xref: /linux/fs/f2fs/super.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38 
39 static struct kmem_cache *f2fs_inode_cachep;
40 
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42 
43 const char *f2fs_fault_name[FAULT_MAX] = {
44 	[FAULT_KMALLOC]		= "kmalloc",
45 	[FAULT_KVMALLOC]	= "kvmalloc",
46 	[FAULT_PAGE_ALLOC]	= "page alloc",
47 	[FAULT_PAGE_GET]	= "page get",
48 	[FAULT_ALLOC_BIO]	= "alloc bio",
49 	[FAULT_ALLOC_NID]	= "alloc nid",
50 	[FAULT_ORPHAN]		= "orphan",
51 	[FAULT_BLOCK]		= "no more block",
52 	[FAULT_DIR_DEPTH]	= "too big dir depth",
53 	[FAULT_EVICT_INODE]	= "evict_inode fail",
54 	[FAULT_TRUNCATE]	= "truncate fail",
55 	[FAULT_READ_IO]		= "read IO error",
56 	[FAULT_CHECKPOINT]	= "checkpoint error",
57 	[FAULT_DISCARD]		= "discard error",
58 	[FAULT_WRITE_IO]	= "write IO error",
59 };
60 
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 							unsigned int type)
63 {
64 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65 
66 	if (rate) {
67 		atomic_set(&ffi->inject_ops, 0);
68 		ffi->inject_rate = rate;
69 	}
70 
71 	if (type)
72 		ffi->inject_type = type;
73 
74 	if (!rate && !type)
75 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78 
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 	.scan_objects = f2fs_shrink_scan,
82 	.count_objects = f2fs_shrink_count,
83 	.seeks = DEFAULT_SEEKS,
84 };
85 
86 enum {
87 	Opt_gc_background,
88 	Opt_disable_roll_forward,
89 	Opt_norecovery,
90 	Opt_discard,
91 	Opt_nodiscard,
92 	Opt_noheap,
93 	Opt_heap,
94 	Opt_user_xattr,
95 	Opt_nouser_xattr,
96 	Opt_acl,
97 	Opt_noacl,
98 	Opt_active_logs,
99 	Opt_disable_ext_identify,
100 	Opt_inline_xattr,
101 	Opt_noinline_xattr,
102 	Opt_inline_xattr_size,
103 	Opt_inline_data,
104 	Opt_inline_dentry,
105 	Opt_noinline_dentry,
106 	Opt_flush_merge,
107 	Opt_noflush_merge,
108 	Opt_nobarrier,
109 	Opt_fastboot,
110 	Opt_extent_cache,
111 	Opt_noextent_cache,
112 	Opt_noinline_data,
113 	Opt_data_flush,
114 	Opt_reserve_root,
115 	Opt_resgid,
116 	Opt_resuid,
117 	Opt_mode,
118 	Opt_io_size_bits,
119 	Opt_fault_injection,
120 	Opt_fault_type,
121 	Opt_lazytime,
122 	Opt_nolazytime,
123 	Opt_quota,
124 	Opt_noquota,
125 	Opt_usrquota,
126 	Opt_grpquota,
127 	Opt_prjquota,
128 	Opt_usrjquota,
129 	Opt_grpjquota,
130 	Opt_prjjquota,
131 	Opt_offusrjquota,
132 	Opt_offgrpjquota,
133 	Opt_offprjjquota,
134 	Opt_jqfmt_vfsold,
135 	Opt_jqfmt_vfsv0,
136 	Opt_jqfmt_vfsv1,
137 	Opt_whint,
138 	Opt_alloc,
139 	Opt_fsync,
140 	Opt_test_dummy_encryption,
141 	Opt_inlinecrypt,
142 	Opt_checkpoint_disable,
143 	Opt_checkpoint_disable_cap,
144 	Opt_checkpoint_disable_cap_perc,
145 	Opt_checkpoint_enable,
146 	Opt_compress_algorithm,
147 	Opt_compress_log_size,
148 	Opt_compress_extension,
149 	Opt_compress_chksum,
150 	Opt_compress_mode,
151 	Opt_atgc,
152 	Opt_err,
153 };
154 
155 static match_table_t f2fs_tokens = {
156 	{Opt_gc_background, "background_gc=%s"},
157 	{Opt_disable_roll_forward, "disable_roll_forward"},
158 	{Opt_norecovery, "norecovery"},
159 	{Opt_discard, "discard"},
160 	{Opt_nodiscard, "nodiscard"},
161 	{Opt_noheap, "no_heap"},
162 	{Opt_heap, "heap"},
163 	{Opt_user_xattr, "user_xattr"},
164 	{Opt_nouser_xattr, "nouser_xattr"},
165 	{Opt_acl, "acl"},
166 	{Opt_noacl, "noacl"},
167 	{Opt_active_logs, "active_logs=%u"},
168 	{Opt_disable_ext_identify, "disable_ext_identify"},
169 	{Opt_inline_xattr, "inline_xattr"},
170 	{Opt_noinline_xattr, "noinline_xattr"},
171 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
172 	{Opt_inline_data, "inline_data"},
173 	{Opt_inline_dentry, "inline_dentry"},
174 	{Opt_noinline_dentry, "noinline_dentry"},
175 	{Opt_flush_merge, "flush_merge"},
176 	{Opt_noflush_merge, "noflush_merge"},
177 	{Opt_nobarrier, "nobarrier"},
178 	{Opt_fastboot, "fastboot"},
179 	{Opt_extent_cache, "extent_cache"},
180 	{Opt_noextent_cache, "noextent_cache"},
181 	{Opt_noinline_data, "noinline_data"},
182 	{Opt_data_flush, "data_flush"},
183 	{Opt_reserve_root, "reserve_root=%u"},
184 	{Opt_resgid, "resgid=%u"},
185 	{Opt_resuid, "resuid=%u"},
186 	{Opt_mode, "mode=%s"},
187 	{Opt_io_size_bits, "io_bits=%u"},
188 	{Opt_fault_injection, "fault_injection=%u"},
189 	{Opt_fault_type, "fault_type=%u"},
190 	{Opt_lazytime, "lazytime"},
191 	{Opt_nolazytime, "nolazytime"},
192 	{Opt_quota, "quota"},
193 	{Opt_noquota, "noquota"},
194 	{Opt_usrquota, "usrquota"},
195 	{Opt_grpquota, "grpquota"},
196 	{Opt_prjquota, "prjquota"},
197 	{Opt_usrjquota, "usrjquota=%s"},
198 	{Opt_grpjquota, "grpjquota=%s"},
199 	{Opt_prjjquota, "prjjquota=%s"},
200 	{Opt_offusrjquota, "usrjquota="},
201 	{Opt_offgrpjquota, "grpjquota="},
202 	{Opt_offprjjquota, "prjjquota="},
203 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
204 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
205 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
206 	{Opt_whint, "whint_mode=%s"},
207 	{Opt_alloc, "alloc_mode=%s"},
208 	{Opt_fsync, "fsync_mode=%s"},
209 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
210 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
211 	{Opt_inlinecrypt, "inlinecrypt"},
212 	{Opt_checkpoint_disable, "checkpoint=disable"},
213 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
214 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
215 	{Opt_checkpoint_enable, "checkpoint=enable"},
216 	{Opt_compress_algorithm, "compress_algorithm=%s"},
217 	{Opt_compress_log_size, "compress_log_size=%u"},
218 	{Opt_compress_extension, "compress_extension=%s"},
219 	{Opt_compress_chksum, "compress_chksum"},
220 	{Opt_compress_mode, "compress_mode=%s"},
221 	{Opt_atgc, "atgc"},
222 	{Opt_err, NULL},
223 };
224 
225 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
226 {
227 	struct va_format vaf;
228 	va_list args;
229 	int level;
230 
231 	va_start(args, fmt);
232 
233 	level = printk_get_level(fmt);
234 	vaf.fmt = printk_skip_level(fmt);
235 	vaf.va = &args;
236 	printk("%c%cF2FS-fs (%s): %pV\n",
237 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
238 
239 	va_end(args);
240 }
241 
242 #ifdef CONFIG_UNICODE
243 static const struct f2fs_sb_encodings {
244 	__u16 magic;
245 	char *name;
246 	char *version;
247 } f2fs_sb_encoding_map[] = {
248 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
249 };
250 
251 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
252 				 const struct f2fs_sb_encodings **encoding,
253 				 __u16 *flags)
254 {
255 	__u16 magic = le16_to_cpu(sb->s_encoding);
256 	int i;
257 
258 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
259 		if (magic == f2fs_sb_encoding_map[i].magic)
260 			break;
261 
262 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
263 		return -EINVAL;
264 
265 	*encoding = &f2fs_sb_encoding_map[i];
266 	*flags = le16_to_cpu(sb->s_encoding_flags);
267 
268 	return 0;
269 }
270 #endif
271 
272 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
273 {
274 	block_t limit = min((sbi->user_block_count << 1) / 1000,
275 			sbi->user_block_count - sbi->reserved_blocks);
276 
277 	/* limit is 0.2% */
278 	if (test_opt(sbi, RESERVE_ROOT) &&
279 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
280 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
281 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
282 			  F2FS_OPTION(sbi).root_reserved_blocks);
283 	}
284 	if (!test_opt(sbi, RESERVE_ROOT) &&
285 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
286 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
287 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
288 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
289 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
290 			  from_kuid_munged(&init_user_ns,
291 					   F2FS_OPTION(sbi).s_resuid),
292 			  from_kgid_munged(&init_user_ns,
293 					   F2FS_OPTION(sbi).s_resgid));
294 }
295 
296 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
297 {
298 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
299 		return;
300 
301 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
302 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
303 	else
304 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
305 					F2FS_OPTION(sbi).unusable_cap_perc;
306 
307 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
308 			F2FS_OPTION(sbi).unusable_cap,
309 			F2FS_OPTION(sbi).unusable_cap_perc);
310 }
311 
312 static void init_once(void *foo)
313 {
314 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
315 
316 	inode_init_once(&fi->vfs_inode);
317 }
318 
319 #ifdef CONFIG_QUOTA
320 static const char * const quotatypes[] = INITQFNAMES;
321 #define QTYPE2NAME(t) (quotatypes[t])
322 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
323 							substring_t *args)
324 {
325 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
326 	char *qname;
327 	int ret = -EINVAL;
328 
329 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
330 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
331 		return -EINVAL;
332 	}
333 	if (f2fs_sb_has_quota_ino(sbi)) {
334 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
335 		return 0;
336 	}
337 
338 	qname = match_strdup(args);
339 	if (!qname) {
340 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
341 		return -ENOMEM;
342 	}
343 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
344 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
345 			ret = 0;
346 		else
347 			f2fs_err(sbi, "%s quota file already specified",
348 				 QTYPE2NAME(qtype));
349 		goto errout;
350 	}
351 	if (strchr(qname, '/')) {
352 		f2fs_err(sbi, "quotafile must be on filesystem root");
353 		goto errout;
354 	}
355 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
356 	set_opt(sbi, QUOTA);
357 	return 0;
358 errout:
359 	kfree(qname);
360 	return ret;
361 }
362 
363 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
364 {
365 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
366 
367 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
368 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
369 		return -EINVAL;
370 	}
371 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
372 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
373 	return 0;
374 }
375 
376 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
377 {
378 	/*
379 	 * We do the test below only for project quotas. 'usrquota' and
380 	 * 'grpquota' mount options are allowed even without quota feature
381 	 * to support legacy quotas in quota files.
382 	 */
383 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
384 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
385 		return -1;
386 	}
387 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
388 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
389 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
390 		if (test_opt(sbi, USRQUOTA) &&
391 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
392 			clear_opt(sbi, USRQUOTA);
393 
394 		if (test_opt(sbi, GRPQUOTA) &&
395 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
396 			clear_opt(sbi, GRPQUOTA);
397 
398 		if (test_opt(sbi, PRJQUOTA) &&
399 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
400 			clear_opt(sbi, PRJQUOTA);
401 
402 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
403 				test_opt(sbi, PRJQUOTA)) {
404 			f2fs_err(sbi, "old and new quota format mixing");
405 			return -1;
406 		}
407 
408 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
409 			f2fs_err(sbi, "journaled quota format not specified");
410 			return -1;
411 		}
412 	}
413 
414 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
415 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
416 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
417 	}
418 	return 0;
419 }
420 #endif
421 
422 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
423 					  const char *opt,
424 					  const substring_t *arg,
425 					  bool is_remount)
426 {
427 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
428 #ifdef CONFIG_FS_ENCRYPTION
429 	int err;
430 
431 	if (!f2fs_sb_has_encrypt(sbi)) {
432 		f2fs_err(sbi, "Encrypt feature is off");
433 		return -EINVAL;
434 	}
435 
436 	/*
437 	 * This mount option is just for testing, and it's not worthwhile to
438 	 * implement the extra complexity (e.g. RCU protection) that would be
439 	 * needed to allow it to be set or changed during remount.  We do allow
440 	 * it to be specified during remount, but only if there is no change.
441 	 */
442 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
443 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
444 		return -EINVAL;
445 	}
446 	err = fscrypt_set_test_dummy_encryption(
447 		sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
448 	if (err) {
449 		if (err == -EEXIST)
450 			f2fs_warn(sbi,
451 				  "Can't change test_dummy_encryption on remount");
452 		else if (err == -EINVAL)
453 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
454 				  opt);
455 		else
456 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
457 				  opt, err);
458 		return -EINVAL;
459 	}
460 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
461 #else
462 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
463 #endif
464 	return 0;
465 }
466 
467 static int parse_options(struct super_block *sb, char *options, bool is_remount)
468 {
469 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
470 	substring_t args[MAX_OPT_ARGS];
471 #ifdef CONFIG_F2FS_FS_COMPRESSION
472 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
473 	int ext_cnt;
474 #endif
475 	char *p, *name;
476 	int arg = 0;
477 	kuid_t uid;
478 	kgid_t gid;
479 	int ret;
480 
481 	if (!options)
482 		return 0;
483 
484 	while ((p = strsep(&options, ",")) != NULL) {
485 		int token;
486 		if (!*p)
487 			continue;
488 		/*
489 		 * Initialize args struct so we know whether arg was
490 		 * found; some options take optional arguments.
