1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct proc_dir_entry *f2fs_proc_root; 39 static struct kmem_cache *f2fs_inode_cachep; 40 static struct kset *f2fs_kset; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 struct f2fs_fault_info f2fs_fault; 44 45 char *fault_name[FAULT_MAX] = { 46 [FAULT_KMALLOC] = "kmalloc", 47 [FAULT_PAGE_ALLOC] = "page alloc", 48 [FAULT_ALLOC_NID] = "alloc nid", 49 [FAULT_ORPHAN] = "orphan", 50 [FAULT_BLOCK] = "no more block", 51 [FAULT_DIR_DEPTH] = "too big dir depth", 52 [FAULT_EVICT_INODE] = "evict_inode fail", 53 }; 54 55 static void f2fs_build_fault_attr(unsigned int rate) 56 { 57 if (rate) { 58 atomic_set(&f2fs_fault.inject_ops, 0); 59 f2fs_fault.inject_rate = rate; 60 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1; 61 } else { 62 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info)); 63 } 64 } 65 #endif 66 67 /* f2fs-wide shrinker description */ 68 static struct shrinker f2fs_shrinker_info = { 69 .scan_objects = f2fs_shrink_scan, 70 .count_objects = f2fs_shrink_count, 71 .seeks = DEFAULT_SEEKS, 72 }; 73 74 enum { 75 Opt_gc_background, 76 Opt_disable_roll_forward, 77 Opt_norecovery, 78 Opt_discard, 79 Opt_nodiscard, 80 Opt_noheap, 81 Opt_user_xattr, 82 Opt_nouser_xattr, 83 Opt_acl, 84 Opt_noacl, 85 Opt_active_logs, 86 Opt_disable_ext_identify, 87 Opt_inline_xattr, 88 Opt_inline_data, 89 Opt_inline_dentry, 90 Opt_flush_merge, 91 Opt_noflush_merge, 92 Opt_nobarrier, 93 Opt_fastboot, 94 Opt_extent_cache, 95 Opt_noextent_cache, 96 Opt_noinline_data, 97 Opt_data_flush, 98 Opt_mode, 99 Opt_fault_injection, 100 Opt_lazytime, 101 Opt_nolazytime, 102 Opt_err, 103 }; 104 105 static match_table_t f2fs_tokens = { 106 {Opt_gc_background, "background_gc=%s"}, 107 {Opt_disable_roll_forward, "disable_roll_forward"}, 108 {Opt_norecovery, "norecovery"}, 109 {Opt_discard, "discard"}, 110 {Opt_nodiscard, "nodiscard"}, 111 {Opt_noheap, "no_heap"}, 112 {Opt_user_xattr, "user_xattr"}, 113 {Opt_nouser_xattr, "nouser_xattr"}, 114 {Opt_acl, "acl"}, 115 {Opt_noacl, "noacl"}, 116 {Opt_active_logs, "active_logs=%u"}, 117 {Opt_disable_ext_identify, "disable_ext_identify"}, 118 {Opt_inline_xattr, "inline_xattr"}, 119 {Opt_inline_data, "inline_data"}, 120 {Opt_inline_dentry, "inline_dentry"}, 121 {Opt_flush_merge, "flush_merge"}, 122 {Opt_noflush_merge, "noflush_merge"}, 123 {Opt_nobarrier, "nobarrier"}, 124 {Opt_fastboot, "fastboot"}, 125 {Opt_extent_cache, "extent_cache"}, 126 {Opt_noextent_cache, "noextent_cache"}, 127 {Opt_noinline_data, "noinline_data"}, 128 {Opt_data_flush, "data_flush"}, 129 {Opt_mode, "mode=%s"}, 130 {Opt_fault_injection, "fault_injection=%u"}, 131 {Opt_lazytime, "lazytime"}, 132 {Opt_nolazytime, "nolazytime"}, 133 {Opt_err, NULL}, 134 }; 135 136 /* Sysfs support for f2fs */ 137 enum { 138 GC_THREAD, /* struct f2fs_gc_thread */ 139 SM_INFO, /* struct f2fs_sm_info */ 140 NM_INFO, /* struct f2fs_nm_info */ 141 F2FS_SBI, /* struct f2fs_sb_info */ 142 #ifdef CONFIG_F2FS_FAULT_INJECTION 143 FAULT_INFO_RATE, /* struct f2fs_fault_info */ 144 FAULT_INFO_TYPE, /* struct f2fs_fault_info */ 145 #endif 146 }; 147 148 struct f2fs_attr { 149 struct attribute attr; 150 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 151 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 152 const char *, size_t); 153 int struct_type; 154 int offset; 155 }; 156 157 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 158 { 159 if (struct_type == GC_THREAD) 160 return (unsigned char *)sbi->gc_thread; 161 else if (struct_type == SM_INFO) 162 return (unsigned char *)SM_I(sbi); 163 else if (struct_type == NM_INFO) 164 return (unsigned char *)NM_I(sbi); 165 else if (struct_type == F2FS_SBI) 166 return (unsigned char *)sbi; 167 #ifdef CONFIG_F2FS_FAULT_INJECTION 168 else if (struct_type == FAULT_INFO_RATE || 169 struct_type == FAULT_INFO_TYPE) 170 return (unsigned char *)&f2fs_fault; 171 #endif 172 return NULL; 173 } 174 175 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a, 176 struct f2fs_sb_info *sbi, char *buf) 177 { 178 struct super_block *sb = sbi->sb; 179 180 if (!sb->s_bdev->bd_part) 181 return snprintf(buf, PAGE_SIZE, "0\n"); 182 183 return snprintf(buf, PAGE_SIZE, "%llu\n", 184 (unsigned long long)(sbi->kbytes_written + 185 BD_PART_WRITTEN(sbi))); 186 } 187 188 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 189 struct f2fs_sb_info *sbi, char *buf) 190 { 191 unsigned char *ptr = NULL; 192 unsigned int *ui; 193 194 ptr = __struct_ptr(sbi, a->struct_type); 195 if (!ptr) 196 return -EINVAL; 197 198 ui = (unsigned int *)(ptr + a->offset); 199 200 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 201 } 202 203 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 204 struct f2fs_sb_info *sbi, 205 const char *buf, size_t count) 206 { 207 unsigned char *ptr; 208 unsigned long t; 209 unsigned int *ui; 210 ssize_t ret; 211 212 ptr = __struct_ptr(sbi, a->struct_type); 213 if (!ptr) 214 return -EINVAL; 215 216 ui = (unsigned int *)(ptr + a->offset); 217 218 ret = kstrtoul(skip_spaces(buf), 0, &t); 219 if (ret < 0) 220 return ret; 221 #ifdef CONFIG_F2FS_FAULT_INJECTION 222 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX)) 223 return -EINVAL; 224 #endif 225 *ui = t; 226 return count; 227 } 228 229 static ssize_t f2fs_attr_show(struct kobject *kobj, 230 struct attribute *attr, char *buf) 231 { 232 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 233 s_kobj); 234 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 235 236 return a->show ? a->show(a, sbi, buf) : 0; 237 } 238 239 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 240 const char *buf, size_t len) 241 { 242 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 243 s_kobj); 244 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 245 246 return a->store ? a->store(a, sbi, buf, len) : 0; 247 } 248 249 static void f2fs_sb_release(struct kobject *kobj) 250 { 251 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 252 s_kobj); 253 complete(&sbi->s_kobj_unregister); 254 } 255 256 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 257 static struct f2fs_attr f2fs_attr_##_name = { \ 258 .attr = {.name = __stringify(_name), .mode = _mode }, \ 259 .show = _show, \ 260 .store = _store, \ 261 .struct_type = _struct_type, \ 262 .offset = _offset \ 263 } 264 265 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 266 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 267 f2fs_sbi_show, f2fs_sbi_store, \ 268 offsetof(struct struct_name, elname)) 269 270 #define F2FS_GENERAL_RO_ATTR(name) \ 271 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL) 272 273 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 274 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 275 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 276 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 277 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 278 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 279 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); 280 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 281 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 282 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); 283 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 284 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages); 