297 static struct attribute *f2fs_attrs[] = {
298 	ATTR_LIST(gc_min_sleep_time),
299 	ATTR_LIST(gc_max_sleep_time),
300 	ATTR_LIST(gc_no_gc_sleep_time),
301 	ATTR_LIST(gc_idle),
302 	ATTR_LIST(reclaim_segments),
303 	ATTR_LIST(max_small_discards),
304 	ATTR_LIST(batched_trim_sections),
305 	ATTR_LIST(ipu_policy),
306 	ATTR_LIST(min_ipu_util),
307 	ATTR_LIST(min_fsync_blocks),
308 	ATTR_LIST(max_victim_search),
309 	ATTR_LIST(dir_level),
310 	ATTR_LIST(ram_thresh),
311 	ATTR_LIST(ra_nid_pages),
312 	ATTR_LIST(dirty_nats_ratio),
313 	ATTR_LIST(cp_interval),
314 	ATTR_LIST(idle_interval),
315 	ATTR_LIST(lifetime_write_kbytes),
316 	NULL,
317 };
318 
319 static const struct sysfs_ops f2fs_attr_ops = {
320 	.show	= f2fs_attr_show,
321 	.store	= f2fs_attr_store,
322 };
323 
324 static struct kobj_type f2fs_ktype = {
325 	.default_attrs	= f2fs_attrs,
326 	.sysfs_ops	= &f2fs_attr_ops,
327 	.release	= f2fs_sb_release,
328 };
329 
330 #ifdef CONFIG_F2FS_FAULT_INJECTION
331 /* sysfs for f2fs fault injection */
332 static struct kobject f2fs_fault_inject;
333 
334 static struct attribute *f2fs_fault_attrs[] = {
335 	ATTR_LIST(inject_rate),
336 	ATTR_LIST(inject_type),
337 	NULL
338 };
339 
340 static struct kobj_type f2fs_fault_ktype = {
341 	.default_attrs	= f2fs_fault_attrs,
342 	.sysfs_ops	= &f2fs_attr_ops,
343 };
344 #endif
345 
346 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
347 {
348 	struct va_format vaf;
349 	va_list args;
350 
351 	va_start(args, fmt);
352 	vaf.fmt = fmt;
353 	vaf.va = &args;
354 	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
355 	va_end(args);
356 }
357 
358 static void init_once(void *foo)
359 {
360 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
361 
362 	inode_init_once(&fi->vfs_inode);
363 }
364 
365 static int parse_options(struct super_block *sb, char *options)
366 {
367 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
368 	struct request_queue *q;
369 	substring_t args[MAX_OPT_ARGS];
370 	char *p, *name;
371 	int arg = 0;
372 
373 #ifdef CONFIG_F2FS_FAULT_INJECTION
374 	f2fs_build_fault_attr(0);
375 #endif
376 
377 	if (!options)
378 		return 0;
379 
380 	while ((p = strsep(&options, ",")) != NULL) {
381 		int token;
382 		if (!*p)
383 			continue;
384 		/*
385 		 * Initialize args struct so we know whether arg was
386 		 * found; some options take optional arguments.
387 		 */
388 		args[0].to = args[0].from = NULL;
389 		token = match_token(p, f2fs_tokens, args);
390 
391 		switch (token) {
392 		case Opt_gc_background:
393 			name = match_strdup(&args[0]);
394 
395 			if (!name)
396 				return -ENOMEM;
397 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
398 				set_opt(sbi, BG_GC);
399 				clear_opt(sbi, FORCE_FG_GC);
400 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
401 				clear_opt(sbi, BG_GC);
402 				clear_opt(sbi, FORCE_FG_GC);
403 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
404 				set_opt(sbi, BG_GC);
405 				set_opt(sbi, FORCE_FG_GC);
406 			} else {
407 				kfree(name);
408 				return -EINVAL;
409 			}
410 			kfree(name);
411 			break;
412 		case Opt_disable_roll_forward:
413 			set_opt(sbi, DISABLE_ROLL_FORWARD);
414 			break;
415 		case Opt_norecovery:
416 			/* this option mounts f2fs with ro */
417 			set_opt(sbi, DISABLE_ROLL_FORWARD);
418 			if (!f2fs_readonly(sb))
419 				return -EINVAL;
420 			break;
421 		case Opt_discard:
422 			q = bdev_get_queue(sb->s_bdev);
423 			if (blk_queue_discard(q)) {
424 				set_opt(sbi, DISCARD);
425 			} else {
426 				f2fs_msg(sb, KERN_WARNING,
427 					"mounting with \"discard\" option, but "
428 					"the device does not support discard");
429 			}
430 			break;
431 		case Opt_nodiscard:
432 			clear_opt(sbi, DISCARD);
433 		case Opt_noheap:
434 			set_opt(sbi, NOHEAP);
435 			break;
436 #ifdef CONFIG_F2FS_FS_XATTR
437 		case Opt_user_xattr:
438 			set_opt(sbi, XATTR_USER);
439 			break;
440 		case Opt_nouser_xattr:
441 			clear_opt(sbi, XATTR_USER);
442 			break;
443 		case Opt_inline_xattr:
444 			set_opt(sbi, INLINE_XATTR);
445 			break;
446 #else
447 		case Opt_user_xattr:
448 			f2fs_msg(sb, KERN_INFO,
449 				"user_xattr options not supported");
450 			break;
451 		case Opt_nouser_xattr:
452 			f2fs_msg(sb, KERN_INFO,
453 				"nouser_xattr options not supported");
454 			break;
455 		case Opt_inline_xattr:
456 			f2fs_msg(sb, KERN_INFO,
457 				"inline_xattr options not supported");
458 			break;
459 #endif
460 #ifdef CONFIG_F2FS_FS_POSIX_ACL
461 		case Opt_acl:
462 			set_opt(sbi, POSIX_ACL);
463 			break;
464 		case Opt_noacl:
465 			clear_opt(sbi, POSIX_ACL);
466 			break;
467 #else
468 		case Opt_acl:
469 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
470 			break;
471 		case Opt_noacl:
472 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
473 			break;
474 #endif
475 		case Opt_active_logs:
476 			if (args->from && match_int(args, &arg))
477 				return -EINVAL;
478 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
479 				return -EINVAL;
480 			sbi->active_logs = arg;
481 			break;
482 		case Opt_disable_ext_identify:
483 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
484 			break;
485 		case Opt_inline_data:
486 			set_opt(sbi, INLINE_DATA);
487 			break;
488 		case Opt_inline_dentry:
489 			set_opt(sbi, INLINE_DENTRY);
490 			break;
491 		case Opt_flush_merge:
492 			set_opt(sbi, FLUSH_MERGE);
493 			break;
494 		case Opt_noflush_merge:
495 			clear_opt(sbi, FLUSH_MERGE);
496 			break;
497 		case Opt_nobarrier:
498 			set_opt(sbi, NOBARRIER);
499 			break;
500 		case Opt_fastboot:
501 			set_opt(sbi, FASTBOOT);
502 			break;
503 		case Opt_extent_cache:
504 			set_opt(sbi, EXTENT_CACHE);
505 			break;
506 		case Opt_noextent_cache:
507 			clear_opt(sbi, EXTENT_CACHE);
508 			break;
509 		case Opt_noinline_data:
510 			clear_opt(sbi, INLINE_DATA);
511 			break;
512 		case Opt_data_flush:
513 			set_opt(sbi, DATA_FLUSH);
514 			break;
515 		case Opt_mode:
516 			name = match_strdup(&args[0]);
517 
518 			if (!name)
519 				return -ENOMEM;
520 			if (strlen(name) == 8 &&
521 					!strncmp(name, "adaptive", 8)) {
522 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