491 		 */
492 		args[0].to = args[0].from = NULL;
493 		token = match_token(p, f2fs_tokens, args);
494 
495 		switch (token) {
496 		case Opt_gc_background:
497 			name = match_strdup(&args[0]);
498 
499 			if (!name)
500 				return -ENOMEM;
501 			if (!strcmp(name, "on")) {
502 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
503 			} else if (!strcmp(name, "off")) {
504 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
505 			} else if (!strcmp(name, "sync")) {
506 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
507 			} else {
508 				kfree(name);
509 				return -EINVAL;
510 			}
511 			kfree(name);
512 			break;
513 		case Opt_disable_roll_forward:
514 			set_opt(sbi, DISABLE_ROLL_FORWARD);
515 			break;
516 		case Opt_norecovery:
517 			/* this option mounts f2fs with ro */
518 			set_opt(sbi, NORECOVERY);
519 			if (!f2fs_readonly(sb))
520 				return -EINVAL;
521 			break;
522 		case Opt_discard:
523 			set_opt(sbi, DISCARD);
524 			break;
525 		case Opt_nodiscard:
526 			if (f2fs_sb_has_blkzoned(sbi)) {
527 				f2fs_warn(sbi, "discard is required for zoned block devices");
528 				return -EINVAL;
529 			}
530 			clear_opt(sbi, DISCARD);
531 			break;
532 		case Opt_noheap:
533 			set_opt(sbi, NOHEAP);
534 			break;
535 		case Opt_heap:
536 			clear_opt(sbi, NOHEAP);
537 			break;
538 #ifdef CONFIG_F2FS_FS_XATTR
539 		case Opt_user_xattr:
540 			set_opt(sbi, XATTR_USER);
541 			break;
542 		case Opt_nouser_xattr:
543 			clear_opt(sbi, XATTR_USER);
544 			break;
545 		case Opt_inline_xattr:
546 			set_opt(sbi, INLINE_XATTR);
547 			break;
548 		case Opt_noinline_xattr:
549 			clear_opt(sbi, INLINE_XATTR);
550 			break;
551 		case Opt_inline_xattr_size:
552 			if (args->from && match_int(args, &arg))
553 				return -EINVAL;
554 			set_opt(sbi, INLINE_XATTR_SIZE);
555 			F2FS_OPTION(sbi).inline_xattr_size = arg;
556 			break;
557 #else
558 		case Opt_user_xattr:
559 			f2fs_info(sbi, "user_xattr options not supported");
560 			break;
561 		case Opt_nouser_xattr:
562 			f2fs_info(sbi, "nouser_xattr options not supported");
563 			break;
564 		case Opt_inline_xattr:
565 			f2fs_info(sbi, "inline_xattr options not supported");
566 			break;
567 		case Opt_noinline_xattr:
568 			f2fs_info(sbi, "noinline_xattr options not supported");
569 			break;
570 #endif
571 #ifdef CONFIG_F2FS_FS_POSIX_ACL
572 		case Opt_acl:
573 			set_opt(sbi, POSIX_ACL);
574 			break;
575 		case Opt_noacl:
576 			clear_opt(sbi, POSIX_ACL);
577 			break;
578 #else
579 		case Opt_acl:
580 			f2fs_info(sbi, "acl options not supported");
581 			break;
582 		case Opt_noacl:
583 			f2fs_info(sbi, "noacl options not supported");
584 			break;
585 #endif
586 		case Opt_active_logs:
587 			if (args->from && match_int(args, &arg))
588 				return -EINVAL;
589 			if (arg != 2 && arg != 4 &&
590 				arg != NR_CURSEG_PERSIST_TYPE)
591 				return -EINVAL;
592 			F2FS_OPTION(sbi).active_logs = arg;
593 			break;
594 		case Opt_disable_ext_identify:
595 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
596 			break;
597 		case Opt_inline_data:
598 			set_opt(sbi, INLINE_DATA);
599 			break;
600 		case Opt_inline_dentry:
601 			set_opt(sbi, INLINE_DENTRY);
602 			break;
603 		case Opt_noinline_dentry:
604 			clear_opt(sbi, INLINE_DENTRY);
605 			break;
606 		case Opt_flush_merge:
607 			set_opt(sbi, FLUSH_MERGE);
608 			break;
609 		case Opt_noflush_merge:
610 			clear_opt(sbi, FLUSH_MERGE);
611 			break;
612 		case Opt_nobarrier:
613 			set_opt(sbi, NOBARRIER);
614 			break;
615 		case Opt_fastboot:
616 			set_opt(sbi, FASTBOOT);
617 			break;
618 		case Opt_extent_cache:
619 			set_opt(sbi, EXTENT_CACHE);
620 			break;
621 		case Opt_noextent_cache:
622 			clear_opt(sbi, EXTENT_CACHE);
623 			break;
624 		case Opt_noinline_data:
625 			clear_opt(sbi, INLINE_DATA);
626 			break;
627 		case Opt_data_flush:
628 			set_opt(sbi, DATA_FLUSH);
629 			break;
630 		case Opt_reserve_root:
631 			if (args->from && match_int(args, &arg))
632 				return -EINVAL;
633 			if (test_opt(sbi, RESERVE_ROOT)) {
634 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
635 					  F2FS_OPTION(sbi).root_reserved_blocks);
636 			} else {
637 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
638 				set_opt(sbi, RESERVE_ROOT);
639 			}
640 			break;
641 		case Opt_resuid:
642 			if (args->from && match_int(args, &arg))
643 				return -EINVAL;
644 			uid = make_kuid(current_user_ns(), arg);
645 			if (!uid_valid(uid)) {
646 				f2fs_err(sbi, "Invalid uid value %d", arg);
647 				return -EINVAL;
648 			}
649 			F2FS_OPTION(sbi).s_resuid = uid;
650 			break;
651 		case Opt_resgid:
652 			if (args->from && match_int(args, &arg))
653 				return -EINVAL;
654 			gid = make_kgid(current_user_ns(), arg);
655 			if (!gid_valid(gid)) {
656 				f2fs_err(sbi, "Invalid gid value %d", arg);
657 				return -EINVAL;
658 			}
659 			F2FS_OPTION(sbi).s_resgid = gid;
660 			break;
661 		case Opt_mode:
662 			name = match_strdup(&args[0]);
663 
664 			if (!name)
665 				return -ENOMEM;
666 			if (!strcmp(name, "adaptive")) {
667 				if (f2fs_sb_has_blkzoned(sbi)) {
668 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
669 					kfree(name);
670 					return -EINVAL;
671 				}
672 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
673 			} else if (!strcmp(name, "lfs")) {
674 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
675 			} else {
676 				kfree(name);
677 				return -EINVAL;
678 			}
679 			kfree(name);
680 			break;
681 		case Opt_io_size_bits:
682 			if (args->from && match_int(args, &arg))
683 				return -EINVAL;
684 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
685 				f2fs_warn(sbi, "Not support %d, larger than %d",
686 					  1 << arg, BIO_MAX_PAGES);
687 				return -EINVAL;
688 			}
689 			F2FS_OPTION(sbi).write_io_size_bits = arg;
690 			break;
691 #ifdef CONFIG_F2FS_FAULT_INJECTION
692 		case Opt_fault_injection:
693 			if (args->from && match_int(args, &arg))
694 				return -EINVAL;
695 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
696 			set_opt(sbi, FAULT_INJECTION);
697 			break;
698 
699 		case Opt_fault_type:
700 			if (args->from && match_int(args, &arg))
701 				return -EINVAL;
702 			f2fs_build_fault_attr(sbi, 0, arg);
703 			set_opt(sbi, FAULT_INJECTION);
704 			break;
705 #else
706 		case Opt_fault_injection:
707 			f2fs_info(sbi, "fault_injection options not supported");
708 			break;
709 
710 		case Opt_fault_type:
711 			f2fs_info(sbi, "fault_type options not supported");
712 			break;
713 #endif
714 		case Opt_lazytime:
715 			sb->s_flags |= SB_LAZYTIME;
716 			break;
717 		case Opt_nolazytime:
718 			sb->s_flags &= ~SB_LAZYTIME;
719 			break;
720 #ifdef CONFIG_QUOTA
721 		case Opt_quota:
722 		case Opt_usrquota:
723 			set_opt(sbi, USRQUOTA);
724 			break;
725 		case Opt_grpquota:
726 			set_opt(sbi, GRPQUOTA);
727 			break;
728 		case Opt_prjquota:
729 			set_opt(sbi, PRJQUOTA);
730 			break;
731 		case Opt_usrjquota:
732 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
733 			if (ret)
734 				return ret;
735 			break;
736 		case Opt_grpjquota:
737 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
738 			if (ret)
739 				return ret;
740 			break;
741 		case Opt_prjjquota:
742 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
743 			if (ret)
744 				return ret;
745 			break;
746 		case Opt_offusrjquota:
747 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
748 			if (ret)
749 				return ret;
750 			break;
751 		case Opt_offgrpjquota:
752 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
753 			if (ret)
754 				return ret;
755 			break;
756 		case Opt_offprjjquota:
757 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
758 			if (ret)
759 				return ret;
760 			break;
761 		case Opt_jqfmt_vfsold:
762 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
763 			break;
764 		case Opt_jqfmt_vfsv0:
765 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
766 			break;
767 		case Opt_jqfmt_vfsv1:
768 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
769 			break;
770 		case Opt_noquota:
771 			clear_opt(sbi, QUOTA);
772 			clear_opt(sbi, USRQUOTA);
773 			clear_opt(sbi, GRPQUOTA);
774 			clear_opt(sbi, PRJQUOTA);
775 			break;
776 #else
777 		case Opt_quota:
778 		case Opt_usrquota:
779 		case Opt_grpquota:
780 		case Opt_prjquota:
781 		case Opt_usrjquota:
782 		case Opt_grpjquota:
783 		case Opt_prjjquota:
784 		case Opt_offusrjquota:
785 		case Opt_offgrpjquota:
786 		case Opt_offprjjquota:
787 		case Opt_jqfmt_vfsold:
788 		case Opt_jqfmt_vfsv0:
789 		case Opt_jqfmt_vfsv1:
790 		case Opt_noquota:
791 			f2fs_info(sbi, "quota operations not supported");
792 			break;
793 #endif
794 		case Opt_whint:
795 			name = match_strdup(&args[0]);
796 			if (!name)
797 				return -ENOMEM;
798 			if (!strcmp(name, "user-based")) {
799 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
800 			} else if (!strcmp(name, "off")) {
801 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
802 			} else if (!strcmp(name, "fs-based")) {
803 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
804 			} else {
805 				kfree(name);
806 				return -EINVAL;
807 			}
808 			kfree(name);
809 			break;
810 		case Opt_alloc:
811 			name = match_strdup(&args[0]);
812 			if (!name)
813 				return -ENOMEM;
814 
815 			if (!strcmp(name, "default")) {
816 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
817 			} else if (!strcmp(name, "reuse")) {
818 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
819 			} else {
820 				kfree(name);
821 				return -EINVAL;
822 			}
823 			kfree(name);
824 			break;
825 		case Opt_fsync:
826 			name = match_strdup(&args[0]);
827 			if (!name)
828 				return -ENOMEM;
829 			if (!strcmp(name, "posix")) {
830 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
831 			} else if (!strcmp(name, "strict")) {
832 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
833 			} else if (!strcmp(name, "nobarrier")) {
834 				F2FS_OPTION(sbi).fsync_mode =
835 							FSYNC_MODE_NOBARRIER;
836 			} else {
837 				kfree(name);
838 				return -EINVAL;
839 			}
840 			kfree(name);
841 			break;
842 		case Opt_test_dummy_encryption:
843 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
844 							     is_remount);
845 			if (ret)
846 				return ret;
847 			break;
848 		case Opt_inlinecrypt:
849 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
850 			sb->s_flags |= SB_INLINECRYPT;
851 #else
852 			f2fs_info(sbi, "inline encryption not supported");
853 #endif
854 			break;
855 		case Opt_checkpoint_disable_cap_perc:
856 			if (args->from && match_int(args, &arg))
857 				return -EINVAL;
858 			if (arg < 0 || arg > 100)
859 				return -EINVAL;
860 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
861 			set_opt(sbi, DISABLE_CHECKPOINT);
862 			break;
863 		case Opt_checkpoint_disable_cap:
864 			if (args->from && match_int(args, &arg))
865 				return -EINVAL;
866 			F2FS_OPTION(sbi).unusable_cap = arg;
867 			set_opt(sbi, DISABLE_CHECKPOINT);
868 			break;
869 		case Opt_checkpoint_disable:
870 			set_opt(sbi, DISABLE_CHECKPOINT);
871 			break;
872 		case Opt_checkpoint_enable:
873 			clear_opt(sbi, DISABLE_CHECKPOINT);
874 			break;
875 #ifdef CONFIG_F2FS_FS_COMPRESSION
876 		case Opt_compress_algorithm:
877 			if (!f2fs_sb_has_compression(sbi)) {
878 				f2fs_info(sbi, "Image doesn't support compression");
879 				break;
880 			}
881 			name = match_strdup(&args[0]);
882 			if (!name)
883 				return -ENOMEM;
884 			if (!strcmp(name, "lzo")) {
885 				F2FS_OPTION(sbi).compress_algorithm =
886 								COMPRESS_LZO;
887 			} else if (!strcmp(name, "lz4")) {
888 				F2FS_OPTION(sbi).compress_algorithm =
889 								COMPRESS_LZ4;
890 			} else if (!strcmp(name, "zstd")) {
891 				F2FS_OPTION(sbi).compress_algorithm =
892 								COMPRESS_ZSTD;
893 			} else if (!strcmp(name, "lzo-rle")) {
894 				F2FS_OPTION(sbi).compress_algorithm =
895 								COMPRESS_LZORLE;
896 			} else {
897 				kfree(name);
898 				return -EINVAL;
899 			}
900 			kfree(name);
901 			break;
902 		case Opt_compress_log_size:
903 			if (!f2fs_sb_has_compression(sbi)) {
904 				f2fs_info(sbi, "Image doesn't support compression");
905 				break;
906 			}
907 			if (args->from && match_int(args, &arg))
908 				return -EINVAL;
909 			if (arg < MIN_COMPRESS_LOG_SIZE ||
910 				arg > MAX_COMPRESS_LOG_SIZE) {
911 				f2fs_err(sbi,
912 					"Compress cluster log size is out of range");
913 				return -EINVAL;
914 			}
915 			F2FS_OPTION(sbi).compress_log_size = arg;
916 			break;
917 		case Opt_compress_extension:
918 			if (!f2fs_sb_has_compression(sbi)) {
919 				f2fs_info(sbi, "Image doesn't support compression");
920 				break;
921 			}
922 			name = match_strdup(&args[0]);
923 			if (!name)
924 				return -ENOMEM;
925 
926 			ext = F2FS_OPTION(sbi).extensions;
927 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
928 
929 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
930 				ext_cnt >= COMPRESS_EXT_NUM) {
931 				f2fs_err(sbi,
932 					"invalid extension length/number");
933 				kfree(name);
934 				return -EINVAL;
935 			}
936 
937 			strcpy(ext[ext_cnt], name);
938 			F2FS_OPTION(sbi).compress_ext_cnt++;
939 			kfree(name);
940 			break;
941 		case Opt_compress_chksum:
942 			F2FS_OPTION(sbi).compress_chksum = true;
943 			break;
944 		case Opt_compress_mode:
945 			name = match_strdup(&args[0]);
946 			if (!name)
947 				return -ENOMEM;
948 			if (!strcmp(name, "fs")) {
949 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
950 			} else if (!strcmp(name, "user")) {
951 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
952 			} else {
953 				kfree(name);
954 				return -EINVAL;
955 			}
956 			kfree(name);
957 			break;
958 #else
959 		case Opt_compress_algorithm:
960 		case Opt_compress_log_size:
961 		case Opt_compress_extension:
962 		case Opt_compress_chksum:
963 		case Opt_compress_mode:
964 			f2fs_info(sbi, "compression options not supported");
965 			break;
966 #endif
967 		case Opt_atgc:
968 			set_opt(sbi, ATGC);
969 			break;
970 		default:
971 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
972 				 p);
973 			return -EINVAL;
974 		}
975 	}
976 #ifdef CONFIG_QUOTA
977 	if (f2fs_check_quota_options(sbi))
978 		return -EINVAL;
979 #else
980 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
981 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
982 		return -EINVAL;
983 	}
984 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
985 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
986 		return -EINVAL;
987 	}
988 #endif
989 #ifndef CONFIG_UNICODE
990 	if (f2fs_sb_has_casefold(sbi)) {
991 		f2fs_err(sbi,
992 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
993 		return -EINVAL;
994 	}
995 #endif
996 	/*
997 	 * The BLKZONED feature indicates that the drive was formatted with
998 	 * zone alignment optimization. This is optional for host-aware
999 	 * devices, but mandatory for host-managed zoned block devices.
1000 	 */
1001 #ifndef CONFIG_BLK_DEV_ZONED
1002 	if (f2fs_sb_has_blkzoned(sbi)) {
1003 		f2fs_err(sbi, "Zoned block device support is not enabled");
1004 		return -EINVAL;
1005 	}
1006 #endif
1007 
1008 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1009 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1010 			 F2FS_IO_SIZE_KB(sbi));
1011 		return -EINVAL;
1012 	}
1013 
1014 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1015 		int min_size, max_size;
1016 
1017 		if (!f2fs_sb_has_extra_attr(sbi) ||
1018 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1019 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1020 			return -EINVAL;
1021 		}
1022 		if (!test_opt(sbi, INLINE_XATTR)) {
1023 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1024 			return -EINVAL;
1025 		}
1026 
1027 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1028 		max_size = MAX_INLINE_XATTR_SIZE;
1029 
1030 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1031 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1032 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1033 				 min_size, max_size);
1034 			return -EINVAL;
1035 		}
1036 	}
1037 
1038 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1039 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
1040 		return -EINVAL;
1041 	}
1042 
1043 	/* Not pass down write hints if the number of active logs is lesser
1044 	 * than NR_CURSEG_PERSIST_TYPE.