285 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio); 286 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 287 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 288 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]); 289 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]); 290 #ifdef CONFIG_F2FS_FAULT_INJECTION 291 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate); 292 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type); 293 #endif 294 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes); 295 296 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 297 static struct attribute *f2fs_attrs[] = { 298 ATTR_LIST(gc_min_sleep_time), 299 ATTR_LIST(gc_max_sleep_time), 300 ATTR_LIST(gc_no_gc_sleep_time), 301 ATTR_LIST(gc_idle), 302 ATTR_LIST(reclaim_segments), 303 ATTR_LIST(max_small_discards), 304 ATTR_LIST(batched_trim_sections), 305 ATTR_LIST(ipu_policy), 306 ATTR_LIST(min_ipu_util), 307 ATTR_LIST(min_fsync_blocks), 308 ATTR_LIST(max_victim_search), 309 ATTR_LIST(dir_level), 310 ATTR_LIST(ram_thresh), 311 ATTR_LIST(ra_nid_pages), 312 ATTR_LIST(dirty_nats_ratio), 313 ATTR_LIST(cp_interval), 314 ATTR_LIST(idle_interval), 315 ATTR_LIST(lifetime_write_kbytes), 316 NULL, 317 }; 318 319 static const struct sysfs_ops f2fs_attr_ops = { 320 .show = f2fs_attr_show, 321 .store = f2fs_attr_store, 322 }; 323 324 static struct kobj_type f2fs_ktype = { 325 .default_attrs = f2fs_attrs, 326 .sysfs_ops = &f2fs_attr_ops, 327 .release = f2fs_sb_release, 328 }; 329 330 #ifdef CONFIG_F2FS_FAULT_INJECTION 331 /* sysfs for f2fs fault injection */ 332 static struct kobject f2fs_fault_inject; 333 334 static struct attribute *f2fs_fault_attrs[] = { 335 ATTR_LIST(inject_rate), 336 ATTR_LIST(inject_type), 337 NULL 338 }; 339 340 static struct kobj_type f2fs_fault_ktype = { 341 .default_attrs = f2fs_fault_attrs, 342 .sysfs_ops = &f2fs_attr_ops, 343 }; 344 #endif 345 346 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 347 { 348 struct va_format vaf; 349 va_list args; 350 351 va_start(args, fmt); 352 vaf.fmt = fmt; 353 vaf.va = &args; 354 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 355 va_end(args); 356 } 357 358 static void init_once(void *foo) 359 { 360 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 361 362 inode_init_once(&fi->vfs_inode); 363 } 364 365 static int parse_options(struct super_block *sb, char *options) 366 { 367 struct f2fs_sb_info *sbi = F2FS_SB(sb); 368 struct request_queue *q; 369 substring_t args[MAX_OPT_ARGS]; 370 char *p, *name; 371 int arg = 0; 372 373 #ifdef CONFIG_F2FS_FAULT_INJECTION 374 f2fs_build_fault_attr(0); 375 #endif 376 377 if (!options) 378 return 0; 379 380 while ((p = strsep(&options, ",")) != NULL) { 381 int token; 382 if (!*p) 383 continue; 384 /* 385 * Initialize args struct so we know whether arg was 386 * found; some options take optional arguments. 387 */ 388 args[0].to = args[0].from = NULL; 389 token = match_token(p, f2fs_tokens, args); 390 391 switch (token) { 392 case Opt_gc_background: 393 name = match_strdup(&args[0]); 394 395 if (!name) 396 return -ENOMEM; 397 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 398 set_opt(sbi, BG_GC); 399 clear_opt(sbi, FORCE_FG_GC); 400 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 401 clear_opt(sbi, BG_GC); 402 clear_opt(sbi, FORCE_FG_GC); 403 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 404 set_opt(sbi, BG_GC); 405 set_opt(sbi, FORCE_FG_GC); 406 } else { 407 kfree(name); 408 return -EINVAL; 409 } 410 kfree(name); 411 break; 412 case Opt_disable_roll_forward: 413 set_opt(sbi, DISABLE_ROLL_FORWARD); 414 break; 415 case Opt_norecovery: 416 /* this option mounts f2fs with ro */ 417 set_opt(sbi, DISABLE_ROLL_FORWARD); 418 if (!f2fs_readonly(sb)) 419 return -EINVAL; 420 break; 421 case Opt_discard: 422 q = bdev_get_queue(sb->s_bdev); 423 if (blk_queue_discard(q)) { 424 set_opt(sbi, DISCARD); 425 } else { 426 f2fs_msg(sb, KERN_WARNING, 427 "mounting with \"discard\" option, but " 428 "the device does not support discard"); 429 } 430 break; 431 case Opt_nodiscard: 432 clear_opt(sbi, DISCARD); 433 case Opt_noheap: 434 set_opt(sbi, NOHEAP); 435 break; 436 #ifdef CONFIG_F2FS_FS_XATTR 437 case Opt_user_xattr: 438 set_opt(sbi, XATTR_USER); 439 break; 440 case Opt_nouser_xattr: 441 clear_opt(sbi, XATTR_USER); 442 break; 443 case Opt_inline_xattr: 444 set_opt(sbi, INLINE_XATTR); 445 break; 446 #else 447 case Opt_user_xattr: 448 f2fs_msg(sb, KERN_INFO, 449 "user_xattr options not supported"); 450 break; 451 case Opt_nouser_xattr: 452 f2fs_msg(sb, KERN_INFO, 453 "nouser_xattr options not supported"); 454 break; 455 case Opt_inline_xattr: 456 f2fs_msg(sb, KERN_INFO, 457 "inline_xattr options not supported"); 458 break; 459 #endif 460 #ifdef CONFIG_F2FS_FS_POSIX_ACL 461 case Opt_acl: 462 set_opt(sbi, POSIX_ACL); 463 break; 464 case Opt_noacl: 465 clear_opt(sbi, POSIX_ACL); 466 break; 467 #else 468 case Opt_acl: 469 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 470 break; 471 case Opt_noacl: 472 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 473 break; 474 #endif 475 case Opt_active_logs: 476 if (args->from && match_int(args, &arg)) 477 return -EINVAL; 478 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 479 return -EINVAL; 480 sbi->active_logs = arg; 481 break; 482 case Opt_disable_ext_identify: 483 set_opt(sbi, DISABLE_EXT_IDENTIFY); 484 break; 485 case Opt_inline_data: 486 set_opt(sbi, INLINE_DATA); 487 break; 488 case Opt_inline_dentry: 489 set_opt(sbi, INLINE_DENTRY); 490 break; 491 case Opt_flush_merge: 492 set_opt(sbi, FLUSH_MERGE); 493 break; 494 case Opt_noflush_merge: 495 clear_opt(sbi, FLUSH_MERGE); 496 break; 497 case Opt_nobarrier: 498 set_opt(sbi, NOBARRIER); 499 break; 500 case Opt_fastboot: 501 set_opt(sbi, FASTBOOT); 502 break; 503 case Opt_extent_cache: 504 set_opt(sbi, EXTENT_CACHE); 505 break; 506 case Opt_noextent_cache: 507 clear_opt(sbi, EXTENT_CACHE); 508 break; 509 case Opt_noinline_data: 510 clear_opt(sbi, INLINE_DATA); 511 break; 512 case Opt_data_flush: 513 set_opt(sbi, DATA_FLUSH); 514 break; 515 case Opt_mode: 516 name = match_strdup(&args[0]); 517 518 if (!name) 519 return -ENOMEM; 520 if (strlen(name) == 8 && 521 !strncmp(name, "adaptive", 8)) { 522 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 523 } else if (strlen(name) == 3 && 524 !strncmp(name, "lfs", 3)) { 525 set_opt_mode(sbi, F2FS_MOUNT_LFS); 526 } else { 527 kfree(name); 528 return -EINVAL; 529 } 530 kfree(name); 531 break; 532 case Opt_fault_injection: 533 if (args->from && match_int(args, &arg)) 534 return -EINVAL; 535 #ifdef CONFIG_F2FS_FAULT_INJECTION 536 f2fs_build_fault_attr(arg); 537 #else 538 f2fs_msg(sb, KERN_INFO, 539 "FAULT_INJECTION was not selected"); 540 #endif 541 break; 542 case Opt_lazytime: 543 sb->s_flags |= MS_LAZYTIME; 544 break; 545 case Opt_nolazytime: 546 sb->s_flags &= ~MS_LAZYTIME; 547 break; 548 default: 549 f2fs_msg(sb, KERN_ERR, 550 "Unrecognized mount option \"%s\" or missing value", 551 p); 552 return -EINVAL; 553 } 554 } 555 return 0; 556 } 557 558 static struct inode *f2fs_alloc_inode(struct super_block *sb) 559 { 560 struct f2fs_inode_info *fi; 561 562 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 563 if (!fi) 564 return NULL; 565 566 init_once((void *) fi); 567 568 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) { 569 kmem_cache_free(f2fs_inode_cachep, fi); 570 return NULL; 571 } 572 573 /* Initialize f2fs-specific inode info */ 574 fi->vfs_inode.i_version = 1; 575 fi->i_current_depth = 1; 576 fi->i_advise = 0; 577 init_rwsem(&fi->i_sem); 578 INIT_LIST_HEAD(&fi->dirty_list); 579 INIT_LIST_HEAD(&fi->gdirty_list); 580 INIT_LIST_HEAD(&fi->inmem_pages); 581 mutex_init(&fi->inmem_lock); 582 init_rwsem(&fi->dio_rwsem[READ]); 583 init_rwsem(&fi->dio_rwsem[WRITE]); 584 585 /* Will be used by directory only */ 586 fi->i_dir_level = F2FS_SB(sb)->dir_level; 587 return &fi->vfs_inode; 588 } 589 590 static int f2fs_drop_inode(struct inode *inode) 591 { 592 /* 593 * This is to avoid a deadlock condition like below. 