523 			} else if (strlen(name) == 3 &&
524 					!strncmp(name, "lfs", 3)) {
525 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
526 			} else {
527 				kfree(name);
528 				return -EINVAL;
529 			}
530 			kfree(name);
531 			break;
532 		case Opt_fault_injection:
533 			if (args->from && match_int(args, &arg))
534 				return -EINVAL;
535 #ifdef CONFIG_F2FS_FAULT_INJECTION
536 			f2fs_build_fault_attr(arg);
537 #else
538 			f2fs_msg(sb, KERN_INFO,
539 				"FAULT_INJECTION was not selected");
540 #endif
541 			break;
542 		case Opt_lazytime:
543 			sb->s_flags |= MS_LAZYTIME;
544 			break;
545 		case Opt_nolazytime:
546 			sb->s_flags &= ~MS_LAZYTIME;
547 			break;
548 		default:
549 			f2fs_msg(sb, KERN_ERR,
550 				"Unrecognized mount option \"%s\" or missing value",
551 				p);
552 			return -EINVAL;
553 		}
554 	}
555 	return 0;
556 }
557 
558 static struct inode *f2fs_alloc_inode(struct super_block *sb)
559 {
560 	struct f2fs_inode_info *fi;
561 
562 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
563 	if (!fi)
564 		return NULL;
565 
566 	init_once((void *) fi);
567 
568 	if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
569 		kmem_cache_free(f2fs_inode_cachep, fi);
570 		return NULL;
571 	}
572 
573 	/* Initialize f2fs-specific inode info */
574 	fi->vfs_inode.i_version = 1;
575 	fi->i_current_depth = 1;
576 	fi->i_advise = 0;
577 	init_rwsem(&fi->i_sem);
578 	INIT_LIST_HEAD(&fi->dirty_list);
579 	INIT_LIST_HEAD(&fi->gdirty_list);
580 	INIT_LIST_HEAD(&fi->inmem_pages);
581 	mutex_init(&fi->inmem_lock);
582 	init_rwsem(&fi->dio_rwsem[READ]);
583 	init_rwsem(&fi->dio_rwsem[WRITE]);
584 
585 	/* Will be used by directory only */
586 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
587 	return &fi->vfs_inode;
588 }
589 
590 static int f2fs_drop_inode(struct inode *inode)
591 {
592 	/*
593 	 * This is to avoid a deadlock condition like below.
594 	 * writeback_single_inode(inode)
595 	 *  - f2fs_write_data_page
596 	 *    - f2fs_gc -> iput -> evict
597 	 *       - inode_wait_for_writeback(inode)
598 	 */
599 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
600 		if (!inode->i_nlink && !is_bad_inode(inode)) {
601 			/* to avoid evict_inode call simultaneously */
602 			atomic_inc(&inode->i_count);
603 			spin_unlock(&inode->i_lock);
604 
605 			/* some remained atomic pages should discarded */
606 			if (f2fs_is_atomic_file(inode))
607 				drop_inmem_pages(inode);
608 
609 			/* should remain fi->extent_tree for writepage */
610 			f2fs_destroy_extent_node(inode);
611 
612 			sb_start_intwrite(inode->i_sb);
613 			f2fs_i_size_write(inode, 0);
614 
615 			if (F2FS_HAS_BLOCKS(inode))
616 				f2fs_truncate(inode);
617 
618 			sb_end_intwrite(inode->i_sb);
619 
620 			fscrypt_put_encryption_info(inode, NULL);
621 			spin_lock(&inode->i_lock);
622 			atomic_dec(&inode->i_count);
623 		}
624 		return 0;
625 	}
626 
627 	return generic_drop_inode(inode);
628 }
629 
630 int f2fs_inode_dirtied(struct inode *inode)
631 {
632 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
633 
634 	spin_lock(&sbi->inode_lock[DIRTY_META]);
635 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
636 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
637 		return 1;
638 	}
639 
640 	set_inode_flag(inode, FI_DIRTY_INODE);
641 	list_add_tail(&F2FS_I(inode)->gdirty_list,
642 				&sbi->inode_list[DIRTY_META]);
643 	inc_page_count(sbi, F2FS_DIRTY_IMETA);
644 	stat_inc_dirty_inode(sbi, DIRTY_META);
645 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
646 
647 	return 0;
648 }
649 
650 void f2fs_inode_synced(struct inode *inode)
651 {
652 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
653 
654 	spin_lock(&sbi->inode_lock[DIRTY_META]);
655 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
656 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
657 		return;
658 	}
659 	list_del_init(&F2FS_I(inode)->gdirty_list);
660 	clear_inode_flag(inode, FI_DIRTY_INODE);
661 	clear_inode_flag(inode, FI_AUTO_RECOVER);
662 	dec_page_count(sbi, F2FS_DIRTY_IMETA);
663 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
664 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
665 }
666 
667 /*
668  * f2fs_dirty_inode() is called from __mark_inode_dirty()
669  *
670  * We should call set_dirty_inode to write the dirty inode through write_inode.
671  */
672 static void f2fs_dirty_inode(struct inode *inode, int flags)
673 {
674 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
675 
676 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
677 			inode->i_ino == F2FS_META_INO(sbi))
678 		return;
679 
680 	if (flags == I_DIRTY_TIME)
681 		return;
682 
683 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
684 		clear_inode_flag(inode, FI_AUTO_RECOVER);
685 
686 	f2fs_inode_dirtied(inode);
687 }
688 
689 static void f2fs_i_callback(struct rcu_head *head)
690 {
691 	struct inode *inode = container_of(head, struct inode, i_rcu);
692 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
693 }
694 
695 static void f2fs_destroy_inode(struct inode *inode)
696 {
697 	percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
698 	call_rcu(&inode->i_rcu, f2fs_i_callback);
699 }
700 
701 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
702 {
703 	int i;
704 
705 	for (i = 0; i < NR_COUNT_TYPE; i++)
706 		percpu_counter_destroy(&sbi->nr_pages[i]);
707 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
708 	percpu_counter_destroy(&sbi->total_valid_inode_count);
709 }
710 
711 static void f2fs_put_super(struct super_block *sb)
712 {
713 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
714 
715 	if (sbi->s_proc) {
716 		remove_proc_entry("segment_info", sbi->s_proc);
717 		remove_proc_entry("segment_bits", sbi->s_proc);
718 		remove_proc_entry(sb->s_id, f2fs_proc_root);
719 	}
720 	kobject_del(&sbi->s_kobj);
721 
722 	stop_gc_thread(sbi);
723 
724 	/* prevent remaining shrinker jobs */
725 	mutex_lock(&sbi->umount_mutex);
726 
727 	/*
728 	 * We don't need to do checkpoint when superblock is clean.
729 	 * But, the previous checkpoint was not done by umount, it needs to do
730 	 * clean checkpoint again.