1045 	 */
1046 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
1047 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1048 	return 0;
1049 }
1050 
1051 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1052 {
1053 	struct f2fs_inode_info *fi;
1054 
1055 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1056 	if (!fi)
1057 		return NULL;
1058 
1059 	init_once((void *) fi);
1060 
1061 	/* Initialize f2fs-specific inode info */
1062 	atomic_set(&fi->dirty_pages, 0);
1063 	atomic_set(&fi->i_compr_blocks, 0);
1064 	init_rwsem(&fi->i_sem);
1065 	spin_lock_init(&fi->i_size_lock);
1066 	INIT_LIST_HEAD(&fi->dirty_list);
1067 	INIT_LIST_HEAD(&fi->gdirty_list);
1068 	INIT_LIST_HEAD(&fi->inmem_ilist);
1069 	INIT_LIST_HEAD(&fi->inmem_pages);
1070 	mutex_init(&fi->inmem_lock);
1071 	init_rwsem(&fi->i_gc_rwsem[READ]);
1072 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
1073 	init_rwsem(&fi->i_mmap_sem);
1074 	init_rwsem(&fi->i_xattr_sem);
1075 
1076 	/* Will be used by directory only */
1077 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1078 
1079 	fi->ra_offset = -1;
1080 
1081 	return &fi->vfs_inode;
1082 }
1083 
1084 static int f2fs_drop_inode(struct inode *inode)
1085 {
1086 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1087 	int ret;
1088 
1089 	/*
1090 	 * during filesystem shutdown, if checkpoint is disabled,
1091 	 * drop useless meta/node dirty pages.
1092 	 */
1093 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1094 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1095 			inode->i_ino == F2FS_META_INO(sbi)) {
1096 			trace_f2fs_drop_inode(inode, 1);
1097 			return 1;
1098 		}
1099 	}
1100 
1101 	/*
1102 	 * This is to avoid a deadlock condition like below.
1103 	 * writeback_single_inode(inode)
1104 	 *  - f2fs_write_data_page
1105 	 *    - f2fs_gc -> iput -> evict
1106 	 *       - inode_wait_for_writeback(inode)
1107 	 */
1108 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1109 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1110 			/* to avoid evict_inode call simultaneously */
1111 			atomic_inc(&inode->i_count);
1112 			spin_unlock(&inode->i_lock);
1113 
1114 			/* some remained atomic pages should discarded */
1115 			if (f2fs_is_atomic_file(inode))
1116 				f2fs_drop_inmem_pages(inode);
1117 
1118 			/* should remain fi->extent_tree for writepage */
1119 			f2fs_destroy_extent_node(inode);
1120 
1121 			sb_start_intwrite(inode->i_sb);
1122 			f2fs_i_size_write(inode, 0);
1123 
1124 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1125 					inode, NULL, 0, DATA);
1126 			truncate_inode_pages_final(inode->i_mapping);
1127 
1128 			if (F2FS_HAS_BLOCKS(inode))
1129 				f2fs_truncate(inode);
1130 
1131 			sb_end_intwrite(inode->i_sb);
1132 
1133 			spin_lock(&inode->i_lock);
1134 			atomic_dec(&inode->i_count);
1135 		}
1136 		trace_f2fs_drop_inode(inode, 0);
1137 		return 0;
1138 	}
1139 	ret = generic_drop_inode(inode);
1140 	if (!ret)
1141 		ret = fscrypt_drop_inode(inode);
1142 	trace_f2fs_drop_inode(inode, ret);
1143 	return ret;
1144 }
1145 
1146 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1147 {
1148 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1149 	int ret = 0;
1150 
1151 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1152 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1153 		ret = 1;
1154 	} else {
1155 		set_inode_flag(inode, FI_DIRTY_INODE);
1156 		stat_inc_dirty_inode(sbi, DIRTY_META);
1157 	}
1158 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1159 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1160 				&sbi->inode_list[DIRTY_META]);
1161 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1162 	}
1163 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1164 	return ret;
1165 }
1166 
1167 void f2fs_inode_synced(struct inode *inode)
1168 {
1169 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1170 
1171 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1172 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1173 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1174 		return;
1175 	}
1176 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1177 		list_del_init(&F2FS_I(inode)->gdirty_list);
1178 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1179 	}
1180 	clear_inode_flag(inode, FI_DIRTY_INODE);
1181 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1182 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1183 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1184 }
1185 
1186 /*
1187  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1188  *
1189  * We should call set_dirty_inode to write the dirty inode through write_inode.
1190  */
1191 static void f2fs_dirty_inode(struct inode *inode, int flags)
1192 {
1193 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1194 
1195 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1196 			inode->i_ino == F2FS_META_INO(sbi))
1197 		return;
1198 
1199 	if (flags == I_DIRTY_TIME)
1200 		return;
1201 
1202 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1203 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1204 
1205 	f2fs_inode_dirtied(inode, false);
1206 }
1207 
1208 static void f2fs_free_inode(struct inode *inode)
1209 {
1210 	fscrypt_free_inode(inode);
1211 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1212 }
1213 
1214 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1215 {
1216 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1217 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1218 }
1219 
1220 static void destroy_device_list(struct f2fs_sb_info *sbi)
1221 {
1222 	int i;
1223 
1224 	for (i = 0; i < sbi->s_ndevs; i++) {
1225 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1226 #ifdef CONFIG_BLK_DEV_ZONED
1227 		kvfree(FDEV(i).blkz_seq);
1228 		kfree(FDEV(i).zone_capacity_blocks);
1229 #endif
1230 	}
1231 	kvfree(sbi->devs);
1232 }
1233 
1234 static void f2fs_put_super(struct super_block *sb)
1235 {
1236 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1237 	int i;
1238 	bool dropped;
1239 
1240 	/* unregister procfs/sysfs entries in advance to avoid race case */
1241 	f2fs_unregister_sysfs(sbi);
1242 
1243 	f2fs_quota_off_umount(sb);
1244 
1245 	/* prevent remaining shrinker jobs */
1246 	mutex_lock(&sbi->umount_mutex);
1247 
1248 	/*
1249 	 * We don't need to do checkpoint when superblock is clean.
1250 	 * But, the previous checkpoint was not done by umount, it needs to do
1251 	 * clean checkpoint again.
1252 	 */
1253 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1254 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1255 		struct cp_control cpc = {
1256 			.reason = CP_UMOUNT,
1257 		};
1258 		f2fs_write_checkpoint(sbi, &cpc);
1259 	}
1260 
1261 	/* be sure to wait for any on-going discard commands */
1262 	dropped = f2fs_issue_discard_timeout(sbi);
1263 
1264 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1265 					!sbi->discard_blks && !dropped) {
1266 		struct cp_control cpc = {
1267 			.reason = CP_UMOUNT | CP_TRIMMED,
1268 		};
1269 		f2fs_write_checkpoint(sbi, &cpc);
1270 	}
1271 
1272 	/*
1273 	 * normally superblock is clean, so we need to release this.
1274 	 * In addition, EIO will skip do checkpoint, we need this as well.
1275 	 */
1276 	f2fs_release_ino_entry(sbi, true);
1277 
1278 	f2fs_leave_shrinker(sbi);
1279 	mutex_unlock(&sbi->umount_mutex);
1280 
1281 	/* our cp_error case, we can wait for any writeback page */
1282 	f2fs_flush_merged_writes(sbi);
1283 
1284 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1285 
1286 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1287 
1288 	iput(sbi->node_inode);
1289 	sbi->node_inode = NULL;
1290 
1291 	iput(sbi->meta_inode);
1292 	sbi->meta_inode = NULL;
1293 
1294 	/*
1295 	 * iput() can update stat information, if f2fs_write_checkpoint()
1296 	 * above failed with error.
1297 	 */
1298 	f2fs_destroy_stats(sbi);
1299 
1300 	/* destroy f2fs internal modules */
1301 	f2fs_destroy_node_manager(sbi);
1302 	f2fs_destroy_segment_manager(sbi);
1303 
1304 	f2fs_destroy_post_read_wq(sbi);
1305 
1306 	kvfree(sbi->ckpt);
1307 
1308 	sb->s_fs_info = NULL;
1309 	if (sbi->s_chksum_driver)
1310 		crypto_free_shash(sbi->s_chksum_driver);
1311 	kfree(sbi->raw_super);
1312 
1313 	destroy_device_list(sbi);
1314 	f2fs_destroy_page_array_cache(sbi);
1315 	f2fs_destroy_xattr_caches(sbi);
1316 	mempool_destroy(sbi->write_io_dummy);
1317 #ifdef CONFIG_QUOTA
1318 	for (i = 0; i < MAXQUOTAS; i++)
1319 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1320 #endif
1321 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1322 	destroy_percpu_info(sbi);
1323 	for (i = 0; i < NR_PAGE_TYPE; i++)
1324 		kvfree(sbi->write_io[i]);
1325 #ifdef CONFIG_UNICODE
1326 	utf8_unload(sb->s_encoding);
1327 #endif
1328 	kfree(sbi);
1329 }
1330 
1331 int f2fs_sync_fs(struct super_block *sb, int sync)
1332 {
1333 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1334 	int err = 0;
1335 
1336 	if (unlikely(f2fs_cp_error(sbi)))
1337 		return 0;
1338 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1339 		return 0;
1340 
1341 	trace_f2fs_sync_fs(sb, sync);
1342 
1343 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1344 		return -EAGAIN;
1345 
1346 	if (sync) {
1347 		struct cp_control cpc;
1348 
1349 		cpc.reason = __get_cp_reason(sbi);
1350 
1351 		down_write(&sbi->gc_lock);
1352 		err = f2fs_write_checkpoint(sbi, &cpc);
1353 		up_write(&sbi->gc_lock);
1354 	}
1355 	f2fs_trace_ios(NULL, 1);
1356 
1357 	return err;
1358 }
1359 
1360 static int f2fs_freeze(struct super_block *sb)
1361 {
1362 	if (f2fs_readonly(sb))
1363 		return 0;
1364 
1365 	/* IO error happened before */
1366 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1367 		return -EIO;
1368 
1369 	/* must be clean, since sync_filesystem() was already called */
1370 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1371 		return -EINVAL;
1372 	return 0;
1373 }
1374 
1375 static int f2fs_unfreeze(struct super_block *sb)
1376 {
1377 	return 0;
1378 }
1379 
1380 #ifdef CONFIG_QUOTA
1381 static int f2fs_statfs_project(struct super_block *sb,
1382 				kprojid_t projid, struct kstatfs *buf)
1383 {
1384 	struct kqid qid;
1385 	struct dquot *dquot;
1386 	u64 limit;
1387 	u64 curblock;
1388 
1389 	qid = make_kqid_projid(projid);
1390 	dquot = dqget(sb, qid);
1391 	if (IS_ERR(dquot))
1392 		return PTR_ERR(dquot);
1393 	spin_lock(&dquot->dq_dqb_lock);
1394 
1395 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1396 					dquot->dq_dqb.dqb_bhardlimit);
1397 	if (limit)
1398 		limit >>= sb->s_blocksize_bits;
1399 
1400 	if (limit && buf->f_blocks > limit) {
1401 		curblock = (dquot->dq_dqb.dqb_curspace +
1402 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1403 		buf->f_blocks = limit;
1404 		buf->f_bfree = buf->f_bavail =
1405 			(buf->f_blocks > curblock) ?