594 * writeback_single_inode(inode) 595 * - f2fs_write_data_page 596 * - f2fs_gc -> iput -> evict 597 * - inode_wait_for_writeback(inode) 598 */ 599 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 600 if (!inode->i_nlink && !is_bad_inode(inode)) { 601 /* to avoid evict_inode call simultaneously */ 602 atomic_inc(&inode->i_count); 603 spin_unlock(&inode->i_lock); 604 605 /* some remained atomic pages should discarded */ 606 if (f2fs_is_atomic_file(inode)) 607 drop_inmem_pages(inode); 608 609 /* should remain fi->extent_tree for writepage */ 610 f2fs_destroy_extent_node(inode); 611 612 sb_start_intwrite(inode->i_sb); 613 f2fs_i_size_write(inode, 0); 614 615 if (F2FS_HAS_BLOCKS(inode)) 616 f2fs_truncate(inode); 617 618 sb_end_intwrite(inode->i_sb); 619 620 fscrypt_put_encryption_info(inode, NULL); 621 spin_lock(&inode->i_lock); 622 atomic_dec(&inode->i_count); 623 } 624 return 0; 625 } 626 627 return generic_drop_inode(inode); 628 } 629 630 int f2fs_inode_dirtied(struct inode *inode) 631 { 632 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 633 634 spin_lock(&sbi->inode_lock[DIRTY_META]); 635 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 636 spin_unlock(&sbi->inode_lock[DIRTY_META]); 637 return 1; 638 } 639 640 set_inode_flag(inode, FI_DIRTY_INODE); 641 list_add_tail(&F2FS_I(inode)->gdirty_list, 642 &sbi->inode_list[DIRTY_META]); 643 inc_page_count(sbi, F2FS_DIRTY_IMETA); 644 stat_inc_dirty_inode(sbi, DIRTY_META); 645 spin_unlock(&sbi->inode_lock[DIRTY_META]); 646 647 return 0; 648 } 649 650 void f2fs_inode_synced(struct inode *inode) 651 { 652 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 653 654 spin_lock(&sbi->inode_lock[DIRTY_META]); 655 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 656 spin_unlock(&sbi->inode_lock[DIRTY_META]); 657 return; 658 } 659 list_del_init(&F2FS_I(inode)->gdirty_list); 660 clear_inode_flag(inode, FI_DIRTY_INODE); 661 clear_inode_flag(inode, FI_AUTO_RECOVER); 662 dec_page_count(sbi, F2FS_DIRTY_IMETA); 663 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 664 spin_unlock(&sbi->inode_lock[DIRTY_META]); 665 } 666 667 /* 668 * f2fs_dirty_inode() is called from __mark_inode_dirty() 669 * 670 * We should call set_dirty_inode to write the dirty inode through write_inode. 671 */ 672 static void f2fs_dirty_inode(struct inode *inode, int flags) 673 { 674 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 675 676 if (inode->i_ino == F2FS_NODE_INO(sbi) || 677 inode->i_ino == F2FS_META_INO(sbi)) 678 return; 679 680 if (flags == I_DIRTY_TIME) 681 return; 682 683 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 684 clear_inode_flag(inode, FI_AUTO_RECOVER); 685 686 f2fs_inode_dirtied(inode); 687 } 688 689 static void f2fs_i_callback(struct rcu_head *head) 690 { 691 struct inode *inode = container_of(head, struct inode, i_rcu); 692 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 693 } 694 695 static void f2fs_destroy_inode(struct inode *inode) 696 { 697 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages); 698 call_rcu(&inode->i_rcu, f2fs_i_callback); 699 } 700 701 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 702 { 703 int i; 704 705 for (i = 0; i < NR_COUNT_TYPE; i++) 706 percpu_counter_destroy(&sbi->nr_pages[i]); 707 percpu_counter_destroy(&sbi->alloc_valid_block_count); 708 percpu_counter_destroy(&sbi->total_valid_inode_count); 709 } 710 711 static void f2fs_put_super(struct super_block *sb) 712 { 713 struct f2fs_sb_info *sbi = F2FS_SB(sb); 714 715 if (sbi->s_proc) { 716 remove_proc_entry("segment_info", sbi->s_proc); 717 remove_proc_entry("segment_bits", sbi->s_proc); 718 remove_proc_entry(sb->s_id, f2fs_proc_root); 719 } 720 kobject_del(&sbi->s_kobj); 721 722 stop_gc_thread(sbi); 723 724 /* prevent remaining shrinker jobs */ 725 mutex_lock(&sbi->umount_mutex); 726 727 /* 728 * We don't need to do checkpoint when superblock is clean. 729 * But, the previous checkpoint was not done by umount, it needs to do 730 * clean checkpoint again. 731 */ 732 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 733 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) { 734 struct cp_control cpc = { 735 .reason = CP_UMOUNT, 736 }; 737 write_checkpoint(sbi, &cpc); 738 } 739 740 /* write_checkpoint can update stat informaion */ 741 f2fs_destroy_stats(sbi); 742 743 /* 744 * normally superblock is clean, so we need to release this. 745 * In addition, EIO will skip do checkpoint, we need this as well. 746 */ 747 release_ino_entry(sbi, true); 748 release_discard_addrs(sbi); 749 750 f2fs_leave_shrinker(sbi); 751 mutex_unlock(&sbi->umount_mutex); 752 753 /* our cp_error case, we can wait for any writeback page */ 754 f2fs_flush_merged_bios(sbi); 755 756 iput(sbi->node_inode); 757 iput(sbi->meta_inode); 758 759 /* destroy f2fs internal modules */ 760 destroy_node_manager(sbi); 761 destroy_segment_manager(sbi); 762 763 kfree(sbi->ckpt); 764 kobject_put(&sbi->s_kobj); 765 wait_for_completion(&sbi->s_kobj_unregister); 766 767 sb->s_fs_info = NULL; 768 if (sbi->s_chksum_driver) 769 crypto_free_shash(sbi->s_chksum_driver); 770 kfree(sbi->raw_super); 771 772 destroy_percpu_info(sbi); 773 kfree(sbi); 774 } 775 776 int f2fs_sync_fs(struct super_block *sb, int sync) 777 { 778 struct f2fs_sb_info *sbi = F2FS_SB(sb); 779 int err = 0; 780 781 trace_f2fs_sync_fs(sb, sync); 782 783 if (sync) { 784 struct cp_control cpc; 785 786 cpc.reason = __get_cp_reason(sbi); 787 788 mutex_lock(&sbi->gc_mutex); 789 err = write_checkpoint(sbi, &cpc); 790 mutex_unlock(&sbi->gc_mutex); 791 } 792 f2fs_trace_ios(NULL, 1); 793 794 return err; 795 } 796 797 static int f2fs_freeze(struct super_block *sb) 798 { 799 int err; 800 801 if (f2fs_readonly(sb)) 802 return 0; 803 804 err = f2fs_sync_fs(sb, 1); 805 return err; 806 } 807 808 static int f2fs_unfreeze(struct super_block *sb) 809 { 810 return 0; 811 } 812 813 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 814 { 815 struct super_block *sb = dentry->d_sb; 816 struct f2fs_sb_info *sbi = F2FS_SB(sb); 817 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 818 block_t total_count, user_block_count, start_count, ovp_count; 819 820 total_count = le64_to_cpu(sbi->raw_super->block_count); 821 user_block_count = sbi->user_block_count; 822 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 823 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 824 buf->f_type = F2FS_SUPER_MAGIC; 825 buf->f_bsize = sbi->blocksize; 826 827 buf->f_blocks = total_count - start_count; 