731 	 */
732 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
733 			!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
734 		struct cp_control cpc = {
735 			.reason = CP_UMOUNT,
736 		};
737 		write_checkpoint(sbi, &cpc);
738 	}
739 
740 	/* write_checkpoint can update stat informaion */
741 	f2fs_destroy_stats(sbi);
742 
743 	/*
744 	 * normally superblock is clean, so we need to release this.
745 	 * In addition, EIO will skip do checkpoint, we need this as well.
746 	 */
747 	release_ino_entry(sbi, true);
748 	release_discard_addrs(sbi);
749 
750 	f2fs_leave_shrinker(sbi);
751 	mutex_unlock(&sbi->umount_mutex);
752 
753 	/* our cp_error case, we can wait for any writeback page */
754 	f2fs_flush_merged_bios(sbi);
755 
756 	iput(sbi->node_inode);
757 	iput(sbi->meta_inode);
758 
759 	/* destroy f2fs internal modules */
760 	destroy_node_manager(sbi);
761 	destroy_segment_manager(sbi);
762 
763 	kfree(sbi->ckpt);
764 	kobject_put(&sbi->s_kobj);
765 	wait_for_completion(&sbi->s_kobj_unregister);
766 
767 	sb->s_fs_info = NULL;
768 	if (sbi->s_chksum_driver)
769 		crypto_free_shash(sbi->s_chksum_driver);
770 	kfree(sbi->raw_super);
771 
772 	destroy_percpu_info(sbi);
773 	kfree(sbi);
774 }
775 
776 int f2fs_sync_fs(struct super_block *sb, int sync)
777 {
778 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
779 	int err = 0;
780 
781 	trace_f2fs_sync_fs(sb, sync);
782 
783 	if (sync) {
784 		struct cp_control cpc;
785 
786 		cpc.reason = __get_cp_reason(sbi);
787 
788 		mutex_lock(&sbi->gc_mutex);
789 		err = write_checkpoint(sbi, &cpc);
790 		mutex_unlock(&sbi->gc_mutex);
791 	}
792 	f2fs_trace_ios(NULL, 1);
793 
794 	return err;
795 }
796 
797 static int f2fs_freeze(struct super_block *sb)
798 {
799 	int err;
800 
801 	if (f2fs_readonly(sb))
802 		return 0;
803 
804 	err = f2fs_sync_fs(sb, 1);
805 	return err;
806 }
807 
808 static int f2fs_unfreeze(struct super_block *sb)
809 {
810 	return 0;
811 }
812 
813 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
814 {
815 	struct super_block *sb = dentry->d_sb;
816 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
817 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
818 	block_t total_count, user_block_count, start_count, ovp_count;
819 
820 	total_count = le64_to_cpu(sbi->raw_super->block_count);
821 	user_block_count = sbi->user_block_count;
822 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
823 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
824 	buf->f_type = F2FS_SUPER_MAGIC;
825 	buf->f_bsize = sbi->blocksize;
826 
827 	buf->f_blocks = total_count - start_count;
828 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
829 	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
830 
831 	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
832 	buf->f_ffree = buf->f_files - valid_inode_count(sbi);
833 
834 	buf->f_namelen = F2FS_NAME_LEN;
835 	buf->f_fsid.val[0] = (u32)id;
836 	buf->f_fsid.val[1] = (u32)(id >> 32);
837 
838 	return 0;
839 }
840 
841 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
842 {
843 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
844 
845 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
846 		if (test_opt(sbi, FORCE_FG_GC))
847 			seq_printf(seq, ",background_gc=%s", "sync");
848 		else
849 			seq_printf(seq, ",background_gc=%s", "on");
850 	} else {
851 		seq_printf(seq, ",background_gc=%s", "off");
852 	}
853 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
854 		seq_puts(seq, ",disable_roll_forward");
855 	if (test_opt(sbi, DISCARD))
856 		seq_puts(seq, ",discard");
857 	if (test_opt(sbi, NOHEAP))
858 		seq_puts(seq, ",no_heap_alloc");
859 #ifdef CONFIG_F2FS_FS_XATTR
860 	if (test_opt(sbi, XATTR_USER))
861 		seq_puts(seq, ",user_xattr");
862 	else
863 		seq_puts(seq, ",nouser_xattr");
864 	if (test_opt(sbi, INLINE_XATTR))
865 		seq_puts(seq, ",inline_xattr");
866 #endif
867 #ifdef CONFIG_F2FS_FS_POSIX_ACL
868 	if (test_opt(sbi, POSIX_ACL))
869 		seq_puts(seq, ",acl");
870 	else
871 		seq_puts(seq, ",noacl");
872 #endif
873 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
874 		seq_puts(seq, ",disable_ext_identify");
875 	if (test_opt(sbi, INLINE_DATA))
876 		seq_puts(seq, ",inline_data");
877 	else
878 		seq_puts(seq, ",noinline_data");
879 	if (test_opt(sbi, INLINE_DENTRY))
880 		seq_puts(seq, ",inline_dentry");
881 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
882 		seq_puts(seq, ",flush_merge");
883 	if (test_opt(sbi, NOBARRIER))
884 		seq_puts(seq, ",nobarrier");
885 	if (test_opt(sbi, FASTBOOT))
886 		seq_puts(seq, ",fastboot");
887 	if (test_opt(sbi, EXTENT_CACHE))
888 		seq_puts(seq, ",extent_cache");
889 	else
890 		seq_puts(seq, ",noextent_cache");
891 	if (test_opt(sbi, DATA_FLUSH))
892 		seq_puts(seq, ",data_flush");
893 
894 	seq_puts(seq, ",mode=");
895 	if (test_opt(sbi, ADAPTIVE))
896 		seq_puts(seq, "adaptive");
897 	else if (test_opt(sbi, LFS))
898 		seq_puts(seq, "lfs");
899 	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
900 
901 	return 0;
902 }
903 
904 static int segment_info_seq_show(struct seq_file *seq, void *offset)
905 {
906 	struct super_block *sb = seq->private;
907 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
908 	unsigned int total_segs =
909 			le32_to_cpu(sbi->raw_super->segment_count_main);
910 	int i;
911 
912 	seq_puts(seq, "format: segment_type|valid_blocks\n"
913 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
914 
915 	for (i = 0; i < total_segs; i++) {
916 		struct seg_entry *se = get_seg_entry(sbi, i);
917 
918 		if ((i % 10) == 0)
919 			seq_printf(seq, "%-10d", i);
920 		seq_printf(seq, "%d|%-3u", se->type,
921 					get_valid_blocks(sbi, i, 1));
922 		if ((i % 10) == 9 || i == (total_segs - 1))
923 			seq_putc(seq, '\n');
924 		else
925 			seq_putc(seq, ' ');
926 	}
927 
928 	return 0;
929 }
930 
931 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
932 {
933 	struct super_block *sb = seq->private;
934 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
935 	unsigned int total_segs =
936 			le32_to_cpu(sbi->raw_super->segment_count_main);
937 	int i, j;
938 
939 	seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
940 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
941 
942 	for (i = 0; i < total_segs; i++) {
943 		struct seg_entry *se = get_seg_entry(sbi, i);
944 
945 		seq_printf(seq, "%-10d", i);
946 		seq_printf(seq, "%d|%-3u|", se->type,
947 					get_valid_blocks(sbi, i, 1));
948 		for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
949 			seq_printf(seq, "%x ", se->cur_valid_map[j]);
950 		seq_putc(seq, '\n');
951 	}
952 	return 0;
953 }
954 
955 #define F2FS_PROC_FILE_DEF(_name)					\
956 static int _name##_open_fs(struct inode *inode, struct file *file)	\
957 {									\
958 	return single_open(file, _name##_seq_show, PDE_DATA(inode));	\
959 }									\
960 									\
961 static const struct file_operations f2fs_seq_##_name##_fops = {		\
962 	.open = _name##_open_fs,					\
963 	.read = seq_read,						\
964 	.llseek = seq_lseek,						\
965 	.release = single_release,					\
966 };
967 
968 F2FS_PROC_FILE_DEF(segment_info);
969 F2FS_PROC_FILE_DEF(segment_bits);
970 
971 static void default_options(struct f2fs_sb_info *sbi)
972 {
973 	/* init some FS parameters */
974 	sbi->active_logs = NR_CURSEG_TYPE;
975 
976 	set_opt(sbi, BG_GC);
977 	set_opt(sbi, INLINE_DATA);
978 	set_opt(sbi, EXTENT_CACHE);
979 	sbi->sb->s_flags |= MS_LAZYTIME;
980 	set_opt(sbi, FLUSH_MERGE);
981 	if (f2fs_sb_mounted_hmsmr(sbi->sb)) {
982 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
983 		set_opt(sbi, DISCARD);
984 	} else {
985 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
986 	}
987 
988 #ifdef CONFIG_F2FS_FS_XATTR
989 	set_opt(sbi, XATTR_USER);
990 #endif
991 #ifdef CONFIG_F2FS_FS_POSIX_ACL
992 	set_opt(sbi, POSIX_ACL);
993 #endif
994 }
995 
996 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
997 {
998 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
999 	struct f2fs_mount_info org_mount_opt;
1000 	int err, active_logs;
1001 	bool need_restart_gc = false;
1002 	bool need_stop_gc = false;
1003 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1004 
1005 	/*
1006 	 * Save the old mount options in case we
1007 	 * need to restore them.
