1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/buffer_head.h> 15 #include <linux/kthread.h> 16 #include <linux/parser.h> 17 #include <linux/mount.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/random.h> 21 #include <linux/exportfs.h> 22 #include <linux/blkdev.h> 23 #include <linux/quotaops.h> 24 #include <linux/f2fs_fs.h> 25 #include <linux/sysfs.h> 26 #include <linux/quota.h> 27 #include <linux/unicode.h> 28 #include <linux/part_stat.h> 29 #include <linux/zstd.h> 30 #include <linux/lz4.h> 31 32 #include "f2fs.h" 33 #include "node.h" 34 #include "segment.h" 35 #include "xattr.h" 36 #include "gc.h" 37 #include "iostat.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/f2fs.h> 41 42 static struct kmem_cache *f2fs_inode_cachep; 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 46 const char *f2fs_fault_name[FAULT_MAX] = { 47 [FAULT_KMALLOC] = "kmalloc", 48 [FAULT_KVMALLOC] = "kvmalloc", 49 [FAULT_PAGE_ALLOC] = "page alloc", 50 [FAULT_PAGE_GET] = "page get", 51 [FAULT_ALLOC_NID] = "alloc nid", 52 [FAULT_ORPHAN] = "orphan", 53 [FAULT_BLOCK] = "no more block", 54 [FAULT_DIR_DEPTH] = "too big dir depth", 55 [FAULT_EVICT_INODE] = "evict_inode fail", 56 [FAULT_TRUNCATE] = "truncate fail", 57 [FAULT_READ_IO] = "read IO error", 58 [FAULT_CHECKPOINT] = "checkpoint error", 59 [FAULT_DISCARD] = "discard error", 60 [FAULT_WRITE_IO] = "write IO error", 61 [FAULT_SLAB_ALLOC] = "slab alloc", 62 [FAULT_DQUOT_INIT] = "dquot initialize", 63 [FAULT_LOCK_OP] = "lock_op", 64 [FAULT_BLKADDR] = "invalid blkaddr", 65 }; 66 67 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 68 unsigned int type) 69 { 70 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 71 72 if (rate) { 73 atomic_set(&ffi->inject_ops, 0); 74 ffi->inject_rate = rate; 75 } 76 77 if (type) 78 ffi->inject_type = type; 79 80 if (!rate && !type) 81 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 82 } 83 #endif 84 85 /* f2fs-wide shrinker description */ 86 static struct shrinker *f2fs_shrinker_info; 87 88 static int __init f2fs_init_shrinker(void) 89 { 90 f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker"); 91 if (!f2fs_shrinker_info) 92 return -ENOMEM; 93 94 f2fs_shrinker_info->count_objects = f2fs_shrink_count; 95 f2fs_shrinker_info->scan_objects = f2fs_shrink_scan; 96 97 shrinker_register(f2fs_shrinker_info); 98 99 return 0; 100 } 101 102 static void f2fs_exit_shrinker(void) 103 { 104 shrinker_free(f2fs_shrinker_info); 105 } 106 107 enum { 108 Opt_gc_background, 109 Opt_disable_roll_forward, 110 Opt_norecovery, 111 Opt_discard, 112 Opt_nodiscard, 113 Opt_noheap, 114 Opt_heap, 115 Opt_user_xattr, 116 Opt_nouser_xattr, 117 Opt_acl, 118 Opt_noacl, 119 Opt_active_logs, 120 Opt_disable_ext_identify, 121 Opt_inline_xattr, 122 Opt_noinline_xattr, 123 Opt_inline_xattr_size, 124 Opt_inline_data, 125 Opt_inline_dentry, 126 Opt_noinline_dentry, 127 Opt_flush_merge, 128 Opt_noflush_merge, 129 Opt_barrier, 130 Opt_nobarrier, 131 Opt_fastboot, 132 Opt_extent_cache, 133 Opt_noextent_cache, 134 Opt_noinline_data, 135 Opt_data_flush, 136 Opt_reserve_root, 137 Opt_resgid, 138 Opt_resuid, 139 Opt_mode, 140 Opt_io_size_bits, 141 Opt_fault_injection, 142 Opt_fault_type, 143 Opt_lazytime, 144 Opt_nolazytime, 145 Opt_quota, 146 Opt_noquota, 147 Opt_usrquota, 148 Opt_grpquota, 149 Opt_prjquota, 150 Opt_usrjquota, 151 Opt_grpjquota, 152 Opt_prjjquota, 153 Opt_offusrjquota, 154 Opt_offgrpjquota, 155 Opt_offprjjquota, 156 Opt_jqfmt_vfsold, 157 Opt_jqfmt_vfsv0, 158 Opt_jqfmt_vfsv1, 159 Opt_alloc, 160 Opt_fsync, 161 Opt_test_dummy_encryption, 162 Opt_inlinecrypt, 163 Opt_checkpoint_disable, 164 Opt_checkpoint_disable_cap, 165 Opt_checkpoint_disable_cap_perc, 166 Opt_checkpoint_enable, 167 Opt_checkpoint_merge, 168 Opt_nocheckpoint_merge, 169 Opt_compress_algorithm, 170 Opt_compress_log_size, 171 Opt_compress_extension, 172 Opt_nocompress_extension, 173 Opt_compress_chksum, 174 Opt_compress_mode, 175 Opt_compress_cache, 176 Opt_atgc, 177 Opt_gc_merge, 178 Opt_nogc_merge, 179 Opt_discard_unit, 180 Opt_memory_mode, 181 Opt_age_extent_cache, 182 Opt_errors, 183 Opt_err, 184 }; 185 186 static match_table_t f2fs_tokens = { 187 {Opt_gc_background, "background_gc=%s"}, 188 {Opt_disable_roll_forward, "disable_roll_forward"}, 189 {Opt_norecovery, "norecovery"}, 190 {Opt_discard, "discard"}, 191 {Opt_nodiscard, "nodiscard"}, 192 {Opt_noheap, "no_heap"}, 193 {Opt_heap, "heap"}, 194 {Opt_user_xattr, "user_xattr"}, 195 {Opt_nouser_xattr, "nouser_xattr"}, 196 {Opt_acl, "acl"}, 197 {Opt_noacl, "noacl"}, 198 {Opt_active_logs, "active_logs=%u"}, 199 {Opt_disable_ext_identify, "disable_ext_identify"}, 200 {Opt_inline_xattr, "inline_xattr"}, 201 {Opt_noinline_xattr, "noinline_xattr"}, 202 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 203 {Opt_inline_data, "inline_data"}, 204 {Opt_inline_dentry, "inline_dentry"}, 205 {Opt_noinline_dentry, "noinline_dentry"}, 206 {Opt_flush_merge, "flush_merge"}, 207 {Opt_noflush_merge, "noflush_merge"}, 208 {Opt_barrier, "barrier"}, 209 {Opt_nobarrier, "nobarrier"}, 210 {Opt_fastboot, "fastboot"}, 211 {Opt_extent_cache, "extent_cache"}, 212 {Opt_noextent_cache, "noextent_cache"}, 213 {Opt_noinline_data, "noinline_data"}, 214 {Opt_data_flush, "data_flush"}, 215 {Opt_reserve_root, "reserve_root=%u"}, 216 {Opt_resgid, "resgid=%u"}, 217 {Opt_resuid, "resuid=%u"}, 218 {Opt_mode, "mode=%s"}, 219 {Opt_io_size_bits, "io_bits=%u"}, 220 {Opt_fault_injection, "fault_injection=%u"}, 221 {Opt_fault_type, "fault_type=%u"}, 222 {Opt_lazytime, "lazytime"}, 223 {Opt_nolazytime, "nolazytime"}, 224 {Opt_quota, "quota"}, 225 {Opt_noquota, "noquota"}, 226 {Opt_usrquota, "usrquota"}, 227 {Opt_grpquota, "grpquota"}, 228 {Opt_prjquota, "prjquota"}, 229 {Opt_usrjquota, "usrjquota=%s"}, 230 {Opt_grpjquota, "grpjquota=%s"}, 231 {Opt_prjjquota, "prjjquota=%s"}, 232 {Opt_offusrjquota, "usrjquota="}, 233 {Opt_offgrpjquota, "grpjquota="}, 234 {Opt_offprjjquota, "prjjquota="}, 235 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 236 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 237 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 238 {Opt_alloc, "alloc_mode=%s"}, 239 {Opt_fsync, "fsync_mode=%s"}, 240 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 241 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 242 {Opt_inlinecrypt, "inlinecrypt"}, 243 {Opt_checkpoint_disable, "checkpoint=disable"}, 244 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 245 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 246 {Opt_checkpoint_enable, "checkpoint=enable"}, 247 {Opt_checkpoint_merge, "checkpoint_merge"}, 248 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 249 {Opt_compress_algorithm, "compress_algorithm=%s"}, 250 {Opt_compress_log_size, "compress_log_size=%u"}, 251 {Opt_compress_extension, "compress_extension=%s"}, 252 {Opt_nocompress_extension, "nocompress_extension=%s"}, 253 {Opt_compress_chksum, "compress_chksum"}, 254 {Opt_compress_mode, "compress_mode=%s"}, 255 {Opt_compress_cache, "compress_cache"}, 256 {Opt_atgc, "atgc"}, 257 {Opt_gc_merge, "gc_merge"}, 258 {Opt_nogc_merge, "nogc_merge"}, 259 {Opt_discard_unit, "discard_unit=%s"}, 260 {Opt_memory_mode, "memory=%s"}, 261 {Opt_age_extent_cache, "age_extent_cache"}, 262 {Opt_errors, "errors=%s"}, 263 {Opt_err, NULL}, 264 }; 265 266 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 267 { 268 struct va_format vaf; 269 va_list args; 270 int level; 271 272 va_start(args, fmt); 273 274 level = printk_get_level(fmt); 275 vaf.fmt = printk_skip_level(fmt); 276 vaf.va = &args; 277 printk("%c%cF2FS-fs (%s): %pV\n", 278 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 279 280 va_end(args); 281 } 282 283 #if IS_ENABLED(CONFIG_UNICODE) 284 static const struct f2fs_sb_encodings { 285 __u16 magic; 286 char *name; 287 unsigned int version; 288 } f2fs_sb_encoding_map[] = { 289 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 290 }; 291 292 static const struct f2fs_sb_encodings * 293 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 294 { 295 __u16 magic = le16_to_cpu(sb->s_encoding); 296 int i; 297 298 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 299 if (magic == f2fs_sb_encoding_map[i].magic) 300 return &f2fs_sb_encoding_map[i]; 301 302 return NULL; 303 } 304 305 struct kmem_cache *f2fs_cf_name_slab; 306 static int __init f2fs_create_casefold_cache(void) 307 { 308 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 309 F2FS_NAME_LEN); 310 return f2fs_cf_name_slab ? 0 : -ENOMEM; 311 } 312 313 static void f2fs_destroy_casefold_cache(void) 314 { 315 kmem_cache_destroy(f2fs_cf_name_slab); 316 } 317 #else 318 static int __init f2fs_create_casefold_cache(void) { return 0; } 319 static void f2fs_destroy_casefold_cache(void) { } 320 #endif 321 322 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 323 { 324 block_t limit = min((sbi->user_block_count >> 3), 325 sbi->user_block_count - sbi->reserved_blocks); 326 327 /* limit is 12.5% */ 328 if (test_opt(sbi, RESERVE_ROOT) && 329 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 330 F2FS_OPTION(sbi).root_reserved_blocks = limit; 331 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 332 F2FS_OPTION(sbi).root_reserved_blocks); 333 } 334 if (!test_opt(sbi, RESERVE_ROOT) && 335 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 336 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 337 !gid_eq(F2FS_OPTION(sbi).s_resgid, 338 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 339 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 340 from_kuid_munged(&init_user_ns, 341 F2FS_OPTION(sbi).s_resuid), 342 from_kgid_munged(&init_user_ns, 343 F2FS_OPTION(sbi).s_resgid)); 344 } 345 346 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi) 347 { 348 unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec; 349 unsigned int avg_vblocks; 350 unsigned int wanted_reserved_segments; 351 block_t avail_user_block_count; 352 353 if (!F2FS_IO_ALIGNED(sbi)) 354 return 0; 355 356 /* average valid block count in section in worst case */ 357 avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi); 358 359 /* 360 * we need enough free space when migrating one section in worst case 361 */ 362 wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) * 363 reserved_segments(sbi); 364 wanted_reserved_segments -= reserved_segments(sbi); 365 366 avail_user_block_count = sbi->user_block_count - 367 sbi->current_reserved_blocks - 368 F2FS_OPTION(sbi).root_reserved_blocks; 369 370 if (wanted_reserved_segments * sbi->blocks_per_seg > 371 avail_user_block_count) { 372 f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u", 373 wanted_reserved_segments, 374 avail_user_block_count >> sbi->log_blocks_per_seg); 375 return -ENOSPC; 376 } 377 378 SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments; 379 380 f2fs_info(sbi, "IO align feature needs additional reserved segment: %u", 381 wanted_reserved_segments); 382 383 return 0; 384 } 385 386 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 387 { 388 if (!F2FS_OPTION(sbi).unusable_cap_perc) 389 return; 390 391 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 392 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 393 else 394 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 395 F2FS_OPTION(sbi).unusable_cap_perc; 396 397 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 398 F2FS_OPTION(sbi).unusable_cap, 399 F2FS_OPTION(sbi).unusable_cap_perc); 400 } 401 402 static void init_once(void *foo) 403 { 404 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 405 406 inode_init_once(&fi->vfs_inode); 407 } 408 409 #ifdef CONFIG_QUOTA 410 static const char * const quotatypes[] = INITQFNAMES; 411 #define QTYPE2NAME(t) (quotatypes[t]) 412 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 413 substring_t *args) 414 { 415 struct f2fs_sb_info *sbi = F2FS_SB(sb); 416 char *qname; 417 int ret = -EINVAL; 418 419 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 420 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 421 return -EINVAL; 422 } 423 if (f2fs_sb_has_quota_ino(sbi)) { 424 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 425 return 0; 426 } 427 428 qname = match_strdup(args); 429 if (!qname) { 430 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 431 return -ENOMEM; 432 } 433 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 434 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 435 ret = 0; 436 else 437 f2fs_err(sbi, "%s quota file already specified", 438 QTYPE2NAME(qtype)); 439 goto errout; 440 } 441 if (strchr(qname, '/')) { 442 f2fs_err(sbi, "quotafile must be on filesystem root"); 443 goto errout; 444 } 445 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 446 set_opt(sbi, QUOTA); 447 return 0; 448 errout: 449 kfree(qname); 450 return ret; 451 } 452 453 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 454 { 455 struct f2fs_sb_info *sbi = F2FS_SB(sb); 456 457 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 458 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 459 return -EINVAL; 460 } 461 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 462 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 463 return 0; 464 } 465 466 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 467 { 468 /* 469 * We do the test below only for project quotas. 'usrquota' and 470 * 'grpquota' mount options are allowed even without quota feature 471 * to support legacy quotas in quota files. 472 */ 473 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 474 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 475 return -1; 476 } 477 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 478 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 479 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 480 if (test_opt(sbi, USRQUOTA) && 481 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 482 clear_opt(sbi, USRQUOTA); 483 484 if (test_opt(sbi, GRPQUOTA) && 485 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 486 clear_opt(sbi, GRPQUOTA); 487 488 if (test_opt(sbi, PRJQUOTA) && 489 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 490 clear_opt(sbi, PRJQUOTA); 491 492 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 493 test_opt(sbi, PRJQUOTA)) { 494 f2fs_err(sbi, "old and new quota format mixing"); 495 return -1; 496 } 497 498 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 499 f2fs_err(sbi, "journaled quota format not specified"); 500 return -1; 501 } 502 } 503 504 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 505 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 506 F2FS_OPTION(sbi).s_jquota_fmt = 0; 507 } 508 return 0; 509 } 510 #endif 511 512 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 513 const char *opt, 514 const substring_t *arg, 515 bool is_remount) 516 { 517 struct f2fs_sb_info *sbi = F2FS_SB(sb); 518 struct fs_parameter param = { 519 .type = fs_value_is_string, 520 .string = arg->from ? arg->from : "", 521 }; 522 struct fscrypt_dummy_policy *policy = 523 &F2FS_OPTION(sbi).dummy_enc_policy; 524 int err; 525 526 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 527 f2fs_warn(sbi, "test_dummy_encryption option not supported"); 528 return -EINVAL; 529 } 530 531 if (!f2fs_sb_has_encrypt(sbi)) { 532 f2fs_err(sbi, "Encrypt feature is off"); 533 return -EINVAL; 534 } 535 536 /* 537 * This mount option is just for testing, and it's not worthwhile to 538 * implement the extra complexity (e.g. RCU protection) that would be 539 * needed to allow it to be set or changed during remount. We do allow 540 * it to be specified during remount, but only if there is no change. 541 */ 542 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { 543 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 544 return -EINVAL; 545 } 546 547 err = fscrypt_parse_test_dummy_encryption(¶m, policy); 548 if (err) { 549 if (err == -EEXIST) 550 f2fs_warn(sbi, 551 "Can't change test_dummy_encryption on remount"); 552 else if (err == -EINVAL) 553 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 554 opt); 555 else 556 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 557 opt, err); 558 return -EINVAL; 559 } 560 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 561 return 0; 562 } 563 564 #ifdef CONFIG_F2FS_FS_COMPRESSION 565 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi, 566 const char *new_ext, bool is_ext) 567 { 568 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 569 int ext_cnt; 570 int i; 571 572 if (is_ext) { 573 ext = F2FS_OPTION(sbi).extensions; 574 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 575 } else { 576 ext = F2FS_OPTION(sbi).noextensions; 577 ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 578 } 579 580 for (i = 0; i < ext_cnt; i++) { 581 if (!strcasecmp(new_ext, ext[i])) 582 return true; 583 } 584 585 return false; 586 } 587 588 /* 589 * 1. The same extension name cannot not appear in both compress and non-compress extension 590 * at the same time. 591 * 2. If the compress extension specifies all files, the types specified by the non-compress 592 * extension will be treated as special cases and will not be compressed. 593 * 3. Don't allow the non-compress extension specifies all files. 594 */ 595 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 596 { 597 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 598 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 599 int ext_cnt, noext_cnt, index = 0, no_index = 0; 600 601 ext = F2FS_OPTION(sbi).extensions; 602 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 603 noext = F2FS_OPTION(sbi).noextensions; 604 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 605 606 if (!noext_cnt) 607 return 0; 608 609 for (no_index = 0; no_index < noext_cnt; no_index++) { 610 if (!strcasecmp("*", noext[no_index])) { 611 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 612 return -EINVAL; 613 } 614 for (index = 0; index < ext_cnt; index++) { 615 if (!strcasecmp(ext[index], noext[no_index])) { 616 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 617 ext[index]); 618 return -EINVAL; 619 } 620 } 621 } 622 return 0; 623 } 624 625 #ifdef CONFIG_F2FS_FS_LZ4 626 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 627 { 628 #ifdef CONFIG_F2FS_FS_LZ4HC 629 unsigned int level; 630 631 if (strlen(str) == 3) { 632 F2FS_OPTION(sbi).compress_level = 0; 633 return 0; 634 } 635 636 str += 3; 637 638 if (str[0] != ':') { 639 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 640 return -EINVAL; 641 } 642 if (kstrtouint(str + 1, 10, &level)) 643 return -EINVAL; 644 645 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { 646 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 647 return -EINVAL; 648 } 649 650 F2FS_OPTION(sbi).compress_level = level; 651 return 0; 652 #else 653 if (strlen(str) == 3) { 654 F2FS_OPTION(sbi).compress_level = 0; 655 return 0; 656 } 657 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 658 return -EINVAL; 659 #endif 660 } 661 #endif 662 663 #ifdef CONFIG_F2FS_FS_ZSTD 664 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 665 { 666 unsigned int level; 667 int len = 4; 668 669 if (strlen(str) == len) { 670 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 671 return 0; 672 } 673 674 str += len; 675 676 if (str[0] != ':') { 677 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 678 return -EINVAL; 679 } 680 if (kstrtouint(str + 1, 10, &level)) 681 return -EINVAL; 682 683 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { 684 f2fs_info(sbi, "invalid zstd compress level: %d", level); 685 return -EINVAL; 686 } 687 688 F2FS_OPTION(sbi).compress_level = level; 689 return 0; 690 } 691 #endif 692 #endif 693 694 static int parse_options(struct super_block *sb, char *options, bool is_remount) 695 { 696 struct f2fs_sb_info *sbi = F2FS_SB(sb); 697 substring_t args[MAX_OPT_ARGS]; 698 #ifdef CONFIG_F2FS_FS_COMPRESSION 699 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 700 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 701 int ext_cnt, noext_cnt; 702 #endif 703 char *p, *name; 704 int arg = 0; 705 kuid_t uid; 706 kgid_t gid; 707 int ret; 708 709 if (!options) 710 goto default_check; 711 712 while ((p = strsep(&options, ",")) != NULL) { 713 int token; 714 715 if (!