828 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count; 829 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 830 831 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 832 buf->f_ffree = buf->f_files - valid_inode_count(sbi); 833 834 buf->f_namelen = F2FS_NAME_LEN; 835 buf->f_fsid.val[0] = (u32)id; 836 buf->f_fsid.val[1] = (u32)(id >> 32); 837 838 return 0; 839 } 840 841 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 842 { 843 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 844 845 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 846 if (test_opt(sbi, FORCE_FG_GC)) 847 seq_printf(seq, ",background_gc=%s", "sync"); 848 else 849 seq_printf(seq, ",background_gc=%s", "on"); 850 } else { 851 seq_printf(seq, ",background_gc=%s", "off"); 852 } 853 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 854 seq_puts(seq, ",disable_roll_forward"); 855 if (test_opt(sbi, DISCARD)) 856 seq_puts(seq, ",discard"); 857 if (test_opt(sbi, NOHEAP)) 858 seq_puts(seq, ",no_heap_alloc"); 859 #ifdef CONFIG_F2FS_FS_XATTR 860 if (test_opt(sbi, XATTR_USER)) 861 seq_puts(seq, ",user_xattr"); 862 else 863 seq_puts(seq, ",nouser_xattr"); 864 if (test_opt(sbi, INLINE_XATTR)) 865 seq_puts(seq, ",inline_xattr"); 866 #endif 867 #ifdef CONFIG_F2FS_FS_POSIX_ACL 868 if (test_opt(sbi, POSIX_ACL)) 869 seq_puts(seq, ",acl"); 870 else 871 seq_puts(seq, ",noacl"); 872 #endif 873 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 874 seq_puts(seq, ",disable_ext_identify"); 875 if (test_opt(sbi, INLINE_DATA)) 876 seq_puts(seq, ",inline_data"); 877 else 878 seq_puts(seq, ",noinline_data"); 879 if (test_opt(sbi, INLINE_DENTRY)) 880 seq_puts(seq, ",inline_dentry"); 881 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 882 seq_puts(seq, ",flush_merge"); 883 if (test_opt(sbi, NOBARRIER)) 884 seq_puts(seq, ",nobarrier"); 885 if (test_opt(sbi, FASTBOOT)) 886 seq_puts(seq, ",fastboot"); 887 if (test_opt(sbi, EXTENT_CACHE)) 888 seq_puts(seq, ",extent_cache"); 889 else 890 seq_puts(seq, ",noextent_cache"); 891 if (test_opt(sbi, DATA_FLUSH)) 892 seq_puts(seq, ",data_flush"); 893 894 seq_puts(seq, ",mode="); 895 if (test_opt(sbi, ADAPTIVE)) 896 seq_puts(seq, "adaptive"); 897 else if (test_opt(sbi, LFS)) 898 seq_puts(seq, "lfs"); 899 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 900 901 return 0; 902 } 903 904 static int segment_info_seq_show(struct seq_file *seq, void *offset) 905 { 906 struct super_block *sb = seq->private; 907 struct f2fs_sb_info *sbi = F2FS_SB(sb); 908 unsigned int total_segs = 909 le32_to_cpu(sbi->raw_super->segment_count_main); 910 int i; 911 912 seq_puts(seq, "format: segment_type|valid_blocks\n" 913 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 914 915 for (i = 0; i < total_segs; i++) { 916 struct seg_entry *se = get_seg_entry(sbi, i); 917 918 if ((i % 10) == 0) 919 seq_printf(seq, "%-10d", i); 920 seq_printf(seq, "%d|%-3u", se->type, 921 get_valid_blocks(sbi, i, 1)); 922 if ((i % 10) == 9 || i == (total_segs - 1)) 923 seq_putc(seq, '\n'); 924 else 925 seq_putc(seq, ' '); 926 } 927 928 return 0; 929 } 930 931 static int segment_bits_seq_show(struct seq_file *seq, void *offset) 932 { 933 struct super_block *sb = seq->private; 934 struct f2fs_sb_info *sbi = F2FS_SB(sb); 935 unsigned int total_segs = 936 le32_to_cpu(sbi->raw_super->segment_count_main); 937 int i, j; 938 939 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n" 940 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 941 942 for (i = 0; i < total_segs; i++) { 943 struct seg_entry *se = get_seg_entry(sbi, i); 944 945 seq_printf(seq, "%-10d", i); 946 seq_printf(seq, "%d|%-3u|", se->type, 947 get_valid_blocks(sbi, i, 1)); 948 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++) 949 seq_printf(seq, "%x ", se->cur_valid_map[j]); 950 seq_putc(seq, '\n'); 951 } 952 return 0; 953 } 954 955 #define F2FS_PROC_FILE_DEF(_name) \ 956 static int _name##_open_fs(struct inode *inode, struct file *file) \ 957 { \ 958 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \ 959 } \ 960 \ 961 static const struct file_operations f2fs_seq_##_name##_fops = { \ 962 .open = _name##_open_fs, \ 963 .read = seq_read, \ 964 .llseek = seq_lseek, \ 965 .release = single_release, \ 966 }; 967 968 F2FS_PROC_FILE_DEF(segment_info); 969 F2FS_PROC_FILE_DEF(segment_bits); 970 971 static void default_options(struct f2fs_sb_info *sbi) 972 { 973 /* init some FS parameters */ 974 sbi->active_logs = NR_CURSEG_TYPE; 975 976 set_opt(sbi, BG_GC); 977 set_opt(sbi, INLINE_DATA); 978 set_opt(sbi, EXTENT_CACHE); 979 sbi->sb->s_flags |= MS_LAZYTIME; 980 set_opt(sbi, FLUSH_MERGE); 981 if (f2fs_sb_mounted_hmsmr(sbi->sb)) { 982 set_opt_mode(sbi, F2FS_MOUNT_LFS); 983 set_opt(sbi, DISCARD); 984 } else { 985 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 986 } 987 988 #ifdef CONFIG_F2FS_FS_XATTR 989 set_opt(sbi, XATTR_USER); 990 #endif 991 #ifdef CONFIG_F2FS_FS_POSIX_ACL 992 set_opt(sbi, POSIX_ACL); 993 #endif 994 } 995 996 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 997 { 998 struct f2fs_sb_info *sbi = F2FS_SB(sb); 999 struct f2fs_mount_info org_mount_opt; 1000 int err, active_logs; 1001 bool need_restart_gc = false; 1002 bool need_stop_gc = false; 1003 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1004 1005 /* 1006 * Save the old mount options in case we 1007 * need to restore them. 1008 */ 1009 org_mount_opt = sbi->mount_opt; 1010 active_logs = sbi->active_logs; 1011 1012 /* recover superblocks we couldn't write due to previous RO mount */ 1013 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1014 err = f2fs_commit_super(sbi, false); 1015 f2fs_msg(sb, KERN_INFO, 1016 "Try to recover all the superblocks, ret: %d", err); 1017 if (!err) 1018 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1019 } 1020 1021 sbi->mount_opt.opt = 0; 1022 default_options(sbi); 1023 1024 /* parse mount options */ 1025 err = parse_options(sb, data); 1026 if (err) 1027 goto restore_opts; 1028 1029 /* 1030 * Previous and new state of filesystem is RO, 1031 * so skip checking GC and FLUSH_MERGE conditions. 1032 */ 1033 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 1034 goto skip; 1035 1036 /* disallow enable/disable extent_cache dynamically */ 1037 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1038 err = -EINVAL; 1039 f2fs_msg(sbi->sb, KERN_WARNING, 1040 "switch extent_cache option is not allowed"); 1041 goto restore_opts; 1042 } 1043 1044 /* 1045 * We stop the GC thread if FS is mounted as RO 1046 * or if background_gc = off is passed in mount 1047 * option. Also sync the filesystem. 1048 */ 1049 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 1050 if (sbi->gc_thread) { 1051 stop_gc_thread(sbi); 1052 need_restart_gc = true; 1053 } 1054 } else if (!sbi->gc_thread) { 1055 err = start_gc_thread(sbi); 1056 if (err) 1057 goto restore_opts; 1058 need_stop_gc = true; 1059 } 1060 1061 if (*flags & MS_RDONLY) { 1062 writeback_inodes_sb(sb, WB_REASON_SYNC); 1063 sync_inodes_sb(sb); 1064 1065 set_sbi_flag(sbi, SBI_IS_DIRTY); 1066 set_sbi_flag(sbi, SBI_IS_CLOSE); 1067 f2fs_sync_fs(sb, 1); 1068 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1069 } 1070 1071 /* 1072 * We stop issue flush thread if FS is mounted as RO 1073 * or if flush_merge is not passed in mount option. 