1008 	 */
1009 	org_mount_opt = sbi->mount_opt;
1010 	active_logs = sbi->active_logs;
1011 
1012 	/* recover superblocks we couldn't write due to previous RO mount */
1013 	if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1014 		err = f2fs_commit_super(sbi, false);
1015 		f2fs_msg(sb, KERN_INFO,
1016 			"Try to recover all the superblocks, ret: %d", err);
1017 		if (!err)
1018 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1019 	}
1020 
1021 	sbi->mount_opt.opt = 0;
1022 	default_options(sbi);
1023 
1024 	/* parse mount options */
1025 	err = parse_options(sb, data);
1026 	if (err)
1027 		goto restore_opts;
1028 
1029 	/*
1030 	 * Previous and new state of filesystem is RO,
1031 	 * so skip checking GC and FLUSH_MERGE conditions.
1032 	 */
1033 	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1034 		goto skip;
1035 
1036 	/* disallow enable/disable extent_cache dynamically */
1037 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1038 		err = -EINVAL;
1039 		f2fs_msg(sbi->sb, KERN_WARNING,
1040 				"switch extent_cache option is not allowed");
1041 		goto restore_opts;
1042 	}
1043 
1044 	/*
1045 	 * We stop the GC thread if FS is mounted as RO
1046 	 * or if background_gc = off is passed in mount
1047 	 * option. Also sync the filesystem.
1048 	 */
1049 	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1050 		if (sbi->gc_thread) {
1051 			stop_gc_thread(sbi);
1052 			need_restart_gc = true;
1053 		}
1054 	} else if (!sbi->gc_thread) {
1055 		err = start_gc_thread(sbi);
1056 		if (err)
1057 			goto restore_opts;
1058 		need_stop_gc = true;
1059 	}
1060 
1061 	if (*flags & MS_RDONLY) {
1062 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1063 		sync_inodes_sb(sb);
1064 
1065 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1066 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1067 		f2fs_sync_fs(sb, 1);
1068 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1069 	}
1070 
1071 	/*
1072 	 * We stop issue flush thread if FS is mounted as RO
1073 	 * or if flush_merge is not passed in mount option.
1074 	 */
1075 	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1076 		destroy_flush_cmd_control(sbi);
1077 	} else if (!SM_I(sbi)->cmd_control_info) {
1078 		err = create_flush_cmd_control(sbi);
1079 		if (err)
1080 			goto restore_gc;
1081 	}
1082 skip:
1083 	/* Update the POSIXACL Flag */
1084 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1085 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1086 
1087 	return 0;
1088 restore_gc:
1089 	if (need_restart_gc) {
1090 		if (start_gc_thread(sbi))
1091 			f2fs_msg(sbi->sb, KERN_WARNING,
1092 				"background gc thread has stopped");
1093 	} else if (need_stop_gc) {
1094 		stop_gc_thread(sbi);
1095 	}
1096 restore_opts:
1097 	sbi->mount_opt = org_mount_opt;
1098 	sbi->active_logs = active_logs;
1099 	return err;
1100 }
1101 
1102 static struct super_operations f2fs_sops = {
1103 	.alloc_inode	= f2fs_alloc_inode,
1104 	.drop_inode	= f2fs_drop_inode,
1105 	.destroy_inode	= f2fs_destroy_inode,
1106 	.write_inode	= f2fs_write_inode,
1107 	.dirty_inode	= f2fs_dirty_inode,
1108 	.show_options	= f2fs_show_options,
1109 	.evict_inode	= f2fs_evict_inode,
1110 	.put_super	= f2fs_put_super,
1111 	.sync_fs	= f2fs_sync_fs,
1112 	.freeze_fs	= f2fs_freeze,
1113 	.unfreeze_fs	= f2fs_unfreeze,
1114 	.statfs		= f2fs_statfs,
1115 	.remount_fs	= f2fs_remount,
1116 };
1117 
1118 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1119 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1120 {
1121 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1122 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1123 				ctx, len, NULL);
1124 }
1125 
1126 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1127 {
1128 	*key = F2FS_I_SB(inode)->key_prefix;
1129 	return F2FS_I_SB(inode)->key_prefix_size;
1130 }
1131 
1132 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1133 							void *fs_data)
1134 {
1135 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1136 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1137 				ctx, len, fs_data, XATTR_CREATE);
1138 }
1139 
1140 static unsigned f2fs_max_namelen(struct inode *inode)
1141 {
1142 	return S_ISLNK(inode->i_mode) ?
1143 			inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1144 }
1145 
1146 static struct fscrypt_operations f2fs_cryptops = {
1147 	.get_context	= f2fs_get_context,
1148 	.key_prefix	= f2fs_key_prefix,
1149 	.set_context	= f2fs_set_context,
1150 	.is_encrypted	= f2fs_encrypted_inode,
1151 	.empty_dir	= f2fs_empty_dir,
1152 	.max_namelen	= f2fs_max_namelen,
1153 };
1154 #else
1155 static struct fscrypt_operations f2fs_cryptops = {
1156 	.is_encrypted	= f2fs_encrypted_inode,
1157 };
1158 #endif
1159 
1160 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1161 		u64 ino, u32 generation)
1162 {
1163 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1164 	struct inode *inode;
1165 
1166 	if (check_nid_range(sbi, ino))
1167 		return ERR_PTR(-ESTALE);
1168 
1169 	/*
1170 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
1171 	 * However f2fs_iget currently does appropriate checks to handle stale
1172 	 * inodes so everything is OK.