1406 			 (buf->f_blocks - curblock) : 0;
1407 	}
1408 
1409 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1410 					dquot->dq_dqb.dqb_ihardlimit);
1411 
1412 	if (limit && buf->f_files > limit) {
1413 		buf->f_files = limit;
1414 		buf->f_ffree =
1415 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1416 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1417 	}
1418 
1419 	spin_unlock(&dquot->dq_dqb_lock);
1420 	dqput(dquot);
1421 	return 0;
1422 }
1423 #endif
1424 
1425 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1426 {
1427 	struct super_block *sb = dentry->d_sb;
1428 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1429 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1430 	block_t total_count, user_block_count, start_count;
1431 	u64 avail_node_count;
1432 
1433 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1434 	user_block_count = sbi->user_block_count;
1435 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1436 	buf->f_type = F2FS_SUPER_MAGIC;
1437 	buf->f_bsize = sbi->blocksize;
1438 
1439 	buf->f_blocks = total_count - start_count;
1440 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1441 						sbi->current_reserved_blocks;
1442 
1443 	spin_lock(&sbi->stat_lock);
1444 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1445 		buf->f_bfree = 0;
1446 	else
1447 		buf->f_bfree -= sbi->unusable_block_count;
1448 	spin_unlock(&sbi->stat_lock);
1449 
1450 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1451 		buf->f_bavail = buf->f_bfree -
1452 				F2FS_OPTION(sbi).root_reserved_blocks;
1453 	else
1454 		buf->f_bavail = 0;
1455 
1456 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1457 
1458 	if (avail_node_count > user_block_count) {
1459 		buf->f_files = user_block_count;
1460 		buf->f_ffree = buf->f_bavail;
1461 	} else {
1462 		buf->f_files = avail_node_count;
1463 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1464 					buf->f_bavail);
1465 	}
1466 
1467 	buf->f_namelen = F2FS_NAME_LEN;
1468 	buf->f_fsid    = u64_to_fsid(id);
1469 
1470 #ifdef CONFIG_QUOTA
1471 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1472 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1473 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1474 	}
1475 #endif
1476 	return 0;
1477 }
1478 
1479 static inline void f2fs_show_quota_options(struct seq_file *seq,
1480 					   struct super_block *sb)
1481 {
1482 #ifdef CONFIG_QUOTA
1483 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1484 
1485 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1486 		char *fmtname = "";
1487 
1488 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1489 		case QFMT_VFS_OLD:
1490 			fmtname = "vfsold";
1491 			break;
1492 		case QFMT_VFS_V0:
1493 			fmtname = "vfsv0";
1494 			break;
1495 		case QFMT_VFS_V1:
1496 			fmtname = "vfsv1";
1497 			break;
1498 		}
1499 		seq_printf(seq, ",jqfmt=%s", fmtname);
1500 	}
1501 
1502 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1503 		seq_show_option(seq, "usrjquota",
1504 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1505 
1506 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1507 		seq_show_option(seq, "grpjquota",
1508 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1509 
1510 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1511 		seq_show_option(seq, "prjjquota",
1512 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1513 #endif
1514 }
1515 
1516 static inline void f2fs_show_compress_options(struct seq_file *seq,
1517 							struct super_block *sb)
1518 {
1519 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1520 	char *algtype = "";
1521 	int i;
1522 
1523 	if (!f2fs_sb_has_compression(sbi))
1524 		return;
1525 
1526 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1527 	case COMPRESS_LZO:
1528 		algtype = "lzo";
1529 		break;
1530 	case COMPRESS_LZ4:
1531 		algtype = "lz4";
1532 		break;
1533 	case COMPRESS_ZSTD:
1534 		algtype = "zstd";
1535 		break;
1536 	case COMPRESS_LZORLE:
1537 		algtype = "lzo-rle";
1538 		break;
1539 	}
1540 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1541 
1542 	seq_printf(seq, ",compress_log_size=%u",
1543 			F2FS_OPTION(sbi).compress_log_size);
1544 
1545 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1546 		seq_printf(seq, ",compress_extension=%s",
1547 			F2FS_OPTION(sbi).extensions[i]);
1548 	}
1549 
1550 	if (F2FS_OPTION(sbi).compress_chksum)
1551 		seq_puts(seq, ",compress_chksum");
1552 
1553 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1554 		seq_printf(seq, ",compress_mode=%s", "fs");
1555 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1556 		seq_printf(seq, ",compress_mode=%s", "user");
1557 }
1558 
1559 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1560 {
1561 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1562 
1563 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1564 		seq_printf(seq, ",background_gc=%s", "sync");
1565 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1566 		seq_printf(seq, ",background_gc=%s", "on");
1567 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1568 		seq_printf(seq, ",background_gc=%s", "off");
1569 
1570 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1571 		seq_puts(seq, ",disable_roll_forward");
1572 	if (test_opt(sbi, NORECOVERY))
1573 		seq_puts(seq, ",norecovery");
1574 	if (test_opt(sbi, DISCARD))
1575 		seq_puts(seq, ",discard");
1576 	else
1577 		seq_puts(seq, ",nodiscard");
1578 	if (test_opt(sbi, NOHEAP))
1579 		seq_puts(seq, ",no_heap");
1580 	else
1581 		seq_puts(seq, ",heap");
1582 #ifdef CONFIG_F2FS_FS_XATTR
1583 	if (test_opt(sbi, XATTR_USER))
1584 		seq_puts(seq, ",user_xattr");
1585 	else
1586 		seq_puts(seq, ",nouser_xattr");
1587 	if (test_opt(sbi, INLINE_XATTR))
1588 		seq_puts(seq, ",inline_xattr");
1589 	else
1590 		seq_puts(seq, ",noinline_xattr");
1591 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1592 		seq_printf(seq, ",inline_xattr_size=%u",
1593 					F2FS_OPTION(sbi).inline_xattr_size);
1594 #endif
1595 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1596 	if (test_opt(sbi, POSIX_ACL))
1597 		seq_puts(seq, ",acl");
1598 	else
1599 		seq_puts(seq, ",noacl");
1600 #endif
1601 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1602 		seq_puts(seq, ",disable_ext_identify");
1603 	if (test_opt(sbi, INLINE_DATA))
1604 		seq_puts(seq, ",inline_data");
1605 	else
1606 		seq_puts(seq, ",noinline_data");
1607 	if (test_opt(sbi, INLINE_DENTRY))
1608 		seq_puts(seq, ",inline_dentry");
1609 	else
1610 		seq_puts(seq, ",noinline_dentry");
1611 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1612 		seq_puts(seq, ",flush_merge");
1613 	if (test_opt(sbi, NOBARRIER))
1614 		seq_puts(seq, ",nobarrier");
1615 	if (test_opt(sbi, FASTBOOT))
1616 		seq_puts(seq, ",fastboot");
1617 	if (test_opt(sbi, EXTENT_CACHE))
1618 		seq_puts(seq, ",extent_cache");
1619 	else
1620 		seq_puts(seq, ",noextent_cache");
1621 	if (test_opt(sbi, DATA_FLUSH))
1622 		seq_puts(seq, ",data_flush");
1623 
1624 	seq_puts(seq, ",mode=");
1625 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1626 		seq_puts(seq, "adaptive");
1627 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1628 		seq_puts(seq, "lfs");
1629 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1630 	if (test_opt(sbi, RESERVE_ROOT))
1631 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1632 				F2FS_OPTION(sbi).root_reserved_blocks,
1633 				from_kuid_munged(&init_user_ns,
1634 					F2FS_OPTION(sbi).s_resuid),
1635 				from_kgid_munged(&init_user_ns,
1636 					F2FS_OPTION(sbi).s_resgid));
1637 	if (F2FS_IO_SIZE_BITS(sbi))
1638 		seq_printf(seq, ",io_bits=%u",
1639 				F2FS_OPTION(sbi).write_io_size_bits);
1640 #ifdef CONFIG_F2FS_FAULT_INJECTION
1641 	if (test_opt(sbi, FAULT_INJECTION)) {
1642 		seq_printf(seq, ",fault_injection=%u",
1643 				F2FS_OPTION(sbi).fault_info.inject_rate);
1644 		seq_printf(seq, ",fault_type=%u",
1645 				F2FS_OPTION(sbi).fault_info.inject_type);
1646 	}
1647 #endif
1648 #ifdef CONFIG_QUOTA
1649 	if (test_opt(sbi, QUOTA))
1650 		seq_puts(seq, ",quota");
1651 	if (test_opt(sbi, USRQUOTA))
1652 		seq_puts(seq, ",usrquota");
1653 	if (test_opt(sbi, GRPQUOTA))
1654 		seq_puts(seq, ",grpquota");
1655 	if (test_opt(sbi, PRJQUOTA))
1656 		seq_puts(seq, ",prjquota");
1657 #endif
1658 	f2fs_show_quota_options(seq, sbi->sb);
1659 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1660 		seq_printf(seq, ",whint_mode=%s", "user-based");
1661 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1662 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1663 
1664 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1665 
1666 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1667 		seq_puts(seq, ",inlinecrypt");
1668 
1669 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1670 		seq_printf(seq, ",alloc_mode=%s", "default");
1671 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1672 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1673 
1674 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1675 		seq_printf(seq, ",checkpoint=disable:%u",
1676 				F2FS_OPTION(sbi).unusable_cap);
1677 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1678 		seq_printf(seq, ",fsync_mode=%s", "posix");
1679 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1680 		seq_printf(seq, ",fsync_mode=%s", "strict");
1681 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1682 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1683 
1684 #ifdef CONFIG_F2FS_FS_COMPRESSION
1685 	f2fs_show_compress_options(seq, sbi->sb);
1686 #endif
1687 
1688 	if (test_opt(sbi, ATGC))
1689 		seq_puts(seq, ",atgc");
1690 	return 0;
1691 }
1692 
1693 static void default_options(struct f2fs_sb_info *sbi)
1694 {
1695 	/* init some FS parameters */
1696 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
1697 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1698 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1699 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1700 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1701 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1702 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1703 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1704 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1705 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1706 	F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1707 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1708 
1709 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
1710 
1711 	set_opt(sbi, INLINE_XATTR);
1712 	set_opt(sbi, INLINE_DATA);
1713 	set_opt(sbi, INLINE_DENTRY);
1714 	set_opt(sbi, EXTENT_CACHE);
1715 	set_opt(sbi, NOHEAP);
1716 	clear_opt(sbi, DISABLE_CHECKPOINT);
1717 	F2FS_OPTION(sbi).unusable_cap = 0;
1718 	sbi->sb->s_flags |= SB_LAZYTIME;
1719 	set_opt(sbi, FLUSH_MERGE);
1720 	set_opt(sbi, DISCARD);
1721 	if (f2fs_sb_has_blkzoned(sbi))
1722 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1723 	else
1724 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1725 
1726 #ifdef CONFIG_F2FS_FS_XATTR
1727 	set_opt(sbi, XATTR_USER);
1728 #endif
1729 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1730 	set_opt(sbi, POSIX_ACL);
1731 #endif
1732 
1733 	f2fs_build_fault_attr(sbi, 0, 0);
1734 }
1735 
1736 #ifdef CONFIG_QUOTA
1737 static int f2fs_enable_quotas(struct super_block *sb);
1738 #endif
1739 
1740 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1741 {
1742 	unsigned int s_flags = sbi->sb->s_flags;
1743 	struct cp_control cpc;
1744 	int err = 0;
1745 	int ret;
1746 	block_t unusable;
1747 
1748 	if (s_flags & SB_RDONLY) {
1749 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1750 		return -EINVAL;
1751 	}
1752 	sbi->sb->s_flags |= SB_ACTIVE;
1753 
1754 	f2fs_update_time(sbi, DISABLE_TIME);
1755 
1756 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1757 		down_write(&sbi->gc_lock);
1758 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1759 		if (err == -ENODATA) {
1760 			err = 0;
1761 			break;
1762 		}
1763 		if (err && err != -EAGAIN)
1764 			break;
1765 	}
1766 
1767 	ret = sync_filesystem(sbi->sb);
1768 	if (ret || err) {
1769 		err = ret ? ret: err;
1770 		goto restore_flag;
1771 	}
1772 
1773 	unusable = f2fs_get_unusable_blocks(sbi);
1774 	if (f2fs_disable_cp_again(sbi, unusable)) {
1775 		err = -EAGAIN;
1776 		goto restore_flag;
1777 	}
1778 
1779 	down_write(&sbi->gc_lock);
1780 	cpc.reason = CP_PAUSE;
1781 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1782 	err = f2fs_write_checkpoint(sbi, &cpc);
1783 	if (err)
1784 		goto out_unlock;
1785 
1786 	spin_lock(&sbi->stat_lock);
1787 	sbi->unusable_block_count = unusable;
1788 	spin_unlock(&sbi->stat_lock);
1789 
1790 out_unlock:
1791 	up_write(&sbi->gc_lock);
1792 restore_flag:
1793 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
1794 	return err;
1795 }
1796 
1797 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1798 {
1799 	down_write(&sbi->gc_lock);
1800 	f2fs_dirty_to_prefree(sbi);
1801 
1802 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1803 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1804 	up_write(&sbi->gc_lock);
1805 
1806 	f2fs_sync_fs(sbi->sb, 1);
1807 }
1808 
1809 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1810 {
1811 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1812 	struct f2fs_mount_info org_mount_opt;
1813 	unsigned long old_sb_flags;
1814 	int err;
1815 	bool need_restart_gc = false;
1816 	bool need_stop_gc = false;
1817 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1818 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1819 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1820 	bool no_atgc = !test_opt(sbi, ATGC);
1821 	bool checkpoint_changed;
1822 #ifdef CONFIG_QUOTA
1823 	int i, j;
1824 #endif
1825 
1826 	/*
1827 	 * Save the old mount options in case we
1828 	 * need to restore them.
1829 	 */
1830 	org_mount_opt = sbi->mount_opt;
1831 	old_sb_flags = sb->s_flags;
1832 
1833 #ifdef CONFIG_QUOTA
1834 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1835 	for (i = 0; i < MAXQUOTAS; i++) {
1836 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1837 			org_mount_opt.s_qf_names[i] =
1838 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1839 				GFP_KERNEL);
1840 			if (!org_mount_opt.s_qf_names[i]) {
1841 				for (j = 0; j < i; j++)
1842 					kfree(org_mount_opt.s_qf_names[j]);
1843 				return -ENOMEM;
1844 			}
1845 		} else {
1846 			org_mount_opt.s_qf_names[i] = NULL;
1847 		}
1848 	}
1849 #endif
1850 
1851 	/* recover superblocks we couldn't write due to previous RO mount */
1852 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1853 		err = f2fs_commit_super(sbi, false);
1854 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1855 			  err);
1856 		if (!err)
1857 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1858 	}
1859 
1860 	default_options(sbi);
1861 
1862 	/* parse mount options */
1863 	err = parse_options(sb, data, true);
1864 	if (err)
1865 		goto restore_opts;
1866 	checkpoint_changed =
1867 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1868 
1869 	/*
1870 	 * Previous and new state of filesystem is RO,
1871 	 * so skip checking GC and FLUSH_MERGE conditions.
1872 	 */
1873 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1874 		goto skip;
1875 
1876 #ifdef CONFIG_QUOTA
1877 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1878 		err = dquot_suspend(sb, -1);
1879 		if (err < 0)
1880 			goto restore_opts;
1881 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1882 		/* dquot_resume needs RW */
1883 		sb->s_flags &= ~SB_RDONLY;
1884 		if (sb_any_quota_suspended(sb)) {
1885 			dquot_resume(sb, -1);
1886 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1887 			err = f2fs_enable_quotas(sb);
1888 			if (err)
1889 				goto restore_opts;
1890 		}
1891 	}
1892 #endif
1893 	/* disallow enable atgc dynamically */
1894 	if (no_atgc == !!test_opt(sbi, ATGC)) {
1895 		err = -EINVAL;
1896 		f2fs_warn(sbi, "switch atgc option is not allowed");
1897 		goto restore_opts;
1898 	}
1899 
1900 	/* disallow enable/disable extent_cache dynamically */
1901 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1902 		err = -EINVAL;
1903 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
1904 		goto restore_opts;
1905 	}
1906 
1907 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1908 		err = -EINVAL;
1909 		f2fs_warn(sbi, "switch io_bits option is not allowed");
1910 		goto restore_opts;
1911 	}
1912 
1913 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1914 		err = -EINVAL;
1915 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1916 		goto restore_opts;
1917 	}
1918 
1919 	/*
1920 	 * We stop the GC thread if FS is mounted as RO
1921 	 * or if background_gc = off is passed in mount
1922 	 * option. Also sync the filesystem.
1923 	 */
1924 	if ((*flags & SB_RDONLY) ||
1925 			F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) {
1926 		if (sbi->gc_thread) {
1927 			f2fs_stop_gc_thread(sbi);
1928 			need_restart_gc = true;
1929 		}
1930 	} else if (!sbi->gc_thread) {
1931 		err = f2fs_start_gc_thread(sbi);
1932 		if (err)
1933 			goto restore_opts;
1934 		need_stop_gc = true;
1935 	}
1936 
1937 	if (*flags & SB_RDONLY ||
1938 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1939 		sync_inodes_sb(sb);
1940 
1941 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1942 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1943 		f2fs_sync_fs(sb, 1);
1944 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1945 	}
1946 
1947 	if (checkpoint_changed) {
1948 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1949 			err = f2fs_disable_checkpoint(sbi);
1950 			if (err)
1951 				goto restore_gc;
1952 		} else {
1953 			f2fs_enable_checkpoint(sbi);
1954 		}
1955 	}
1956 
1957 	/*
1958 	 * We stop issue flush thread if FS is mounted as RO
1959 	 * or if flush_merge is not passed in mount option.