1074 */ 1075 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1076 destroy_flush_cmd_control(sbi); 1077 } else if (!SM_I(sbi)->cmd_control_info) { 1078 err = create_flush_cmd_control(sbi); 1079 if (err) 1080 goto restore_gc; 1081 } 1082 skip: 1083 /* Update the POSIXACL Flag */ 1084 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1085 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1086 1087 return 0; 1088 restore_gc: 1089 if (need_restart_gc) { 1090 if (start_gc_thread(sbi)) 1091 f2fs_msg(sbi->sb, KERN_WARNING, 1092 "background gc thread has stopped"); 1093 } else if (need_stop_gc) { 1094 stop_gc_thread(sbi); 1095 } 1096 restore_opts: 1097 sbi->mount_opt = org_mount_opt; 1098 sbi->active_logs = active_logs; 1099 return err; 1100 } 1101 1102 static struct super_operations f2fs_sops = { 1103 .alloc_inode = f2fs_alloc_inode, 1104 .drop_inode = f2fs_drop_inode, 1105 .destroy_inode = f2fs_destroy_inode, 1106 .write_inode = f2fs_write_inode, 1107 .dirty_inode = f2fs_dirty_inode, 1108 .show_options = f2fs_show_options, 1109 .evict_inode = f2fs_evict_inode, 1110 .put_super = f2fs_put_super, 1111 .sync_fs = f2fs_sync_fs, 1112 .freeze_fs = f2fs_freeze, 1113 .unfreeze_fs = f2fs_unfreeze, 1114 .statfs = f2fs_statfs, 1115 .remount_fs = f2fs_remount, 1116 }; 1117 1118 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1119 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 1120 { 1121 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1122 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1123 ctx, len, NULL); 1124 } 1125 1126 static int f2fs_key_prefix(struct inode *inode, u8 **key) 1127 { 1128 *key = F2FS_I_SB(inode)->key_prefix; 1129 return F2FS_I_SB(inode)->key_prefix_size; 1130 } 1131 1132 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 1133 void *fs_data) 1134 { 1135 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1136 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1137 ctx, len, fs_data, XATTR_CREATE); 1138 } 1139 1140 static unsigned f2fs_max_namelen(struct inode *inode) 1141 { 1142 return S_ISLNK(inode->i_mode) ? 1143 inode->i_sb->s_blocksize : F2FS_NAME_LEN; 1144 } 1145 1146 static struct fscrypt_operations f2fs_cryptops = { 1147 .get_context = f2fs_get_context, 1148 .key_prefix = f2fs_key_prefix, 1149 .set_context = f2fs_set_context, 1150 .is_encrypted = f2fs_encrypted_inode, 1151 .empty_dir = f2fs_empty_dir, 1152 .max_namelen = f2fs_max_namelen, 1153 }; 1154 #else 1155 static struct fscrypt_operations f2fs_cryptops = { 1156 .is_encrypted = f2fs_encrypted_inode, 1157 }; 1158 #endif 1159 1160 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 1161 u64 ino, u32 generation) 1162 { 1163 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1164 struct inode *inode; 1165 1166 if (check_nid_range(sbi, ino)) 1167 return ERR_PTR(-ESTALE); 1168 1169 /* 1170 * f2fs_iget isn't quite right if the inode is currently unallocated! 1171 * However f2fs_iget currently does appropriate checks to handle stale 1172 * inodes so everything is OK. 1173 */ 1174 inode = f2fs_iget(sb, ino); 1175 if (IS_ERR(inode)) 1176 return ERR_CAST(inode); 1177 if (unlikely(generation && inode->i_generation != generation)) { 1178 /* we didn't find the right inode.. */ 1179 iput(inode); 1180 return ERR_PTR(-ESTALE); 1181 } 1182 return inode; 1183 } 1184 1185 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1186 int fh_len, int fh_type) 1187 { 1188 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1189 f2fs_nfs_get_inode); 1190 } 1191 1192 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 1193 int fh_len, int fh_type) 1194 { 1195 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1196 f2fs_nfs_get_inode); 1197 } 1198 1199 static const struct export_operations f2fs_export_ops = { 1200 .fh_to_dentry = f2fs_fh_to_dentry, 1201 .fh_to_parent = f2fs_fh_to_parent, 1202 .get_parent = f2fs_get_parent, 1203 }; 1204 1205 static loff_t max_file_blocks(void) 1206 { 1207 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 1208 loff_t leaf_count = ADDRS_PER_BLOCK; 1209 1210 /* two direct node blocks */ 1211 result += (leaf_count * 2); 1212 1213 /* two indirect node blocks */ 1214 leaf_count *= NIDS_PER_BLOCK; 1215 result += (leaf_count * 2); 1216 1217 /* one double indirect node block */ 1218 leaf_count *= NIDS_PER_BLOCK; 1219 result += leaf_count; 1220 1221 return result; 1222 } 1223 1224 static int __f2fs_commit_super(struct buffer_head *bh, 1225 struct f2fs_super_block *super) 1226 { 1227 lock_buffer(bh); 1228 if (super) 1229 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 1230 set_buffer_uptodate(bh); 1231 set_buffer_dirty(bh); 1232 unlock_buffer(bh); 1233 1234 /* it's rare case, we can do fua all the time */ 1235 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA); 1236 } 1237 1238 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 1239 struct buffer_head *bh) 1240 { 1241 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1242 (bh->b_data + F2FS_SUPER_OFFSET); 1243 struct super_block *sb = sbi->sb; 1244 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1245 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 1246 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 1247 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 1248 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1249 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1250 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 1251 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 1252 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 1253 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 1254 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 1255 u32 segment_count = le32_to_cpu(raw_super->segment_count); 1256 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1257 u64 main_end_blkaddr = main_blkaddr + 1258 (segment_count_main << log_blocks_per_seg); 1259 u64 seg_end_blkaddr = segment0_blkaddr + 1260 (segment_count << log_blocks_per_seg); 1261 1262 if (segment0_blkaddr != cp_blkaddr) { 1263 f2fs_msg(sb, KERN_INFO, 1264 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 1265 segment0_blkaddr, cp_blkaddr); 1266 return true; 1267 } 1268 1269 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 1270 sit_blkaddr) { 1271 f2fs_msg(sb, KERN_INFO, 1272 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 1273 cp_blkaddr, sit_blkaddr, 1274 segment_count_ckpt << log_blocks_per_seg); 1275 return true; 1276 } 1277 1278 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 1279 nat_blkaddr) { 1280 f2fs_msg(sb, KERN_INFO, 1281 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 1282 sit_blkaddr, nat_blkaddr, 1283 segment_count_sit << log_blocks_per_seg); 1284 return true; 1285 } 1286 1287 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 1288 ssa_blkaddr) { 1289 f2fs_msg(sb, KERN_INFO, 1290 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 1291 nat_blkaddr, ssa_blkaddr, 1292 segment_count_nat << log_blocks_per_seg); 1293 return true; 1294 } 1295 1296 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 1297 main_blkaddr) { 1298 f2fs_msg(sb, KERN_INFO, 1299 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 1300 ssa_blkaddr, main_blkaddr, 1301 segment_count_ssa << log_blocks_per_seg); 1302 return true; 1303 } 1304 1305 if (main_end_blkaddr > seg_end_blkaddr) { 1306 f2fs_msg(sb, KERN_INFO, 1307 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 1308 main_blkaddr, 1309 segment0_blkaddr + 1310 (segment_count << log_blocks_per_seg), 1311 segment_count_main << log_blocks_per_seg); 1312 return true; 1313 } else if (main_end_blkaddr < seg_end_blkaddr) { 1314 int err = 0; 1315 char *res; 1316 1317 /* fix in-memory information all the time */ 1318 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 1319 segment0_blkaddr) >> log_blocks_per_seg); 1320 1321 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 1322 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1323 res = "internally"; 1324 } else { 1325 err = __f2fs_commit_super(bh, NULL); 1326 res = err ? "failed" : "done"; 1327 } 1328 f2fs_msg(sb, KERN_INFO, 1329 "Fix alignment : %s, start(%u) end(%u) block(%u)", 1330 res, main_blkaddr, 1331 segment0_blkaddr + 1332 (segment_count << log_blocks_per_seg), 1333 segment_count_main << log_blocks_per_seg); 1334 if (err) 1335 return true; 1336 } 1337 return false; 1338 } 1339 1340 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 1341 struct buffer_head *bh) 1342 { 1343 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1344 (bh->b_data + F2FS_SUPER_OFFSET); 1345 struct super_block *sb = sbi->sb; 1346 unsigned int blocksize; 1347 1348 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 1349 f2fs_msg(sb, KERN_INFO, 1350 "Magic Mismatch, valid(0x%x) - read(0x%x)", 1351 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 1352 return 1; 1353 } 1354 1355 /* Currently, support only 4KB page cache size */ 1356 if (F2FS_BLKSIZE != PAGE_SIZE) { 1357 f2fs_msg(sb, KERN_INFO, 1358 "Invalid page_cache_size (%lu), supports only 4KB\n", 1359 PAGE_SIZE); 1360 return 1; 1361 } 1362 1363 /* Currently, support only 4KB block size */ 1364 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 1365 if (blocksize != F2FS_BLKSIZE) { 1366 f2fs_msg(sb, KERN_INFO, 1367 "Invalid blocksize (%u), supports only 4KB\n", 1368 blocksize); 1369 return 1; 1370 } 1371 1372 /* check log blocks per segment */ 1373 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 1374 f2fs_msg(sb, KERN_INFO, 1375 "Invalid log blocks per segment (%u)\n", 1376 le32_to_cpu(raw_super->log_blocks_per_seg)); 1377 return 1; 1378 } 1379 1380 /* Currently, support 512/1024/2048/4096 bytes sector size */ 1381 if (le32_to_cpu(raw_super->log_sectorsize) > 1382 F2FS_MAX_LOG_SECTOR_SIZE || 1383 le32_to_cpu(raw_super->log_sectorsize) < 1384 F2FS_MIN_LOG_SECTOR_SIZE) { 1385 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 1386 le32_to_cpu(raw_super->log_sectorsize)); 1387 return 1; 1388 } 1389 if (le32_to_cpu(raw_super->log_sectors_per_block) + 1390 le32_to_cpu(raw_super->log_sectorsize) != 1391 F2FS_MAX_LOG_SECTOR_SIZE) { 1392 f2fs_msg(sb, KERN_INFO, 1393 "Invalid log sectors per block(%u) log sectorsize(%u)", 1394 le32_to_cpu(raw_super->log_sectors_per_block), 1395 le32_to_cpu(raw_super->log_sectorsize)); 1396 return 1; 1397 } 1398 1399 /* check reserved ino info */ 1400 if (le32_to_cpu(raw_super->node_ino) != 1 || 1401 le32_to_cpu(raw_super->meta_ino) != 2 || 1402 le32_to_cpu(raw_super->root_ino) != 3) { 1403 f2fs_msg(sb, KERN_INFO, 1404 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 1405 le32_to_cpu(raw_super->node_ino), 1406 le32_to_cpu(raw_super->meta_ino), 1407 le32_to_cpu(raw_super->root_ino)); 1408 return 1; 1409 } 1410 1411 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 1412 if (sanity_check_area_boundary(sbi, bh)) 1413 return 1; 1414 1415 return 0; 1416 } 1417 1418 int sanity_check_ckpt(struct f2fs_sb_info *sbi) 1419 { 1420 unsigned int total, fsmeta; 1421 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1422 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1423 1424 total = le32_to_cpu(raw_super->segment_count); 1425 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 1426 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 1427 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 1428 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 1429 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 1430 1431 if (unlikely(fsmeta >= total)) 1432 return 1; 1433 1434 if (unlikely(f2fs_cp_error(sbi))) { 1435 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 1436 return 1; 1437 } 1438 return 0; 1439 } 1440 1441 static void init_sb_info(struct f2fs_sb_info *sbi) 1442 { 1443 struct f2fs_super_block *raw_super = sbi->raw_super; 1444 1445 sbi->log_sectors_per_block = 1446 le32_to_cpu(raw_super->log_sectors_per_block); 1447 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 1448 sbi->blocksize = 1 << sbi->log_blocksize; 1449 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1450 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 1451 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 1452 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 1453 sbi->total_sections = le32_to_cpu(raw_super->section_count); 1454 sbi->total_node_count = 1455 (le32_to_cpu(raw_super->segment_count_nat) / 2) 1456 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 1457 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 1458 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 1459 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 1460 sbi->cur_victim_sec = NULL_SECNO; 1461 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 1462 1463 sbi->dir_level = DEF_DIR_LEVEL; 1464 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 1465 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 1466 clear_sbi_flag(sbi, SBI_NEED_FSCK); 1467 1468 INIT_LIST_HEAD(&sbi->s_list); 1469 mutex_init(&sbi->umount_mutex); 1470 mutex_init(&sbi->wio_mutex[NODE]); 1471 mutex_init(&sbi->wio_mutex[DATA]); 1472 1473 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1474 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX, 1475 F2FS_KEY_DESC_PREFIX_SIZE); 1476 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE; 1477 #endif 1478 } 1479 1480 static int init_percpu_info(struct f2fs_sb_info *sbi) 1481 { 1482 int i, err; 1483 1484 for (i = 0; i < NR_COUNT_TYPE; i++) { 1485 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL); 1486 if (err) 1487 return err; 1488 } 1489 1490 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 1491 if (err) 1492 return err; 1493 1494 return percpu_counter_init(&sbi->total_valid_inode_count, 0, 1495 GFP_KERNEL); 1496 } 1497 1498 /* 1499 * Read f2fs raw super block. 1500 * Because we have two copies of super block, so read both of them 1501 * to get the first valid one. If any one of them is broken, we pass 1502 * them recovery flag back to the caller. 1503 */ 1504 static int read_raw_super_block(struct f2fs_sb_info *sbi, 1505 struct f2fs_super_block **raw_super, 1506 int *valid_super_block, int *recovery) 1507 { 1508 struct super_block *sb = sbi->sb; 1509 int block; 1510 struct buffer_head *bh; 1511 struct f2fs_super_block *super; 1512 int err = 0; 1513 1514 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 1515 if (!super) 1516 return -ENOMEM; 1517 1518 for (block = 0; block < 2; block++) { 1519 bh = sb_bread(sb, block); 1520 if (!bh) { 1521 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 1522 block + 1); 1523 err = -EIO; 1524 continue; 1525 } 1526 1527 /* sanity checking of raw super */ 1528 if (sanity_check_raw_super(sbi, bh)) { 1529 f2fs_msg(sb, KERN_ERR, 1530 "Can't find valid F2FS filesystem in %dth superblock", 1531 block + 1); 1532 err = -EINVAL; 1533 brelse(bh); 1534 continue; 1535 } 1536 1537 if (!