*p) 716 continue; 717 /* 718 * Initialize args struct so we know whether arg was 719 * found; some options take optional arguments. 720 */ 721 args[0].to = args[0].from = NULL; 722 token = match_token(p, f2fs_tokens, args); 723 724 switch (token) { 725 case Opt_gc_background: 726 name = match_strdup(&args[0]); 727 728 if (!name) 729 return -ENOMEM; 730 if (!strcmp(name, "on")) { 731 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 732 } else if (!strcmp(name, "off")) { 733 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 734 } else if (!strcmp(name, "sync")) { 735 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 736 } else { 737 kfree(name); 738 return -EINVAL; 739 } 740 kfree(name); 741 break; 742 case Opt_disable_roll_forward: 743 set_opt(sbi, DISABLE_ROLL_FORWARD); 744 break; 745 case Opt_norecovery: 746 /* this option mounts f2fs with ro */ 747 set_opt(sbi, NORECOVERY); 748 if (!f2fs_readonly(sb)) 749 return -EINVAL; 750 break; 751 case Opt_discard: 752 if (!f2fs_hw_support_discard(sbi)) { 753 f2fs_warn(sbi, "device does not support discard"); 754 break; 755 } 756 set_opt(sbi, DISCARD); 757 break; 758 case Opt_nodiscard: 759 if (f2fs_hw_should_discard(sbi)) { 760 f2fs_warn(sbi, "discard is required for zoned block devices"); 761 return -EINVAL; 762 } 763 clear_opt(sbi, DISCARD); 764 break; 765 case Opt_noheap: 766 set_opt(sbi, NOHEAP); 767 break; 768 case Opt_heap: 769 clear_opt(sbi, NOHEAP); 770 break; 771 #ifdef CONFIG_F2FS_FS_XATTR 772 case Opt_user_xattr: 773 set_opt(sbi, XATTR_USER); 774 break; 775 case Opt_nouser_xattr: 776 clear_opt(sbi, XATTR_USER); 777 break; 778 case Opt_inline_xattr: 779 set_opt(sbi, INLINE_XATTR); 780 break; 781 case Opt_noinline_xattr: 782 clear_opt(sbi, INLINE_XATTR); 783 break; 784 case Opt_inline_xattr_size: 785 if (args->from && match_int(args, &arg)) 786 return -EINVAL; 787 set_opt(sbi, INLINE_XATTR_SIZE); 788 F2FS_OPTION(sbi).inline_xattr_size = arg; 789 break; 790 #else 791 case Opt_user_xattr: 792 f2fs_info(sbi, "user_xattr options not supported"); 793 break; 794 case Opt_nouser_xattr: 795 f2fs_info(sbi, "nouser_xattr options not supported"); 796 break; 797 case Opt_inline_xattr: 798 f2fs_info(sbi, "inline_xattr options not supported"); 799 break; 800 case Opt_noinline_xattr: 801 f2fs_info(sbi, "noinline_xattr options not supported"); 802 break; 803 #endif 804 #ifdef CONFIG_F2FS_FS_POSIX_ACL 805 case Opt_acl: 806 set_opt(sbi, POSIX_ACL); 807 break; 808 case Opt_noacl: 809 clear_opt(sbi, POSIX_ACL); 810 break; 811 #else 812 case Opt_acl: 813 f2fs_info(sbi, "acl options not supported"); 814 break; 815 case Opt_noacl: 816 f2fs_info(sbi, "noacl options not supported"); 817 break; 818 #endif 819 case Opt_active_logs: 820 if (args->from && match_int(args, &arg)) 821 return -EINVAL; 822 if (arg != 2 && arg != 4 && 823 arg != NR_CURSEG_PERSIST_TYPE) 824 return -EINVAL; 825 F2FS_OPTION(sbi).active_logs = arg; 826 break; 827 case Opt_disable_ext_identify: 828 set_opt(sbi, DISABLE_EXT_IDENTIFY); 829 break; 830 case Opt_inline_data: 831 set_opt(sbi, INLINE_DATA); 832 break; 833 case Opt_inline_dentry: 834 set_opt(sbi, INLINE_DENTRY); 835 break; 836 case Opt_noinline_dentry: 837 clear_opt(sbi, INLINE_DENTRY); 838 break; 839 case Opt_flush_merge: 840 set_opt(sbi, FLUSH_MERGE); 841 break; 842 case Opt_noflush_merge: 843 clear_opt(sbi, FLUSH_MERGE); 844 break; 845 case Opt_nobarrier: 846 set_opt(sbi, NOBARRIER); 847 break; 848 case Opt_barrier: 849 clear_opt(sbi, NOBARRIER); 850 break; 851 case Opt_fastboot: 852 set_opt(sbi, FASTBOOT); 853 break; 854 case Opt_extent_cache: 855 set_opt(sbi, READ_EXTENT_CACHE); 856 break; 857 case Opt_noextent_cache: 858 clear_opt(sbi, READ_EXTENT_CACHE); 859 break; 860 case Opt_noinline_data: 861 clear_opt(sbi, INLINE_DATA); 862 break; 863 case Opt_data_flush: 864 set_opt(sbi, DATA_FLUSH); 865 break; 866 case Opt_reserve_root: 867 if (args->from && match_int(args, &arg)) 868 return -EINVAL; 869 if (test_opt(sbi, RESERVE_ROOT)) { 870 f2fs_info(sbi, "Preserve previous reserve_root=%u", 871 F2FS_OPTION(sbi).root_reserved_blocks); 872 } else { 873 F2FS_OPTION(sbi).root_reserved_blocks = arg; 874 set_opt(sbi, RESERVE_ROOT); 875 } 876 break; 877 case Opt_resuid: 878 if (args->from && match_int(args, &arg)) 879 return -EINVAL; 880 uid = make_kuid(current_user_ns(), arg); 881 if (!uid_valid(uid)) { 882 f2fs_err(sbi, "Invalid uid value %d", arg); 883 return -EINVAL; 884 } 885 F2FS_OPTION(sbi).s_resuid = uid; 886 break; 887 case Opt_resgid: 888 if (args->from && match_int(args, &arg)) 889 return -EINVAL; 890 gid = make_kgid(current_user_ns(), arg); 891 if (!gid_valid(gid)) { 892 f2fs_err(sbi, "Invalid gid value %d", arg); 893 return -EINVAL; 894 } 895 F2FS_OPTION(sbi).s_resgid = gid; 896 break; 897 case Opt_mode: 898 name = match_strdup(&args[0]); 899 900 if (!name) 901 return -ENOMEM; 902 if (!strcmp(name, "adaptive")) { 903 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 904 } else if (!strcmp(name, "lfs")) { 905 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 906 } else if (!strcmp(name, "fragment:segment")) { 907 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 908 } else if (!strcmp(name, "fragment:block")) { 909 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 910 } else { 911 kfree(name); 912 return -EINVAL; 913 } 914 kfree(name); 915 break; 916 case Opt_io_size_bits: 917 if (args->from && match_int(args, &arg)) 918 return -EINVAL; 919 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) { 920 f2fs_warn(sbi, "Not support %ld, larger than %d", 921 BIT(arg), BIO_MAX_VECS); 922 return -EINVAL; 923 } 924 F2FS_OPTION(sbi).write_io_size_bits = arg; 925 break; 926 #ifdef CONFIG_F2FS_FAULT_INJECTION 927 case Opt_fault_injection: 928 if (args->from && match_int(args, &arg)) 929 return -EINVAL; 930 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 931 set_opt(sbi, FAULT_INJECTION); 932 break; 933 934 case Opt_fault_type: 935 if (args->from && match_int(args, &arg)) 936 return -EINVAL; 937 f2fs_build_fault_attr(sbi, 0, arg); 938 set_opt(sbi, FAULT_INJECTION); 939 break; 940 #else 941 case Opt_fault_injection: 942 f2fs_info(sbi, "fault_injection options not supported"); 943 break; 944 945 case Opt_fault_type: 946 f2fs_info(sbi, "fault_type options not supported"); 947 break; 948 #endif 949 case Opt_lazytime: 950 sb->s_flags |= SB_LAZYTIME; 951 break; 952 case Opt_nolazytime: 953 sb->s_flags &= ~SB_LAZYTIME; 954 break; 955 #ifdef CONFIG_QUOTA 956 case Opt_quota: 957 case Opt_usrquota: 958 set_opt(sbi, USRQUOTA); 959 break; 960 case Opt_grpquota: 961 set_opt(sbi, GRPQUOTA); 962 break; 963 case Opt_prjquota: 964 set_opt(sbi, PRJQUOTA); 965 break; 966 case Opt_usrjquota: 967 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 968 if (ret) 969 return ret; 970 break; 971 case Opt_grpjquota: 972 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 973 if (ret) 974 return ret; 975 break; 976 case Opt_prjjquota: 977 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 978 if (ret) 979 return ret; 980 break; 981 case Opt_offusrjquota: 982 ret = f2fs_clear_qf_name(sb, USRQUOTA); 983 if (ret) 984 return ret; 985 break; 986 case Opt_offgrpjquota: 987 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 988 if (ret) 989 return ret; 990 break; 991 case Opt_offprjjquota: 992 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 993 if (ret) 994 return ret; 995 break; 996 case Opt_jqfmt_vfsold: 997 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 998 break; 999 case Opt_jqfmt_vfsv0: 1000 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 1001 break; 1002 case Opt_jqfmt_vfsv1: 1003 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 1004 break; 1005 case Opt_noquota: 1006 clear_opt(sbi, QUOTA); 1007 clear_opt(sbi, USRQUOTA); 1008 clear_opt(sbi, GRPQUOTA); 1009 clear_opt(sbi, PRJQUOTA); 1010 break; 1011 #else 1012 case Opt_quota: 1013 case Opt_usrquota: 1014 case Opt_grpquota: 1015 case Opt_prjquota: 1016 case Opt_usrjquota: 1017 case Opt_grpjquota: 1018 case Opt_prjjquota: 1019 case Opt_offusrjquota: 1020 case Opt_offgrpjquota: 1021 case Opt_offprjjquota: 1022 case Opt_jqfmt_vfsold: 1023 case Opt_jqfmt_vfsv0: 1024 case Opt_jqfmt_vfsv1: 1025 case Opt_noquota: 1026 f2fs_info(sbi, "quota operations not supported"); 1027 break; 1028 #endif 1029 case Opt_alloc: 1030 name = match_strdup(&args[0]); 1031 if (!name) 1032 return -ENOMEM; 1033 1034 if (!strcmp(name, "default")) { 1035 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1036 } else if (!strcmp(name, "reuse")) { 1037 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 1038 } else { 1039 kfree(name); 1040 return -EINVAL; 1041 } 1042 kfree(name); 1043 break; 1044 case Opt_fsync: 1045 name = match_strdup(&args[0]); 1046 if (!name) 1047 return -ENOMEM; 1048 if (!strcmp(name, "posix")) { 1049 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1050 } else if (!strcmp(name, "strict")) { 1051 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1052 } else if (!strcmp(name, "nobarrier")) { 1053 F2FS_OPTION(sbi).fsync_mode = 1054 FSYNC_MODE_NOBARRIER; 1055 } else { 1056 kfree(name); 1057 return -EINVAL; 1058 } 1059 kfree(name); 1060 break; 1061 case Opt_test_dummy_encryption: 1062 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1063 is_remount); 1064 if (ret) 1065 return ret; 1066 break; 1067 case Opt_inlinecrypt: 1068 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1069 sb->s_flags |= SB_INLINECRYPT; 1070 #else 1071 f2fs_info(sbi, "inline encryption not supported"); 1072 #endif 1073 break; 1074 case Opt_checkpoint_disable_cap_perc: 1075 if (args->from && match_int(args, &arg)) 1076 return -EINVAL; 1077 if (arg < 0 || arg > 100) 1078 return -EINVAL; 1079 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1080 set_opt(sbi, DISABLE_CHECKPOINT); 1081 break; 1082 case Opt_checkpoint_disable_cap: 1083 if (args->from && match_int(args, &arg)) 1084 return -EINVAL; 1085 F2FS_OPTION(sbi).unusable_cap = arg; 1086 set_opt(sbi, DISABLE_CHECKPOINT); 1087 break; 1088 case Opt_checkpoint_disable: 1089 set_opt(sbi, DISABLE_CHECKPOINT); 1090 break; 1091 case Opt_checkpoint_enable: 1092 clear_opt(sbi, DISABLE_CHECKPOINT); 1093 break; 1094 case Opt_checkpoint_merge: 1095 set_opt(sbi, MERGE_CHECKPOINT); 1096 break; 1097 case Opt_nocheckpoint_merge: 1098 clear_opt(sbi, MERGE_CHECKPOINT); 1099 break; 1100 #ifdef CONFIG_F2FS_FS_COMPRESSION 1101 case Opt_compress_algorithm: 1102 if (!f2fs_sb_has_compression(sbi)) { 1103 f2fs_info(sbi, "Image doesn't support compression"); 1104 break; 1105 } 1106 name = match_strdup(&args[0]); 1107 if (!name) 1108 return -ENOMEM; 1109 if (!strcmp(name, "lzo")) { 1110 #ifdef CONFIG_F2FS_FS_LZO 1111 F2FS_OPTION(sbi).compress_level = 0; 1112 F2FS_OPTION(sbi).compress_algorithm = 1113 COMPRESS_LZO; 1114 #else 1115 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1116 #endif 1117 } else if (!strncmp(name, "lz4", 3)) { 1118 #ifdef CONFIG_F2FS_FS_LZ4 1119 ret = f2fs_set_lz4hc_level(sbi, name); 1120 if (ret) { 1121 kfree(name); 1122 return -EINVAL; 1123 } 1124 F2FS_OPTION(sbi).compress_algorithm = 1125 COMPRESS_LZ4; 1126 #else 1127 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1128 #endif 1129 } else if (!strncmp(name, "zstd", 4)) { 1130 #ifdef CONFIG_F2FS_FS_ZSTD 1131 ret = f2fs_set_zstd_level(sbi, name); 1132 if (ret) { 1133 kfree(name); 1134 return -EINVAL; 1135 } 1136 F2FS_OPTION(sbi).compress_algorithm = 1137 COMPRESS_ZSTD; 1138 #else 1139 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1140 #endif 1141 } else if (!strcmp(name, "lzo-rle")) { 1142 #ifdef CONFIG_F2FS_FS_LZORLE 1143 F2FS_OPTION(sbi).compress_level = 0; 1144 F2FS_OPTION(sbi).compress_algorithm = 1145 COMPRESS_LZORLE; 1146 #else 1147 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1148 #endif 1149 } else { 1150 kfree(name); 1151 return -EINVAL; 1152 } 1153 kfree(name); 1154 break; 1155 case Opt_compress_log_size: 1156 if (!f2fs_sb_has_compression(sbi)) { 1157 f2fs_info(sbi, "Image doesn't support compression"); 1158 break; 1159 } 1160 if (args->from && match_int(args, &arg)) 1161 return -EINVAL; 1162 if (arg < MIN_COMPRESS_LOG_SIZE || 1163 arg > MAX_COMPRESS_LOG_SIZE) { 1164 f2fs_err(sbi, 1165 "Compress cluster log size is out of range"); 1166 return -EINVAL; 1167 } 1168 F2FS_OPTION(sbi).compress_log_size = arg; 1169 break; 1170 case Opt_compress_extension: 1171 if (!f2fs_sb_has_compression(sbi)) { 1172 f2fs_info(sbi, "Image doesn't support compression"); 1173 break; 1174 } 1175 name = match_strdup(&args[0]); 1176 if (!name) 1177 return -ENOMEM; 1178 1179 ext = F2FS_OPTION(sbi).extensions; 1180 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1181 1182 if (strlen(name) >= F2FS_EXTENSION_LEN || 1183 ext_cnt >= COMPRESS_EXT_NUM) { 1184 f2fs_err(sbi, 1185 "invalid extension length/number"); 1186 kfree(name); 1187 return -EINVAL; 1188 } 1189 1190 if (is_compress_extension_exist(sbi, name, true)) { 1191 kfree(name); 1192 break; 1193 } 1194 1195 strcpy(ext[ext_cnt], name); 1196 F2FS_OPTION(sbi).compress_ext_cnt++; 1197 kfree(name); 1198 break; 1199 case Opt_nocompress_extension: 1200 if (!f2fs_sb_has_compression(sbi)) { 1201 f2fs_info(sbi, "Image doesn't support compression"); 1202 break; 1203 } 1204 name = match_strdup(&args[0]); 1205 if (!name) 1206 return -ENOMEM; 1207 1208 noext = F2FS_OPTION(sbi).noextensions; 1209 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1210 1211 if (strlen(name) >= F2FS_EXTENSION_LEN || 1212 noext_cnt >= COMPRESS_EXT_NUM) { 1213 f2fs_err(sbi, 1214 "invalid extension length/number"); 1215 kfree(name); 1216 return -EINVAL; 1217 } 1218 1219 if (is_compress_extension_exist(sbi, name, false)) { 1220 kfree(name); 1221 break; 1222 } 1223 1224 strcpy(noext[noext_cnt], name); 1225 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1226 kfree(name); 1227 break; 1228 case Opt_compress_chksum: 1229 if (!f2fs_sb_has_compression(sbi)) { 1230 f2fs_info(sbi, "Image doesn't support compression"); 1231 break; 1232 } 1233 F2FS_OPTION(sbi).compress_chksum = true; 1234 break; 1235 case Opt_compress_mode: 1236 if (!f2fs_sb_has_compression(sbi)) { 1237 f2fs_info(sbi, "Image doesn't support compression"); 1238 break; 1239 } 1240 name = match_strdup(&args[0]); 1241 if (!name) 1242 return -ENOMEM; 1243 if (!strcmp(name, "fs")) { 1244 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1245 } else if (!strcmp(name, "user")) { 1246 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1247 } else { 1248 kfree(name); 1249 return -EINVAL; 1250 } 1251 kfree(name); 1252 break; 1253 case Opt_compress_cache: 1254 if (!f2fs_sb_has_compression(sbi)) { 1255 f2fs_info(sbi, "Image doesn't support compression"); 1256 break; 1257 } 1258 set_opt(sbi, COMPRESS_CACHE); 1259 break; 1260 #else 1261 case Opt_compress_algorithm: 1262 case Opt_compress_log_size: 1263 case Opt_compress_extension: 1264 case Opt_nocompress_extension: 1265 case Opt_compress_chksum: 1266 case Opt_compress_mode: 1267 case Opt_compress_cache: 1268 f2fs_info(sbi, "compression options not supported"); 1269 break; 1270 #endif 1271 case Opt_atgc: 1272 set_opt(sbi, ATGC); 1273 break; 1274 case Opt_gc_merge: 1275 set_opt(sbi, GC_MERGE); 1276 break; 1277 case Opt_nogc_merge: 1278 clear_opt(sbi, GC_MERGE); 1279 break; 1280 case Opt_discard_unit: 1281 name = match_strdup(&args[0]); 1282 if (!name) 1283 return -ENOMEM; 1284 if (!strcmp(name, "block")) { 1285 F2FS_OPTION(sbi).discard_unit = 1286 DISCARD_UNIT_BLOCK; 1287 } else if (!strcmp(name, "segment")) { 1288 F2FS_OPTION(sbi).discard_unit = 1289 DISCARD_UNIT_SEGMENT; 1290 } else if (!strcmp(name, "section")) { 1291 F2FS_OPTION(sbi).discard_unit = 1292 DISCARD_UNIT_SECTION; 1293 } else { 1294 kfree(name); 1295 return -EINVAL; 1296 } 1297 kfree(name); 1298 break; 1299 case Opt_memory_mode: 1300 name = match_strdup(&args[0]); 1301 if (!name) 1302 return -ENOMEM; 1303 if (!strcmp(name, "normal")) { 1304 F2FS_OPTION(sbi).memory_mode = 1305 MEMORY_MODE_NORMAL; 1306 } else if (!strcmp(name, "low")) { 1307 F2FS_OPTION(sbi).memory_mode = 1308 MEMORY_MODE_LOW; 1309 } else { 1310 kfree(name); 1311 return -EINVAL; 1312 } 1313 kfree(name); 1314 break; 1315 case Opt_age_extent_cache: 1316 set_opt(sbi, AGE_EXTENT_CACHE); 1317 break; 1318 case Opt_errors: 1319 name = match_strdup(&args[0]); 1320 if (!name) 1321 return -ENOMEM; 1322 if (!strcmp(name, "remount-ro")) { 1323 F2FS_OPTION(sbi).errors = 1324 MOUNT_ERRORS_READONLY; 1325 } else if (!strcmp(name, "continue")) { 1326 F2FS_OPTION(sbi).errors = 1327 MOUNT_ERRORS_CONTINUE; 1328 } else if (!strcmp(name, "panic")) { 1329 F2FS_OPTION(sbi).errors = 1330 MOUNT_ERRORS_PANIC; 1331 } else { 1332 kfree(name); 1333 return -EINVAL; 1334 } 1335 kfree(name); 1336 break; 1337 default: 1338 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1339 p); 1340 return -EINVAL; 1341 } 1342 } 1343 default_check: 1344 #ifdef CONFIG_QUOTA 1345 if (f2fs_check_quota_options(sbi)) 1346 return -EINVAL; 1347 #else 1348 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1349 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1350 return -EINVAL; 1351 } 1352 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1353 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1354 return -EINVAL; 1355 } 1356 #endif 1357 #if !IS_ENABLED(CONFIG_UNICODE) 1358 if (f2fs_sb_has_casefold(sbi)) { 1359 f2fs_err(sbi, 1360 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1361 return -EINVAL; 1362 } 1363 #endif 1364 /* 1365 * The BLKZONED feature indicates that the drive was formatted with 1366 * zone alignment optimization. This is optional for host-aware 1367 * devices, but mandatory for host-managed zoned block devices. 