1960 	 */
1961 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1962 		clear_opt(sbi, FLUSH_MERGE);
1963 		f2fs_destroy_flush_cmd_control(sbi, false);
1964 	} else {
1965 		err = f2fs_create_flush_cmd_control(sbi);
1966 		if (err)
1967 			goto restore_gc;
1968 	}
1969 skip:
1970 #ifdef CONFIG_QUOTA
1971 	/* Release old quota file names */
1972 	for (i = 0; i < MAXQUOTAS; i++)
1973 		kfree(org_mount_opt.s_qf_names[i]);
1974 #endif
1975 	/* Update the POSIXACL Flag */
1976 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1977 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1978 
1979 	limit_reserve_root(sbi);
1980 	adjust_unusable_cap_perc(sbi);
1981 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1982 	return 0;
1983 restore_gc:
1984 	if (need_restart_gc) {
1985 		if (f2fs_start_gc_thread(sbi))
1986 			f2fs_warn(sbi, "background gc thread has stopped");
1987 	} else if (need_stop_gc) {
1988 		f2fs_stop_gc_thread(sbi);
1989 	}
1990 restore_opts:
1991 #ifdef CONFIG_QUOTA
1992 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1993 	for (i = 0; i < MAXQUOTAS; i++) {
1994 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1995 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1996 	}
1997 #endif
1998 	sbi->mount_opt = org_mount_opt;
1999 	sb->s_flags = old_sb_flags;
2000 	return err;
2001 }
2002 
2003 #ifdef CONFIG_QUOTA
2004 /* Read data from quotafile */
2005 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2006 			       size_t len, loff_t off)
2007 {
2008 	struct inode *inode = sb_dqopt(sb)->files[type];
2009 	struct address_space *mapping = inode->i_mapping;
2010 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2011 	int offset = off & (sb->s_blocksize - 1);
2012 	int tocopy;
2013 	size_t toread;
2014 	loff_t i_size = i_size_read(inode);
2015 	struct page *page;
2016 	char *kaddr;
2017 
2018 	if (off > i_size)
2019 		return 0;
2020 
2021 	if (off + len > i_size)
2022 		len = i_size - off;
2023 	toread = len;
2024 	while (toread > 0) {
2025 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2026 repeat:
2027 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2028 		if (IS_ERR(page)) {
2029 			if (PTR_ERR(page) == -ENOMEM) {
2030 				congestion_wait(BLK_RW_ASYNC,
2031 						DEFAULT_IO_TIMEOUT);
2032 				goto repeat;
2033 			}
2034 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2035 			return PTR_ERR(page);
2036 		}
2037 
2038 		lock_page(page);
2039 
2040 		if (unlikely(page->mapping != mapping)) {
2041 			f2fs_put_page(page, 1);
2042 			goto repeat;
2043 		}
2044 		if (unlikely(!PageUptodate(page))) {
2045 			f2fs_put_page(page, 1);
2046 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2047 			return -EIO;
2048 		}
2049 
2050 		kaddr = kmap_atomic(page);
2051 		memcpy(data, kaddr + offset, tocopy);
2052 		kunmap_atomic(kaddr);
2053 		f2fs_put_page(page, 1);
2054 
2055 		offset = 0;
2056 		toread -= tocopy;
2057 		data += tocopy;
2058 		blkidx++;
2059 	}
2060 	return len;
2061 }
2062 
2063 /* Write to quotafile */
2064 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2065 				const char *data, size_t len, loff_t off)
2066 {
2067 	struct inode *inode = sb_dqopt(sb)->files[type];
2068 	struct address_space *mapping = inode->i_mapping;
2069 	const struct address_space_operations *a_ops = mapping->a_ops;
2070 	int offset = off & (sb->s_blocksize - 1);
2071 	size_t towrite = len;
2072 	struct page *page;
2073 	void *fsdata = NULL;
2074 	char *kaddr;
2075 	int err = 0;
2076 	int tocopy;
2077 
2078 	while (towrite > 0) {
2079 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2080 								towrite);
2081 retry:
2082 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2083 							&page, &fsdata);
2084 		if (unlikely(err)) {
2085 			if (err == -ENOMEM) {
2086 				congestion_wait(BLK_RW_ASYNC,
2087 						DEFAULT_IO_TIMEOUT);
2088 				goto retry;
2089 			}
2090 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2091 			break;
2092 		}
2093 
2094 		kaddr = kmap_atomic(page);
2095 		memcpy(kaddr + offset, data, tocopy);
2096 		kunmap_atomic(kaddr);
2097 		flush_dcache_page(page);
2098 
2099 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2100 						page, fsdata);
2101 		offset = 0;
2102 		towrite -= tocopy;
2103 		off += tocopy;
2104 		data += tocopy;
2105 		cond_resched();
2106 	}
2107 
2108 	if (len == towrite)
2109 		return err;
2110 	inode->i_mtime = inode->i_ctime = current_time(inode);
2111 	f2fs_mark_inode_dirty_sync(inode, false);
2112 	return len - towrite;
2113 }
2114 
2115 static struct dquot **f2fs_get_dquots(struct inode *inode)
2116 {
2117 	return F2FS_I(inode)->i_dquot;
2118 }
2119 
2120 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2121 {
2122 	return &F2FS_I(inode)->i_reserved_quota;
2123 }
2124 
2125 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2126 {
2127 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2128 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2129 		return 0;
2130 	}
2131 
2132 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2133 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2134 }
2135 
2136 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2137 {
2138 	int enabled = 0;
2139 	int i, err;
2140 
2141 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2142 		err = f2fs_enable_quotas(sbi->sb);
2143 		if (err) {
2144 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2145 			return 0;
2146 		}
2147 		return 1;
2148 	}
2149 
2150 	for (i = 0; i < MAXQUOTAS; i++) {
2151 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2152 			err = f2fs_quota_on_mount(sbi, i);
2153 			if (!err) {
2154 				enabled = 1;
2155 				continue;
2156 			}
2157 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2158 				 err, i);
2159 		}
2160 	}
2161 	return enabled;
2162 }
2163 
2164 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2165 			     unsigned int flags)
2166 {
2167 	struct inode *qf_inode;
2168 	unsigned long qf_inum;
2169 	int err;
2170 
2171 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2172 
2173 	qf_inum = f2fs_qf_ino(sb, type);
2174 	if (!qf_inum)
2175 		return -EPERM;
2176 
2177 	qf_inode = f2fs_iget(sb, qf_inum);
2178 	if (IS_ERR(qf_inode)) {
2179 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2180 		return PTR_ERR(qf_inode);
2181 	}
2182 
2183 	/* Don't account quota for quota files to avoid recursion */
2184 	qf_inode->i_flags |= S_NOQUOTA;
2185 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2186 	iput(qf_inode);
2187 	return err;
2188 }
2189 
2190 static int f2fs_enable_quotas(struct super_block *sb)
2191 {
2192 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2193 	int type, err = 0;
2194 	unsigned long qf_inum;
2195 	bool quota_mopt[MAXQUOTAS] = {
2196 		test_opt(sbi, USRQUOTA),
2197 		test_opt(sbi, GRPQUOTA),
2198 		test_opt(sbi, PRJQUOTA),
2199 	};
2200 
2201 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2202 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2203 		return 0;
2204 	}
2205 
2206 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2207 
2208 	for (type = 0; type < MAXQUOTAS; type++) {
2209 		qf_inum = f2fs_qf_ino(sb, type);
2210 		if (qf_inum) {
2211 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2212 				DQUOT_USAGE_ENABLED |
2213 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2214 			if (err) {
2215 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2216 					 type, err);
2217 				for (type--; type >= 0; type--)
2218 					dquot_quota_off(sb, type);
2219 				set_sbi_flag(F2FS_SB(sb),
2220 						SBI_QUOTA_NEED_REPAIR);
2221 				return err;
2222 			}
2223 		}
2224 	}
2225 	return 0;
2226 }
2227 
2228 int f2fs_quota_sync(struct super_block *sb, int type)
2229 {
2230 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2231 	struct quota_info *dqopt = sb_dqopt(sb);
2232 	int cnt;
2233 	int ret;
2234 
2235 	/*
2236 	 * do_quotactl
2237 	 *  f2fs_quota_sync
2238 	 *  down_read(quota_sem)
2239 	 *  dquot_writeback_dquots()
2240 	 *  f2fs_dquot_commit
2241 	 *                            block_operation
2242 	 *                            down_read(quota_sem)
2243 	 */
2244 	f2fs_lock_op(sbi);
2245 
2246 	down_read(&sbi->quota_sem);
2247 	ret = dquot_writeback_dquots(sb, type);
2248 	if (ret)
2249 		goto out;
2250 
2251 	/*
2252 	 * Now when everything is written we can discard the pagecache so
2253 	 * that userspace sees the changes.
2254 	 */
2255 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2256 		struct address_space *mapping;
2257 
2258 		if (type != -1 && cnt != type)
2259 			continue;
2260 		if (!sb_has_quota_active(sb, cnt))
2261 			continue;
2262 
2263 		mapping = dqopt->files[cnt]->i_mapping;
2264 
2265 		ret = filemap_fdatawrite(mapping);
2266 		if (ret)
2267 			goto out;
2268 
2269 		/* if we are using journalled quota */
2270 		if (is_journalled_quota(sbi))
2271 			continue;
2272 
2273 		ret = filemap_fdatawait(mapping);
2274 		if (ret)
2275 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2276 
2277 		inode_lock(dqopt->files[cnt]);
2278 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2279 		inode_unlock(dqopt->files[cnt]);
2280 	}
2281 out:
2282 	if (ret)
2283 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2284 	up_read(&sbi->quota_sem);
2285 	f2fs_unlock_op(sbi);
2286 	return ret;
2287 }
2288 
2289 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2290 							const struct path *path)
2291 {
2292 	struct inode *inode;
2293 	int err;
2294 
2295 	/* if quota sysfile exists, deny enabling quota with specific file */
2296 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2297 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2298 		return -EBUSY;
2299 	}
2300 
2301 	err = f2fs_quota_sync(sb, type);
2302 	if (err)
2303 		return err;
2304 
2305 	err = dquot_quota_on(sb, type, format_id, path);
2306 	if (err)
2307 		return err;
2308 
2309 	inode = d_inode(path->dentry);
2310 
2311 	inode_lock(inode);
2312 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2313 	f2fs_set_inode_flags(inode);
2314 	inode_unlock(inode);
2315 	f2fs_mark_inode_dirty_sync(inode, false);
2316 
2317 	return 0;
2318 }
2319 
2320 static int __f2fs_quota_off(struct super_block *sb, int type)
2321 {
2322 	struct inode *inode = sb_dqopt(sb)->files[type];
2323 	int err;
2324 
2325 	if (!inode || !igrab(inode))
2326 		return dquot_quota_off(sb, type);
2327 
2328 	err = f2fs_quota_sync(sb, type);
2329 	if (err)
2330 		goto out_put;
2331 
2332 	err = dquot_quota_off(sb, type);
2333 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2334 		goto out_put;
2335 
2336 	inode_lock(inode);
2337 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2338 	f2fs_set_inode_flags(inode);
2339 	inode_unlock(inode);
2340 	f2fs_mark_inode_dirty_sync(inode, false);
2341 out_put:
2342 	iput(inode);
2343 	return err;
2344 }
2345 
2346 static int f2fs_quota_off(struct super_block *sb, int type)
2347 {
2348 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2349 	int err;
2350 
2351 	err = __f2fs_quota_off(sb, type);
2352 
2353 	/*
2354 	 * quotactl can shutdown journalled quota, result in inconsistence
2355 	 * between quota record and fs data by following updates, tag the
2356 	 * flag to let fsck be aware of it.
2357 	 */
2358 	if (is_journalled_quota(sbi))
2359 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2360 	return err;
2361 }
2362 
2363 void f2fs_quota_off_umount(struct super_block *sb)
2364 {
2365 	int type;
2366 	int err;
2367 
2368 	for (type = 0; type < MAXQUOTAS; type++) {
2369 		err = __f2fs_quota_off(sb, type);
2370 		if (err) {
2371 			int ret = dquot_quota_off(sb, type);
2372 
2373 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2374 				 type, err, ret);
2375 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2376 		}
2377 	}
2378 	/*
2379 	 * In case of checkpoint=disable, we must flush quota blocks.
2380 	 * This can cause NULL exception for node_inode in end_io, since
2381 	 * put_super already dropped it.
2382 	 */
2383 	sync_filesystem(sb);
2384 }
2385 
2386 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2387 {
2388 	struct quota_info *dqopt = sb_dqopt(sb);
2389 	int type;
2390 
2391 	for (type = 0; type < MAXQUOTAS; type++) {
2392 		if (!dqopt->files[type])
2393 			continue;
2394 		f2fs_inode_synced(dqopt->files[type]);
2395 	}
2396 }
2397 
2398 static int f2fs_dquot_commit(struct dquot *dquot)
2399 {
2400 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2401 	int ret;
2402 
2403 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2404 	ret = dquot_commit(dquot);
2405 	if (ret < 0)
2406 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2407 	up_read(&sbi->quota_sem);
2408 	return ret;
2409 }
2410 
2411 static int f2fs_dquot_acquire(struct dquot *dquot)
2412 {
2413 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2414 	int ret;
2415 
2416 	down_read(&sbi->quota_sem);
2417 	ret = dquot_acquire(dquot);
2418 	if (ret < 0)
2419 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2420 	up_read(&sbi->quota_sem);
2421 	return ret;
2422 }
2423 
2424 static int f2fs_dquot_release(struct dquot *dquot)
2425 {
2426 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2427 	int ret = dquot_release(dquot);
2428 
2429 	if (ret < 0)
2430 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2431 	return ret;
2432 }
2433 
2434 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2435 {
2436 	struct super_block *sb = dquot->dq_sb;
2437 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2438 	int ret = dquot_mark_dquot_dirty(dquot);
2439 
2440 	/* if we are using journalled quota */
2441 	if (is_journalled_quota(sbi))
2442 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2443 
2444 	return ret;
2445 }
2446 
2447 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2448 {
2449 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2450 	int ret = dquot_commit_info(sb, type);
2451 
2452 	if (ret < 0)
2453 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2454 	return ret;
2455 }
2456 
2457 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2458 {
2459 	*projid = F2FS_I(inode)->i_projid;
2460 	return 0;
2461 }
2462 
2463 static const struct dquot_operations f2fs_quota_operations = {
2464 	.get_reserved_space = f2fs_get_reserved_space,
2465 	.write_dquot	= f2fs_dquot_commit,
2466 	.acquire_dquot	= f2fs_dquot_acquire,
2467 	.release_dquot	= f2fs_dquot_release,
2468 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2469 	.write_info	= f2fs_dquot_commit_info,
2470 	.alloc_dquot	= dquot_alloc,
2471 	.destroy_dquot	= dquot_destroy,
2472 	.get_projid	= f2fs_get_projid,
2473 	.get_next_id	= dquot_get_next_id,
2474 };
2475 
2476 static const struct quotactl_ops f2fs_quotactl_ops = {
2477 	.quota_on	= f2fs_quota_on,
2478 	.quota_off	= f2fs_quota_off,
2479 	.quota_sync	= f2fs_quota_sync,
2480 	.get_state	= dquot_get_state,
2481 	.set_info	= dquot_set_dqinfo,
2482 	.get_dqblk	= dquot_get_dqblk,
2483 	.set_dqblk	= dquot_set_dqblk,
2484 	.get_nextdqblk	= dquot_get_next_dqblk,
2485 };
2486 #else
2487 int f2fs_quota_sync(struct super_block *sb, int type)
2488 {
2489 	return 0;
2490 }
2491 
2492 void f2fs_quota_off_umount(struct super_block *sb)
2493 {
2494 }
2495 #endif
2496 
2497 static const struct super_operations f2fs_sops = {
2498 	.alloc_inode	= f2fs_alloc_inode,
2499 	.free_inode	= f2fs_free_inode,
2500 	.drop_inode	= f2fs_drop_inode,
2501 	.write_inode	= f2fs_write_inode,
2502 	.dirty_inode	= f2fs_dirty_inode,
2503 	.show_options	= f2fs_show_options,
2504 #ifdef CONFIG_QUOTA
2505 	.quota_read	= f2fs_quota_read,
2506 	.quota_write	= f2fs_quota_write,
2507 	.get_dquots	= f2fs_get_dquots,
2508 #endif
2509 	.evict_inode	= f2fs_evict_inode,
2510 	.put_super	= f2fs_put_super,
2511 	.sync_fs	= f2fs_sync_fs,
2512 	.freeze_fs	= f2fs_freeze,
2513 	.unfreeze_fs	= f2fs_unfreeze,
2514 	.statfs		= f2fs_statfs,
2515 	.remount_fs	= f2fs_remount,
2516 };
2517 
2518 #ifdef CONFIG_FS_ENCRYPTION
2519 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2520 {
2521 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2522 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2523 				ctx, len, NULL);
2524 }
2525 
2526 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2527 							void *fs_data)
2528 {
2529 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2530 
2531 	/*
2532 	 * Encrypting the root directory is not allowed because fsck
2533 	 * expects lost+found directory to exist and remain unencrypted
2534 	 * if LOST_FOUND feature is enabled.
2535 	 *
2536 	 */
2537 	if (f2fs_sb_has_lost_found(sbi) &&
2538 			inode->i_ino == F2FS_ROOT_INO(sbi))
2539 		return -EPERM;
2540 
2541 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2542 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2543 				ctx, len, fs_data, XATTR_CREATE);
2544 }
2545 
2546 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2547 {
2548 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2549 }
2550 
2551 static bool f2fs_has_stable_inodes(struct super_block *sb)
2552 {
2553 	return true;
2554 }
2555 
2556 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2557 				       int *ino_bits_ret, int *lblk_bits_ret)
2558 {
2559 	*ino_bits_ret = 8 * sizeof(nid_t);
2560 	*lblk_bits_ret = 8 * sizeof(block_t);
2561 }
2562 
2563 static int f2fs_get_num_devices(struct super_block *sb)
2564 {
2565 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2566 
2567 	if (f2fs_is_multi_device(sbi))
2568 		return sbi->s_ndevs;
2569 	return 1;
2570 }
2571 
2572 static void f2fs_get_devices(struct super_block *sb,
2573 			     struct request_queue **devs)
2574 {
2575 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2576 	int i;
2577 
2578 	for (i = 0; i < sbi->s_ndevs; i++)
2579 		devs[i] = bdev_get_queue(FDEV(i).bdev);
2580 }
2581 
2582 static const struct fscrypt_operations f2fs_cryptops = {
2583 	.key_prefix		= "f2fs:",
2584 	.get_context		= f2fs_get_context,
2585 	.set_context		= f2fs_set_context,
2586 	.get_dummy_policy	= f2fs_get_dummy_policy,
2587 	.empty_dir		= f2fs_empty_dir,
2588 	.max_namelen		= F2FS_NAME_LEN,
2589 	.has_stable_inodes	= f2fs_has_stable_inodes,
2590 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2591 	.get_num_devices	= f2fs_get_num_devices,
2592 	.get_devices		= f2fs_get_devices,
2593 };
2594 #endif
2595 
2596 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2597 		u64 ino, u32 generation)
2598 {
2599 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2600 	struct inode *inode;
2601 
2602 	if (f2fs_check_nid_range(sbi, ino))
2603 		return ERR_PTR(-ESTALE);
2604 
2605 	/*
2606 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2607 	 * However f2fs_iget currently does appropriate checks to handle stale
2608 	 * inodes so everything is OK.