*raw_super) { 1538 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 1539 sizeof(*super)); 1540 *valid_super_block = block; 1541 *raw_super = super; 1542 } 1543 brelse(bh); 1544 } 1545 1546 /* Fail to read any one of the superblocks*/ 1547 if (err < 0) 1548 *recovery = 1; 1549 1550 /* No valid superblock */ 1551 if (!*raw_super) 1552 kfree(super); 1553 else 1554 err = 0; 1555 1556 return err; 1557 } 1558 1559 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 1560 { 1561 struct buffer_head *bh; 1562 int err; 1563 1564 if ((recover && f2fs_readonly(sbi->sb)) || 1565 bdev_read_only(sbi->sb->s_bdev)) { 1566 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1567 return -EROFS; 1568 } 1569 1570 /* write back-up superblock first */ 1571 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1); 1572 if (!bh) 1573 return -EIO; 1574 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1575 brelse(bh); 1576 1577 /* if we are in recovery path, skip writing valid superblock */ 1578 if (recover || err) 1579 return err; 1580 1581 /* write current valid superblock */ 1582 bh = sb_getblk(sbi->sb, sbi->valid_super_block); 1583 if (!bh) 1584 return -EIO; 1585 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1586 brelse(bh); 1587 return err; 1588 } 1589 1590 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 1591 { 1592 struct f2fs_sb_info *sbi; 1593 struct f2fs_super_block *raw_super; 1594 struct inode *root; 1595 int err; 1596 bool retry = true, need_fsck = false; 1597 char *options = NULL; 1598 int recovery, i, valid_super_block; 1599 struct curseg_info *seg_i; 1600 1601 try_onemore: 1602 err = -EINVAL; 1603 raw_super = NULL; 1604 valid_super_block = -1; 1605 recovery = 0; 1606 1607 /* allocate memory for f2fs-specific super block info */ 1608 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 1609 if (!sbi) 1610 return -ENOMEM; 1611 1612 sbi->sb = sb; 1613 1614 /* Load the checksum driver */ 1615 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 1616 if (IS_ERR(sbi->s_chksum_driver)) { 1617 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 1618 err = PTR_ERR(sbi->s_chksum_driver); 1619 sbi->s_chksum_driver = NULL; 1620 goto free_sbi; 1621 } 1622 1623 /* set a block size */ 1624 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 1625 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 1626 goto free_sbi; 1627 } 1628 1629 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 1630 &recovery); 1631 if (err) 1632 goto free_sbi; 1633 1634 sb->s_fs_info = sbi; 1635 sbi->raw_super = raw_super; 1636 1637 default_options(sbi); 1638 /* parse mount options */ 1639 options = kstrdup((const char *)data, GFP_KERNEL); 1640 if (data && !options) { 1641 err = -ENOMEM; 1642 goto free_sb_buf; 1643 } 1644 1645 err = parse_options(sb, options); 1646 if (err) 1647 goto free_options; 1648 1649 sbi->max_file_blocks = max_file_blocks(); 1650 sb->s_maxbytes = sbi->max_file_blocks << 1651 le32_to_cpu(raw_super->log_blocksize); 1652 sb->s_max_links = F2FS_LINK_MAX; 1653 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1654 1655 sb->s_op = &f2fs_sops; 1656 sb->s_cop = &f2fs_cryptops; 1657 sb->s_xattr = f2fs_xattr_handlers; 1658 sb->s_export_op = &f2fs_export_ops; 1659 sb->s_magic = F2FS_SUPER_MAGIC; 1660 sb->s_time_gran = 1; 1661 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1662 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1663 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1664 1665 /* init f2fs-specific super block info */ 1666 sbi->valid_super_block = valid_super_block; 1667 mutex_init(&sbi->gc_mutex); 1668 mutex_init(&sbi->cp_mutex); 1669 init_rwsem(&sbi->node_write); 1670 1671 /* disallow all the data/node/meta page writes */ 1672 set_sbi_flag(sbi, SBI_POR_DOING); 1673 spin_lock_init(&sbi->stat_lock); 1674 1675 init_rwsem(&sbi->read_io.io_rwsem); 1676 sbi->read_io.sbi = sbi; 1677 sbi->read_io.bio = NULL; 1678 for (i = 0; i < NR_PAGE_TYPE; i++) { 1679 init_rwsem(&sbi->write_io[i].io_rwsem); 1680 sbi->write_io[i].sbi = sbi; 1681 sbi->write_io[i].bio = NULL; 1682 } 1683 1684 init_rwsem(&sbi->cp_rwsem); 1685 init_waitqueue_head(&sbi->cp_wait); 1686 init_sb_info(sbi); 1687 1688 err = init_percpu_info(sbi); 1689 if (err) 1690 goto free_options; 1691 1692 /* get an inode for meta space */ 1693 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 1694 if (IS_ERR(sbi->meta_inode)) { 1695 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 1696 err = PTR_ERR(sbi->meta_inode); 1697 goto free_options; 1698 } 1699 1700 err = get_valid_checkpoint(sbi); 1701 if (err) { 1702 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 1703 goto free_meta_inode; 1704 } 1705 1706 sbi->total_valid_node_count = 1707 le32_to_cpu(sbi->ckpt->valid_node_count); 1708 percpu_counter_set(&sbi->total_valid_inode_count, 1709 le32_to_cpu(sbi->ckpt->valid_inode_count)); 1710 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 1711 sbi->total_valid_block_count = 1712 le64_to_cpu(sbi->ckpt->valid_block_count); 1713 sbi->last_valid_block_count = sbi->total_valid_block_count; 1714 1715 for (i = 0; i < NR_INODE_TYPE; i++) { 1716 INIT_LIST_HEAD(&sbi->inode_list[i]); 1717 spin_lock_init(&sbi->inode_lock[i]); 1718 } 1719 1720 init_extent_cache_info(sbi); 1721 1722 init_ino_entry_info(sbi); 1723 1724 /* setup f2fs internal modules */ 1725 err = build_segment_manager(sbi); 1726 if (err) { 1727 f2fs_msg(sb, KERN_ERR, 1728 "Failed to initialize F2FS segment manager"); 1729 goto free_sm; 1730 } 1731 err = build_node_manager(sbi); 1732 if (err) { 1733 f2fs_msg(sb, KERN_ERR, 1734 "Failed to initialize F2FS node manager"); 1735 goto free_nm; 1736 } 1737 1738 /* For write statistics */ 1739 if (sb->s_bdev->bd_part) 1740 sbi->sectors_written_start = 1741 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); 1742 1743 /* Read accumulated write IO statistics if exists */ 1744 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1745 if (__exist_node_summaries(sbi)) 1746 sbi->kbytes_written = 1747 le64_to_cpu(seg_i->journal->info.kbytes_written); 1748 1749 build_gc_manager(sbi); 1750 1751 /* get an inode for node space */ 1752 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1753 if (IS_ERR(sbi->node_inode)) { 1754 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1755 err = PTR_ERR(sbi->node_inode); 1756 goto free_nm; 1757 } 1758 1759 f2fs_join_shrinker(sbi); 1760 1761 /* if there are nt orphan nodes free them */ 1762 err = recover_orphan_inodes(sbi); 1763 if (err) 1764 goto free_node_inode; 1765 1766 /* read root inode and dentry */ 1767 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1768 if (IS_ERR(root)) { 1769 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1770 err = PTR_ERR(root); 1771 goto free_node_inode; 1772 } 1773 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1774 iput(root); 1775 err = -EINVAL; 1776 goto free_node_inode; 1777 } 1778 1779 sb->s_root = d_make_root(root); /* allocate root dentry */ 1780 if (!sb->s_root) { 1781 err = -ENOMEM; 1782 goto free_root_inode; 1783 } 1784 1785 err = f2fs_build_stats(sbi); 1786 if (err) 1787 goto free_root_inode; 1788 1789 if (f2fs_proc_root) 1790 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1791 1792 if (sbi->s_proc) { 1793 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1794 &f2fs_seq_segment_info_fops, sb); 1795 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc, 1796 &f2fs_seq_segment_bits_fops, sb); 1797 } 1798 1799 sbi->s_kobj.kset = f2fs_kset; 1800 init_completion(&sbi->s_kobj_unregister); 1801 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1802 "%s", sb->s_id); 1803 if (err) 1804 goto free_proc; 1805 1806 /* recover fsynced data */ 1807 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1808 /* 1809 * mount should be failed, when device has readonly mode, and 1810 * previous checkpoint was not done by clean system shutdown. 