1368 */ 1369 if (f2fs_sb_has_blkzoned(sbi)) { 1370 #ifdef CONFIG_BLK_DEV_ZONED 1371 if (F2FS_OPTION(sbi).discard_unit != 1372 DISCARD_UNIT_SECTION) { 1373 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1374 F2FS_OPTION(sbi).discard_unit = 1375 DISCARD_UNIT_SECTION; 1376 } 1377 1378 if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) { 1379 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature"); 1380 return -EINVAL; 1381 } 1382 #else 1383 f2fs_err(sbi, "Zoned block device support is not enabled"); 1384 return -EINVAL; 1385 #endif 1386 } 1387 1388 #ifdef CONFIG_F2FS_FS_COMPRESSION 1389 if (f2fs_test_compress_extension(sbi)) { 1390 f2fs_err(sbi, "invalid compress or nocompress extension"); 1391 return -EINVAL; 1392 } 1393 #endif 1394 1395 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 1396 f2fs_err(sbi, "Should set mode=lfs with %luKB-sized IO", 1397 F2FS_IO_SIZE_KB(sbi)); 1398 return -EINVAL; 1399 } 1400 1401 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1402 int min_size, max_size; 1403 1404 if (!f2fs_sb_has_extra_attr(sbi) || 1405 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1406 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1407 return -EINVAL; 1408 } 1409 if (!test_opt(sbi, INLINE_XATTR)) { 1410 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1411 return -EINVAL; 1412 } 1413 1414 min_size = MIN_INLINE_XATTR_SIZE; 1415 max_size = MAX_INLINE_XATTR_SIZE; 1416 1417 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1418 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1419 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1420 min_size, max_size); 1421 return -EINVAL; 1422 } 1423 } 1424 1425 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) { 1426 f2fs_err(sbi, "LFS is not compatible with ATGC"); 1427 return -EINVAL; 1428 } 1429 1430 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) { 1431 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); 1432 return -EINVAL; 1433 } 1434 1435 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1436 f2fs_err(sbi, "Allow to mount readonly mode only"); 1437 return -EROFS; 1438 } 1439 return 0; 1440 } 1441 1442 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1443 { 1444 struct f2fs_inode_info *fi; 1445 1446 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) 1447 return NULL; 1448 1449 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1450 if (!fi) 1451 return NULL; 1452 1453 init_once((void *) fi); 1454 1455 /* Initialize f2fs-specific inode info */ 1456 atomic_set(&fi->dirty_pages, 0); 1457 atomic_set(&fi->i_compr_blocks, 0); 1458 init_f2fs_rwsem(&fi->i_sem); 1459 spin_lock_init(&fi->i_size_lock); 1460 INIT_LIST_HEAD(&fi->dirty_list); 1461 INIT_LIST_HEAD(&fi->gdirty_list); 1462 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1463 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1464 init_f2fs_rwsem(&fi->i_xattr_sem); 1465 1466 /* Will be used by directory only */ 1467 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1468 1469 return &fi->vfs_inode; 1470 } 1471 1472 static int f2fs_drop_inode(struct inode *inode) 1473 { 1474 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1475 int ret; 1476 1477 /* 1478 * during filesystem shutdown, if checkpoint is disabled, 1479 * drop useless meta/node dirty pages. 1480 */ 1481 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1482 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1483 inode->i_ino == F2FS_META_INO(sbi)) { 1484 trace_f2fs_drop_inode(inode, 1); 1485 return 1; 1486 } 1487 } 1488 1489 /* 1490 * This is to avoid a deadlock condition like below. 1491 * writeback_single_inode(inode) 1492 * - f2fs_write_data_page 1493 * - f2fs_gc -> iput -> evict 1494 * - inode_wait_for_writeback(inode) 1495 */ 1496 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1497 if (!inode->i_nlink && !is_bad_inode(inode)) { 1498 /* to avoid evict_inode call simultaneously */ 1499 atomic_inc(&inode->i_count); 1500 spin_unlock(&inode->i_lock); 1501 1502 /* should remain fi->extent_tree for writepage */ 1503 f2fs_destroy_extent_node(inode); 1504 1505 sb_start_intwrite(inode->i_sb); 1506 f2fs_i_size_write(inode, 0); 1507 1508 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1509 inode, NULL, 0, DATA); 1510 truncate_inode_pages_final(inode->i_mapping); 1511 1512 if (F2FS_HAS_BLOCKS(inode)) 1513 f2fs_truncate(inode); 1514 1515 sb_end_intwrite(inode->i_sb); 1516 1517 spin_lock(&inode->i_lock); 1518 atomic_dec(&inode->i_count); 1519 } 1520 trace_f2fs_drop_inode(inode, 0); 1521 return 0; 1522 } 1523 ret = generic_drop_inode(inode); 1524 if (!ret) 1525 ret = fscrypt_drop_inode(inode); 1526 trace_f2fs_drop_inode(inode, ret); 1527 return ret; 1528 } 1529 1530 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1531 { 1532 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1533 int ret = 0; 1534 1535 spin_lock(&sbi->inode_lock[DIRTY_META]); 1536 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1537 ret = 1; 1538 } else { 1539 set_inode_flag(inode, FI_DIRTY_INODE); 1540 stat_inc_dirty_inode(sbi, DIRTY_META); 1541 } 1542 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1543 list_add_tail(&F2FS_I(inode)->gdirty_list, 1544 &sbi->inode_list[DIRTY_META]); 1545 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1546 } 1547 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1548 return ret; 1549 } 1550 1551 void f2fs_inode_synced(struct inode *inode) 1552 { 1553 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1554 1555 spin_lock(&sbi->inode_lock[DIRTY_META]); 1556 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1557 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1558 return; 1559 } 1560 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1561 list_del_init(&F2FS_I(inode)->gdirty_list); 1562 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1563 } 1564 clear_inode_flag(inode, FI_DIRTY_INODE); 1565 clear_inode_flag(inode, FI_AUTO_RECOVER); 1566 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1567 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1568 } 1569 1570 /* 1571 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1572 * 1573 * We should call set_dirty_inode to write the dirty inode through write_inode. 1574 */ 1575 static void f2fs_dirty_inode(struct inode *inode, int flags) 1576 { 1577 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1578 1579 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1580 inode->i_ino == F2FS_META_INO(sbi)) 1581 return; 1582 1583 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1584 clear_inode_flag(inode, FI_AUTO_RECOVER); 1585 1586 f2fs_inode_dirtied(inode, false); 1587 } 1588 1589 static void f2fs_free_inode(struct inode *inode) 1590 { 1591 fscrypt_free_inode(inode); 1592 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1593 } 1594 1595 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1596 { 1597 percpu_counter_destroy(&sbi->total_valid_inode_count); 1598 percpu_counter_destroy(&sbi->rf_node_block_count); 1599 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1600 } 1601 1602 static void destroy_device_list(struct f2fs_sb_info *sbi) 1603 { 1604 int i; 1605 1606 for (i = 0; i < sbi->s_ndevs; i++) { 1607 if (i > 0) 1608 bdev_release(FDEV(i).bdev_handle); 1609 #ifdef CONFIG_BLK_DEV_ZONED 1610 kvfree(FDEV(i).blkz_seq); 1611 #endif 1612 } 1613 kvfree(sbi->devs); 1614 } 1615 1616 static void f2fs_put_super(struct super_block *sb) 1617 { 1618 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1619 int i; 1620 int err = 0; 1621 bool done; 1622 1623 /* unregister procfs/sysfs entries in advance to avoid race case */ 1624 f2fs_unregister_sysfs(sbi); 1625 1626 f2fs_quota_off_umount(sb); 1627 1628 /* prevent remaining shrinker jobs */ 1629 mutex_lock(&sbi->umount_mutex); 1630 1631 /* 1632 * flush all issued checkpoints and stop checkpoint issue thread. 1633 * after then, all checkpoints should be done by each process context. 1634 */ 1635 f2fs_stop_ckpt_thread(sbi); 1636 1637 /* 1638 * We don't need to do checkpoint when superblock is clean. 1639 * But, the previous checkpoint was not done by umount, it needs to do 1640 * clean checkpoint again. 1641 */ 1642 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1643 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1644 struct cp_control cpc = { 1645 .reason = CP_UMOUNT, 1646 }; 1647 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1648 err = f2fs_write_checkpoint(sbi, &cpc); 1649 } 1650 1651 /* be sure to wait for any on-going discard commands */ 1652 done = f2fs_issue_discard_timeout(sbi); 1653 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { 1654 struct cp_control cpc = { 1655 .reason = CP_UMOUNT | CP_TRIMMED, 1656 }; 1657 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1658 err = f2fs_write_checkpoint(sbi, &cpc); 1659 } 1660 1661 /* 1662 * normally superblock is clean, so we need to release this. 1663 * In addition, EIO will skip do checkpoint, we need this as well. 1664 */ 1665 f2fs_release_ino_entry(sbi, true); 1666 1667 f2fs_leave_shrinker(sbi); 1668 mutex_unlock(&sbi->umount_mutex); 1669 1670 /* our cp_error case, we can wait for any writeback page */ 1671 f2fs_flush_merged_writes(sbi); 1672 1673 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1674 1675 if (err || f2fs_cp_error(sbi)) { 1676 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1677 truncate_inode_pages_final(META_MAPPING(sbi)); 1678 } 1679 1680 for (i = 0; i < NR_COUNT_TYPE; i++) { 1681 if (!get_pages(sbi, i)) 1682 continue; 1683 f2fs_err(sbi, "detect filesystem reference count leak during " 1684 "umount, type: %d, count: %lld", i, get_pages(sbi, i)); 1685 f2fs_bug_on(sbi, 1); 1686 } 1687 1688 f2fs_bug_on(sbi, sbi->fsync_node_num); 1689 1690 f2fs_destroy_compress_inode(sbi); 1691 1692 iput(sbi->node_inode); 1693 sbi->node_inode = NULL; 1694 1695 iput(sbi->meta_inode); 1696 sbi->meta_inode = NULL; 1697 1698 /* 1699 * iput() can update stat information, if f2fs_write_checkpoint() 1700 * above failed with error. 1701 */ 1702 f2fs_destroy_stats(sbi); 1703 1704 /* destroy f2fs internal modules */ 1705 f2fs_destroy_node_manager(sbi); 1706 f2fs_destroy_segment_manager(sbi); 1707 1708 /* flush s_error_work before sbi destroy */ 1709 flush_work(&sbi->s_error_work); 1710 1711 f2fs_destroy_post_read_wq(sbi); 1712 1713 kvfree(sbi->ckpt); 1714 1715 if (sbi->s_chksum_driver) 1716 crypto_free_shash(sbi->s_chksum_driver); 1717 kfree(sbi->raw_super); 1718 1719 f2fs_destroy_page_array_cache(sbi); 1720 f2fs_destroy_xattr_caches(sbi); 1721 mempool_destroy(sbi->write_io_dummy); 1722 #ifdef CONFIG_QUOTA 1723 for (i = 0; i < MAXQUOTAS; i++) 1724 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1725 #endif 1726 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1727 destroy_percpu_info(sbi); 1728 f2fs_destroy_iostat(sbi); 1729 for (i = 0; i < NR_PAGE_TYPE; i++) 1730 kvfree(sbi->write_io[i]); 1731 #if IS_ENABLED(CONFIG_UNICODE) 1732 utf8_unload(sb->s_encoding); 1733 #endif 1734 } 1735 1736 int f2fs_sync_fs(struct super_block *sb, int sync) 1737 { 1738 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1739 int err = 0; 1740 1741 if (unlikely(f2fs_cp_error(sbi))) 1742 return 0; 1743 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1744 return 0; 1745 1746 trace_f2fs_sync_fs(sb, sync); 1747 1748 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1749 return -EAGAIN; 1750 1751 if (sync) { 1752 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1753 err = f2fs_issue_checkpoint(sbi); 1754 } 1755 1756 return err; 1757 } 1758 1759 static int f2fs_freeze(struct super_block *sb) 1760 { 1761 if (f2fs_readonly(sb)) 1762 return 0; 1763 1764 /* IO error happened before */ 1765 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1766 return -EIO; 1767 1768 /* must be clean, since sync_filesystem() was already called */ 1769 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1770 return -EINVAL; 1771 1772 /* Let's flush checkpoints and stop the thread. */ 1773 f2fs_flush_ckpt_thread(F2FS_SB(sb)); 1774 1775 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1776 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1777 return 0; 1778 } 1779 1780 static int f2fs_unfreeze(struct super_block *sb) 1781 { 1782 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1783 return 0; 1784 } 1785 1786 #ifdef CONFIG_QUOTA 1787 static int f2fs_statfs_project(struct super_block *sb, 1788 kprojid_t projid, struct kstatfs *buf) 1789 { 1790 struct kqid qid; 1791 struct dquot *dquot; 1792 u64 limit; 1793 u64 curblock; 1794 1795 qid = make_kqid_projid(projid); 1796 dquot = dqget(sb, qid); 1797 if (IS_ERR(dquot)) 1798 return PTR_ERR(dquot); 1799 spin_lock(&dquot->dq_dqb_lock); 1800 1801 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1802 dquot->dq_dqb.dqb_bhardlimit); 1803 if (limit) 1804 limit >>= sb->s_blocksize_bits; 1805 1806 if (limit && buf->f_blocks > limit) { 1807 curblock = (dquot->dq_dqb.dqb_curspace + 1808 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1809 buf->f_blocks = limit; 1810 buf->f_bfree = buf->f_bavail = 1811 (buf->f_blocks > curblock) ? 1812 (buf->f_blocks - curblock) : 0; 1813 } 1814 1815 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1816 dquot->dq_dqb.dqb_ihardlimit); 1817 1818 if (limit && buf->f_files > limit) { 1819 buf->f_files = limit; 1820 buf->f_ffree = 1821 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1822 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1823 } 1824 1825 spin_unlock(&dquot->dq_dqb_lock); 1826 dqput(dquot); 1827 return 0; 1828 } 1829 #endif 1830 1831 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1832 { 1833 struct super_block *sb = dentry->d_sb; 1834 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1835 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1836 block_t total_count, user_block_count, start_count; 1837 u64 avail_node_count; 1838 unsigned int total_valid_node_count; 1839 1840 total_count = le64_to_cpu(sbi->raw_super->block_count); 1841 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1842 buf->f_type = F2FS_SUPER_MAGIC; 1843 buf->f_bsize = sbi->blocksize; 1844 1845 buf->f_blocks = total_count - start_count; 1846 1847 spin_lock(&sbi->stat_lock); 1848 1849 user_block_count = sbi->user_block_count; 1850 total_valid_node_count = valid_node_count(sbi); 1851 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1852 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1853 sbi->current_reserved_blocks; 1854 1855 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1856 buf->f_bfree = 0; 1857 else 1858 buf->f_bfree -= sbi->unusable_block_count; 1859 spin_unlock(&sbi->stat_lock); 1860 1861 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1862 buf->f_bavail = buf->f_bfree - 1863 F2FS_OPTION(sbi).root_reserved_blocks; 1864 else 1865 buf->f_bavail = 0; 1866 1867 if (avail_node_count > user_block_count) { 1868 buf->f_files = user_block_count; 1869 buf->f_ffree = buf->f_bavail; 1870 } else { 1871 buf->f_files = avail_node_count; 1872 buf->f_ffree = min(avail_node_count - total_valid_node_count, 1873 buf->f_bavail); 1874 } 1875 1876 buf->f_namelen = F2FS_NAME_LEN; 1877 buf->f_fsid = u64_to_fsid(id); 1878 1879 #ifdef CONFIG_QUOTA 1880 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1881 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1882 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1883 } 1884 #endif 1885 return 0; 1886 } 1887 1888 static inline void f2fs_show_quota_options(struct seq_file *seq, 1889 struct super_block *sb) 1890 { 1891 #ifdef CONFIG_QUOTA 1892 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1893 1894 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1895 char *fmtname = ""; 1896 1897 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1898 case QFMT_VFS_OLD: 1899 fmtname = "vfsold"; 1900 break; 1901 case QFMT_VFS_V0: 1902 fmtname = "vfsv0"; 1903 break; 1904 case QFMT_VFS_V1: 1905 fmtname = "vfsv1"; 1906 break; 1907 } 1908 seq_printf(seq, ",jqfmt=%s", fmtname); 1909 } 1910 1911 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1912 seq_show_option(seq, "usrjquota", 1913 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1914 1915 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1916 seq_show_option(seq, "grpjquota", 1917 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1918 1919 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1920 seq_show_option(seq, "prjjquota", 1921 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1922 #endif 1923 } 1924 1925 #ifdef CONFIG_F2FS_FS_COMPRESSION 1926 static inline void f2fs_show_compress_options(struct seq_file *seq, 1927 struct super_block *sb) 1928 { 1929 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1930 char *algtype = ""; 1931 int i; 1932 1933 if (!f2fs_sb_has_compression(sbi)) 1934 return; 1935 1936 switch (F2FS_OPTION(sbi).compress_algorithm) { 1937 case COMPRESS_LZO: 1938 algtype = "lzo"; 1939 break; 1940 case COMPRESS_LZ4: 1941 algtype = "lz4"; 1942 break; 1943 case COMPRESS_ZSTD: 1944 algtype = "zstd"; 1945 break; 1946 case COMPRESS_LZORLE: 1947 algtype = "lzo-rle"; 1948 break; 1949 } 1950 seq_printf(seq, ",compress_algorithm=%s", algtype); 1951 1952 if (F2FS_OPTION(sbi).compress_level) 1953 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1954 1955 seq_printf(seq, ",compress_log_size=%u", 1956 F2FS_OPTION(sbi).compress_log_size); 1957 1958 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1959 seq_printf(seq, ",compress_extension=%s", 1960 F2FS_OPTION(sbi).extensions[i]); 1961 } 1962 1963 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1964 seq_printf(seq, ",nocompress_extension=%s", 1965 F2FS_OPTION(sbi).noextensions[i]); 1966 } 1967 1968 if (F2FS_OPTION(sbi).compress_chksum) 1969 seq_puts(seq, ",compress_chksum"); 1970 1971 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1972 seq_printf(seq, ",compress_mode=%s", "fs"); 1973 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1974 seq_printf(seq, ",compress_mode=%s", "user"); 1975 1976 if (test_opt(sbi, COMPRESS_CACHE)) 1977 seq_puts(seq, ",compress_cache"); 1978 } 1979 #endif 1980 1981 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1982 { 1983 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1984 1985 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1986 seq_printf(seq, ",background_gc=%s", "sync"); 1987 