2609 	 */
2610 	inode = f2fs_iget(sb, ino);
2611 	if (IS_ERR(inode))
2612 		return ERR_CAST(inode);
2613 	if (unlikely(generation && inode->i_generation != generation)) {
2614 		/* we didn't find the right inode.. */
2615 		iput(inode);
2616 		return ERR_PTR(-ESTALE);
2617 	}
2618 	return inode;
2619 }
2620 
2621 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2622 		int fh_len, int fh_type)
2623 {
2624 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2625 				    f2fs_nfs_get_inode);
2626 }
2627 
2628 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2629 		int fh_len, int fh_type)
2630 {
2631 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2632 				    f2fs_nfs_get_inode);
2633 }
2634 
2635 static const struct export_operations f2fs_export_ops = {
2636 	.fh_to_dentry = f2fs_fh_to_dentry,
2637 	.fh_to_parent = f2fs_fh_to_parent,
2638 	.get_parent = f2fs_get_parent,
2639 };
2640 
2641 static loff_t max_file_blocks(void)
2642 {
2643 	loff_t result = 0;
2644 	loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2645 
2646 	/*
2647 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2648 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2649 	 * space in inode.i_addr, it will be more safe to reassign
2650 	 * result as zero.
2651 	 */
2652 
2653 	/* two direct node blocks */
2654 	result += (leaf_count * 2);
2655 
2656 	/* two indirect node blocks */
2657 	leaf_count *= NIDS_PER_BLOCK;
2658 	result += (leaf_count * 2);
2659 
2660 	/* one double indirect node block */
2661 	leaf_count *= NIDS_PER_BLOCK;
2662 	result += leaf_count;
2663 
2664 	return result;
2665 }
2666 
2667 static int __f2fs_commit_super(struct buffer_head *bh,
2668 			struct f2fs_super_block *super)
2669 {
2670 	lock_buffer(bh);
2671 	if (super)
2672 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2673 	set_buffer_dirty(bh);
2674 	unlock_buffer(bh);
2675 
2676 	/* it's rare case, we can do fua all the time */
2677 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2678 }
2679 
2680 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2681 					struct buffer_head *bh)
2682 {
2683 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2684 					(bh->b_data + F2FS_SUPER_OFFSET);
2685 	struct super_block *sb = sbi->sb;
2686 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2687 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2688 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2689 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2690 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2691 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2692 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2693 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2694 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2695 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2696 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2697 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2698 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2699 	u64 main_end_blkaddr = main_blkaddr +
2700 				(segment_count_main << log_blocks_per_seg);
2701 	u64 seg_end_blkaddr = segment0_blkaddr +
2702 				(segment_count << log_blocks_per_seg);
2703 
2704 	if (segment0_blkaddr != cp_blkaddr) {
2705 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2706 			  segment0_blkaddr, cp_blkaddr);
2707 		return true;
2708 	}
2709 
2710 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2711 							sit_blkaddr) {
2712 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2713 			  cp_blkaddr, sit_blkaddr,
2714 			  segment_count_ckpt << log_blocks_per_seg);
2715 		return true;
2716 	}
2717 
2718 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2719 							nat_blkaddr) {
2720 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2721 			  sit_blkaddr, nat_blkaddr,
2722 			  segment_count_sit << log_blocks_per_seg);
2723 		return true;
2724 	}
2725 
2726 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2727 							ssa_blkaddr) {
2728 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2729 			  nat_blkaddr, ssa_blkaddr,
2730 			  segment_count_nat << log_blocks_per_seg);
2731 		return true;
2732 	}
2733 
2734 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2735 							main_blkaddr) {
2736 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2737 			  ssa_blkaddr, main_blkaddr,
2738 			  segment_count_ssa << log_blocks_per_seg);
2739 		return true;
2740 	}
2741 
2742 	if (main_end_blkaddr > seg_end_blkaddr) {
2743 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
2744 			  main_blkaddr, seg_end_blkaddr,
2745 			  segment_count_main << log_blocks_per_seg);
2746 		return true;
2747 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2748 		int err = 0;
2749 		char *res;
2750 
2751 		/* fix in-memory information all the time */
2752 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2753 				segment0_blkaddr) >> log_blocks_per_seg);
2754 
2755 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2756 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2757 			res = "internally";
2758 		} else {
2759 			err = __f2fs_commit_super(bh, NULL);
2760 			res = err ? "failed" : "done";
2761 		}
2762 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
2763 			  res, main_blkaddr, seg_end_blkaddr,
2764 			  segment_count_main << log_blocks_per_seg);
2765 		if (err)
2766 			return true;
2767 	}
2768 	return false;
2769 }
2770 
2771 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2772 				struct buffer_head *bh)
2773 {
2774 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
2775 	block_t total_sections, blocks_per_seg;
2776 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2777 					(bh->b_data + F2FS_SUPER_OFFSET);
2778 	size_t crc_offset = 0;
2779 	__u32 crc = 0;
2780 
2781 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2782 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2783 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2784 		return -EINVAL;
2785 	}
2786 
2787 	/* Check checksum_offset and crc in superblock */
2788 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2789 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2790 		if (crc_offset !=
2791 			offsetof(struct f2fs_super_block, crc)) {
2792 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2793 				  crc_offset);
2794 			return -EFSCORRUPTED;
2795 		}
2796 		crc = le32_to_cpu(raw_super->crc);
2797 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2798 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2799 			return -EFSCORRUPTED;
2800 		}
2801 	}
2802 
2803 	/* Currently, support only 4KB block size */
2804 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
2805 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
2806 			  le32_to_cpu(raw_super->log_blocksize),
2807 			  F2FS_BLKSIZE_BITS);
2808 		return -EFSCORRUPTED;
2809 	}
2810 
2811 	/* check log blocks per segment */
2812 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2813 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2814 			  le32_to_cpu(raw_super->log_blocks_per_seg));
2815 		return -EFSCORRUPTED;
2816 	}
2817 
2818 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2819 	if (le32_to_cpu(raw_super->log_sectorsize) >
2820 				F2FS_MAX_LOG_SECTOR_SIZE ||
2821 		le32_to_cpu(raw_super->log_sectorsize) <
2822 				F2FS_MIN_LOG_SECTOR_SIZE) {
2823 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2824 			  le32_to_cpu(raw_super->log_sectorsize));
2825 		return -EFSCORRUPTED;
2826 	}
2827 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2828 		le32_to_cpu(raw_super->log_sectorsize) !=
2829 			F2FS_MAX_LOG_SECTOR_SIZE) {
2830 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2831 			  le32_to_cpu(raw_super->log_sectors_per_block),
2832 			  le32_to_cpu(raw_super->log_sectorsize));
2833 		return -EFSCORRUPTED;
2834 	}
2835 
2836 	segment_count = le32_to_cpu(raw_super->segment_count);
2837 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2838 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2839 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2840 	total_sections = le32_to_cpu(raw_super->section_count);
2841 
2842 	/* blocks_per_seg should be 512, given the above check */
2843 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2844 
2845 	if (segment_count > F2FS_MAX_SEGMENT ||
2846 				segment_count < F2FS_MIN_SEGMENTS) {
2847 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2848 		return -EFSCORRUPTED;
2849 	}
2850 
2851 	if (total_sections > segment_count_main || total_sections < 1 ||
2852 			segs_per_sec > segment_count || !segs_per_sec) {
2853 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2854 			  segment_count, total_sections, segs_per_sec);
2855 		return -EFSCORRUPTED;
2856 	}
2857 
2858 	if (segment_count_main != total_sections * segs_per_sec) {
2859 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
2860 			  segment_count_main, total_sections, segs_per_sec);
2861 		return -EFSCORRUPTED;
2862 	}
2863 
2864 	if ((segment_count / segs_per_sec) < total_sections) {
2865 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2866 			  segment_count, segs_per_sec, total_sections);
2867 		return -EFSCORRUPTED;
2868 	}
2869 
2870 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2871 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2872 			  segment_count, le64_to_cpu(raw_super->block_count));
2873 		return -EFSCORRUPTED;
2874 	}
2875 
2876 	if (RDEV(0).path[0]) {
2877 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2878 		int i = 1;
2879 
2880 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
2881 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2882 			i++;
2883 		}
2884 		if (segment_count != dev_seg_count) {
2885 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2886 					segment_count, dev_seg_count);
2887 			return -EFSCORRUPTED;
2888 		}
2889 	} else {
2890 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
2891 					!bdev_is_zoned(sbi->sb->s_bdev)) {
2892 			f2fs_info(sbi, "Zoned block device path is missing");
2893 			return -EFSCORRUPTED;
2894 		}
2895 	}
2896 
2897 	if (secs_per_zone > total_sections || !secs_per_zone) {
2898 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2899 			  secs_per_zone, total_sections);
2900 		return -EFSCORRUPTED;
2901 	}
2902 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2903 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2904 			(le32_to_cpu(raw_super->extension_count) +
2905 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2906 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2907 			  le32_to_cpu(raw_super->extension_count),
2908 			  raw_super->hot_ext_count,
2909 			  F2FS_MAX_EXTENSION);
2910 		return -EFSCORRUPTED;
2911 	}
2912 
2913 	if (le32_to_cpu(raw_super->cp_payload) >
2914 				(blocks_per_seg - F2FS_CP_PACKS)) {
2915 		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2916 			  le32_to_cpu(raw_super->cp_payload),
2917 			  blocks_per_seg - F2FS_CP_PACKS);
2918 		return -EFSCORRUPTED;
2919 	}
2920 
2921 	/* check reserved ino info */
2922 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2923 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2924 		le32_to_cpu(raw_super->root_ino) != 3) {
2925 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2926 			  le32_to_cpu(raw_super->node_ino),
2927 			  le32_to_cpu(raw_super->meta_ino),
2928 			  le32_to_cpu(raw_super->root_ino));
2929 		return -EFSCORRUPTED;
2930 	}
2931 
2932 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2933 	if (sanity_check_area_boundary(sbi, bh))
2934 		return -EFSCORRUPTED;
2935 
2936 	return 0;
2937 }
2938 
2939 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2940 {
2941 	unsigned int total, fsmeta;
2942 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2943 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2944 	unsigned int ovp_segments, reserved_segments;
2945 	unsigned int main_segs, blocks_per_seg;
2946 	unsigned int sit_segs, nat_segs;
2947 	unsigned int sit_bitmap_size, nat_bitmap_size;
2948 	unsigned int log_blocks_per_seg;
2949 	unsigned int segment_count_main;
2950 	unsigned int cp_pack_start_sum, cp_payload;
2951 	block_t user_block_count, valid_user_blocks;
2952 	block_t avail_node_count, valid_node_count;
2953 	int i, j;
2954 
2955 	total = le32_to_cpu(raw_super->segment_count);
2956 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2957 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2958 	fsmeta += sit_segs;
2959 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2960 	fsmeta += nat_segs;
2961 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2962 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2963 
2964 	if (unlikely(fsmeta >= total))
2965 		return 1;
2966 
2967 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2968 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2969 
2970 	if (unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
2971 			ovp_segments == 0 || reserved_segments == 0)) {
2972 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2973 		return 1;
2974 	}
2975 
2976 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2977 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2978 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2979 	if (!user_block_count || user_block_count >=
2980 			segment_count_main << log_blocks_per_seg) {
2981 		f2fs_err(sbi, "Wrong user_block_count: %u",
2982 			 user_block_count);
2983 		return 1;
2984 	}
2985 
2986 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2987 	if (valid_user_blocks > user_block_count) {
2988 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2989 			 valid_user_blocks, user_block_count);
2990 		return 1;
2991 	}
2992 
2993 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2994 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2995 	if (valid_node_count > avail_node_count) {
2996 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2997 			 valid_node_count, avail_node_count);
2998 		return 1;
2999 	}
3000 
3001 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3002 	blocks_per_seg = sbi->blocks_per_seg;
3003 
3004 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3005 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3006 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3007 			return 1;
3008 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3009 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3010 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3011 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3012 					 i, j,
3013 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3014 				return 1;
3015 			}
3016 		}
3017 	}
3018 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3019 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3020 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3021 			return 1;
3022 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3023 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3024 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3025 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3026 					 i, j,
3027 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3028 				return 1;
3029 			}
3030 		}
3031 	}
3032 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3033 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3034 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3035 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3036 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3037 					 i, j,
3038 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3039 				return 1;
3040 			}
3041 		}
3042 	}
3043 
3044 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3045 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3046 
3047 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3048 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3049 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3050 			 sit_bitmap_size, nat_bitmap_size);
3051 		return 1;
3052 	}
3053 
3054 	cp_pack_start_sum = __start_sum_addr(sbi);
3055 	cp_payload = __cp_payload(sbi);
3056 	if (cp_pack_start_sum < cp_payload + 1 ||
3057 		cp_pack_start_sum > blocks_per_seg - 1 -
3058 			NR_CURSEG_PERSIST_TYPE) {
3059 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3060 			 cp_pack_start_sum);
3061 		return 1;
3062 	}
3063 
3064 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3065 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3066 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3067 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3068 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3069 			  le32_to_cpu(ckpt->checksum_offset));
3070 		return 1;
3071 	}
3072 
3073 	if (unlikely(f2fs_cp_error(sbi))) {
3074 		f2fs_err(sbi, "A bug case: need to run fsck");
3075 		return 1;
3076 	}
3077 	return 0;
3078 }
3079 
3080 static void init_sb_info(struct f2fs_sb_info *sbi)
3081 {
3082 	struct f2fs_super_block *raw_super = sbi->raw_super;
3083 	int i;
3084 
3085 	sbi->log_sectors_per_block =
3086 		le32_to_cpu(raw_super->log_sectors_per_block);
3087 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3088 	sbi->blocksize = 1 << sbi->log_blocksize;
3089 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3090 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3091 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3092 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3093 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3094 	sbi->total_node_count =
3095 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3096 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3097 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3098 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3099 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3100 	sbi->cur_victim_sec = NULL_SECNO;
3101 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3102 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3103 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3104 	sbi->migration_granularity = sbi->segs_per_sec;
3105 
3106 	sbi->dir_level = DEF_DIR_LEVEL;
3107 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3108 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3109 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3110 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3111 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3112 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3113 				DEF_UMOUNT_DISCARD_TIMEOUT;
3114 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3115 
3116 	for (i = 0; i < NR_COUNT_TYPE; i++)
3117 		atomic_set(&sbi->nr_pages[i], 0);
3118 
3119 	for (i = 0; i < META; i++)
3120 		atomic_set(&sbi->wb_sync_req[i], 0);
3121 
3122 	INIT_LIST_HEAD(&sbi->s_list);
3123 	mutex_init(&sbi->umount_mutex);
3124 	init_rwsem(&sbi->io_order_lock);
3125 	spin_lock_init(&sbi->cp_lock);
3126 
3127 	sbi->dirty_device = 0;
3128 	spin_lock_init(&sbi->dev_lock);
3129 
3130 	init_rwsem(&sbi->sb_lock);
3131 	init_rwsem(&sbi->pin_sem);
3132 }
3133 
3134 static int init_percpu_info(struct f2fs_sb_info *sbi)
3135 {
3136 	int err;
3137 
3138 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3139 	if (err)
3140 		return err;
3141 
3142 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3143 								GFP_KERNEL);
3144 	if (err)
3145 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
3146 
3147 	return err;
3148 }
3149 
3150 #ifdef CONFIG_BLK_DEV_ZONED
3151 
3152 struct f2fs_report_zones_args {
3153 	struct f2fs_dev_info *dev;
3154 	bool zone_cap_mismatch;
3155 };
3156 
3157 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3158 			      void *data)
3159 {
3160 	struct f2fs_report_zones_args *rz_args = data;
3161 
3162 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3163 		return 0;
3164 
3165 	set_bit(idx, rz_args->dev->blkz_seq);
3166 	rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3167 						F2FS_LOG_SECTORS_PER_BLOCK;
3168 	if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3169 		rz_args->zone_cap_mismatch = true;
3170 
3171 	return 0;
3172 }
3173 
3174 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3175 {
3176 	struct block_device *bdev = FDEV(devi).bdev;
3177 	sector_t nr_sectors = bdev_nr_sectors(bdev);
3178 	struct f2fs_report_zones_args rep_zone_arg;
3179 	int ret;
3180 
3181 	if (!f2fs_sb_has_blkzoned(sbi))
3182 		return 0;
3183 
3184 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3185 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3186 		return -EINVAL;
3187 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3188 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3189 				__ilog2_u32(sbi->blocks_per_blkz))
3190 		return -EINVAL;
3191 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3192 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3193 					sbi->log_blocks_per_blkz;
3194 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3195 		FDEV(devi).nr_blkz++;
3196 
3197 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3198 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3199 					* sizeof(unsigned long),
3200 					GFP_KERNEL);
3201 	if (!FDEV(devi).blkz_seq)
3202 		return -ENOMEM;
3203 
3204 	/* Get block zones type and zone-capacity */
3205 	FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3206 					FDEV(devi).nr_blkz * sizeof(block_t),
3207 					GFP_KERNEL);
3208 	if (!FDEV(devi).zone_capacity_blocks)
3209 		return -ENOMEM;
3210 
3211 	rep_zone_arg.dev = &FDEV(devi);
3212 	rep_zone_arg.zone_cap_mismatch = false;
3213 
3214 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3215 				  &rep_zone_arg);
3216 	if (ret < 0)
3217 		return ret;
3218 
3219 	if (!rep_zone_arg.zone_cap_mismatch) {
3220 		kfree(FDEV(devi).zone_capacity_blocks);
3221 		FDEV(devi).zone_capacity_blocks = NULL;
3222 	}
3223 
3224 	return 0;
3225 }
3226 #endif
3227 
3228 /*
3229  * Read f2fs raw super block.
