1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/buffer_head.h> 15 #include <linux/kthread.h> 16 #include <linux/parser.h> 17 #include <linux/mount.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/random.h> 21 #include <linux/exportfs.h> 22 #include <linux/blkdev.h> 23 #include <linux/quotaops.h> 24 #include <linux/f2fs_fs.h> 25 #include <linux/sysfs.h> 26 #include <linux/quota.h> 27 #include <linux/unicode.h> 28 #include <linux/part_stat.h> 29 #include <linux/zstd.h> 30 #include <linux/lz4.h> 31 32 #include "f2fs.h" 33 #include "node.h" 34 #include "segment.h" 35 #include "xattr.h" 36 #include "gc.h" 37 #include "iostat.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/f2fs.h> 41 42 static struct kmem_cache *f2fs_inode_cachep; 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 46 const char *f2fs_fault_name[FAULT_MAX] = { 47 [FAULT_KMALLOC] = "kmalloc", 48 [FAULT_KVMALLOC] = "kvmalloc", 49 [FAULT_PAGE_ALLOC] = "page alloc", 50 [FAULT_PAGE_GET] = "page get", 51 [FAULT_ALLOC_NID] = "alloc nid", 52 [FAULT_ORPHAN] = "orphan", 53 [FAULT_BLOCK] = "no more block", 54 [FAULT_DIR_DEPTH] = "too big dir depth", 55 [FAULT_EVICT_INODE] = "evict_inode fail", 56 [FAULT_TRUNCATE] = "truncate fail", 57 [FAULT_READ_IO] = "read IO error", 58 [FAULT_CHECKPOINT] = "checkpoint error", 59 [FAULT_DISCARD] = "discard error", 60 [FAULT_WRITE_IO] = "write IO error", 61 [FAULT_SLAB_ALLOC] = "slab alloc", 62 [FAULT_DQUOT_INIT] = "dquot initialize", 63 [FAULT_LOCK_OP] = "lock_op", 64 [FAULT_BLKADDR_VALIDITY] = "invalid blkaddr", 65 [FAULT_BLKADDR_CONSISTENCE] = "inconsistent blkaddr", 66 [FAULT_NO_SEGMENT] = "no free segment", 67 }; 68 69 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 70 unsigned int type) 71 { 72 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 73 74 if (rate) { 75 atomic_set(&ffi->inject_ops, 0); 76 ffi->inject_rate = rate; 77 } 78 79 if (type) 80 ffi->inject_type = type; 81 82 if (!rate && !type) 83 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 84 } 85 #endif 86 87 /* f2fs-wide shrinker description */ 88 static struct shrinker *f2fs_shrinker_info; 89 90 static int __init f2fs_init_shrinker(void) 91 { 92 f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker"); 93 if (!f2fs_shrinker_info) 94 return -ENOMEM; 95 96 f2fs_shrinker_info->count_objects = f2fs_shrink_count; 97 f2fs_shrinker_info->scan_objects = f2fs_shrink_scan; 98 99 shrinker_register(f2fs_shrinker_info); 100 101 return 0; 102 } 103 104 static void f2fs_exit_shrinker(void) 105 { 106 shrinker_free(f2fs_shrinker_info); 107 } 108 109 enum { 110 Opt_gc_background, 111 Opt_disable_roll_forward, 112 Opt_norecovery, 113 Opt_discard, 114 Opt_nodiscard, 115 Opt_noheap, 116 Opt_heap, 117 Opt_user_xattr, 118 Opt_nouser_xattr, 119 Opt_acl, 120 Opt_noacl, 121 Opt_active_logs, 122 Opt_disable_ext_identify, 123 Opt_inline_xattr, 124 Opt_noinline_xattr, 125 Opt_inline_xattr_size, 126 Opt_inline_data, 127 Opt_inline_dentry, 128 Opt_noinline_dentry, 129 Opt_flush_merge, 130 Opt_noflush_merge, 131 Opt_barrier, 132 Opt_nobarrier, 133 Opt_fastboot, 134 Opt_extent_cache, 135 Opt_noextent_cache, 136 Opt_noinline_data, 137 Opt_data_flush, 138 Opt_reserve_root, 139 Opt_resgid, 140 Opt_resuid, 141 Opt_mode, 142 Opt_fault_injection, 143 Opt_fault_type, 144 Opt_lazytime, 145 Opt_nolazytime, 146 Opt_quota, 147 Opt_noquota, 148 Opt_usrquota, 149 Opt_grpquota, 150 Opt_prjquota, 151 Opt_usrjquota, 152 Opt_grpjquota, 153 Opt_prjjquota, 154 Opt_offusrjquota, 155 Opt_offgrpjquota, 156 Opt_offprjjquota, 157 Opt_jqfmt_vfsold, 158 Opt_jqfmt_vfsv0, 159 Opt_jqfmt_vfsv1, 160 Opt_alloc, 161 Opt_fsync, 162 Opt_test_dummy_encryption, 163 