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1988 seq_printf(seq, ",background_gc=%s", "on"); 1989 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1990 seq_printf(seq, ",background_gc=%s", "off"); 1991 1992 if (test_opt(sbi, GC_MERGE)) 1993 seq_puts(seq, ",gc_merge"); 1994 else 1995 seq_puts(seq, ",nogc_merge"); 1996 1997 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1998 seq_puts(seq, ",disable_roll_forward"); 1999 if (test_opt(sbi, NORECOVERY)) 2000 seq_puts(seq, ",norecovery"); 2001 if (test_opt(sbi, DISCARD)) { 2002 seq_puts(seq, ",discard"); 2003 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 2004 seq_printf(seq, ",discard_unit=%s", "block"); 2005 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2006 seq_printf(seq, ",discard_unit=%s", "segment"); 2007 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2008 seq_printf(seq, ",discard_unit=%s", "section"); 2009 } else { 2010 seq_puts(seq, ",nodiscard"); 2011 } 2012 if (test_opt(sbi, NOHEAP)) 2013 seq_puts(seq, ",no_heap"); 2014 else 2015 seq_puts(seq, ",heap"); 2016 #ifdef CONFIG_F2FS_FS_XATTR 2017 if (test_opt(sbi, XATTR_USER)) 2018 seq_puts(seq, ",user_xattr"); 2019 else 2020 seq_puts(seq, ",nouser_xattr"); 2021 if (test_opt(sbi, INLINE_XATTR)) 2022 seq_puts(seq, ",inline_xattr"); 2023 else 2024 seq_puts(seq, ",noinline_xattr"); 2025 if (test_opt(sbi, INLINE_XATTR_SIZE)) 2026 seq_printf(seq, ",inline_xattr_size=%u", 2027 F2FS_OPTION(sbi).inline_xattr_size); 2028 #endif 2029 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2030 if (test_opt(sbi, POSIX_ACL)) 2031 seq_puts(seq, ",acl"); 2032 else 2033 seq_puts(seq, ",noacl"); 2034 #endif 2035 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 2036 seq_puts(seq, ",disable_ext_identify"); 2037 if (test_opt(sbi, INLINE_DATA)) 2038 seq_puts(seq, ",inline_data"); 2039 else 2040 seq_puts(seq, ",noinline_data"); 2041 if (test_opt(sbi, INLINE_DENTRY)) 2042 seq_puts(seq, ",inline_dentry"); 2043 else 2044 seq_puts(seq, ",noinline_dentry"); 2045 if (test_opt(sbi, FLUSH_MERGE)) 2046 seq_puts(seq, ",flush_merge"); 2047 else 2048 seq_puts(seq, ",noflush_merge"); 2049 if (test_opt(sbi, NOBARRIER)) 2050 seq_puts(seq, ",nobarrier"); 2051 else 2052 seq_puts(seq, ",barrier"); 2053 if (test_opt(sbi, FASTBOOT)) 2054 seq_puts(seq, ",fastboot"); 2055 if (test_opt(sbi, READ_EXTENT_CACHE)) 2056 seq_puts(seq, ",extent_cache"); 2057 else 2058 seq_puts(seq, ",noextent_cache"); 2059 if (test_opt(sbi, AGE_EXTENT_CACHE)) 2060 seq_puts(seq, ",age_extent_cache"); 2061 if (test_opt(sbi, DATA_FLUSH)) 2062 seq_puts(seq, ",data_flush"); 2063 2064 seq_puts(seq, ",mode="); 2065 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 2066 seq_puts(seq, "adaptive"); 2067 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 2068 seq_puts(seq, "lfs"); 2069 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 2070 seq_puts(seq, "fragment:segment"); 2071 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2072 seq_puts(seq, "fragment:block"); 2073 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 2074 if (test_opt(sbi, RESERVE_ROOT)) 2075 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 2076 F2FS_OPTION(sbi).root_reserved_blocks, 2077 from_kuid_munged(&init_user_ns, 2078 F2FS_OPTION(sbi).s_resuid), 2079 from_kgid_munged(&init_user_ns, 2080 F2FS_OPTION(sbi).s_resgid)); 2081 if (F2FS_IO_SIZE_BITS(sbi)) 2082 seq_printf(seq, ",io_bits=%u", 2083 F2FS_OPTION(sbi).write_io_size_bits); 2084 #ifdef CONFIG_F2FS_FAULT_INJECTION 2085 if (test_opt(sbi, FAULT_INJECTION)) { 2086 seq_printf(seq, ",fault_injection=%u", 2087 F2FS_OPTION(sbi).fault_info.inject_rate); 2088 seq_printf(seq, ",fault_type=%u", 2089 F2FS_OPTION(sbi).fault_info.inject_type); 2090 } 2091 #endif 2092 #ifdef CONFIG_QUOTA 2093 if (test_opt(sbi, QUOTA)) 2094 seq_puts(seq, ",quota"); 2095 if (test_opt(sbi, USRQUOTA)) 2096 seq_puts(seq, ",usrquota"); 2097 if (test_opt(sbi, GRPQUOTA)) 2098 seq_puts(seq, ",grpquota"); 2099 if (test_opt(sbi, PRJQUOTA)) 2100 seq_puts(seq, ",prjquota"); 2101 #endif 2102 f2fs_show_quota_options(seq, sbi->sb); 2103 2104 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 2105 2106 if (sbi->sb->s_flags & SB_INLINECRYPT) 2107 seq_puts(seq, ",inlinecrypt"); 2108 2109 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 2110 seq_printf(seq, ",alloc_mode=%s", "default"); 2111 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2112 seq_printf(seq, ",alloc_mode=%s", "reuse"); 2113 2114 if (test_opt(sbi, DISABLE_CHECKPOINT)) 2115 seq_printf(seq, ",checkpoint=disable:%u", 2116 F2FS_OPTION(sbi).unusable_cap); 2117 if (test_opt(sbi, MERGE_CHECKPOINT)) 2118 seq_puts(seq, ",checkpoint_merge"); 2119 else 2120 seq_puts(seq, ",nocheckpoint_merge"); 2121 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2122 seq_printf(seq, ",fsync_mode=%s", "posix"); 2123 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2124 seq_printf(seq, ",fsync_mode=%s", "strict"); 2125 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2126 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2127 2128 #ifdef CONFIG_F2FS_FS_COMPRESSION 2129 f2fs_show_compress_options(seq, sbi->sb); 2130 #endif 2131 2132 if (test_opt(sbi, ATGC)) 2133 seq_puts(seq, ",atgc"); 2134 2135 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2136 seq_printf(seq, ",memory=%s", "normal"); 2137 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2138 seq_printf(seq, ",memory=%s", "low"); 2139 2140 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2141 seq_printf(seq, ",errors=%s", "remount-ro"); 2142 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) 2143 seq_printf(seq, ",errors=%s", "continue"); 2144 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) 2145 seq_printf(seq, ",errors=%s", "panic"); 2146 2147 return 0; 2148 } 2149 2150 static void default_options(struct f2fs_sb_info *sbi, bool remount) 2151 { 2152 /* init some FS parameters */ 2153 if (!remount) { 2154 set_opt(sbi, READ_EXTENT_CACHE); 2155 clear_opt(sbi, DISABLE_CHECKPOINT); 2156 2157 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2158 set_opt(sbi, DISCARD); 2159 2160 if (f2fs_sb_has_blkzoned(sbi)) 2161 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2162 else 2163 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2164 } 2165 2166 if (f2fs_sb_has_readonly(sbi)) 2167 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2168 else 2169 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2170 2171 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2172 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= 2173 SMALL_VOLUME_SEGMENTS) 2174 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2175 else 2176 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2177 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2178 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2179 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2180 if (f2fs_sb_has_compression(sbi)) { 2181 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2182 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2183 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2184 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2185 } 2186 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2187 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2188 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; 2189 2190 sbi->sb->s_flags &= ~SB_INLINECRYPT; 2191 2192 set_opt(sbi, INLINE_XATTR); 2193 set_opt(sbi, INLINE_DATA); 2194 set_opt(sbi, INLINE_DENTRY); 2195 set_opt(sbi, NOHEAP); 2196 set_opt(sbi, MERGE_CHECKPOINT); 2197 F2FS_OPTION(sbi).unusable_cap = 0; 2198 sbi->sb->s_flags |= SB_LAZYTIME; 2199 if (!f2fs_is_readonly(sbi)) 2200 set_opt(sbi, FLUSH_MERGE); 2201 if (f2fs_sb_has_blkzoned(sbi)) 2202 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2203 else 2204 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2205 2206 #ifdef CONFIG_F2FS_FS_XATTR 2207 set_opt(sbi, XATTR_USER); 2208 #endif 2209 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2210 set_opt(sbi, POSIX_ACL); 2211 #endif 2212 2213 f2fs_build_fault_attr(sbi, 0, 0); 2214 } 2215 2216 #ifdef CONFIG_QUOTA 2217 static int f2fs_enable_quotas(struct super_block *sb); 2218 #endif 2219 2220 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2221 { 2222 unsigned int s_flags = sbi->sb->s_flags; 2223 struct cp_control cpc; 2224 unsigned int gc_mode = sbi->gc_mode; 2225 int err = 0; 2226 int ret; 2227 block_t unusable; 2228 2229 if (s_flags & SB_RDONLY) { 2230 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2231 return -EINVAL; 2232 } 2233 sbi->sb->s_flags |= SB_ACTIVE; 2234 2235 /* check if we need more GC first */ 2236 unusable = f2fs_get_unusable_blocks(sbi); 2237 if (!f2fs_disable_cp_again(sbi, unusable)) 2238 goto skip_gc; 2239 2240 f2fs_update_time(sbi, DISABLE_TIME); 2241 2242 sbi->gc_mode = GC_URGENT_HIGH; 2243 2244 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2245 struct f2fs_gc_control gc_control = { 2246 .victim_segno = NULL_SEGNO, 2247 .init_gc_type = FG_GC, 2248 .should_migrate_blocks = false, 2249 .err_gc_skipped = true, 2250 .nr_free_secs = 1 }; 2251 2252 f2fs_down_write(&sbi->gc_lock); 2253 stat_inc_gc_call_count(sbi, FOREGROUND); 2254 err = f2fs_gc(sbi, &gc_control); 2255 if (err == -ENODATA) { 2256 err = 0; 2257 break; 2258 } 2259 if (err && err != -EAGAIN) 2260 break; 2261 } 2262 2263 ret = sync_filesystem(sbi->sb); 2264 if (ret || err) { 2265 err = ret ? ret : err; 2266 goto restore_flag; 2267 } 2268 2269 unusable = f2fs_get_unusable_blocks(sbi); 2270 if (f2fs_disable_cp_again(sbi, unusable)) { 2271 err = -EAGAIN; 2272 goto restore_flag; 2273 } 2274 2275 skip_gc: 2276 f2fs_down_write(&sbi->gc_lock); 2277 cpc.reason = CP_PAUSE; 2278 set_sbi_flag(sbi, SBI_CP_DISABLED); 2279 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2280 err = f2fs_write_checkpoint(sbi, &cpc); 2281 if (err) 2282 goto out_unlock; 2283 2284 spin_lock(&sbi->stat_lock); 2285 sbi->unusable_block_count = unusable; 2286 spin_unlock(&sbi->stat_lock); 2287 2288 out_unlock: 2289 f2fs_up_write(&sbi->gc_lock); 2290 restore_flag: 2291 sbi->gc_mode = gc_mode; 2292 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2293 return err; 2294 } 2295 2296 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2297 { 2298 int retry = DEFAULT_RETRY_IO_COUNT; 2299 2300 /* we should flush all the data to keep data consistency */ 2301 do { 2302 sync_inodes_sb(sbi->sb); 2303 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2304 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2305 2306 if (unlikely(retry < 0)) 2307 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2308 2309 f2fs_down_write(&sbi->gc_lock); 2310 f2fs_dirty_to_prefree(sbi); 2311 2312 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2313 set_sbi_flag(sbi, SBI_IS_DIRTY); 2314 f2fs_up_write(&sbi->gc_lock); 2315 2316 f2fs_sync_fs(sbi->sb, 1); 2317 2318 /* Let's ensure there's no pending checkpoint anymore */ 2319 f2fs_flush_ckpt_thread(sbi); 2320 } 2321 2322 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2323 { 2324 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2325 struct f2fs_mount_info org_mount_opt; 2326 unsigned long old_sb_flags; 2327 int err; 2328 bool need_restart_gc = false, need_stop_gc = false; 2329 bool need_restart_flush = false, need_stop_flush = false; 2330 bool need_restart_discard = false, need_stop_discard = false; 2331 bool need_enable_checkpoint = false, need_disable_checkpoint = false; 2332 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); 2333 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); 2334 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2335 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 2336 bool no_atgc = !test_opt(sbi, ATGC); 2337 bool no_discard = !test_opt(sbi, DISCARD); 2338 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2339 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2340 #ifdef CONFIG_QUOTA 2341 int i, j; 2342 #endif 2343 2344 /* 2345 * Save the old mount options in case we 2346 * need to restore them. 2347 */ 2348 org_mount_opt = sbi->mount_opt; 2349 old_sb_flags = sb->s_flags; 2350 2351 #ifdef CONFIG_QUOTA 2352 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2353 for (i = 0; i < MAXQUOTAS; i++) { 2354 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2355 org_mount_opt.s_qf_names[i] = 2356 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2357 GFP_KERNEL); 2358 if (!org_mount_opt.s_qf_names[i]) { 2359 for (j = 0; j < i; j++) 2360 kfree(org_mount_opt.s_qf_names[j]); 2361 return -ENOMEM; 2362 } 2363 } else { 2364 org_mount_opt.s_qf_names[i] = NULL; 2365 } 2366 } 2367 #endif 2368 2369 /* recover superblocks we couldn't write due to previous RO mount */ 2370 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2371 err = f2fs_commit_super(sbi, false); 2372 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2373 err); 2374 if (!err) 2375 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2376 } 2377 2378 default_options(sbi, true); 2379 2380 /* parse mount options */ 2381 err = parse_options(sb, data, true); 2382 if (err) 2383 goto restore_opts; 2384 2385 /* flush outstanding errors before changing fs state */ 2386 flush_work(&sbi->s_error_work); 2387 2388 /* 2389 * Previous and new state of filesystem is RO, 2390 * so skip checking GC and FLUSH_MERGE conditions. 2391 */ 2392 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2393 goto skip; 2394 2395 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) { 2396 err = -EROFS; 2397 goto restore_opts; 2398 } 2399 2400 #ifdef CONFIG_QUOTA 2401 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2402 err = dquot_suspend(sb, -1); 2403 if (err < 0) 2404 goto restore_opts; 2405 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2406 /* dquot_resume needs RW */ 2407 sb->s_flags &= ~SB_RDONLY; 2408 if (sb_any_quota_suspended(sb)) { 2409 dquot_resume(sb, -1); 2410 } else if (f2fs_sb_has_quota_ino(sbi)) { 2411 err = f2fs_enable_quotas(sb); 2412 if (err) 2413 goto restore_opts; 2414 } 2415 } 2416 #endif 2417 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { 2418 err = -EINVAL; 2419 f2fs_warn(sbi, "LFS is not compatible with IPU"); 2420 goto restore_opts; 2421 } 2422 2423 /* disallow enable atgc dynamically */ 2424 if (no_atgc == !!test_opt(sbi, ATGC)) { 2425 err = -EINVAL; 2426 f2fs_warn(sbi, "switch atgc option is not allowed"); 2427 goto restore_opts; 2428 } 2429 2430 /* disallow enable/disable extent_cache dynamically */ 2431 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { 2432 err = -EINVAL; 2433 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2434 goto restore_opts; 2435 } 2436 /* disallow enable/disable age extent_cache dynamically */ 2437 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { 2438 err = -EINVAL; 2439 f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); 2440 goto restore_opts; 2441 } 2442 2443 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 2444 err = -EINVAL; 2445 f2fs_warn(sbi, "switch io_bits option is not allowed"); 2446 goto restore_opts; 2447 } 2448 2449 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2450 err = -EINVAL; 2451 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2452 goto restore_opts; 2453 } 2454 2455 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2456 err = -EINVAL; 2457 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2458 goto restore_opts; 2459 } 2460 2461 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2462 err = -EINVAL; 2463 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2464 goto restore_opts; 2465 } 2466 2467 /* 2468 * We stop the GC thread if FS is mounted as RO 2469 * or if background_gc = off is passed in mount 2470 * option. Also sync the filesystem. 2471 */ 2472 if ((*flags & SB_RDONLY) || 2473 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2474 !test_opt(sbi, GC_MERGE))) { 2475 if (sbi->gc_thread) { 2476 f2fs_stop_gc_thread(sbi); 2477 need_restart_gc = true; 2478 } 2479 } else if (!sbi->gc_thread) { 2480 err = f2fs_start_gc_thread(sbi); 2481 if (err) 2482 goto restore_opts; 2483 need_stop_gc = true; 2484 } 2485 2486 if (*flags & SB_RDONLY) { 2487 sync_inodes_sb(sb); 2488 2489 set_sbi_flag(sbi, SBI_IS_DIRTY); 2490 set_sbi_flag(sbi, SBI_IS_CLOSE); 2491 f2fs_sync_fs(sb, 1); 2492 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2493 } 2494 2495 /* 2496 * We stop issue flush thread if FS is mounted as RO 2497 * or if flush_merge is not passed in mount option. 2498 */ 2499 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2500 clear_opt(sbi, FLUSH_MERGE); 2501 f2fs_destroy_flush_cmd_control(sbi, false); 2502 need_restart_flush = true; 2503 } else { 2504 err = f2fs_create_flush_cmd_control(sbi); 2505 if (err) 2506 goto restore_gc; 2507 need_stop_flush = true; 2508 } 2509 2510 if (no_discard == !!test_opt(sbi, DISCARD)) { 2511 if (test_opt(sbi, DISCARD)) { 2512 err = f2fs_start_discard_thread(sbi); 2513 if (err) 2514 goto restore_flush; 2515 need_stop_discard = true; 2516 } else { 2517 f2fs_stop_discard_thread(sbi); 2518 f2fs_issue_discard_timeout(sbi); 2519 need_restart_discard = true; 2520 } 2521 } 2522 2523 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2524 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2525 err = f2fs_disable_checkpoint(sbi); 2526 if (err) 2527 goto restore_discard; 2528 need_enable_checkpoint = true; 2529 } else { 2530 f2fs_enable_checkpoint(sbi); 2531 need_disable_checkpoint = true; 2532 } 2533 } 2534 2535 /* 2536 * Place this routine at the end, since a new checkpoint would be 2537 * triggered while remount and we need to take care of it before 2538 * returning from remount. 