1173 	 */
1174 	inode = f2fs_iget(sb, ino);
1175 	if (IS_ERR(inode))
1176 		return ERR_CAST(inode);
1177 	if (unlikely(generation && inode->i_generation != generation)) {
1178 		/* we didn't find the right inode.. */
1179 		iput(inode);
1180 		return ERR_PTR(-ESTALE);
1181 	}
1182 	return inode;
1183 }
1184 
1185 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1186 		int fh_len, int fh_type)
1187 {
1188 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1189 				    f2fs_nfs_get_inode);
1190 }
1191 
1192 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1193 		int fh_len, int fh_type)
1194 {
1195 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1196 				    f2fs_nfs_get_inode);
1197 }
1198 
1199 static const struct export_operations f2fs_export_ops = {
1200 	.fh_to_dentry = f2fs_fh_to_dentry,
1201 	.fh_to_parent = f2fs_fh_to_parent,
1202 	.get_parent = f2fs_get_parent,
1203 };
1204 
1205 static loff_t max_file_blocks(void)
1206 {
1207 	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1208 	loff_t leaf_count = ADDRS_PER_BLOCK;
1209 
1210 	/* two direct node blocks */
1211 	result += (leaf_count * 2);
1212 
1213 	/* two indirect node blocks */
1214 	leaf_count *= NIDS_PER_BLOCK;
1215 	result += (leaf_count * 2);
1216 
1217 	/* one double indirect node block */
1218 	leaf_count *= NIDS_PER_BLOCK;
1219 	result += leaf_count;
1220 
1221 	return result;
1222 }
1223 
1224 static int __f2fs_commit_super(struct buffer_head *bh,
1225 			struct f2fs_super_block *super)
1226 {
1227 	lock_buffer(bh);
1228 	if (super)
1229 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1230 	set_buffer_uptodate(bh);
1231 	set_buffer_dirty(bh);
1232 	unlock_buffer(bh);
1233 
1234 	/* it's rare case, we can do fua all the time */
1235 	return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1236 }
1237 
1238 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1239 					struct buffer_head *bh)
1240 {
1241 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1242 					(bh->b_data + F2FS_SUPER_OFFSET);
1243 	struct super_block *sb = sbi->sb;
1244 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1245 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1246 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1247 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1248 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1249 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1250 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1251 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1252 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1253 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1254 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1255 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
1256 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1257 	u64 main_end_blkaddr = main_blkaddr +
1258 				(segment_count_main << log_blocks_per_seg);
1259 	u64 seg_end_blkaddr = segment0_blkaddr +
1260 				(segment_count << log_blocks_per_seg);
1261 
1262 	if (segment0_blkaddr != cp_blkaddr) {
1263 		f2fs_msg(sb, KERN_INFO,
1264 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1265 			segment0_blkaddr, cp_blkaddr);
1266 		return true;
1267 	}
1268 
1269 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1270 							sit_blkaddr) {
1271 		f2fs_msg(sb, KERN_INFO,
1272 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1273 			cp_blkaddr, sit_blkaddr,
1274 			segment_count_ckpt << log_blocks_per_seg);
1275 		return true;
1276 	}
1277 
1278 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1279 							nat_blkaddr) {
1280 		f2fs_msg(sb, KERN_INFO,
1281 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1282 			sit_blkaddr, nat_blkaddr,
1283 			segment_count_sit << log_blocks_per_seg);
1284 		return true;
1285 	}
1286 
1287 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1288 							ssa_blkaddr) {
1289 		f2fs_msg(sb, KERN_INFO,
1290 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1291 			nat_blkaddr, ssa_blkaddr,
1292 			segment_count_nat << log_blocks_per_seg);
1293 		return true;
1294 	}
1295 
1296 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1297 							main_blkaddr) {
1298 		f2fs_msg(sb, KERN_INFO,
1299 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1300 			ssa_blkaddr, main_blkaddr,
1301 			segment_count_ssa << log_blocks_per_seg);
1302 		return true;
1303 	}
1304 
1305 	if (main_end_blkaddr > seg_end_blkaddr) {
1306 		f2fs_msg(sb, KERN_INFO,
1307 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1308 			main_blkaddr,
1309 			segment0_blkaddr +
1310 				(segment_count << log_blocks_per_seg),
1311 			segment_count_main << log_blocks_per_seg);
1312 		return true;
1313 	} else if (main_end_blkaddr < seg_end_blkaddr) {
1314 		int err = 0;
1315 		char *res;
1316 
1317 		/* fix in-memory information all the time */
1318 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1319 				segment0_blkaddr) >> log_blocks_per_seg);
1320 
1321 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1322 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1323 			res = "internally";
1324 		} else {
1325 			err = __f2fs_commit_super(bh, NULL);
1326 			res = err ? "failed" : "done";
1327 		}
1328 		f2fs_msg(sb, KERN_INFO,
1329 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
1330 			res, main_blkaddr,
1331 			segment0_blkaddr +
1332 				(segment_count << log_blocks_per_seg),
1333 			segment_count_main << log_blocks_per_seg);
1334 		if (err)
1335 			return true;
1336 	}
1337 	return false;
1338 }
1339 
1340 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1341 				struct buffer_head *bh)
1342 {
1343 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1344 					(bh->b_data + F2FS_SUPER_OFFSET);
1345 	struct super_block *sb = sbi->sb;
1346 	unsigned int blocksize;
1347 
1348 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1349 		f2fs_msg(sb, KERN_INFO,
1350 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
1351 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1352 		return 1;
1353 	}
1354 
1355 	/* Currently, support only 4KB page cache size */
1356 	if (F2FS_BLKSIZE != PAGE_SIZE) {
1357 		f2fs_msg(sb, KERN_INFO,
1358 			"Invalid page_cache_size (%lu), supports only 4KB\n",
1359 			PAGE_SIZE);
1360 		return 1;
1361 	}
1362 
1363 	/* Currently, support only 4KB block size */
1364 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1365 	if (blocksize != F2FS_BLKSIZE) {
1366 		f2fs_msg(sb, KERN_INFO,
1367 			"Invalid blocksize (%u), supports only 4KB\n",
1368 			blocksize);
1369 		return 1;
1370 	}
1371 
1372 	/* check log blocks per segment */
1373 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1374 		f2fs_msg(sb, KERN_INFO,
1375 			"Invalid log blocks per segment (%u)\n",
1376 			le32_to_cpu(raw_super->log_blocks_per_seg));
1377 		return 1;
1378 	}
1379 
1380 	/* Currently, support 512/1024/2048/4096 bytes sector size */
1381 	if (le32_to_cpu(raw_super->log_sectorsize) >
1382 				F2FS_MAX_LOG_SECTOR_SIZE ||
1383 		le32_to_cpu(raw_super->log_sectorsize) <
1384 				F2FS_MIN_LOG_SECTOR_SIZE) {