1811 */ 1812 if (bdev_read_only(sb->s_bdev) && 1813 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) { 1814 err = -EROFS; 1815 goto free_kobj; 1816 } 1817 1818 if (need_fsck) 1819 set_sbi_flag(sbi, SBI_NEED_FSCK); 1820 1821 err = recover_fsync_data(sbi, false); 1822 if (err < 0) { 1823 need_fsck = true; 1824 f2fs_msg(sb, KERN_ERR, 1825 "Cannot recover all fsync data errno=%d", err); 1826 goto free_kobj; 1827 } 1828 } else { 1829 err = recover_fsync_data(sbi, true); 1830 1831 if (!f2fs_readonly(sb) && err > 0) { 1832 err = -EINVAL; 1833 f2fs_msg(sb, KERN_ERR, 1834 "Need to recover fsync data"); 1835 goto free_kobj; 1836 } 1837 } 1838 1839 /* recover_fsync_data() cleared this already */ 1840 clear_sbi_flag(sbi, SBI_POR_DOING); 1841 1842 /* 1843 * If filesystem is not mounted as read-only then 1844 * do start the gc_thread. 1845 */ 1846 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 1847 /* After POR, we can run background GC thread.*/ 1848 err = start_gc_thread(sbi); 1849 if (err) 1850 goto free_kobj; 1851 } 1852 kfree(options); 1853 1854 /* recover broken superblock */ 1855 if (recovery) { 1856 err = f2fs_commit_super(sbi, true); 1857 f2fs_msg(sb, KERN_INFO, 1858 "Try to recover %dth superblock, ret: %d", 1859 sbi->valid_super_block ? 1 : 2, err); 1860 } 1861 1862 f2fs_update_time(sbi, CP_TIME); 1863 f2fs_update_time(sbi, REQ_TIME); 1864 return 0; 1865 1866 free_kobj: 1867 f2fs_sync_inode_meta(sbi); 1868 kobject_del(&sbi->s_kobj); 1869 kobject_put(&sbi->s_kobj); 1870 wait_for_completion(&sbi->s_kobj_unregister); 1871 free_proc: 1872 if (sbi->s_proc) { 1873 remove_proc_entry("segment_info", sbi->s_proc); 1874 remove_proc_entry("segment_bits", sbi->s_proc); 1875 remove_proc_entry(sb->s_id, f2fs_proc_root); 1876 } 1877 f2fs_destroy_stats(sbi); 1878 free_root_inode: 1879 dput(sb->s_root); 1880 sb->s_root = NULL; 1881 free_node_inode: 1882 mutex_lock(&sbi->umount_mutex); 1883 f2fs_leave_shrinker(sbi); 1884 iput(sbi->node_inode); 1885 mutex_unlock(&sbi->umount_mutex); 1886 free_nm: 1887 destroy_node_manager(sbi); 1888 free_sm: 1889 destroy_segment_manager(sbi); 1890 kfree(sbi->ckpt); 1891 free_meta_inode: 1892 make_bad_inode(sbi->meta_inode); 1893 iput(sbi->meta_inode); 1894 free_options: 1895 destroy_percpu_info(sbi); 1896 kfree(options); 1897 free_sb_buf: 1898 kfree(raw_super); 1899 free_sbi: 1900 if (sbi->s_chksum_driver) 1901 crypto_free_shash(sbi->s_chksum_driver); 1902 kfree(sbi); 1903 1904 /* give only one another chance */ 1905 if (retry) { 1906 retry = false; 1907 shrink_dcache_sb(sb); 1908 goto try_onemore; 1909 } 1910 return err; 1911 } 1912 1913 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1914 const char *dev_name, void *data) 1915 { 1916 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1917 } 1918 1919 static void kill_f2fs_super(struct super_block *sb) 1920 { 1921 if (sb->s_root) 1922 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 1923 kill_block_super(sb); 1924 } 1925 1926 static struct file_system_type f2fs_fs_type = { 1927 .owner = THIS_MODULE, 1928 .name = "f2fs", 1929 .mount = f2fs_mount, 1930 .kill_sb = kill_f2fs_super, 1931 .fs_flags = FS_REQUIRES_DEV, 1932 }; 1933 MODULE_ALIAS_FS("f2fs"); 1934 1935 static int __init init_inodecache(void) 1936 { 1937 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 1938 sizeof(struct f2fs_inode_info), 0, 1939 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 1940 if (!f2fs_inode_cachep) 1941 return -ENOMEM; 1942 return 0; 1943 } 1944 1945 static void destroy_inodecache(void) 1946 { 1947 /* 1948 * Make sure all delayed rcu free inodes are flushed before we 1949 * destroy cache. 1950 */ 1951 rcu_barrier(); 1952 kmem_cache_destroy(f2fs_inode_cachep); 1953 } 1954 1955 static int __init init_f2fs_fs(void) 1956 { 1957 int err; 1958 1959 f2fs_build_trace_ios(); 1960 1961 err = init_inodecache(); 1962 if (err) 1963 goto fail; 1964 err = create_node_manager_caches(); 1965 if (err) 1966 goto free_inodecache; 1967 err = create_segment_manager_caches(); 1968 if (err) 1969 goto free_node_manager_caches; 1970 err = create_checkpoint_caches(); 1971 if (err) 1972 goto free_segment_manager_caches; 1973 err = create_extent_cache(); 1974 if (err) 1975 goto free_checkpoint_caches; 1976 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1977 if (!f2fs_kset) { 1978 err = -ENOMEM; 1979 goto free_extent_cache; 1980 } 1981 #ifdef CONFIG_F2FS_FAULT_INJECTION 1982 f2fs_fault_inject.kset = f2fs_kset; 1983 f2fs_build_fault_attr(0); 1984 err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype, 1985 NULL, "fault_injection"); 1986 if (err) { 1987 f2fs_fault_inject.kset = NULL; 1988 goto free_kset; 1989 } 1990 #endif 1991 err = register_shrinker(&f2fs_shrinker_info); 1992 if (err) 1993 goto free_kset; 1994 1995 err = register_filesystem(&f2fs_fs_type); 1996 if (err) 1997 goto free_shrinker; 1998 err = f2fs_create_root_stats(); 1999 if (err) 2000 goto free_filesystem; 2001 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 2002 return 0; 2003 2004 free_filesystem: 2005 unregister_filesystem(&f2fs_fs_type); 2006 free_shrinker: 2007 unregister_shrinker(&f2fs_shrinker_info); 2008 free_kset: 2009 #ifdef CONFIG_F2FS_FAULT_INJECTION 2010 if (f2fs_fault_inject.kset) 2011 kobject_put(&f2fs_fault_inject); 2012 #endif 2013 kset_unregister(f2fs_kset); 2014 free_extent_cache: 2015 destroy_extent_cache(); 2016 free_checkpoint_caches: 2017 destroy_checkpoint_caches(); 2018 free_segment_manager_caches: 2019 destroy_segment_manager_caches(); 2020 free_node_manager_caches: 2021 destroy_node_manager_caches(); 2022 free_inodecache: 2023 destroy_inodecache(); 2024 fail: 2025 return err; 2026 } 2027 2028 static void __exit exit_f2fs_fs(void) 2029 { 2030 remove_proc_entry("fs/f2fs", NULL); 2031 f2fs_destroy_root_stats(); 2032 unregister_filesystem(&f2fs_fs_type); 2033 unregister_shrinker(&f2fs_shrinker_info); 2034 #ifdef CONFIG_F2FS_FAULT_INJECTION 2035 kobject_put(&f2fs_fault_inject); 2036 #endif 2037 kset_unregister(f2fs_kset); 2038 destroy_extent_cache(); 2039 destroy_checkpoint_caches(); 2040 destroy_segment_manager_caches(); 2041 destroy_node_manager_caches(); 2042 destroy_inodecache(); 2043 f2fs_destroy_trace_ios(); 2044 } 2045 2046 module_init(init_f2fs_fs) 2047 module_exit(exit_f2fs_fs) 2048 2049 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 2050 MODULE_DESCRIPTION("Flash Friendly File System"); 2051 MODULE_LICENSE("GPL"); 2052