2539 */ 2540 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2541 !test_opt(sbi, MERGE_CHECKPOINT)) { 2542 f2fs_stop_ckpt_thread(sbi); 2543 } else { 2544 /* Flush if the prevous checkpoint, if exists. */ 2545 f2fs_flush_ckpt_thread(sbi); 2546 2547 err = f2fs_start_ckpt_thread(sbi); 2548 if (err) { 2549 f2fs_err(sbi, 2550 "Failed to start F2FS issue_checkpoint_thread (%d)", 2551 err); 2552 goto restore_checkpoint; 2553 } 2554 } 2555 2556 skip: 2557 #ifdef CONFIG_QUOTA 2558 /* Release old quota file names */ 2559 for (i = 0; i < MAXQUOTAS; i++) 2560 kfree(org_mount_opt.s_qf_names[i]); 2561 #endif 2562 /* Update the POSIXACL Flag */ 2563 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2564 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2565 2566 limit_reserve_root(sbi); 2567 adjust_unusable_cap_perc(sbi); 2568 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2569 return 0; 2570 restore_checkpoint: 2571 if (need_enable_checkpoint) { 2572 f2fs_enable_checkpoint(sbi); 2573 } else if (need_disable_checkpoint) { 2574 if (f2fs_disable_checkpoint(sbi)) 2575 f2fs_warn(sbi, "checkpoint has not been disabled"); 2576 } 2577 restore_discard: 2578 if (need_restart_discard) { 2579 if (f2fs_start_discard_thread(sbi)) 2580 f2fs_warn(sbi, "discard has been stopped"); 2581 } else if (need_stop_discard) { 2582 f2fs_stop_discard_thread(sbi); 2583 } 2584 restore_flush: 2585 if (need_restart_flush) { 2586 if (f2fs_create_flush_cmd_control(sbi)) 2587 f2fs_warn(sbi, "background flush thread has stopped"); 2588 } else if (need_stop_flush) { 2589 clear_opt(sbi, FLUSH_MERGE); 2590 f2fs_destroy_flush_cmd_control(sbi, false); 2591 } 2592 restore_gc: 2593 if (need_restart_gc) { 2594 if (f2fs_start_gc_thread(sbi)) 2595 f2fs_warn(sbi, "background gc thread has stopped"); 2596 } else if (need_stop_gc) { 2597 f2fs_stop_gc_thread(sbi); 2598 } 2599 restore_opts: 2600 #ifdef CONFIG_QUOTA 2601 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2602 for (i = 0; i < MAXQUOTAS; i++) { 2603 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2604 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2605 } 2606 #endif 2607 sbi->mount_opt = org_mount_opt; 2608 sb->s_flags = old_sb_flags; 2609 return err; 2610 } 2611 2612 #ifdef CONFIG_QUOTA 2613 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) 2614 { 2615 /* need to recovery orphan */ 2616 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 2617 return true; 2618 /* need to recovery data */ 2619 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2620 return false; 2621 if (test_opt(sbi, NORECOVERY)) 2622 return false; 2623 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); 2624 } 2625 2626 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) 2627 { 2628 bool readonly = f2fs_readonly(sbi->sb); 2629 2630 if (!f2fs_need_recovery(sbi)) 2631 return false; 2632 2633 /* it doesn't need to check f2fs_sb_has_readonly() */ 2634 if (f2fs_hw_is_readonly(sbi)) 2635 return false; 2636 2637 if (readonly) { 2638 sbi->sb->s_flags &= ~SB_RDONLY; 2639 set_sbi_flag(sbi, SBI_IS_WRITABLE); 2640 } 2641 2642 /* 2643 * Turn on quotas which were not enabled for read-only mounts if 2644 * filesystem has quota feature, so that they are updated correctly. 2645 */ 2646 return f2fs_enable_quota_files(sbi, readonly); 2647 } 2648 2649 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, 2650 bool quota_enabled) 2651 { 2652 if (quota_enabled) 2653 f2fs_quota_off_umount(sbi->sb); 2654 2655 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { 2656 clear_sbi_flag(sbi, SBI_IS_WRITABLE); 2657 sbi->sb->s_flags |= SB_RDONLY; 2658 } 2659 } 2660 2661 /* Read data from quotafile */ 2662 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2663 size_t len, loff_t off) 2664 { 2665 struct inode *inode = sb_dqopt(sb)->files[type]; 2666 struct address_space *mapping = inode->i_mapping; 2667 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2668 int offset = off & (sb->s_blocksize - 1); 2669 int tocopy; 2670 size_t toread; 2671 loff_t i_size = i_size_read(inode); 2672 struct page *page; 2673 2674 if (off > i_size) 2675 return 0; 2676 2677 if (off + len > i_size) 2678 len = i_size - off; 2679 toread = len; 2680 while (toread > 0) { 2681 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2682 repeat: 2683 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2684 if (IS_ERR(page)) { 2685 if (PTR_ERR(page) == -ENOMEM) { 2686 memalloc_retry_wait(GFP_NOFS); 2687 goto repeat; 2688 } 2689 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2690 return PTR_ERR(page); 2691 } 2692 2693 lock_page(page); 2694 2695 if (unlikely(page->mapping != mapping)) { 2696 f2fs_put_page(page, 1); 2697 goto repeat; 2698 } 2699 if (unlikely(!PageUptodate(page))) { 2700 f2fs_put_page(page, 1); 2701 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2702 return -EIO; 2703 } 2704 2705 memcpy_from_page(data, page, offset, tocopy); 2706 f2fs_put_page(page, 1); 2707 2708 offset = 0; 2709 toread -= tocopy; 2710 data += tocopy; 2711 blkidx++; 2712 } 2713 return len; 2714 } 2715 2716 /* Write to quotafile */ 2717 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2718 const char *data, size_t len, loff_t off) 2719 { 2720 struct inode *inode = sb_dqopt(sb)->files[type]; 2721 struct address_space *mapping = inode->i_mapping; 2722 const struct address_space_operations *a_ops = mapping->a_ops; 2723 int offset = off & (sb->s_blocksize - 1); 2724 size_t towrite = len; 2725 struct page *page; 2726 void *fsdata = NULL; 2727 int err = 0; 2728 int tocopy; 2729 2730 while (towrite > 0) { 2731 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2732 towrite); 2733 retry: 2734 err = a_ops->write_begin(NULL, mapping, off, tocopy, 2735 &page, &fsdata); 2736 if (unlikely(err)) { 2737 if (err == -ENOMEM) { 2738 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2739 goto retry; 2740 } 2741 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2742 break; 2743 } 2744 2745 memcpy_to_page(page, offset, data, tocopy); 2746 2747 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2748 page, fsdata); 2749 offset = 0; 2750 towrite -= tocopy; 2751 off += tocopy; 2752 data += tocopy; 2753 cond_resched(); 2754 } 2755 2756 if (len == towrite) 2757 return err; 2758 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2759 f2fs_mark_inode_dirty_sync(inode, false); 2760 return len - towrite; 2761 } 2762 2763 int f2fs_dquot_initialize(struct inode *inode) 2764 { 2765 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) 2766 return -ESRCH; 2767 2768 return dquot_initialize(inode); 2769 } 2770 2771 static struct dquot **f2fs_get_dquots(struct inode *inode) 2772 { 2773 return F2FS_I(inode)->i_dquot; 2774 } 2775 2776 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2777 { 2778 return &F2FS_I(inode)->i_reserved_quota; 2779 } 2780 2781 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2782 { 2783 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2784 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2785 return 0; 2786 } 2787 2788 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2789 F2FS_OPTION(sbi).s_jquota_fmt, type); 2790 } 2791 2792 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2793 { 2794 int enabled = 0; 2795 int i, err; 2796 2797 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2798 err = f2fs_enable_quotas(sbi->sb); 2799 if (err) { 2800 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2801 return 0; 2802 } 2803 return 1; 2804 } 2805 2806 for (i = 0; i < MAXQUOTAS; i++) { 2807 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2808 err = f2fs_quota_on_mount(sbi, i); 2809 if (!err) { 2810 enabled = 1; 2811 continue; 2812 } 2813 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2814 err, i); 2815 } 2816 } 2817 return enabled; 2818 } 2819 2820 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2821 unsigned int flags) 2822 { 2823 struct inode *qf_inode; 2824 unsigned long qf_inum; 2825 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; 2826 int err; 2827 2828 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2829 2830 qf_inum = f2fs_qf_ino(sb, type); 2831 if (!qf_inum) 2832 return -EPERM; 2833 2834 qf_inode = f2fs_iget(sb, qf_inum); 2835 if (IS_ERR(qf_inode)) { 2836 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2837 return PTR_ERR(qf_inode); 2838 } 2839 2840 /* Don't account quota for quota files to avoid recursion */ 2841 inode_lock(qf_inode); 2842 qf_inode->i_flags |= S_NOQUOTA; 2843 2844 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { 2845 F2FS_I(qf_inode)->i_flags |= qf_flag; 2846 f2fs_set_inode_flags(qf_inode); 2847 } 2848 inode_unlock(qf_inode); 2849 2850 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2851 iput(qf_inode); 2852 return err; 2853 } 2854 2855 static int f2fs_enable_quotas(struct super_block *sb) 2856 { 2857 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2858 int type, err = 0; 2859 unsigned long qf_inum; 2860 bool quota_mopt[MAXQUOTAS] = { 2861 test_opt(sbi, USRQUOTA), 2862 test_opt(sbi, GRPQUOTA), 2863 test_opt(sbi, PRJQUOTA), 2864 }; 2865 2866 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2867 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2868 return 0; 2869 } 2870 2871 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2872 2873 for (type = 0; type < MAXQUOTAS; type++) { 2874 qf_inum = f2fs_qf_ino(sb, type); 2875 if (qf_inum) { 2876 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2877 DQUOT_USAGE_ENABLED | 2878 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2879 if (err) { 2880 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2881 type, err); 2882 for (type--; type >= 0; type--) 2883 dquot_quota_off(sb, type); 2884 set_sbi_flag(F2FS_SB(sb), 2885 SBI_QUOTA_NEED_REPAIR); 2886 return err; 2887 } 2888 } 2889 } 2890 return 0; 2891 } 2892 2893 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2894 { 2895 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2896 struct address_space *mapping = dqopt->files[type]->i_mapping; 2897 int ret = 0; 2898 2899 ret = dquot_writeback_dquots(sbi->sb, type); 2900 if (ret) 2901 goto out; 2902 2903 ret = filemap_fdatawrite(mapping); 2904 if (ret) 2905 goto out; 2906 2907 /* if we are using journalled quota */ 2908 if (is_journalled_quota(sbi)) 2909 goto out; 2910 2911 ret = filemap_fdatawait(mapping); 2912 2913 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2914 out: 2915 if (ret) 2916 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2917 return ret; 2918 } 2919 2920 int f2fs_quota_sync(struct super_block *sb, int type) 2921 { 2922 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2923 struct quota_info *dqopt = sb_dqopt(sb); 2924 int cnt; 2925 int ret = 0; 2926 2927 /* 2928 * Now when everything is written we can discard the pagecache so 2929 * that userspace sees the changes. 2930 */ 2931 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2932 2933 if (type != -1 && cnt != type) 2934 continue; 2935 2936 if (!sb_has_quota_active(sb, cnt)) 2937 continue; 2938 2939 if (!f2fs_sb_has_quota_ino(sbi)) 2940 inode_lock(dqopt->files[cnt]); 2941 2942 /* 2943 * do_quotactl 2944 * f2fs_quota_sync 2945 * f2fs_down_read(quota_sem) 2946 * dquot_writeback_dquots() 2947 * f2fs_dquot_commit 2948 * block_operation 2949 * f2fs_down_read(quota_sem) 2950 */ 2951 f2fs_lock_op(sbi); 2952 f2fs_down_read(&sbi->quota_sem); 2953 2954 ret = f2fs_quota_sync_file(sbi, cnt); 2955 2956 f2fs_up_read(&sbi->quota_sem); 2957 f2fs_unlock_op(sbi); 2958 2959 if (!f2fs_sb_has_quota_ino(sbi)) 2960 inode_unlock(dqopt->files[cnt]); 2961 2962 if (ret) 2963 break; 2964 } 2965 return ret; 2966 } 2967 2968 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2969 const struct path *path) 2970 { 2971 struct inode *inode; 2972 int err; 2973 2974 /* if quota sysfile exists, deny enabling quota with specific file */ 2975 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2976 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2977 return -EBUSY; 2978 } 2979 2980 if (path->dentry->d_sb != sb) 2981 return -EXDEV; 2982 2983 err = f2fs_quota_sync(sb, type); 2984 if (err) 2985 return err; 2986 2987 inode = d_inode(path->dentry); 2988 2989 err = filemap_fdatawrite(inode->i_mapping); 2990 if (err) 2991 return err; 2992 2993 err = filemap_fdatawait(inode->i_mapping); 2994 if (err) 2995 return err; 2996 2997 err = dquot_quota_on(sb, type, format_id, path); 2998 if (err) 2999 return err; 3000 3001 inode_lock(inode); 3002 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; 3003 f2fs_set_inode_flags(inode); 3004 inode_unlock(inode); 3005 f2fs_mark_inode_dirty_sync(inode, false); 3006 3007 return 0; 3008 } 3009 3010 static int __f2fs_quota_off(struct super_block *sb, int type) 3011 { 3012 struct inode *inode = sb_dqopt(sb)->files[type]; 3013 int err; 3014 3015 if (!inode || !igrab(inode)) 3016 return dquot_quota_off(sb, type); 3017 3018 err = f2fs_quota_sync(sb, type); 3019 if (err) 3020 goto out_put; 3021 3022 err = dquot_quota_off(sb, type); 3023 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 3024 goto out_put; 3025 3026 inode_lock(inode); 3027 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; 3028 f2fs_set_inode_flags(inode); 3029 inode_unlock(inode); 3030 f2fs_mark_inode_dirty_sync(inode, false); 3031 out_put: 3032 iput(inode); 3033 return err; 3034 } 3035 3036 static int f2fs_quota_off(struct super_block *sb, int type) 3037 { 3038 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3039 int err; 3040 3041 err = __f2fs_quota_off(sb, type); 3042 3043 /* 3044 * quotactl can shutdown journalled quota, result in inconsistence 3045 * between quota record and fs data by following updates, tag the 3046 * flag to let fsck be aware of it. 3047 */ 3048 if (is_journalled_quota(sbi)) 3049 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3050 return err; 3051 } 3052 3053 void f2fs_quota_off_umount(struct super_block *sb) 3054 { 3055 int type; 3056 int err; 3057 3058 for (type = 0; type < MAXQUOTAS; type++) { 3059 err = __f2fs_quota_off(sb, type); 3060 if (err) { 3061 int ret = dquot_quota_off(sb, type); 3062 3063 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 3064 type, err, ret); 3065 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3066 } 3067 } 3068 /* 3069 * In case of checkpoint=disable, we must flush quota blocks. 3070 * This can cause NULL exception for node_inode in end_io, since 3071 * put_super already dropped it. 3072 */ 3073 sync_filesystem(sb); 3074 } 3075 3076 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 3077 { 3078 struct quota_info *dqopt = sb_dqopt(sb); 3079 int type; 3080 3081 for (type = 0; type < MAXQUOTAS; type++) { 3082 if (!dqopt->files[type]) 3083 continue; 3084 f2fs_inode_synced(dqopt->files[type]); 3085 } 3086 } 3087 3088 static int f2fs_dquot_commit(struct dquot *dquot) 3089 { 3090 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3091 int ret; 3092 3093 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 3094 ret = dquot_commit(dquot); 3095 if (ret < 0) 3096 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3097 f2fs_up_read(&sbi->quota_sem); 3098 return ret; 3099 } 3100 3101 static int f2fs_dquot_acquire(struct dquot *dquot) 3102 { 3103 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3104 int ret; 3105 3106 f2fs_down_read(&sbi->quota_sem); 3107 ret = dquot_acquire(dquot); 3108 if (ret < 0) 3109 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3110 f2fs_up_read(&sbi->quota_sem); 3111 return ret; 3112 } 3113 3114 static int f2fs_dquot_release(struct dquot *dquot) 3115 { 3116 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3117 int ret = dquot_release(dquot); 3118 3119 if (ret < 0) 3120 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3121 return ret; 3122 } 3123 3124 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 3125 { 3126 struct super_block *sb = dquot->dq_sb; 3127 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3128 int ret = dquot_mark_dquot_dirty(dquot); 3129 3130 /* if we are using journalled quota */ 3131 if (is_journalled_quota(sbi)) 3132 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 3133 3134 return ret; 3135 } 3136 3137 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 3138 { 3139 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3140 int ret = dquot_commit_info(sb, type); 3141 3142 if (ret < 0) 3143 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3144 return ret; 3145 } 3146 3147 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 3148 { 3149 *projid = F2FS_I(inode)->i_projid; 3150 return 0; 3151 } 3152 3153 static const struct dquot_operations f2fs_quota_operations = { 3154 .get_reserved_space = f2fs_get_reserved_space, 3155 .write_dquot = f2fs_dquot_commit, 3156 .acquire_dquot = f2fs_dquot_acquire, 3157 .release_dquot = f2fs_dquot_release, 3158 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 3159 .write_info = f2fs_dquot_commit_info, 3160 .alloc_dquot = dquot_alloc, 3161 .destroy_dquot = dquot_destroy, 3162 .get_projid = f2fs_get_projid, 3163 .get_next_id = dquot_get_next_id, 3164 }; 3165 3166 static const struct quotactl_ops f2fs_quotactl_ops = { 3167 .quota_on = f2fs_quota_on, 3168 .quota_off = f2fs_quota_off, 3169 .quota_sync = f2fs_quota_sync, 3170 .get_state = dquot_get_state, 3171 .set_info = dquot_set_dqinfo, 3172 .get_dqblk = dquot_get_dqblk, 3173 .set_dqblk = dquot_set_dqblk, 3174 .get_nextdqblk = dquot_get_next_dqblk, 3175 }; 3176 #else 3177 int f2fs_dquot_initialize(struct inode *inode) 3178 { 3179 return 0; 3180 } 3181 3182 int f2fs_quota_sync(struct super_block *sb, int type) 3183 { 3184 return 0; 3185 } 3186 3187 void f2fs_quota_off_umount(struct super_block *sb) 3188 { 3189 } 3190 #endif 3191 3192 static const struct super_operations f2fs_sops = { 3193 .alloc_inode = f2fs_alloc_inode, 3194 .free_inode = f2fs_free_inode, 3195 .drop_inode = f2fs_drop_inode, 3196 .write_inode = f2fs_write_inode, 3197 .dirty_inode = f2fs_dirty_inode, 3198 .show_options = f2fs_show_options, 3199 #ifdef CONFIG_QUOTA 3200 .quota_read = f2fs_quota_read, 3201 .quota_write = f2fs_quota_write, 3202 .get_dquots = f2fs_get_dquots, 3203 #endif 3204 .evict_inode = f2fs_evict_inode, 3205 .put_super = f2fs_put_super, 3206 .sync_fs = f2fs_sync_fs, 3207 .freeze_fs = f2fs_freeze, 3208 .unfreeze_fs = f2fs_unfreeze, 3209 .statfs = f2fs_statfs, 3210 .remount_fs = f2fs_remount, 3211 }; 3212 3213 #ifdef CONFIG_FS_ENCRYPTION 3214 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 3215 { 3216 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3217 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3218 ctx, len, NULL); 3219 } 3220 3221 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3222 void *fs_data) 3223 { 3224 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3225 3226 /* 3227 * Encrypting the root directory is not allowed because fsck 3228 * expects lost+found directory to exist and remain unencrypted 3229 * if LOST_FOUND feature is enabled. 