1385 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1386 			le32_to_cpu(raw_super->log_sectorsize));
1387 		return 1;
1388 	}
1389 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
1390 		le32_to_cpu(raw_super->log_sectorsize) !=
1391 			F2FS_MAX_LOG_SECTOR_SIZE) {
1392 		f2fs_msg(sb, KERN_INFO,
1393 			"Invalid log sectors per block(%u) log sectorsize(%u)",
1394 			le32_to_cpu(raw_super->log_sectors_per_block),
1395 			le32_to_cpu(raw_super->log_sectorsize));
1396 		return 1;
1397 	}
1398 
1399 	/* check reserved ino info */
1400 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
1401 		le32_to_cpu(raw_super->meta_ino) != 2 ||
1402 		le32_to_cpu(raw_super->root_ino) != 3) {
1403 		f2fs_msg(sb, KERN_INFO,
1404 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1405 			le32_to_cpu(raw_super->node_ino),
1406 			le32_to_cpu(raw_super->meta_ino),
1407 			le32_to_cpu(raw_super->root_ino));
1408 		return 1;
1409 	}
1410 
1411 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1412 	if (sanity_check_area_boundary(sbi, bh))
1413 		return 1;
1414 
1415 	return 0;
1416 }
1417 
1418 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1419 {
1420 	unsigned int total, fsmeta;
1421 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1422 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1423 
1424 	total = le32_to_cpu(raw_super->segment_count);
1425 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1426 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1427 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1428 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1429 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1430 
1431 	if (unlikely(fsmeta >= total))
1432 		return 1;
1433 
1434 	if (unlikely(f2fs_cp_error(sbi))) {
1435 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1436 		return 1;
1437 	}
1438 	return 0;
1439 }
1440 
1441 static void init_sb_info(struct f2fs_sb_info *sbi)
1442 {
1443 	struct f2fs_super_block *raw_super = sbi->raw_super;
1444 
1445 	sbi->log_sectors_per_block =
1446 		le32_to_cpu(raw_super->log_sectors_per_block);
1447 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1448 	sbi->blocksize = 1 << sbi->log_blocksize;
1449 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1450 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1451 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1452 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1453 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
1454 	sbi->total_node_count =
1455 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
1456 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1457 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1458 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1459 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1460 	sbi->cur_victim_sec = NULL_SECNO;
1461 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1462 
1463 	sbi->dir_level = DEF_DIR_LEVEL;
1464 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1465 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1466 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
1467 
1468 	INIT_LIST_HEAD(&sbi->s_list);
1469 	mutex_init(&sbi->umount_mutex);
1470 	mutex_init(&sbi->wio_mutex[NODE]);
1471 	mutex_init(&sbi->wio_mutex[DATA]);
1472 
1473 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1474 	memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1475 				F2FS_KEY_DESC_PREFIX_SIZE);
1476 	sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1477 #endif
1478 }
1479 
1480 static int init_percpu_info(struct f2fs_sb_info *sbi)
1481 {
1482 	int i, err;
1483 
1484 	for (i = 0; i < NR_COUNT_TYPE; i++) {
1485 		err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1486 		if (err)
1487 			return err;
1488 	}
1489 
1490 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1491 	if (err)
1492 		return err;
1493 
1494 	return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1495 								GFP_KERNEL);
1496 }
1497 
1498 /*
1499  * Read f2fs raw super block.
1500  * Because we have two copies of super block, so read both of them
1501  * to get the first valid one. If any one of them is broken, we pass
1502  * them recovery flag back to the caller.
1503  */
1504 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1505 			struct f2fs_super_block **raw_super,
1506 			int *valid_super_block, int *recovery)
1507 {
1508 	struct super_block *sb = sbi->sb;
1509 	int block;
1510 	struct buffer_head *bh;
1511 	struct f2fs_super_block *super;
1512 	int err = 0;
1513 
1514 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1515 	if (!super)
1516 		return -ENOMEM;
1517 
1518 	for (block = 0; block < 2; block++) {
1519 		bh = sb_bread(sb, block);
1520 		if (!bh) {
1521 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1522 				block + 1);
1523 			err = -EIO;
1524 			continue;
1525 		}
1526 
1527 		/* sanity checking of raw super */
1528 		if (sanity_check_raw_super(sbi, bh)) {
1529 			f2fs_msg(sb, KERN_ERR,
1530 				"Can't find valid F2FS filesystem in %dth superblock",
1531 				block + 1);
1532 			err = -EINVAL;
1533 			brelse(bh);
1534 			continue;
1535 		}
1536 
1537 		if (!*raw_super) {
1538 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1539 							sizeof(*super));
1540 			*valid_super_block = block;
1541 			*raw_super = super;
1542 		}
1543 		brelse(bh);
1544 	}
1545 
1546 	/* Fail to read any one of the superblocks*/
1547 	if (err < 0)
1548 		*recovery = 1;
1549 
1550 	/* No valid superblock */
1551 	if (!*raw_super)
1552 		kfree(super);
1553 	else
1554 		err = 0;
1555 
1556 	return err;
1557 }
1558 
1559 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1560 {
1561 	struct buffer_head *bh;
1562 	int err;
1563 
1564 	if ((recover && f2fs_readonly(sbi->sb)) ||
1565 				bdev_read_only(sbi->sb->s_bdev)) {
1566 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1567 		return -EROFS;
1568 	}
1569 
1570 	/* write back-up superblock first */
1571 	bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1572 	if (!bh)
1573 		return -EIO;
1574 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1575 	brelse(bh);
1576 
1577 	/* if we are in recovery path, skip writing valid superblock */
1578 	if (recover || err)
1579 		return err;
1580 
1581 	/* write current valid superblock */
1582 	bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1583 	if (!bh)
1584 		return -EIO;
1585 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1586 	brelse(bh);
1587 	return err;
1588 }
1589 
1590 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1591 {
1592 	struct f2fs_sb_info *sbi;
1593 	struct f2fs_super_block *raw_super;
1594 	struct inode *root;
1595 	int err;
1596 	bool retry = true, need_fsck = false;
1597 	char *options = NULL;
1598 	int recovery, i, valid_super_block;
1599 	struct curseg_info *seg_i;
1600 
1601 try_onemore:
1602 	err = -EINVAL;
1603 	raw_super = NULL;
1604 	valid_super_block = -1;
1605 	recovery = 0;
1606 
1607 	/* allocate memory for f2fs-specific super block info */
1608 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1609 	if (!sbi)
1610 		return -ENOMEM;
1611 
1612 	sbi->sb = sb;
1613 