3230  * Because we have two copies of super block, so read both of them
3231  * to get the first valid one. If any one of them is broken, we pass
3232  * them recovery flag back to the caller.
3233  */
3234 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3235 			struct f2fs_super_block **raw_super,
3236 			int *valid_super_block, int *recovery)
3237 {
3238 	struct super_block *sb = sbi->sb;
3239 	int block;
3240 	struct buffer_head *bh;
3241 	struct f2fs_super_block *super;
3242 	int err = 0;
3243 
3244 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3245 	if (!super)
3246 		return -ENOMEM;
3247 
3248 	for (block = 0; block < 2; block++) {
3249 		bh = sb_bread(sb, block);
3250 		if (!bh) {
3251 			f2fs_err(sbi, "Unable to read %dth superblock",
3252 				 block + 1);
3253 			err = -EIO;
3254 			*recovery = 1;
3255 			continue;
3256 		}
3257 
3258 		/* sanity checking of raw super */
3259 		err = sanity_check_raw_super(sbi, bh);
3260 		if (err) {
3261 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3262 				 block + 1);
3263 			brelse(bh);
3264 			*recovery = 1;
3265 			continue;
3266 		}
3267 
3268 		if (!*raw_super) {
3269 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3270 							sizeof(*super));
3271 			*valid_super_block = block;
3272 			*raw_super = super;
3273 		}
3274 		brelse(bh);
3275 	}
3276 
3277 	/* No valid superblock */
3278 	if (!*raw_super)
3279 		kfree(super);
3280 	else
3281 		err = 0;
3282 
3283 	return err;
3284 }
3285 
3286 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3287 {
3288 	struct buffer_head *bh;
3289 	__u32 crc = 0;
3290 	int err;
3291 
3292 	if ((recover && f2fs_readonly(sbi->sb)) ||
3293 				bdev_read_only(sbi->sb->s_bdev)) {
3294 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3295 		return -EROFS;
3296 	}
3297 
3298 	/* we should update superblock crc here */
3299 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3300 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3301 				offsetof(struct f2fs_super_block, crc));
3302 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3303 	}
3304 
3305 	/* write back-up superblock first */
3306 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3307 	if (!bh)
3308 		return -EIO;
3309 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3310 	brelse(bh);
3311 
3312 	/* if we are in recovery path, skip writing valid superblock */
3313 	if (recover || err)
3314 		return err;
3315 
3316 	/* write current valid superblock */
3317 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3318 	if (!bh)
3319 		return -EIO;
3320 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3321 	brelse(bh);
3322 	return err;
3323 }
3324 
3325 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3326 {
3327 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3328 	unsigned int max_devices = MAX_DEVICES;
3329 	int i;
3330 
3331 	/* Initialize single device information */
3332 	if (!RDEV(0).path[0]) {
3333 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3334 			return 0;
3335 		max_devices = 1;
3336 	}
3337 
3338 	/*
3339 	 * Initialize multiple devices information, or single
3340 	 * zoned block device information.
3341 	 */
3342 	sbi->devs = f2fs_kzalloc(sbi,
3343 				 array_size(max_devices,
3344 					    sizeof(struct f2fs_dev_info)),
3345 				 GFP_KERNEL);
3346 	if (!sbi->devs)
3347 		return -ENOMEM;
3348 
3349 	for (i = 0; i < max_devices; i++) {
3350 
3351 		if (i > 0 && !RDEV(i).path[0])
3352 			break;
3353 
3354 		if (max_devices == 1) {
3355 			/* Single zoned block device mount */
3356 			FDEV(0).bdev =
3357 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3358 					sbi->sb->s_mode, sbi->sb->s_type);
3359 		} else {
3360 			/* Multi-device mount */
3361 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3362 			FDEV(i).total_segments =
3363 				le32_to_cpu(RDEV(i).total_segments);
3364 			if (i == 0) {
3365 				FDEV(i).start_blk = 0;
3366 				FDEV(i).end_blk = FDEV(i).start_blk +
3367 				    (FDEV(i).total_segments <<
3368 				    sbi->log_blocks_per_seg) - 1 +
3369 				    le32_to_cpu(raw_super->segment0_blkaddr);
3370 			} else {
3371 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3372 				FDEV(i).end_blk = FDEV(i).start_blk +
3373 					(FDEV(i).total_segments <<
3374 					sbi->log_blocks_per_seg) - 1;
3375 			}
3376 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3377 					sbi->sb->s_mode, sbi->sb->s_type);
3378 		}
3379 		if (IS_ERR(FDEV(i).bdev))
3380 			return PTR_ERR(FDEV(i).bdev);
3381 
3382 		/* to release errored devices */
3383 		sbi->s_ndevs = i + 1;
3384 
3385 #ifdef CONFIG_BLK_DEV_ZONED
3386 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3387 				!f2fs_sb_has_blkzoned(sbi)) {
3388 			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3389 			return -EINVAL;
3390 		}
3391 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3392 			if (init_blkz_info(sbi, i)) {
3393 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3394 				return -EINVAL;
3395 			}
3396 			if (max_devices == 1)
3397 				break;
3398 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3399 				  i, FDEV(i).path,
3400 				  FDEV(i).total_segments,
3401 				  FDEV(i).start_blk, FDEV(i).end_blk,
3402 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3403 				  "Host-aware" : "Host-managed");
3404 			continue;
3405 		}
3406 #endif
3407 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3408 			  i, FDEV(i).path,
3409 			  FDEV(i).total_segments,
3410 			  FDEV(i).start_blk, FDEV(i).end_blk);
3411 	}
3412 	f2fs_info(sbi,
3413 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3414 	return 0;
3415 }
3416 
3417 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3418 {
3419 #ifdef CONFIG_UNICODE
3420 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3421 		const struct f2fs_sb_encodings *encoding_info;
3422 		struct unicode_map *encoding;
3423 		__u16 encoding_flags;
3424 
3425 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3426 					  &encoding_flags)) {
3427 			f2fs_err(sbi,
3428 				 "Encoding requested by superblock is unknown");
3429 			return -EINVAL;
3430 		}
3431 
3432 		encoding = utf8_load(encoding_info->version);
3433 		if (IS_ERR(encoding)) {
3434 			f2fs_err(sbi,
3435 				 "can't mount with superblock charset: %s-%s "
3436 				 "not supported by the kernel. flags: 0x%x.",
3437 				 encoding_info->name, encoding_info->version,
3438 				 encoding_flags);
3439 			return PTR_ERR(encoding);
3440 		}
3441 		f2fs_info(sbi, "Using encoding defined by superblock: "
3442 			 "%s-%s with flags 0x%hx", encoding_info->name,
3443 			 encoding_info->version?:"\b", encoding_flags);
3444 
3445 		sbi->sb->s_encoding = encoding;
3446 		sbi->sb->s_encoding_flags = encoding_flags;
3447 	}
3448 #else
3449 	if (f2fs_sb_has_casefold(sbi)) {
3450 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3451 		return -EINVAL;
3452 	}
3453 #endif
3454 	return 0;
3455 }
3456 
3457 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3458 {
3459 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3460 
3461 	/* adjust parameters according to the volume size */
3462 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3463 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3464 		sm_i->dcc_info->discard_granularity = 1;
3465 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3466 	}
3467 
3468 	sbi->readdir_ra = 1;
3469 }
3470 
3471 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3472 {
3473 	struct f2fs_sb_info *sbi;
3474 	struct f2fs_super_block *raw_super;
3475 	struct inode *root;
3476 	int err;
3477 	bool skip_recovery = false, need_fsck = false;
3478 	char *options = NULL;
3479 	int recovery, i, valid_super_block;
3480 	struct curseg_info *seg_i;
3481 	int retry_cnt = 1;
3482 
3483 try_onemore:
3484 	err = -EINVAL;
3485 	raw_super = NULL;
3486 	valid_super_block = -1;
3487 	recovery = 0;
3488 
3489 	/* allocate memory for f2fs-specific super block info */
3490 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3491 	if (!sbi)
3492 		return -ENOMEM;
3493 
3494 	sbi->sb = sb;
3495 
3496 	/* Load the checksum driver */
3497 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3498 	if (IS_ERR(sbi->s_chksum_driver)) {
3499 		f2fs_err(sbi, "Cannot load crc32 driver.");
3500 		err = PTR_ERR(sbi->s_chksum_driver);
3501 		sbi->s_chksum_driver = NULL;
3502 		goto free_sbi;
3503 	}
3504 
3505 	/* set a block size */
3506 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3507 		f2fs_err(sbi, "unable to set blocksize");
3508 		goto free_sbi;
3509 	}
3510 
3511 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3512 								&recovery);
3513 	if (err)
3514 		goto free_sbi;
3515 
3516 	sb->s_fs_info = sbi;
3517 	sbi->raw_super = raw_super;
3518 
3519 	/* precompute checksum seed for metadata */
3520 	if (f2fs_sb_has_inode_chksum(sbi))
3521 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3522 						sizeof(raw_super->uuid));
3523 
3524 	default_options(sbi);
3525 	/* parse mount options */
3526 	options = kstrdup((const char *)data, GFP_KERNEL);
3527 	if (data && !options) {
3528 		err = -ENOMEM;
3529 		goto free_sb_buf;
3530 	}
3531 
3532 	err = parse_options(sb, options, false);
3533 	if (err)
3534 		goto free_options;
3535 
3536 	sbi->max_file_blocks = max_file_blocks();
3537 	sb->s_maxbytes = sbi->max_file_blocks <<
3538 				le32_to_cpu(raw_super->log_blocksize);
3539 	sb->s_max_links = F2FS_LINK_MAX;
3540 
3541 	err = f2fs_setup_casefold(sbi);
3542 	if (err)
3543 		goto free_options;
3544 
3545 #ifdef CONFIG_QUOTA
3546 	sb->dq_op = &f2fs_quota_operations;
3547 	sb->s_qcop = &f2fs_quotactl_ops;
3548 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3549 
3550 	if (f2fs_sb_has_quota_ino(sbi)) {
3551 		for (i = 0; i < MAXQUOTAS; i++) {
3552 			if (f2fs_qf_ino(sbi->sb, i))
3553 				sbi->nquota_files++;
3554 		}
3555 	}
3556 #endif
3557 
3558 	sb->s_op = &f2fs_sops;
3559 #ifdef CONFIG_FS_ENCRYPTION
3560 	sb->s_cop = &f2fs_cryptops;
3561 #endif
3562 #ifdef CONFIG_FS_VERITY
3563 	sb->s_vop = &f2fs_verityops;
3564 #endif
3565 	sb->s_xattr = f2fs_xattr_handlers;
3566 	sb->s_export_op = &f2fs_export_ops;
3567 	sb->s_magic = F2FS_SUPER_MAGIC;
3568 	sb->s_time_gran = 1;
3569 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3570 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3571 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3572 	sb->s_iflags |= SB_I_CGROUPWB;
3573 
3574 	/* init f2fs-specific super block info */
3575 	sbi->valid_super_block = valid_super_block;
3576 	init_rwsem(&sbi->gc_lock);
3577 	mutex_init(&sbi->writepages);
3578 	init_rwsem(&sbi->cp_global_sem);
3579 	init_rwsem(&sbi->node_write);
3580 	init_rwsem(&sbi->node_change);
3581 
3582 	/* disallow all the data/node/meta page writes */
3583 	set_sbi_flag(sbi, SBI_POR_DOING);
3584 	spin_lock_init(&sbi->stat_lock);
3585 
3586 	/* init iostat info */
3587 	spin_lock_init(&sbi->iostat_lock);
3588 	sbi->iostat_enable = false;
3589 	sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3590 
3591 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3592 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3593 		int j;
3594 
3595 		sbi->write_io[i] =
3596 			f2fs_kmalloc(sbi,
3597 				     array_size(n,
3598 						sizeof(struct f2fs_bio_info)),
3599 				     GFP_KERNEL);
3600 		if (!sbi->write_io[i]) {
3601 			err = -ENOMEM;
3602 			goto free_bio_info;
3603 		}
3604 
3605 		for (j = HOT; j < n; j++) {
3606 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3607 			sbi->write_io[i][j].sbi = sbi;
3608 			sbi->write_io[i][j].bio = NULL;
3609 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3610 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3611 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3612 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3613 		}
3614 	}
3615 
3616 	init_rwsem(&sbi->cp_rwsem);
3617 	init_rwsem(&sbi->quota_sem);
3618 	init_waitqueue_head(&sbi->cp_wait);
3619 	init_sb_info(sbi);
3620 
3621 	err = init_percpu_info(sbi);
3622 	if (err)
3623 		goto free_bio_info;
3624 
3625 	if (F2FS_IO_ALIGNED(sbi)) {
3626 		sbi->write_io_dummy =
3627 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3628 		if (!sbi->write_io_dummy) {
3629 			err = -ENOMEM;
3630 			goto free_percpu;
3631 		}
3632 	}
3633 
3634 	/* init per sbi slab cache */
3635 	err = f2fs_init_xattr_caches(sbi);
3636 	if (err)
3637 		goto free_io_dummy;
3638 	err = f2fs_init_page_array_cache(sbi);
3639 	if (err)
3640 		goto free_xattr_cache;
3641 
3642 	/* get an inode for meta space */
3643 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3644 	if (IS_ERR(sbi->meta_inode)) {
3645 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3646 		err = PTR_ERR(sbi->meta_inode);
3647 		goto free_page_array_cache;
3648 	}
3649 
3650 	err = f2fs_get_valid_checkpoint(sbi);
3651 	if (err) {
3652 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3653 		goto free_meta_inode;
3654 	}
3655 
3656 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3657 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3658 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3659 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3660 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3661 	}
3662 
3663 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3664 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3665 
3666 	/* Initialize device list */
3667 	err = f2fs_scan_devices(sbi);
3668 	if (err) {
3669 		f2fs_err(sbi, "Failed to find devices");
3670 		goto free_devices;
3671 	}
3672 
3673 	err = f2fs_init_post_read_wq(sbi);
3674 	if (err) {
3675 		f2fs_err(sbi, "Failed to initialize post read workqueue");
3676 		goto free_devices;
3677 	}
3678 
3679 	sbi->total_valid_node_count =
3680 				le32_to_cpu(sbi->ckpt->valid_node_count);
3681 	percpu_counter_set(&sbi->total_valid_inode_count,
3682 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3683 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3684 	sbi->total_valid_block_count =
3685 				le64_to_cpu(sbi->ckpt->valid_block_count);
3686 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3687 	sbi->reserved_blocks = 0;
3688 	sbi->current_reserved_blocks = 0;
3689 	limit_reserve_root(sbi);
3690 	adjust_unusable_cap_perc(sbi);
3691 
3692 	for (i = 0; i < NR_INODE_TYPE; i++) {
3693 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3694 		spin_lock_init(&sbi->inode_lock[i]);
3695 	}
3696 	mutex_init(&sbi->flush_lock);
3697 
3698 	f2fs_init_extent_cache_info(sbi);
3699 
3700 	f2fs_init_ino_entry_info(sbi);
3701 
3702 	f2fs_init_fsync_node_info(sbi);
3703 
3704 	/* setup f2fs internal modules */
3705 	err = f2fs_build_segment_manager(sbi);
3706 	if (err) {
3707 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3708 			 err);
3709 		goto free_sm;
3710 	}
3711 	err = f2fs_build_node_manager(sbi);
3712 	if (err) {
3713 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3714 			 err);
3715 		goto free_nm;
3716 	}
3717 
3718 	/* For write statistics */
3719 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
3720 
3721 	/* Read accumulated write IO statistics if exists */
3722 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3723 	if (__exist_node_summaries(sbi))
3724 		sbi->kbytes_written =
3725 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3726 
3727 	f2fs_build_gc_manager(sbi);
3728 
3729 	err = f2fs_build_stats(sbi);
3730 	if (err)
3731 		goto free_nm;
3732 
3733 	/* get an inode for node space */
3734 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3735 	if (IS_ERR(sbi->node_inode)) {
3736 		f2fs_err(sbi, "Failed to read node inode");
3737 		err = PTR_ERR(sbi->node_inode);
3738 		goto free_stats;
3739 	}
3740 
3741 	/* read root inode and dentry */
3742 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3743 	if (IS_ERR(root)) {
3744 		f2fs_err(sbi, "Failed to read root inode");
3745 		err = PTR_ERR(root);
3746 		goto free_node_inode;
3747 	}
3748 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3749 			!root->i_size || !root->i_nlink) {
3750 		iput(root);
3751 		err = -EINVAL;
3752 		goto free_node_inode;
3753 	}
3754 
3755 	sb->s_root = d_make_root(root); /* allocate root dentry */
3756 	if (!sb->s_root) {
3757 		err = -ENOMEM;
3758 		goto free_node_inode;
3759 	}
3760 
3761 	err = f2fs_register_sysfs(sbi);
3762 	if (err)
3763 		goto free_root_inode;
3764 
3765 #ifdef CONFIG_QUOTA
3766 	/* Enable quota usage during mount */
3767 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3768 		err = f2fs_enable_quotas(sb);
3769 		if (err)
3770 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3771 	}
3772 #endif
3773 	/* if there are any orphan inodes, free them */
3774 	err = f2fs_recover_orphan_inodes(sbi);
3775 	if (err)
3776 		goto free_meta;
3777 
3778 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3779 		goto reset_checkpoint;
3780 
3781 	/* recover fsynced data */
3782 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3783 			!test_opt(sbi, NORECOVERY)) {
3784 		/*
3785 		 * mount should be failed, when device has readonly mode, and
3786 		 * previous checkpoint was not done by clean system shutdown.