3230 * 3231 */ 3232 if (f2fs_sb_has_lost_found(sbi) && 3233 inode->i_ino == F2FS_ROOT_INO(sbi)) 3234 return -EPERM; 3235 3236 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3237 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3238 ctx, len, fs_data, XATTR_CREATE); 3239 } 3240 3241 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3242 { 3243 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3244 } 3245 3246 static bool f2fs_has_stable_inodes(struct super_block *sb) 3247 { 3248 return true; 3249 } 3250 3251 static struct block_device **f2fs_get_devices(struct super_block *sb, 3252 unsigned int *num_devs) 3253 { 3254 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3255 struct block_device **devs; 3256 int i; 3257 3258 if (!f2fs_is_multi_device(sbi)) 3259 return NULL; 3260 3261 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); 3262 if (!devs) 3263 return ERR_PTR(-ENOMEM); 3264 3265 for (i = 0; i < sbi->s_ndevs; i++) 3266 devs[i] = FDEV(i).bdev; 3267 *num_devs = sbi->s_ndevs; 3268 return devs; 3269 } 3270 3271 static const struct fscrypt_operations f2fs_cryptops = { 3272 .needs_bounce_pages = 1, 3273 .has_32bit_inodes = 1, 3274 .supports_subblock_data_units = 1, 3275 .legacy_key_prefix = "f2fs:", 3276 .get_context = f2fs_get_context, 3277 .set_context = f2fs_set_context, 3278 .get_dummy_policy = f2fs_get_dummy_policy, 3279 .empty_dir = f2fs_empty_dir, 3280 .has_stable_inodes = f2fs_has_stable_inodes, 3281 .get_devices = f2fs_get_devices, 3282 }; 3283 #endif 3284 3285 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3286 u64 ino, u32 generation) 3287 { 3288 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3289 struct inode *inode; 3290 3291 if (f2fs_check_nid_range(sbi, ino)) 3292 return ERR_PTR(-ESTALE); 3293 3294 /* 3295 * f2fs_iget isn't quite right if the inode is currently unallocated! 3296 * However f2fs_iget currently does appropriate checks to handle stale 3297 * inodes so everything is OK. 3298 */ 3299 inode = f2fs_iget(sb, ino); 3300 if (IS_ERR(inode)) 3301 return ERR_CAST(inode); 3302 if (unlikely(generation && inode->i_generation != generation)) { 3303 /* we didn't find the right inode.. */ 3304 iput(inode); 3305 return ERR_PTR(-ESTALE); 3306 } 3307 return inode; 3308 } 3309 3310 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3311 int fh_len, int fh_type) 3312 { 3313 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3314 f2fs_nfs_get_inode); 3315 } 3316 3317 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3318 int fh_len, int fh_type) 3319 { 3320 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3321 f2fs_nfs_get_inode); 3322 } 3323 3324 static const struct export_operations f2fs_export_ops = { 3325 .encode_fh = generic_encode_ino32_fh, 3326 .fh_to_dentry = f2fs_fh_to_dentry, 3327 .fh_to_parent = f2fs_fh_to_parent, 3328 .get_parent = f2fs_get_parent, 3329 }; 3330 3331 loff_t max_file_blocks(struct inode *inode) 3332 { 3333 loff_t result = 0; 3334 loff_t leaf_count; 3335 3336 /* 3337 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3338 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3339 * space in inode.i_addr, it will be more safe to reassign 3340 * result as zero. 3341 */ 3342 3343 if (inode && f2fs_compressed_file(inode)) 3344 leaf_count = ADDRS_PER_BLOCK(inode); 3345 else 3346 leaf_count = DEF_ADDRS_PER_BLOCK; 3347 3348 /* two direct node blocks */ 3349 result += (leaf_count * 2); 3350 3351 /* two indirect node blocks */ 3352 leaf_count *= NIDS_PER_BLOCK; 3353 result += (leaf_count * 2); 3354 3355 /* one double indirect node block */ 3356 leaf_count *= NIDS_PER_BLOCK; 3357 result += leaf_count; 3358 3359 /* 3360 * For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with 3361 * a 4K crypto data unit, we must restrict the max filesize to what can 3362 * fit within U32_MAX + 1 data units. 3363 */ 3364 3365 result = min(result, (((loff_t)U32_MAX + 1) * 4096) >> F2FS_BLKSIZE_BITS); 3366 3367 return result; 3368 } 3369 3370 static int __f2fs_commit_super(struct buffer_head *bh, 3371 struct f2fs_super_block *super) 3372 { 3373 lock_buffer(bh); 3374 if (super) 3375 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 3376 set_buffer_dirty(bh); 3377 unlock_buffer(bh); 3378 3379 /* it's rare case, we can do fua all the time */ 3380 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 3381 } 3382 3383 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3384 struct buffer_head *bh) 3385 { 3386 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3387 (bh->b_data + F2FS_SUPER_OFFSET); 3388 struct super_block *sb = sbi->sb; 3389 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3390 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3391 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3392 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3393 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3394 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3395 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3396 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3397 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3398 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3399 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3400 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3401 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3402 u64 main_end_blkaddr = main_blkaddr + 3403 (segment_count_main << log_blocks_per_seg); 3404 u64 seg_end_blkaddr = segment0_blkaddr + 3405 (segment_count << log_blocks_per_seg); 3406 3407 if (segment0_blkaddr != cp_blkaddr) { 3408 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3409 segment0_blkaddr, cp_blkaddr); 3410 return true; 3411 } 3412 3413 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3414 sit_blkaddr) { 3415 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3416 cp_blkaddr, sit_blkaddr, 3417 segment_count_ckpt << log_blocks_per_seg); 3418 return true; 3419 } 3420 3421 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3422 nat_blkaddr) { 3423 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3424 sit_blkaddr, nat_blkaddr, 3425 segment_count_sit << log_blocks_per_seg); 3426 return true; 3427 } 3428 3429 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3430 ssa_blkaddr) { 3431 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3432 nat_blkaddr, ssa_blkaddr, 3433 segment_count_nat << log_blocks_per_seg); 3434 return true; 3435 } 3436 3437 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3438 main_blkaddr) { 3439 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3440 ssa_blkaddr, main_blkaddr, 3441 segment_count_ssa << log_blocks_per_seg); 3442 return true; 3443 } 3444 3445 if (main_end_blkaddr > seg_end_blkaddr) { 3446 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3447 main_blkaddr, seg_end_blkaddr, 3448 segment_count_main << log_blocks_per_seg); 3449 return true; 3450 } else if (main_end_blkaddr < seg_end_blkaddr) { 3451 int err = 0; 3452 char *res; 3453 3454 /* fix in-memory information all the time */ 3455 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3456 segment0_blkaddr) >> log_blocks_per_seg); 3457 3458 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { 3459 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3460 res = "internally"; 3461 } else { 3462 err = __f2fs_commit_super(bh, NULL); 3463 res = err ? "failed" : "done"; 3464 } 3465 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3466 res, main_blkaddr, seg_end_blkaddr, 3467 segment_count_main << log_blocks_per_seg); 3468 if (err) 3469 return true; 3470 } 3471 return false; 3472 } 3473 3474 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3475 struct buffer_head *bh) 3476 { 3477 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3478 block_t total_sections, blocks_per_seg; 3479 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3480 (bh->b_data + F2FS_SUPER_OFFSET); 3481 size_t crc_offset = 0; 3482 __u32 crc = 0; 3483 3484 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3485 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3486 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3487 return -EINVAL; 3488 } 3489 3490 /* Check checksum_offset and crc in superblock */ 3491 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3492 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3493 if (crc_offset != 3494 offsetof(struct f2fs_super_block, crc)) { 3495 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3496 crc_offset); 3497 return -EFSCORRUPTED; 3498 } 3499 crc = le32_to_cpu(raw_super->crc); 3500 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3501 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3502 return -EFSCORRUPTED; 3503 } 3504 } 3505 3506 /* Currently, support only 4KB block size */ 3507 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3508 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3509 le32_to_cpu(raw_super->log_blocksize), 3510 F2FS_BLKSIZE_BITS); 3511 return -EFSCORRUPTED; 3512 } 3513 3514 /* check log blocks per segment */ 3515 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3516 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3517 le32_to_cpu(raw_super->log_blocks_per_seg)); 3518 return -EFSCORRUPTED; 3519 } 3520 3521 /* Currently, support 512/1024/2048/4096/16K bytes sector size */ 3522 if (le32_to_cpu(raw_super->log_sectorsize) > 3523 F2FS_MAX_LOG_SECTOR_SIZE || 3524 le32_to_cpu(raw_super->log_sectorsize) < 3525 F2FS_MIN_LOG_SECTOR_SIZE) { 3526 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3527 le32_to_cpu(raw_super->log_sectorsize)); 3528 return -EFSCORRUPTED; 3529 } 3530 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3531 le32_to_cpu(raw_super->log_sectorsize) != 3532 F2FS_MAX_LOG_SECTOR_SIZE) { 3533 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3534 le32_to_cpu(raw_super->log_sectors_per_block), 3535 le32_to_cpu(raw_super->log_sectorsize)); 3536 return -EFSCORRUPTED; 3537 } 3538 3539 segment_count = le32_to_cpu(raw_super->segment_count); 3540 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3541 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3542 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3543 total_sections = le32_to_cpu(raw_super->section_count); 3544 3545 /* blocks_per_seg should be 512, given the above check */ 3546 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); 3547 3548 if (segment_count > F2FS_MAX_SEGMENT || 3549 segment_count < F2FS_MIN_SEGMENTS) { 3550 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3551 return -EFSCORRUPTED; 3552 } 3553 3554 if (total_sections > segment_count_main || total_sections < 1 || 3555 segs_per_sec > segment_count || !segs_per_sec) { 3556 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3557 segment_count, total_sections, segs_per_sec); 3558 return -EFSCORRUPTED; 3559 } 3560 3561 if (segment_count_main != total_sections * segs_per_sec) { 3562 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3563 segment_count_main, total_sections, segs_per_sec); 3564 return -EFSCORRUPTED; 3565 } 3566 3567 if ((segment_count / segs_per_sec) < total_sections) { 3568 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3569 segment_count, segs_per_sec, total_sections); 3570 return -EFSCORRUPTED; 3571 } 3572 3573 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3574 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3575 segment_count, le64_to_cpu(raw_super->block_count)); 3576 return -EFSCORRUPTED; 3577 } 3578 3579 if (RDEV(0).path[0]) { 3580 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3581 int i = 1; 3582 3583 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3584 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3585 i++; 3586 } 3587 if (segment_count != dev_seg_count) { 3588 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3589 segment_count, dev_seg_count); 3590 return -EFSCORRUPTED; 3591 } 3592 } else { 3593 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3594 !bdev_is_zoned(sbi->sb->s_bdev)) { 3595 f2fs_info(sbi, "Zoned block device path is missing"); 3596 return -EFSCORRUPTED; 3597 } 3598 } 3599 3600 if (secs_per_zone > total_sections || !secs_per_zone) { 3601 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3602 secs_per_zone, total_sections); 3603 return -EFSCORRUPTED; 3604 } 3605 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3606 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3607 (le32_to_cpu(raw_super->extension_count) + 3608 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3609 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3610 le32_to_cpu(raw_super->extension_count), 3611 raw_super->hot_ext_count, 3612 F2FS_MAX_EXTENSION); 3613 return -EFSCORRUPTED; 3614 } 3615 3616 if (le32_to_cpu(raw_super->cp_payload) >= 3617 (blocks_per_seg - F2FS_CP_PACKS - 3618 NR_CURSEG_PERSIST_TYPE)) { 3619 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3620 le32_to_cpu(raw_super->cp_payload), 3621 blocks_per_seg - F2FS_CP_PACKS - 3622 NR_CURSEG_PERSIST_TYPE); 3623 return -EFSCORRUPTED; 3624 } 3625 3626 /* check reserved ino info */ 3627 if (le32_to_cpu(raw_super->node_ino) != 1 || 3628 le32_to_cpu(raw_super->meta_ino) != 2 || 3629 le32_to_cpu(raw_super->root_ino) != 3) { 3630 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3631 le32_to_cpu(raw_super->node_ino), 3632 le32_to_cpu(raw_super->meta_ino), 3633 le32_to_cpu(raw_super->root_ino)); 3634 return -EFSCORRUPTED; 3635 } 3636 3637 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3638 if (sanity_check_area_boundary(sbi, bh)) 3639 return -EFSCORRUPTED; 3640 3641 return 0; 3642 } 3643 3644 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3645 { 3646 unsigned int total, fsmeta; 3647 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3648 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3649 unsigned int ovp_segments, reserved_segments; 3650 unsigned int main_segs, blocks_per_seg; 3651 unsigned int sit_segs, nat_segs; 3652 unsigned int sit_bitmap_size, nat_bitmap_size; 3653 unsigned int log_blocks_per_seg; 3654 unsigned int segment_count_main; 3655 unsigned int cp_pack_start_sum, cp_payload; 3656 block_t user_block_count, valid_user_blocks; 3657 block_t avail_node_count, valid_node_count; 3658 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3659 int i, j; 3660 3661 total = le32_to_cpu(raw_super->segment_count); 3662 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3663 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3664 fsmeta += sit_segs; 3665 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3666 fsmeta += nat_segs; 3667 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3668 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3669 3670 if (unlikely(fsmeta >= total)) 3671 return 1; 3672 3673 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3674 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3675 3676 if (!f2fs_sb_has_readonly(sbi) && 3677 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3678 ovp_segments == 0 || reserved_segments == 0)) { 3679 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3680 return 1; 3681 } 3682 user_block_count = le64_to_cpu(ckpt->user_block_count); 3683 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3684 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3685 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3686 if (!user_block_count || user_block_count >= 3687 segment_count_main << log_blocks_per_seg) { 3688 f2fs_err(sbi, "Wrong user_block_count: %u", 3689 user_block_count); 3690 return 1; 3691 } 3692 3693 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3694 if (valid_user_blocks > user_block_count) { 3695 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3696 valid_user_blocks, user_block_count); 3697 return 1; 3698 } 3699 3700 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3701 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3702 if (valid_node_count > avail_node_count) { 3703 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3704 valid_node_count, avail_node_count); 3705 return 1; 3706 } 3707 3708 main_segs = le32_to_cpu(raw_super->segment_count_main); 3709 blocks_per_seg = sbi->blocks_per_seg; 3710 3711 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3712 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3713 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3714 return 1; 3715 3716 if (f2fs_sb_has_readonly(sbi)) 3717 goto check_data; 3718 3719 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3720 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3721 le32_to_cpu(ckpt->cur_node_segno[j])) { 3722 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3723 i, j, 3724 le32_to_cpu(ckpt->cur_node_segno[i])); 3725 return 1; 3726 } 3727 } 3728 } 3729 check_data: 3730 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3731 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3732 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3733 return 1; 3734 3735 if (f2fs_sb_has_readonly(sbi)) 3736 goto skip_cross; 3737 3738 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3739 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3740 le32_to_cpu(ckpt->cur_data_segno[j])) { 3741 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3742 i, j, 3743 le32_to_cpu(ckpt->cur_data_segno[i])); 3744 return 1; 3745 } 3746 } 3747 } 3748 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3749 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3750 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3751 le32_to_cpu(ckpt->cur_data_segno[j])) { 3752 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3753 i, j, 3754 le32_to_cpu(ckpt->cur_node_segno[i])); 3755 return 1; 3756 } 3757 } 3758 } 3759 skip_cross: 3760 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3761 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3762 3763 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3764 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3765 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3766 sit_bitmap_size, nat_bitmap_size); 3767 return 1; 3768 } 3769 3770 cp_pack_start_sum = __start_sum_addr(sbi); 3771 cp_payload = __cp_payload(sbi); 3772 if (cp_pack_start_sum < cp_payload + 1 || 3773 cp_pack_start_sum > blocks_per_seg - 1 - 3774 NR_CURSEG_PERSIST_TYPE) { 3775 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3776 cp_pack_start_sum); 3777 return 1; 3778 } 3779 3780 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3781 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3782 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3783 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3784 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3785 le32_to_cpu(ckpt->checksum_offset)); 3786 return 1; 3787 } 3788 3789 nat_blocks = nat_segs << log_blocks_per_seg; 3790 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3791 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3792 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3793 (cp_payload + F2FS_CP_PACKS + 3794 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3795 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3796 cp_payload, nat_bits_blocks); 3797 return 1; 3798 } 3799 3800 if (unlikely(f2fs_cp_error(sbi))) { 3801 f2fs_err(sbi, "A bug case: need to run fsck"); 3802 return 1; 3803 } 3804 return 0; 3805 } 3806 3807 static void init_sb_info(struct f2fs_sb_info *sbi) 3808 { 3809 struct f2fs_super_block *raw_super = sbi->raw_super; 3810 int i; 3811 3812 sbi->log_sectors_per_block = 3813 le32_to_cpu(raw_super->log_sectors_per_block); 3814 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3815 sbi->blocksize = BIT(sbi->log_blocksize); 