1614 	/* Load the checksum driver */
1615 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1616 	if (IS_ERR(sbi->s_chksum_driver)) {
1617 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1618 		err = PTR_ERR(sbi->s_chksum_driver);
1619 		sbi->s_chksum_driver = NULL;
1620 		goto free_sbi;
1621 	}
1622 
1623 	/* set a block size */
1624 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1625 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1626 		goto free_sbi;
1627 	}
1628 
1629 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1630 								&recovery);
1631 	if (err)
1632 		goto free_sbi;
1633 
1634 	sb->s_fs_info = sbi;
1635 	sbi->raw_super = raw_super;
1636 
1637 	default_options(sbi);
1638 	/* parse mount options */
1639 	options = kstrdup((const char *)data, GFP_KERNEL);
1640 	if (data && !options) {
1641 		err = -ENOMEM;
1642 		goto free_sb_buf;
1643 	}
1644 
1645 	err = parse_options(sb, options);
1646 	if (err)
1647 		goto free_options;
1648 
1649 	sbi->max_file_blocks = max_file_blocks();
1650 	sb->s_maxbytes = sbi->max_file_blocks <<
1651 				le32_to_cpu(raw_super->log_blocksize);
1652 	sb->s_max_links = F2FS_LINK_MAX;
1653 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1654 
1655 	sb->s_op = &f2fs_sops;
1656 	sb->s_cop = &f2fs_cryptops;
1657 	sb->s_xattr = f2fs_xattr_handlers;
1658 	sb->s_export_op = &f2fs_export_ops;
1659 	sb->s_magic = F2FS_SUPER_MAGIC;
1660 	sb->s_time_gran = 1;
1661 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1662 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1663 	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1664 
1665 	/* init f2fs-specific super block info */
1666 	sbi->valid_super_block = valid_super_block;
1667 	mutex_init(&sbi->gc_mutex);
1668 	mutex_init(&sbi->cp_mutex);
1669 	init_rwsem(&sbi->node_write);
1670 
1671 	/* disallow all the data/node/meta page writes */
1672 	set_sbi_flag(sbi, SBI_POR_DOING);
1673 	spin_lock_init(&sbi->stat_lock);
1674 
1675 	init_rwsem(&sbi->read_io.io_rwsem);
1676 	sbi->read_io.sbi = sbi;
1677 	sbi->read_io.bio = NULL;
1678 	for (i = 0; i < NR_PAGE_TYPE; i++) {
1679 		init_rwsem(&sbi->write_io[i].io_rwsem);
1680 		sbi->write_io[i].sbi = sbi;
1681 		sbi->write_io[i].bio = NULL;
1682 	}
1683 
1684 	init_rwsem(&sbi->cp_rwsem);
1685 	init_waitqueue_head(&sbi->cp_wait);
1686 	init_sb_info(sbi);
1687 
1688 	err = init_percpu_info(sbi);
1689 	if (err)
1690 		goto free_options;
1691 
1692 	/* get an inode for meta space */
1693 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1694 	if (IS_ERR(sbi->meta_inode)) {
1695 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1696 		err = PTR_ERR(sbi->meta_inode);
1697 		goto free_options;
1698 	}
1699 
1700 	err = get_valid_checkpoint(sbi);
1701 	if (err) {
1702 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1703 		goto free_meta_inode;
1704 	}
1705 
1706 	sbi->total_valid_node_count =
1707 				le32_to_cpu(sbi->ckpt->valid_node_count);
1708 	percpu_counter_set(&sbi->total_valid_inode_count,
1709 				le32_to_cpu(sbi->ckpt->valid_inode_count));
1710 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1711 	sbi->total_valid_block_count =
1712 				le64_to_cpu(sbi->ckpt->valid_block_count);
1713 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1714 
1715 	for (i = 0; i < NR_INODE_TYPE; i++) {
1716 		INIT_LIST_HEAD(&sbi->inode_list[i]);
1717 		spin_lock_init(&sbi->inode_lock[i]);
1718 	}
1719 
1720 	init_extent_cache_info(sbi);
1721 
1722 	init_ino_entry_info(sbi);
1723 
1724 	/* setup f2fs internal modules */
1725 	err = build_segment_manager(sbi);
1726 	if (err) {
1727 		f2fs_msg(sb, KERN_ERR,
1728 			"Failed to initialize F2FS segment manager");
1729 		goto free_sm;
1730 	}
1731 	err = build_node_manager(sbi);
1732 	if (err) {
1733 		f2fs_msg(sb, KERN_ERR,
1734 			"Failed to initialize F2FS node manager");
1735 		goto free_nm;
1736 	}
1737 
1738 	/* For write statistics */
1739 	if (sb->s_bdev->bd_part)
1740 		sbi->sectors_written_start =
1741 			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1742 
1743 	/* Read accumulated write IO statistics if exists */
1744 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1745 	if (__exist_node_summaries(sbi))
1746 		sbi->kbytes_written =
1747 			le64_to_cpu(seg_i->journal->info.kbytes_written);
1748 
1749 	build_gc_manager(sbi);
1750 
1751 	/* get an inode for node space */
1752 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1753 	if (IS_ERR(sbi->node_inode)) {
1754 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1755 		err = PTR_ERR(sbi->node_inode);
1756 		goto free_nm;
1757 	}
1758 
1759 	f2fs_join_shrinker(sbi);
1760 
1761 	/* if there are nt orphan nodes free them */
1762 	err = recover_orphan_inodes(sbi);
1763 	if (err)
1764 		goto free_node_inode;
1765 
1766 	/* read root inode and dentry */
1767 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1768 	if (IS_ERR(root)) {
1769 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1770 		err = PTR_ERR(root);
1771 		goto free_node_inode;
1772 	}
1773 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1774 		iput(root);
1775 		err = -EINVAL;
1776 		goto free_node_inode;
1777 	}
1778 
1779 	sb->s_root = d_make_root(root); /* allocate root dentry */
1780 	if (!sb->s_root) {
1781 		err = -ENOMEM;
1782 		goto free_root_inode;
1783 	}
1784 
1785 	err = f2fs_build_stats(sbi);
1786 	if (err)
1787 		goto free_root_inode;
1788 
1789 	if (f2fs_proc_root)
1790 		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1791 
1792 	if (sbi->s_proc) {
1793 		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1794 				 &f2fs_seq_segment_info_fops, sb);
1795 		proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1796 				 &f2fs_seq_segment_bits_fops, sb);
1797 	}
1798 
1799 	sbi->s_kobj.kset = f2fs_kset;
1800 	init_completion(&sbi->s_kobj_unregister);
1801 	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1802 							"%s", sb->s_id);
1803 	if (err)
1804 		goto free_proc;
1805 
1806 	/* recover fsynced data */
1807 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1808 		/*
1809 		 * mount should be failed, when device has readonly mode, and
1810 		 * previous checkpoint was not done by clean system shutdown.
1811 		 */
1812 		if (bdev_read_only(sb->s_bdev) &&
1813 				!is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1814 			err = -EROFS;
1815 			goto free_kobj;
1816 		}
1817 
1818 		if (need_fsck)
1819 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1820 
1821 		err = recover_fsync_data(sbi, false);
1822 		if (err < 0) {
1823 			need_fsck = true;
1824 			f2fs_msg(sb, KERN_ERR,
1825 				"Cannot recover all fsync data errno=%d", err);
1826 			goto free_kobj;
1827 		}
1828 	} else {
1829 		err = recover_fsync_data(sbi, true);
1830 
1831 		if (!f2fs_readonly(sb) && err > 0) {
1832 			err = -EINVAL;
1833 			f2fs_msg(sb, KERN_ERR,
1834 				"Need to recover fsync data");
1835 			goto free_kobj;
1836 		}
1837 	}
1838 
1839 	/* recover_fsync_data() cleared this already */
1840 	clear_sbi_flag(sbi, SBI_POR_DOING);
1841 
1842 	/*
1843 	 * If filesystem is not mounted as read-only then
1844 	 * do start the gc_thread.