3787 		 */
3788 		if (f2fs_hw_is_readonly(sbi)) {
3789 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3790 				err = -EROFS;
3791 				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3792 				goto free_meta;
3793 			}
3794 			f2fs_info(sbi, "write access unavailable, skipping recovery");
3795 			goto reset_checkpoint;
3796 		}
3797 
3798 		if (need_fsck)
3799 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3800 
3801 		if (skip_recovery)
3802 			goto reset_checkpoint;
3803 
3804 		err = f2fs_recover_fsync_data(sbi, false);
3805 		if (err < 0) {
3806 			if (err != -ENOMEM)
3807 				skip_recovery = true;
3808 			need_fsck = true;
3809 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3810 				 err);
3811 			goto free_meta;
3812 		}
3813 	} else {
3814 		err = f2fs_recover_fsync_data(sbi, true);
3815 
3816 		if (!f2fs_readonly(sb) && err > 0) {
3817 			err = -EINVAL;
3818 			f2fs_err(sbi, "Need to recover fsync data");
3819 			goto free_meta;
3820 		}
3821 	}
3822 
3823 	/*
3824 	 * If the f2fs is not readonly and fsync data recovery succeeds,
3825 	 * check zoned block devices' write pointer consistency.
3826 	 */
3827 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3828 		err = f2fs_check_write_pointer(sbi);
3829 		if (err)
3830 			goto free_meta;
3831 	}
3832 
3833 reset_checkpoint:
3834 	f2fs_init_inmem_curseg(sbi);
3835 
3836 	/* f2fs_recover_fsync_data() cleared this already */
3837 	clear_sbi_flag(sbi, SBI_POR_DOING);
3838 
3839 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3840 		err = f2fs_disable_checkpoint(sbi);
3841 		if (err)
3842 			goto sync_free_meta;
3843 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3844 		f2fs_enable_checkpoint(sbi);
3845 	}
3846 
3847 	/*
3848 	 * If filesystem is not mounted as read-only then
3849 	 * do start the gc_thread.
3850 	 */
3851 	if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) {
3852 		/* After POR, we can run background GC thread.*/
3853 		err = f2fs_start_gc_thread(sbi);
3854 		if (err)
3855 			goto sync_free_meta;
3856 	}
3857 	kvfree(options);
3858 
3859 	/* recover broken superblock */
3860 	if (recovery) {
3861 		err = f2fs_commit_super(sbi, true);
3862 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3863 			  sbi->valid_super_block ? 1 : 2, err);
3864 	}
3865 
3866 	f2fs_join_shrinker(sbi);
3867 
3868 	f2fs_tuning_parameters(sbi);
3869 
3870 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3871 		    cur_cp_version(F2FS_CKPT(sbi)));
3872 	f2fs_update_time(sbi, CP_TIME);
3873 	f2fs_update_time(sbi, REQ_TIME);
3874 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3875 	return 0;
3876 
3877 sync_free_meta:
3878 	/* safe to flush all the data */
3879 	sync_filesystem(sbi->sb);
3880 	retry_cnt = 0;
3881 
3882 free_meta:
3883 #ifdef CONFIG_QUOTA
3884 	f2fs_truncate_quota_inode_pages(sb);
3885 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3886 		f2fs_quota_off_umount(sbi->sb);
3887 #endif
3888 	/*
3889 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3890 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3891 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3892 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3893 	 */
3894 	truncate_inode_pages_final(META_MAPPING(sbi));
3895 	/* evict some inodes being cached by GC */
3896 	evict_inodes(sb);
3897 	f2fs_unregister_sysfs(sbi);
3898 free_root_inode:
3899 	dput(sb->s_root);
3900 	sb->s_root = NULL;
3901 free_node_inode:
3902 	f2fs_release_ino_entry(sbi, true);
3903 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3904 	iput(sbi->node_inode);
3905 	sbi->node_inode = NULL;
3906 free_stats:
3907 	f2fs_destroy_stats(sbi);
3908 free_nm:
3909 	f2fs_destroy_node_manager(sbi);
3910 free_sm:
3911 	f2fs_destroy_segment_manager(sbi);
3912 	f2fs_destroy_post_read_wq(sbi);
3913 free_devices:
3914 	destroy_device_list(sbi);
3915 	kvfree(sbi->ckpt);
3916 free_meta_inode:
3917 	make_bad_inode(sbi->meta_inode);
3918 	iput(sbi->meta_inode);
3919 	sbi->meta_inode = NULL;
3920 free_page_array_cache:
3921 	f2fs_destroy_page_array_cache(sbi);
3922 free_xattr_cache:
3923 	f2fs_destroy_xattr_caches(sbi);
3924 free_io_dummy:
3925 	mempool_destroy(sbi->write_io_dummy);
3926 free_percpu:
3927 	destroy_percpu_info(sbi);
3928 free_bio_info:
3929 	for (i = 0; i < NR_PAGE_TYPE; i++)
3930 		kvfree(sbi->write_io[i]);
3931 
3932 #ifdef CONFIG_UNICODE
3933 	utf8_unload(sb->s_encoding);
3934 	sb->s_encoding = NULL;
3935 #endif
3936 free_options:
3937 #ifdef CONFIG_QUOTA
3938 	for (i = 0; i < MAXQUOTAS; i++)
3939 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3940 #endif
3941 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
3942 	kvfree(options);
3943 free_sb_buf:
3944 	kfree(raw_super);
3945 free_sbi:
3946 	if (sbi->s_chksum_driver)
3947 		crypto_free_shash(sbi->s_chksum_driver);
3948 	kfree(sbi);
3949 
3950 	/* give only one another chance */
3951 	if (retry_cnt > 0 && skip_recovery) {
3952 		retry_cnt--;
3953 		shrink_dcache_sb(sb);
3954 		goto try_onemore;
3955 	}
3956 	return err;
3957 }
3958 
3959 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3960 			const char *dev_name, void *data)
3961 {
3962 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3963 }
3964 
3965 static void kill_f2fs_super(struct super_block *sb)
3966 {
3967 	if (sb->s_root) {
3968 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3969 
3970 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3971 		f2fs_stop_gc_thread(sbi);
3972 		f2fs_stop_discard_thread(sbi);
3973 
3974 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3975 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3976 			struct cp_control cpc = {
3977 				.reason = CP_UMOUNT,
3978 			};
3979 			f2fs_write_checkpoint(sbi, &cpc);
3980 		}
3981 
3982 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3983 			sb->s_flags &= ~SB_RDONLY;
3984 	}
3985 	kill_block_super(sb);
3986 }
3987 
3988 static struct file_system_type f2fs_fs_type = {
3989 	.owner		= THIS_MODULE,
3990 	.name		= "f2fs",
3991 	.mount		= f2fs_mount,
3992 	.kill_sb	= kill_f2fs_super,
3993 	.fs_flags	= FS_REQUIRES_DEV,
3994 };
3995 MODULE_ALIAS_FS("f2fs");
3996 
3997 static int __init init_inodecache(void)
3998 {
3999 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4000 			sizeof(struct f2fs_inode_info), 0,
4001 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4002 	if (!f2fs_inode_cachep)
4003 		return -ENOMEM;
4004 	return 0;
4005 }
4006 
4007 static void destroy_inodecache(void)
4008 {
4009 	/*
4010 	 * Make sure all delayed rcu free inodes are flushed before we
4011 	 * destroy cache.
4012 	 */
4013 	rcu_barrier();
4014 	kmem_cache_destroy(f2fs_inode_cachep);
4015 }
4016 
4017 static int __init init_f2fs_fs(void)
4018 {
4019 	int err;
4020 
4021 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4022 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4023 				PAGE_SIZE, F2FS_BLKSIZE);
4024 		return -EINVAL;
4025 	}
4026 
4027 	f2fs_build_trace_ios();
4028 
4029 	err = init_inodecache();
4030 	if (err)
4031 		goto fail;
4032 	err = f2fs_create_node_manager_caches();
4033 	if (err)
4034 		goto free_inodecache;
4035 	err = f2fs_create_segment_manager_caches();
4036 	if (err)
4037 		goto free_node_manager_caches;
4038 	err = f2fs_create_checkpoint_caches();
4039 	if (err)
4040 		goto free_segment_manager_caches;
4041 	err = f2fs_create_extent_cache();
4042 	if (err)
4043 		goto free_checkpoint_caches;
4044 	err = f2fs_create_garbage_collection_cache();
4045 	if (err)
4046 		goto free_extent_cache;
4047 	err = f2fs_init_sysfs();
4048 	if (err)
4049 		goto free_garbage_collection_cache;
4050 	err = register_shrinker(&f2fs_shrinker_info);
4051 	if (err)
4052 		goto free_sysfs;
4053 	err = register_filesystem(&f2fs_fs_type);
4054 	if (err)
4055 		goto free_shrinker;
4056 	f2fs_create_root_stats();
4057 	err = f2fs_init_post_read_processing();
4058 	if (err)
4059 		goto free_root_stats;
4060 	err = f2fs_init_bio_entry_cache();
4061 	if (err)
4062 		goto free_post_read;
4063 	err = f2fs_init_bioset();
4064 	if (err)
4065 		goto free_bio_enrty_cache;
4066 	err = f2fs_init_compress_mempool();
4067 	if (err)
4068 		goto free_bioset;
4069 	err = f2fs_init_compress_cache();
4070 	if (err)
4071 		goto free_compress_mempool;
4072 	return 0;
4073 free_compress_mempool:
4074 	f2fs_destroy_compress_mempool();
4075 free_bioset:
4076 	f2fs_destroy_bioset();
4077 free_bio_enrty_cache:
4078 	f2fs_destroy_bio_entry_cache();
4079 free_post_read:
4080 	f2fs_destroy_post_read_processing();
4081 free_root_stats:
4082 	f2fs_destroy_root_stats();
4083 	unregister_filesystem(&f2fs_fs_type);
4084 free_shrinker:
4085 	unregister_shrinker(&f2fs_shrinker_info);
4086 free_sysfs:
4087 	f2fs_exit_sysfs();
4088 free_garbage_collection_cache:
4089 	f2fs_destroy_garbage_collection_cache();
4090 free_extent_cache:
4091 	f2fs_destroy_extent_cache();
4092 free_checkpoint_caches:
4093 	f2fs_destroy_checkpoint_caches();
4094 free_segment_manager_caches:
4095 	f2fs_destroy_segment_manager_caches();
4096 free_node_manager_caches:
4097 	f2fs_destroy_node_manager_caches();
4098 free_inodecache:
4099 	destroy_inodecache();
4100 fail:
4101 	return err;
4102 }
4103 
4104 static void __exit exit_f2fs_fs(void)
4105 {
4106 	f2fs_destroy_compress_cache();
4107 	f2fs_destroy_compress_mempool();
4108 	f2fs_destroy_bioset();
4109 	f2fs_destroy_bio_entry_cache();
4110 	f2fs_destroy_post_read_processing();
4111 	f2fs_destroy_root_stats();
4112 	unregister_filesystem(&f2fs_fs_type);
4113 	unregister_shrinker(&f2fs_shrinker_info);
4114 	f2fs_exit_sysfs();
4115 	f2fs_destroy_garbage_collection_cache();
4116 	f2fs_destroy_extent_cache();
4117 	f2fs_destroy_checkpoint_caches();
4118 	f2fs_destroy_segment_manager_caches();
4119 	f2fs_destroy_node_manager_caches();
4120 	destroy_inodecache();
4121 	f2fs_destroy_trace_ios();
4122 }
4123 
4124 module_init(init_f2fs_fs)
4125 module_exit(exit_f2fs_fs)
4126 
4127 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4128 MODULE_DESCRIPTION("Flash Friendly File System");
4129 MODULE_LICENSE("GPL");
4130 
4131