3816 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3817 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); 3818 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3819 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3820 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3821 sbi->total_node_count = 3822 (le32_to_cpu(raw_super->segment_count_nat) / 2) 3823 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 3824 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3825 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3826 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3827 sbi->cur_victim_sec = NULL_SECNO; 3828 sbi->gc_mode = GC_NORMAL; 3829 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3830 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3831 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3832 sbi->migration_granularity = sbi->segs_per_sec; 3833 sbi->seq_file_ra_mul = MIN_RA_MUL; 3834 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3835 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3836 spin_lock_init(&sbi->gc_remaining_trials_lock); 3837 atomic64_set(&sbi->current_atomic_write, 0); 3838 3839 sbi->dir_level = DEF_DIR_LEVEL; 3840 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3841 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3842 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3843 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3844 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3845 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3846 DEF_UMOUNT_DISCARD_TIMEOUT; 3847 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3848 3849 for (i = 0; i < NR_COUNT_TYPE; i++) 3850 atomic_set(&sbi->nr_pages[i], 0); 3851 3852 for (i = 0; i < META; i++) 3853 atomic_set(&sbi->wb_sync_req[i], 0); 3854 3855 INIT_LIST_HEAD(&sbi->s_list); 3856 mutex_init(&sbi->umount_mutex); 3857 init_f2fs_rwsem(&sbi->io_order_lock); 3858 spin_lock_init(&sbi->cp_lock); 3859 3860 sbi->dirty_device = 0; 3861 spin_lock_init(&sbi->dev_lock); 3862 3863 init_f2fs_rwsem(&sbi->sb_lock); 3864 init_f2fs_rwsem(&sbi->pin_sem); 3865 } 3866 3867 static int init_percpu_info(struct f2fs_sb_info *sbi) 3868 { 3869 int err; 3870 3871 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3872 if (err) 3873 return err; 3874 3875 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3876 if (err) 3877 goto err_valid_block; 3878 3879 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3880 GFP_KERNEL); 3881 if (err) 3882 goto err_node_block; 3883 return 0; 3884 3885 err_node_block: 3886 percpu_counter_destroy(&sbi->rf_node_block_count); 3887 err_valid_block: 3888 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3889 return err; 3890 } 3891 3892 #ifdef CONFIG_BLK_DEV_ZONED 3893 3894 struct f2fs_report_zones_args { 3895 struct f2fs_sb_info *sbi; 3896 struct f2fs_dev_info *dev; 3897 }; 3898 3899 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3900 void *data) 3901 { 3902 struct f2fs_report_zones_args *rz_args = data; 3903 block_t unusable_blocks = (zone->len - zone->capacity) >> 3904 F2FS_LOG_SECTORS_PER_BLOCK; 3905 3906 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3907 return 0; 3908 3909 set_bit(idx, rz_args->dev->blkz_seq); 3910 if (!rz_args->sbi->unusable_blocks_per_sec) { 3911 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3912 return 0; 3913 } 3914 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3915 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 3916 return -EINVAL; 3917 } 3918 return 0; 3919 } 3920 3921 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3922 { 3923 struct block_device *bdev = FDEV(devi).bdev; 3924 sector_t nr_sectors = bdev_nr_sectors(bdev); 3925 struct f2fs_report_zones_args rep_zone_arg; 3926 u64 zone_sectors; 3927 int ret; 3928 3929 if (!f2fs_sb_has_blkzoned(sbi)) 3930 return 0; 3931 3932 zone_sectors = bdev_zone_sectors(bdev); 3933 if (!is_power_of_2(zone_sectors)) { 3934 f2fs_err(sbi, "F2FS does not support non power of 2 zone sizes\n"); 3935 return -EINVAL; 3936 } 3937 3938 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3939 SECTOR_TO_BLOCK(zone_sectors)) 3940 return -EINVAL; 3941 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 3942 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), 3943 sbi->blocks_per_blkz); 3944 if (nr_sectors & (zone_sectors - 1)) 3945 FDEV(devi).nr_blkz++; 3946 3947 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3948 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3949 * sizeof(unsigned long), 3950 GFP_KERNEL); 3951 if (!FDEV(devi).blkz_seq) 3952 return -ENOMEM; 3953 3954 rep_zone_arg.sbi = sbi; 3955 rep_zone_arg.dev = &FDEV(devi); 3956 3957 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3958 &rep_zone_arg); 3959 if (ret < 0) 3960 return ret; 3961 return 0; 3962 } 3963 #endif 3964 3965 /* 3966 * Read f2fs raw super block. 3967 * Because we have two copies of super block, so read both of them 3968 * to get the first valid one. If any one of them is broken, we pass 3969 * them recovery flag back to the caller. 3970 */ 3971 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3972 struct f2fs_super_block **raw_super, 3973 int *valid_super_block, int *recovery) 3974 { 3975 struct super_block *sb = sbi->sb; 3976 int block; 3977 struct buffer_head *bh; 3978 struct f2fs_super_block *super; 3979 int err = 0; 3980 3981 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3982 if (!super) 3983 return -ENOMEM; 3984 3985 for (block = 0; block < 2; block++) { 3986 bh = sb_bread(sb, block); 3987 if (!bh) { 3988 f2fs_err(sbi, "Unable to read %dth superblock", 3989 block + 1); 3990 err = -EIO; 3991 *recovery = 1; 3992 continue; 3993 } 3994 3995 /* sanity checking of raw super */ 3996 err = sanity_check_raw_super(sbi, bh); 3997 if (err) { 3998 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3999 block + 1); 4000 brelse(bh); 4001 *recovery = 1; 4002 continue; 4003 } 4004 4005 if (!*raw_super) { 4006 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 4007 sizeof(*super)); 4008 *valid_super_block = block; 4009 *raw_super = super; 4010 } 4011 brelse(bh); 4012 } 4013 4014 /* No valid superblock */ 4015 if (!*raw_super) 4016 kfree(super); 4017 else 4018 err = 0; 4019 4020 return err; 4021 } 4022 4023 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 4024 { 4025 struct buffer_head *bh; 4026 __u32 crc = 0; 4027 int err; 4028 4029 if ((recover && f2fs_readonly(sbi->sb)) || 4030 f2fs_hw_is_readonly(sbi)) { 4031 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 4032 return -EROFS; 4033 } 4034 4035 /* we should update superblock crc here */ 4036 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 4037 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 4038 offsetof(struct f2fs_super_block, crc)); 4039 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 4040 } 4041 4042 /* write back-up superblock first */ 4043 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 4044 if (!bh) 4045 return -EIO; 4046 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 4047 brelse(bh); 4048 4049 /* if we are in recovery path, skip writing valid superblock */ 4050 if (recover || err) 4051 return err; 4052 4053 /* write current valid superblock */ 4054 bh = sb_bread(sbi->sb, sbi->valid_super_block); 4055 if (!bh) 4056 return -EIO; 4057 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 4058 brelse(bh); 4059 return err; 4060 } 4061 4062 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) 4063 { 4064 unsigned long flags; 4065 4066 spin_lock_irqsave(&sbi->error_lock, flags); 4067 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) 4068 sbi->stop_reason[reason]++; 4069 spin_unlock_irqrestore(&sbi->error_lock, flags); 4070 } 4071 4072 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) 4073 { 4074 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4075 unsigned long flags; 4076 int err; 4077 4078 f2fs_down_write(&sbi->sb_lock); 4079 4080 spin_lock_irqsave(&sbi->error_lock, flags); 4081 if (sbi->error_dirty) { 4082 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4083 MAX_F2FS_ERRORS); 4084 sbi->error_dirty = false; 4085 } 4086 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); 4087 spin_unlock_irqrestore(&sbi->error_lock, flags); 4088 4089 err = f2fs_commit_super(sbi, false); 4090 4091 f2fs_up_write(&sbi->sb_lock); 4092 if (err) 4093 f2fs_err(sbi, "f2fs_commit_super fails to record err:%d", err); 4094 } 4095 4096 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) 4097 { 4098 unsigned long flags; 4099 4100 spin_lock_irqsave(&sbi->error_lock, flags); 4101 if (!test_bit(flag, (unsigned long *)sbi->errors)) { 4102 set_bit(flag, (unsigned long *)sbi->errors); 4103 sbi->error_dirty = true; 4104 } 4105 spin_unlock_irqrestore(&sbi->error_lock, flags); 4106 } 4107 4108 static bool f2fs_update_errors(struct f2fs_sb_info *sbi) 4109 { 4110 unsigned long flags; 4111 bool need_update = false; 4112 4113 spin_lock_irqsave(&sbi->error_lock, flags); 4114 if (sbi->error_dirty) { 4115 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4116 MAX_F2FS_ERRORS); 4117 sbi->error_dirty = false; 4118 need_update = true; 4119 } 4120 spin_unlock_irqrestore(&sbi->error_lock, flags); 4121 4122 return need_update; 4123 } 4124 4125 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error) 4126 { 4127 int err; 4128 4129 f2fs_down_write(&sbi->sb_lock); 4130 4131 if (!f2fs_update_errors(sbi)) 4132 goto out_unlock; 4133 4134 err = f2fs_commit_super(sbi, false); 4135 if (err) 4136 f2fs_err(sbi, "f2fs_commit_super fails to record errors:%u, err:%d", 4137 error, err); 4138 out_unlock: 4139 f2fs_up_write(&sbi->sb_lock); 4140 } 4141 4142 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) 4143 { 4144 f2fs_save_errors(sbi, error); 4145 f2fs_record_errors(sbi, error); 4146 } 4147 4148 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error) 4149 { 4150 f2fs_save_errors(sbi, error); 4151 4152 if (!sbi->error_dirty) 4153 return; 4154 if (!test_bit(error, (unsigned long *)sbi->errors)) 4155 return; 4156 schedule_work(&sbi->s_error_work); 4157 } 4158 4159 static bool system_going_down(void) 4160 { 4161 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 4162 || system_state == SYSTEM_RESTART; 4163 } 4164 4165 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 4166 bool irq_context) 4167 { 4168 struct super_block *sb = sbi->sb; 4169 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; 4170 bool continue_fs = !shutdown && 4171 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; 4172 4173 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4174 4175 if (!f2fs_hw_is_readonly(sbi)) { 4176 save_stop_reason(sbi, reason); 4177 4178 if (irq_context && !shutdown) 4179 schedule_work(&sbi->s_error_work); 4180 else 4181 f2fs_record_stop_reason(sbi); 4182 } 4183 4184 /* 4185 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 4186 * could panic during 'reboot -f' as the underlying device got already 4187 * disabled. 4188 */ 4189 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && 4190 !shutdown && !system_going_down() && 4191 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) 4192 panic("F2FS-fs (device %s): panic forced after error\n", 4193 sb->s_id); 4194 4195 if (shutdown) 4196 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 4197 4198 /* continue filesystem operators if errors=continue */ 4199 if (continue_fs || f2fs_readonly(sb)) 4200 return; 4201 4202 f2fs_warn(sbi, "Remounting filesystem read-only"); 4203 /* 4204 * Make sure updated value of ->s_mount_flags will be visible before 4205 * ->s_flags update 4206 */ 4207 smp_wmb(); 4208 sb->s_flags |= SB_RDONLY; 4209 } 4210 4211 static void f2fs_record_error_work(struct work_struct *work) 4212 { 4213 struct f2fs_sb_info *sbi = container_of(work, 4214 struct f2fs_sb_info, s_error_work); 4215 4216 f2fs_record_stop_reason(sbi); 4217 } 4218 4219 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 4220 { 4221 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4222 unsigned int max_devices = MAX_DEVICES; 4223 unsigned int logical_blksize; 4224 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); 4225 int i; 4226 4227 /* Initialize single device information */ 4228 if (!RDEV(0).path[0]) { 4229 if (!bdev_is_zoned(sbi->sb->s_bdev)) 4230 return 0; 4231 max_devices = 1; 4232 } 4233 4234 /* 4235 * Initialize multiple devices information, or single 4236 * zoned block device information. 4237 */ 4238 sbi->devs = f2fs_kzalloc(sbi, 4239 array_size(max_devices, 4240 sizeof(struct f2fs_dev_info)), 4241 GFP_KERNEL); 4242 if (!sbi->devs) 4243 return -ENOMEM; 4244 4245 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 4246 sbi->aligned_blksize = true; 4247 4248 for (i = 0; i < max_devices; i++) { 4249 if (i == 0) 4250 FDEV(0).bdev_handle = sbi->sb->s_bdev_handle; 4251 else if (!RDEV(i).path[0]) 4252 break; 4253 4254 if (max_devices > 1) { 4255 /* Multi-device mount */ 4256 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 4257 FDEV(i).total_segments = 4258 le32_to_cpu(RDEV(i).total_segments); 4259 if (i == 0) { 4260 FDEV(i).start_blk = 0; 4261 FDEV(i).end_blk = FDEV(i).start_blk + 4262 (FDEV(i).total_segments << 4263 sbi->log_blocks_per_seg) - 1 + 4264 le32_to_cpu(raw_super->segment0_blkaddr); 4265 } else { 4266 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 4267 FDEV(i).end_blk = FDEV(i).start_blk + 4268 (FDEV(i).total_segments << 4269 sbi->log_blocks_per_seg) - 1; 4270 FDEV(i).bdev_handle = bdev_open_by_path( 4271 FDEV(i).path, mode, sbi->sb, NULL); 4272 } 4273 } 4274 if (IS_ERR(FDEV(i).bdev_handle)) 4275 return PTR_ERR(FDEV(i).bdev_handle); 4276 4277 FDEV(i).bdev = FDEV(i).bdev_handle->bdev; 4278 /* to release errored devices */ 4279 sbi->s_ndevs = i + 1; 4280 4281 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 4282 sbi->aligned_blksize = false; 4283 4284 #ifdef CONFIG_BLK_DEV_ZONED 4285 if (bdev_is_zoned(FDEV(i).bdev)) { 4286 if (!f2fs_sb_has_blkzoned(sbi)) { 4287 f2fs_err(sbi, "Zoned block device feature not enabled"); 4288 return -EINVAL; 4289 } 4290 if (init_blkz_info(sbi, i)) { 4291 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 4292 return -EINVAL; 4293 } 4294 if (max_devices == 1) 4295 break; 4296 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)", 4297 i, FDEV(i).path, 4298 FDEV(i).total_segments, 4299 FDEV(i).start_blk, FDEV(i).end_blk); 4300 continue; 4301 } 4302 #endif 4303 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 4304 i, FDEV(i).path, 4305 FDEV(i).total_segments, 4306 FDEV(i).start_blk, FDEV(i).end_blk); 4307 } 4308 f2fs_info(sbi, 4309 "IO Block Size: %8ld KB", F2FS_IO_SIZE_KB(sbi)); 4310 return 0; 4311 } 4312 4313 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 4314 { 4315 #if IS_ENABLED(CONFIG_UNICODE) 4316 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 4317 const struct f2fs_sb_encodings *encoding_info; 4318 struct unicode_map *encoding; 4319 __u16 encoding_flags; 4320 4321 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 4322 if (!encoding_info) { 4323 f2fs_err(sbi, 4324 "Encoding requested by superblock is unknown"); 4325 return -EINVAL; 4326 } 4327 4328 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 4329 encoding = utf8_load(encoding_info->version); 4330 if (IS_ERR(encoding)) { 4331 f2fs_err(sbi, 4332 "can't mount with superblock charset: %s-%u.%u.%u " 4333 "not supported by the kernel. flags: 0x%x.", 4334 encoding_info->name, 4335 unicode_major(encoding_info->version), 4336 unicode_minor(encoding_info->version), 4337 unicode_rev(encoding_info->version), 4338 encoding_flags); 4339 return PTR_ERR(encoding); 4340 } 4341 f2fs_info(sbi, "Using encoding defined by superblock: " 4342 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4343 unicode_major(encoding_info->version), 4344 unicode_minor(encoding_info->version), 4345 unicode_rev(encoding_info->version), 4346 encoding_flags); 4347 4348 sbi->sb->s_encoding = encoding; 4349 sbi->sb->s_encoding_flags = encoding_flags; 4350 } 4351 #else 4352 if (f2fs_sb_has_casefold(sbi)) { 4353 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 4354 return -EINVAL; 4355 } 4356 #endif 4357 return 0; 4358 } 4359 4360 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 4361 { 4362 /* adjust parameters according to the volume size */ 4363 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { 4364 if (f2fs_block_unit_discard(sbi)) 4365 SM_I(sbi)->dcc_info->discard_granularity = 4366 MIN_DISCARD_GRANULARITY; 4367 if (!f2fs_lfs_mode(sbi)) 4368 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | 4369 BIT(F2FS_IPU_HONOR_OPU_WRITE); 4370 } 4371 4372 sbi->readdir_ra = true; 4373 } 4374 4375 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 4376 { 4377 struct f2fs_sb_info *sbi; 4378 struct f2fs_super_block *raw_super; 4379 struct inode *root; 4380 int err; 4381 bool skip_recovery = false, need_fsck = false; 4382 char *options = NULL; 4383 int recovery, i, valid_super_block; 4384 struct curseg_info *seg_i; 4385 int retry_cnt = 1; 4386 #ifdef CONFIG_QUOTA 4387 bool quota_enabled = false; 4388 #endif 4389 4390 try_onemore: 4391 err = -EINVAL; 4392 raw_super = NULL; 4393 valid_super_block = -1; 4394 recovery = 0; 4395 4396 /* allocate memory for f2fs-specific super block info */ 4397 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4398 if (!sbi) 4399 return -ENOMEM; 4400 4401 sbi->sb = sb; 4402 4403 /* initialize locks within allocated memory */ 4404 init_f2fs_rwsem(&sbi->gc_lock); 4405 mutex_init(&sbi->writepages); 4406 init_f2fs_rwsem(&sbi->cp_global_sem); 4407 init_f2fs_rwsem(&sbi->node_write); 4408 init_f2fs_rwsem(&sbi->node_change); 4409 spin_lock_init(&sbi->stat_lock); 4410 init_f2fs_rwsem(&sbi->cp_rwsem); 4411 init_f2fs_rwsem(&sbi->quota_sem); 4412 init_waitqueue_head(&sbi->cp_wait); 4413 spin_lock_init(&sbi->error_lock); 4414 4415 for (i = 0; i < NR_INODE_TYPE; i++) { 4416 INIT_LIST_HEAD(&sbi->inode_list[i]); 4417 spin_lock_init(&sbi->inode_lock[i]); 4418 } 4419 mutex_init(&sbi->flush_lock); 4420 4421 /* Load the checksum driver */ 4422 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 4423 if (IS_ERR(sbi->s_chksum_driver)) { 4424 f2fs_err(sbi, "Cannot load crc32 driver."); 4425 err = PTR_ERR(sbi->s_chksum_driver); 4426 sbi->s_chksum_driver = NULL; 4427 goto free_sbi; 4428 } 4429 4430 /* set a block size */ 4431 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4432 f2fs_err(sbi, "unable to set blocksize"); 4433 goto free_sbi; 4434 } 4435 4436 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4437 &recovery); 4438 if (err) 4439 goto free_sbi; 4440 4441 sb->s_fs_info = sbi; 4442 sbi->raw_super = raw_super; 4443 4444 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); 4445 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); 