1845 	 */
1846 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1847 		/* After POR, we can run background GC thread.*/
1848 		err = start_gc_thread(sbi);
1849 		if (err)
1850 			goto free_kobj;
1851 	}
1852 	kfree(options);
1853 
1854 	/* recover broken superblock */
1855 	if (recovery) {
1856 		err = f2fs_commit_super(sbi, true);
1857 		f2fs_msg(sb, KERN_INFO,
1858 			"Try to recover %dth superblock, ret: %d",
1859 			sbi->valid_super_block ? 1 : 2, err);
1860 	}
1861 
1862 	f2fs_update_time(sbi, CP_TIME);
1863 	f2fs_update_time(sbi, REQ_TIME);
1864 	return 0;
1865 
1866 free_kobj:
1867 	f2fs_sync_inode_meta(sbi);
1868 	kobject_del(&sbi->s_kobj);
1869 	kobject_put(&sbi->s_kobj);
1870 	wait_for_completion(&sbi->s_kobj_unregister);
1871 free_proc:
1872 	if (sbi->s_proc) {
1873 		remove_proc_entry("segment_info", sbi->s_proc);
1874 		remove_proc_entry("segment_bits", sbi->s_proc);
1875 		remove_proc_entry(sb->s_id, f2fs_proc_root);
1876 	}
1877 	f2fs_destroy_stats(sbi);
1878 free_root_inode:
1879 	dput(sb->s_root);
1880 	sb->s_root = NULL;
1881 free_node_inode:
1882 	mutex_lock(&sbi->umount_mutex);
1883 	f2fs_leave_shrinker(sbi);
1884 	iput(sbi->node_inode);
1885 	mutex_unlock(&sbi->umount_mutex);
1886 free_nm:
1887 	destroy_node_manager(sbi);
1888 free_sm:
1889 	destroy_segment_manager(sbi);
1890 	kfree(sbi->ckpt);
1891 free_meta_inode:
1892 	make_bad_inode(sbi->meta_inode);
1893 	iput(sbi->meta_inode);
1894 free_options:
1895 	destroy_percpu_info(sbi);
1896 	kfree(options);
1897 free_sb_buf:
1898 	kfree(raw_super);
1899 free_sbi:
1900 	if (sbi->s_chksum_driver)
1901 		crypto_free_shash(sbi->s_chksum_driver);
1902 	kfree(sbi);
1903 
1904 	/* give only one another chance */
1905 	if (retry) {
1906 		retry = false;
1907 		shrink_dcache_sb(sb);
1908 		goto try_onemore;
1909 	}
1910 	return err;
1911 }
1912 
1913 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1914 			const char *dev_name, void *data)
1915 {
1916 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1917 }
1918 
1919 static void kill_f2fs_super(struct super_block *sb)
1920 {
1921 	if (sb->s_root)
1922 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1923 	kill_block_super(sb);
1924 }
1925 
1926 static struct file_system_type f2fs_fs_type = {
1927 	.owner		= THIS_MODULE,
1928 	.name		= "f2fs",
1929 	.mount		= f2fs_mount,
1930 	.kill_sb	= kill_f2fs_super,
1931 	.fs_flags	= FS_REQUIRES_DEV,
1932 };
1933 MODULE_ALIAS_FS("f2fs");
1934 
1935 static int __init init_inodecache(void)
1936 {
1937 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1938 			sizeof(struct f2fs_inode_info), 0,
1939 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1940 	if (!f2fs_inode_cachep)
1941 		return -ENOMEM;
1942 	return 0;
1943 }
1944 
1945 static void destroy_inodecache(void)
1946 {
1947 	/*
1948 	 * Make sure all delayed rcu free inodes are flushed before we
1949 	 * destroy cache.
1950 	 */
1951 	rcu_barrier();
1952 	kmem_cache_destroy(f2fs_inode_cachep);
1953 }
1954 
1955 static int __init init_f2fs_fs(void)
1956 {
1957 	int err;
1958 
1959 	f2fs_build_trace_ios();
1960 
1961 	err = init_inodecache();
1962 	if (err)
1963 		goto fail;
1964 	err = create_node_manager_caches();
1965 	if (err)
1966 		goto free_inodecache;
1967 	err = create_segment_manager_caches();
1968 	if (err)
1969 		goto free_node_manager_caches;
1970 	err = create_checkpoint_caches();
1971 	if (err)
1972 		goto free_segment_manager_caches;
1973 	err = create_extent_cache();
1974 	if (err)
1975 		goto free_checkpoint_caches;
1976 	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1977 	if (!f2fs_kset) {
1978 		err = -ENOMEM;
1979 		goto free_extent_cache;
1980 	}
1981 #ifdef CONFIG_F2FS_FAULT_INJECTION
1982 	f2fs_fault_inject.kset = f2fs_kset;
1983 	f2fs_build_fault_attr(0);
1984 	err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1985 				NULL, "fault_injection");
1986 	if (err) {
1987 		f2fs_fault_inject.kset = NULL;
1988 		goto free_kset;
1989 	}
1990 #endif
1991 	err = register_shrinker(&f2fs_shrinker_info);
1992 	if (err)
1993 		goto free_kset;
1994 
1995 	err = register_filesystem(&f2fs_fs_type);
1996 	if (err)
1997 		goto free_shrinker;
1998 	err = f2fs_create_root_stats();
1999 	if (err)
2000 		goto free_filesystem;
2001 	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2002 	return 0;
2003 
2004 free_filesystem:
2005 	unregister_filesystem(&f2fs_fs_type);
2006 free_shrinker:
2007 	unregister_shrinker(&f2fs_shrinker_info);
2008 free_kset:
2009 #ifdef CONFIG_F2FS_FAULT_INJECTION
2010 	if (f2fs_fault_inject.kset)
2011 		kobject_put(&f2fs_fault_inject);
2012 #endif
2013 	kset_unregister(f2fs_kset);
2014 free_extent_cache:
2015 	destroy_extent_cache();
2016 free_checkpoint_caches:
2017 	destroy_checkpoint_caches();
2018 free_segment_manager_caches:
2019 	destroy_segment_manager_caches();
2020 free_node_manager_caches:
2021 	destroy_node_manager_caches();
2022 free_inodecache:
2023 	destroy_inodecache();
2024 fail:
2025 	return err;
2026 }
2027 
2028 static void __exit exit_f2fs_fs(void)
2029 {
2030 	remove_proc_entry("fs/f2fs", NULL);
2031 	f2fs_destroy_root_stats();
2032 	unregister_filesystem(&f2fs_fs_type);
2033 	unregister_shrinker(&f2fs_shrinker_info);
2034 #ifdef CONFIG_F2FS_FAULT_INJECTION
2035 	kobject_put(&f2fs_fault_inject);
2036 #endif
2037 	kset_unregister(f2fs_kset);
2038 	destroy_extent_cache();
2039 	destroy_checkpoint_caches();
2040 	destroy_segment_manager_caches();
2041 	destroy_node_manager_caches();
2042 	destroy_inodecache();
2043 	f2fs_destroy_trace_ios();
2044 }
2045 
2046 module_init(init_f2fs_fs)
2047 module_exit(exit_f2fs_fs)
2048 
2049 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2050 MODULE_DESCRIPTION("Flash Friendly File System");
2051 MODULE_LICENSE("GPL");
2052