4446 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); 4447 4448 /* precompute checksum seed for metadata */ 4449 if (f2fs_sb_has_inode_chksum(sbi)) 4450 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4451 sizeof(raw_super->uuid)); 4452 4453 default_options(sbi, false); 4454 /* parse mount options */ 4455 options = kstrdup((const char *)data, GFP_KERNEL); 4456 if (data && !options) { 4457 err = -ENOMEM; 4458 goto free_sb_buf; 4459 } 4460 4461 err = parse_options(sb, options, false); 4462 if (err) 4463 goto free_options; 4464 4465 sb->s_maxbytes = max_file_blocks(NULL) << 4466 le32_to_cpu(raw_super->log_blocksize); 4467 sb->s_max_links = F2FS_LINK_MAX; 4468 4469 err = f2fs_setup_casefold(sbi); 4470 if (err) 4471 goto free_options; 4472 4473 #ifdef CONFIG_QUOTA 4474 sb->dq_op = &f2fs_quota_operations; 4475 sb->s_qcop = &f2fs_quotactl_ops; 4476 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4477 4478 if (f2fs_sb_has_quota_ino(sbi)) { 4479 for (i = 0; i < MAXQUOTAS; i++) { 4480 if (f2fs_qf_ino(sbi->sb, i)) 4481 sbi->nquota_files++; 4482 } 4483 } 4484 #endif 4485 4486 sb->s_op = &f2fs_sops; 4487 #ifdef CONFIG_FS_ENCRYPTION 4488 sb->s_cop = &f2fs_cryptops; 4489 #endif 4490 #ifdef CONFIG_FS_VERITY 4491 sb->s_vop = &f2fs_verityops; 4492 #endif 4493 sb->s_xattr = f2fs_xattr_handlers; 4494 sb->s_export_op = &f2fs_export_ops; 4495 sb->s_magic = F2FS_SUPER_MAGIC; 4496 sb->s_time_gran = 1; 4497 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4498 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4499 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 4500 sb->s_iflags |= SB_I_CGROUPWB; 4501 4502 /* init f2fs-specific super block info */ 4503 sbi->valid_super_block = valid_super_block; 4504 4505 /* disallow all the data/node/meta page writes */ 4506 set_sbi_flag(sbi, SBI_POR_DOING); 4507 4508 err = f2fs_init_write_merge_io(sbi); 4509 if (err) 4510 goto free_bio_info; 4511 4512 init_sb_info(sbi); 4513 4514 err = f2fs_init_iostat(sbi); 4515 if (err) 4516 goto free_bio_info; 4517 4518 err = init_percpu_info(sbi); 4519 if (err) 4520 goto free_iostat; 4521 4522 if (F2FS_IO_ALIGNED(sbi)) { 4523 sbi->write_io_dummy = 4524 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 4525 if (!sbi->write_io_dummy) { 4526 err = -ENOMEM; 4527 goto free_percpu; 4528 } 4529 } 4530 4531 /* init per sbi slab cache */ 4532 err = f2fs_init_xattr_caches(sbi); 4533 if (err) 4534 goto free_io_dummy; 4535 err = f2fs_init_page_array_cache(sbi); 4536 if (err) 4537 goto free_xattr_cache; 4538 4539 /* get an inode for meta space */ 4540 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4541 if (IS_ERR(sbi->meta_inode)) { 4542 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4543 err = PTR_ERR(sbi->meta_inode); 4544 goto free_page_array_cache; 4545 } 4546 4547 err = f2fs_get_valid_checkpoint(sbi); 4548 if (err) { 4549 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4550 goto free_meta_inode; 4551 } 4552 4553 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4554 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4555 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4556 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4557 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4558 } 4559 4560 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4561 set_sbi_flag(sbi, SBI_NEED_FSCK); 4562 4563 /* Initialize device list */ 4564 err = f2fs_scan_devices(sbi); 4565 if (err) { 4566 f2fs_err(sbi, "Failed to find devices"); 4567 goto free_devices; 4568 } 4569 4570 err = f2fs_init_post_read_wq(sbi); 4571 if (err) { 4572 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4573 goto free_devices; 4574 } 4575 4576 sbi->total_valid_node_count = 4577 le32_to_cpu(sbi->ckpt->valid_node_count); 4578 percpu_counter_set(&sbi->total_valid_inode_count, 4579 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4580 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4581 sbi->total_valid_block_count = 4582 le64_to_cpu(sbi->ckpt->valid_block_count); 4583 sbi->last_valid_block_count = sbi->total_valid_block_count; 4584 sbi->reserved_blocks = 0; 4585 sbi->current_reserved_blocks = 0; 4586 limit_reserve_root(sbi); 4587 adjust_unusable_cap_perc(sbi); 4588 4589 f2fs_init_extent_cache_info(sbi); 4590 4591 f2fs_init_ino_entry_info(sbi); 4592 4593 f2fs_init_fsync_node_info(sbi); 4594 4595 /* setup checkpoint request control and start checkpoint issue thread */ 4596 f2fs_init_ckpt_req_control(sbi); 4597 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4598 test_opt(sbi, MERGE_CHECKPOINT)) { 4599 err = f2fs_start_ckpt_thread(sbi); 4600 if (err) { 4601 f2fs_err(sbi, 4602 "Failed to start F2FS issue_checkpoint_thread (%d)", 4603 err); 4604 goto stop_ckpt_thread; 4605 } 4606 } 4607 4608 /* setup f2fs internal modules */ 4609 err = f2fs_build_segment_manager(sbi); 4610 if (err) { 4611 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4612 err); 4613 goto free_sm; 4614 } 4615 err = f2fs_build_node_manager(sbi); 4616 if (err) { 4617 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4618 err); 4619 goto free_nm; 4620 } 4621 4622 err = adjust_reserved_segment(sbi); 4623 if (err) 4624 goto free_nm; 4625 4626 /* For write statistics */ 4627 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4628 4629 /* Read accumulated write IO statistics if exists */ 4630 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4631 if (__exist_node_summaries(sbi)) 4632 sbi->kbytes_written = 4633 le64_to_cpu(seg_i->journal->info.kbytes_written); 4634 4635 f2fs_build_gc_manager(sbi); 4636 4637 err = f2fs_build_stats(sbi); 4638 if (err) 4639 goto free_nm; 4640 4641 /* get an inode for node space */ 4642 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4643 if (IS_ERR(sbi->node_inode)) { 4644 f2fs_err(sbi, "Failed to read node inode"); 4645 err = PTR_ERR(sbi->node_inode); 4646 goto free_stats; 4647 } 4648 4649 /* read root inode and dentry */ 4650 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4651 if (IS_ERR(root)) { 4652 f2fs_err(sbi, "Failed to read root inode"); 4653 err = PTR_ERR(root); 4654 goto free_node_inode; 4655 } 4656 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4657 !root->i_size || !root->i_nlink) { 4658 iput(root); 4659 err = -EINVAL; 4660 goto free_node_inode; 4661 } 4662 4663 sb->s_root = d_make_root(root); /* allocate root dentry */ 4664 if (!sb->s_root) { 4665 err = -ENOMEM; 4666 goto free_node_inode; 4667 } 4668 4669 err = f2fs_init_compress_inode(sbi); 4670 if (err) 4671 goto free_root_inode; 4672 4673 err = f2fs_register_sysfs(sbi); 4674 if (err) 4675 goto free_compress_inode; 4676 4677 #ifdef CONFIG_QUOTA 4678 /* Enable quota usage during mount */ 4679 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4680 err = f2fs_enable_quotas(sb); 4681 if (err) 4682 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4683 } 4684 4685 quota_enabled = f2fs_recover_quota_begin(sbi); 4686 #endif 4687 /* if there are any orphan inodes, free them */ 4688 err = f2fs_recover_orphan_inodes(sbi); 4689 if (err) 4690 goto free_meta; 4691 4692 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4693 goto reset_checkpoint; 4694 4695 /* recover fsynced data */ 4696 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4697 !test_opt(sbi, NORECOVERY)) { 4698 /* 4699 * mount should be failed, when device has readonly mode, and 4700 * previous checkpoint was not done by clean system shutdown. 4701 */ 4702 if (f2fs_hw_is_readonly(sbi)) { 4703 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4704 err = f2fs_recover_fsync_data(sbi, true); 4705 if (err > 0) { 4706 err = -EROFS; 4707 f2fs_err(sbi, "Need to recover fsync data, but " 4708 "write access unavailable, please try " 4709 "mount w/ disable_roll_forward or norecovery"); 4710 } 4711 if (err < 0) 4712 goto free_meta; 4713 } 4714 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4715 goto reset_checkpoint; 4716 } 4717 4718 if (need_fsck) 4719 set_sbi_flag(sbi, SBI_NEED_FSCK); 4720 4721 if (skip_recovery) 4722 goto reset_checkpoint; 4723 4724 err = f2fs_recover_fsync_data(sbi, false); 4725 if (err < 0) { 4726 if (err != -ENOMEM) 4727 skip_recovery = true; 4728 need_fsck = true; 4729 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4730 err); 4731 goto free_meta; 4732 } 4733 } else { 4734 err = f2fs_recover_fsync_data(sbi, true); 4735 4736 if (!f2fs_readonly(sb) && err > 0) { 4737 err = -EINVAL; 4738 f2fs_err(sbi, "Need to recover fsync data"); 4739 goto free_meta; 4740 } 4741 } 4742 4743 #ifdef CONFIG_QUOTA 4744 f2fs_recover_quota_end(sbi, quota_enabled); 4745 #endif 4746 reset_checkpoint: 4747 /* 4748 * If the f2fs is not readonly and fsync data recovery succeeds, 4749 * check zoned block devices' write pointer consistency. 4750 */ 4751 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 4752 err = f2fs_check_write_pointer(sbi); 4753 if (err) 4754 goto free_meta; 4755 } 4756 4757 f2fs_init_inmem_curseg(sbi); 4758 4759 /* f2fs_recover_fsync_data() cleared this already */ 4760 clear_sbi_flag(sbi, SBI_POR_DOING); 4761 4762 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4763 err = f2fs_disable_checkpoint(sbi); 4764 if (err) 4765 goto sync_free_meta; 4766 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4767 f2fs_enable_checkpoint(sbi); 4768 } 4769 4770 /* 4771 * If filesystem is not mounted as read-only then 4772 * do start the gc_thread. 4773 */ 4774 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4775 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4776 /* After POR, we can run background GC thread.*/ 4777 err = f2fs_start_gc_thread(sbi); 4778 if (err) 4779 goto sync_free_meta; 4780 } 4781 kvfree(options); 4782 4783 /* recover broken superblock */ 4784 if (recovery) { 4785 err = f2fs_commit_super(sbi, true); 4786 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4787 sbi->valid_super_block ? 1 : 2, err); 4788 } 4789 4790 f2fs_join_shrinker(sbi); 4791 4792 f2fs_tuning_parameters(sbi); 4793 4794 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4795 cur_cp_version(F2FS_CKPT(sbi))); 4796 f2fs_update_time(sbi, CP_TIME); 4797 f2fs_update_time(sbi, REQ_TIME); 4798 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4799 return 0; 4800 4801 sync_free_meta: 4802 /* safe to flush all the data */ 4803 sync_filesystem(sbi->sb); 4804 retry_cnt = 0; 4805 4806 free_meta: 4807 #ifdef CONFIG_QUOTA 4808 f2fs_truncate_quota_inode_pages(sb); 4809 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4810 f2fs_quota_off_umount(sbi->sb); 4811 #endif 4812 /* 4813 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4814 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4815 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4816 * falls into an infinite loop in f2fs_sync_meta_pages(). 4817 */ 4818 truncate_inode_pages_final(META_MAPPING(sbi)); 4819 /* evict some inodes being cached by GC */ 4820 evict_inodes(sb); 4821 f2fs_unregister_sysfs(sbi); 4822 free_compress_inode: 4823 f2fs_destroy_compress_inode(sbi); 4824 free_root_inode: 4825 dput(sb->s_root); 4826 sb->s_root = NULL; 4827 free_node_inode: 4828 f2fs_release_ino_entry(sbi, true); 4829 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4830 iput(sbi->node_inode); 4831 sbi->node_inode = NULL; 4832 free_stats: 4833 f2fs_destroy_stats(sbi); 4834 free_nm: 4835 /* stop discard thread before destroying node manager */ 4836 f2fs_stop_discard_thread(sbi); 4837 f2fs_destroy_node_manager(sbi); 4838 free_sm: 4839 f2fs_destroy_segment_manager(sbi); 4840 stop_ckpt_thread: 4841 f2fs_stop_ckpt_thread(sbi); 4842 /* flush s_error_work before sbi destroy */ 4843 flush_work(&sbi->s_error_work); 4844 f2fs_destroy_post_read_wq(sbi); 4845 free_devices: 4846 destroy_device_list(sbi); 4847 kvfree(sbi->ckpt); 4848 free_meta_inode: 4849 make_bad_inode(sbi->meta_inode); 4850 iput(sbi->meta_inode); 4851 sbi->meta_inode = NULL; 4852 free_page_array_cache: 4853 f2fs_destroy_page_array_cache(sbi); 4854 free_xattr_cache: 4855 f2fs_destroy_xattr_caches(sbi); 4856 free_io_dummy: 4857 mempool_destroy(sbi->write_io_dummy); 4858 free_percpu: 4859 destroy_percpu_info(sbi); 4860 free_iostat: 4861 f2fs_destroy_iostat(sbi); 4862 free_bio_info: 4863 for (i = 0; i < NR_PAGE_TYPE; i++) 4864 kvfree(sbi->write_io[i]); 4865 4866 #if IS_ENABLED(CONFIG_UNICODE) 4867 utf8_unload(sb->s_encoding); 4868 sb->s_encoding = NULL; 4869 #endif 4870 free_options: 4871 #ifdef CONFIG_QUOTA 4872 for (i = 0; i < MAXQUOTAS; i++) 4873 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4874 #endif 4875 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4876 kvfree(options); 4877 free_sb_buf: 4878 kfree(raw_super); 4879 free_sbi: 4880 if (sbi->s_chksum_driver) 4881 crypto_free_shash(sbi->s_chksum_driver); 4882 kfree(sbi); 4883 sb->s_fs_info = NULL; 4884 4885 /* give only one another chance */ 4886 if (retry_cnt > 0 && skip_recovery) { 4887 retry_cnt--; 4888 shrink_dcache_sb(sb); 4889 goto try_onemore; 4890 } 4891 return err; 4892 } 4893 4894 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4895 const char *dev_name, void *data) 4896 { 4897 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4898 } 4899 4900 static void kill_f2fs_super(struct super_block *sb) 4901 { 4902 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4903 4904 if (sb->s_root) { 4905 set_sbi_flag(sbi, SBI_IS_CLOSE); 4906 f2fs_stop_gc_thread(sbi); 4907 f2fs_stop_discard_thread(sbi); 4908 4909 #ifdef CONFIG_F2FS_FS_COMPRESSION 4910 /* 4911 * latter evict_inode() can bypass checking and invalidating 4912 * compress inode cache. 4913 */ 4914 if (test_opt(sbi, COMPRESS_CACHE)) 4915 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4916 #endif 4917 4918 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4919 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4920 struct cp_control cpc = { 4921 .reason = CP_UMOUNT, 4922 }; 4923 stat_inc_cp_call_count(sbi, TOTAL_CALL); 4924 f2fs_write_checkpoint(sbi, &cpc); 4925 } 4926 4927 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4928 sb->s_flags &= ~SB_RDONLY; 4929 } 4930 kill_block_super(sb); 4931 /* Release block devices last, after fscrypt_destroy_keyring(). */ 4932 if (sbi) { 4933 destroy_device_list(sbi); 4934 kfree(sbi); 4935 sb->s_fs_info = NULL; 4936 } 4937 } 4938 4939 static struct file_system_type f2fs_fs_type = { 4940 .owner = THIS_MODULE, 4941 .name = "f2fs", 4942 .mount = f2fs_mount, 4943 .kill_sb = kill_f2fs_super, 4944 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4945 }; 4946 MODULE_ALIAS_FS("f2fs"); 4947 4948 static int __init init_inodecache(void) 4949 { 4950 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4951 sizeof(struct f2fs_inode_info), 0, 4952 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4953 return f2fs_inode_cachep ? 0 : -ENOMEM; 4954 } 4955 4956 static void destroy_inodecache(void) 4957 { 4958 /* 4959 * Make sure all delayed rcu free inodes are flushed before we 4960 * destroy cache. 4961 */ 4962 rcu_barrier(); 4963 kmem_cache_destroy(f2fs_inode_cachep); 4964 } 4965 4966 static int __init init_f2fs_fs(void) 4967 { 4968 int err; 4969 4970 if (PAGE_SIZE != F2FS_BLKSIZE) { 4971 printk("F2FS not supported on PAGE_SIZE(%lu) != BLOCK_SIZE(%lu)\n", 4972 PAGE_SIZE, F2FS_BLKSIZE); 4973 return -EINVAL; 4974 } 4975 4976 err = init_inodecache(); 4977 if (err) 4978 goto fail; 4979 err = f2fs_create_node_manager_caches(); 4980 if (err) 4981 goto free_inodecache; 4982 err = f2fs_create_segment_manager_caches(); 4983 if (err) 4984 goto free_node_manager_caches; 4985 err = f2fs_create_checkpoint_caches(); 4986 if (err) 4987 goto free_segment_manager_caches; 4988 err = f2fs_create_recovery_cache(); 4989 if (err) 4990 goto free_checkpoint_caches; 4991 err = f2fs_create_extent_cache(); 4992 if (err) 4993 goto free_recovery_cache; 4994 err = f2fs_create_garbage_collection_cache(); 4995 if (err) 4996 goto free_extent_cache; 4997 err = f2fs_init_sysfs(); 4998 if (err) 4999 goto free_garbage_collection_cache; 5000 err = f2fs_init_shrinker(); 5001 if (err) 5002 goto free_sysfs; 5003 err = register_filesystem(&f2fs_fs_type); 5004 if (err) 5005 goto free_shrinker; 5006 f2fs_create_root_stats(); 5007 err = f2fs_init_post_read_processing(); 5008 if (err) 5009 goto free_root_stats; 5010 err = f2fs_init_iostat_processing(); 5011 if (err) 5012 goto free_post_read; 5013 err = f2fs_init_bio_entry_cache(); 5014 if (err) 5015 goto free_iostat; 5016 err = f2fs_init_bioset(); 5017 if (err) 5018 goto free_bio_entry_cache; 5019 err = f2fs_init_compress_mempool(); 5020 if (err) 5021 goto free_bioset; 5022 err = f2fs_init_compress_cache(); 5023 if (err) 5024 goto free_compress_mempool; 5025 err = f2fs_create_casefold_cache(); 5026 if (err) 5027 goto free_compress_cache; 5028 return 0; 5029 free_compress_cache: 5030 f2fs_destroy_compress_cache(); 5031 free_compress_mempool: 5032 f2fs_destroy_compress_mempool(); 5033 free_bioset: 5034 f2fs_destroy_bioset(); 5035 free_bio_entry_cache: 5036 f2fs_destroy_bio_entry_cache(); 5037 free_iostat: 5038 f2fs_destroy_iostat_processing(); 5039 free_post_read: 5040 f2fs_destroy_post_read_processing(); 5041 free_root_stats: 5042 f2fs_destroy_root_stats(); 5043 unregister_filesystem(&f2fs_fs_type); 5044 free_shrinker: 5045 f2fs_exit_shrinker(); 5046 free_sysfs: 5047 f2fs_exit_sysfs(); 5048 free_garbage_collection_cache: 5049 f2fs_destroy_garbage_collection_cache(); 5050 free_extent_cache: 5051 f2fs_destroy_extent_cache(); 5052 free_recovery_cache: 5053 f2fs_destroy_recovery_cache(); 5054 free_checkpoint_caches: 5055 f2fs_destroy_checkpoint_caches(); 5056 free_segment_manager_caches: 5057 f2fs_destroy_segment_manager_caches(); 5058 free_node_manager_caches: 5059 f2fs_destroy_node_manager_caches(); 5060 free_inodecache: 5061 destroy_inodecache(); 5062 fail: 5063 return err; 5064 } 5065 5066 static void __exit exit_f2fs_fs(void) 5067 { 5068 f2fs_destroy_casefold_cache(); 5069 f2fs_destroy_compress_cache(); 5070 f2fs_destroy_compress_mempool(); 5071 f2fs_destroy_bioset(); 5072 f2fs_destroy_bio_entry_cache(); 5073 f2fs_destroy_iostat_processing(); 5074 f2fs_destroy_post_read_processing(); 5075 f2fs_destroy_root_stats(); 5076 unregister_filesystem(&f2fs_fs_type); 5077 f2fs_exit_shrinker(); 5078 f2fs_exit_sysfs(); 5079 f2fs_destroy_garbage_collection_cache(); 5080 f2fs_destroy_extent_cache(); 5081 f2fs_destroy_recovery_cache(); 5082 f2fs_destroy_checkpoint_caches(); 5083 f2fs_destroy_segment_manager_caches(); 5084 f2fs_destroy_node_manager_caches(); 5085 destroy_inodecache(); 5086 } 5087 5088 module_init(init_f2fs_fs) 5089 module_exit(exit_f2fs_fs) 5090 5091 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 5092 MODULE_DESCRIPTION("Flash Friendly File System"); 5093 MODULE_LICENSE("GPL"); 5094 MODULE_SOFTDEP("pre: crc32"); 5095 5096