Opt_inlinecrypt, 164 Opt_checkpoint_disable, 165 Opt_checkpoint_disable_cap, 166 Opt_checkpoint_disable_cap_perc, 167 Opt_checkpoint_enable, 168 Opt_checkpoint_merge, 169 Opt_nocheckpoint_merge, 170 Opt_compress_algorithm, 171 Opt_compress_log_size, 172 Opt_compress_extension, 173 Opt_nocompress_extension, 174 Opt_compress_chksum, 175 Opt_compress_mode, 176 Opt_compress_cache, 177 Opt_atgc, 178 Opt_gc_merge, 179 Opt_nogc_merge, 180 Opt_discard_unit, 181 Opt_memory_mode, 182 Opt_age_extent_cache, 183 Opt_errors, 184 Opt_err, 185 }; 186 187 static match_table_t f2fs_tokens = { 188 {Opt_gc_background, "background_gc=%s"}, 189 {Opt_disable_roll_forward, "disable_roll_forward"}, 190 {Opt_norecovery, "norecovery"}, 191 {Opt_discard, "discard"}, 192 {Opt_nodiscard, "nodiscard"}, 193 {Opt_noheap, "no_heap"}, 194 {Opt_heap, "heap"}, 195 {Opt_user_xattr, "user_xattr"}, 196 {Opt_nouser_xattr, "nouser_xattr"}, 197 {Opt_acl, "acl"}, 198 {Opt_noacl, "noacl"}, 199 {Opt_active_logs, "active_logs=%u"}, 200 {Opt_disable_ext_identify, "disable_ext_identify"}, 201 {Opt_inline_xattr, "inline_xattr"}, 202 {Opt_noinline_xattr, "noinline_xattr"}, 203 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 204 {Opt_inline_data, "inline_data"}, 205 {Opt_inline_dentry, "inline_dentry"}, 206 {Opt_noinline_dentry, "noinline_dentry"}, 207 {Opt_flush_merge, "flush_merge"}, 208 {Opt_noflush_merge, "noflush_merge"}, 209 {Opt_barrier, "barrier"}, 210 {Opt_nobarrier, "nobarrier"}, 211 {Opt_fastboot, "fastboot"}, 212 {Opt_extent_cache, "extent_cache"}, 213 {Opt_noextent_cache, "noextent_cache"}, 214 {Opt_noinline_data, "noinline_data"}, 215 {Opt_data_flush, "data_flush"}, 216 {Opt_reserve_root, "reserve_root=%u"}, 217 {Opt_resgid, "resgid=%u"}, 218 {Opt_resuid, "resuid=%u"}, 219 {Opt_mode, "mode=%s"}, 220 {Opt_fault_injection, "fault_injection=%u"}, 221 {Opt_fault_type, "fault_type=%u"}, 222 {Opt_lazytime, "lazytime"}, 223 {Opt_nolazytime, "nolazytime"}, 224 {Opt_quota, "quota"}, 225 {Opt_noquota, "noquota"}, 226 {Opt_usrquota, "usrquota"}, 227 {Opt_grpquota, "grpquota"}, 228 {Opt_prjquota, "prjquota"}, 229 {Opt_usrjquota, "usrjquota=%s"}, 230 {Opt_grpjquota, "grpjquota=%s"}, 231 {Opt_prjjquota, "prjjquota=%s"}, 232 {Opt_offusrjquota, "usrjquota="}, 233 {Opt_offgrpjquota, "grpjquota="}, 234 {Opt_offprjjquota, "prjjquota="}, 235 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 236 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 237 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 238 {Opt_alloc, "alloc_mode=%s"}, 239 {Opt_fsync, "fsync_mode=%s"}, 240 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 241 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 242 {Opt_inlinecrypt, "inlinecrypt"}, 243 {Opt_checkpoint_disable, "checkpoint=disable"}, 244 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 245 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 246 {Opt_checkpoint_enable, "checkpoint=enable"}, 247 {Opt_checkpoint_merge, "checkpoint_merge"}, 248 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 249 {Opt_compress_algorithm, "compress_algorithm=%s"}, 250 {Opt_compress_log_size, "compress_log_size=%u"}, 251 {Opt_compress_extension, "compress_extension=%s"}, 252 {Opt_nocompress_extension, "nocompress_extension=%s"}, 253 {Opt_compress_chksum, "compress_chksum"}, 254 {Opt_compress_mode, "compress_mode=%s"}, 255 {Opt_compress_cache, "compress_cache"}, 256 {Opt_atgc, "atgc"}, 257 {Opt_gc_merge, "gc_merge"}, 258 {Opt_nogc_merge, "nogc_merge"}, 259 {Opt_discard_unit, "discard_unit=%s"}, 260 {Opt_memory_mode, "memory=%s"}, 261 {Opt_age_extent_cache, "age_extent_cache"}, 262 {Opt_errors, "errors=%s"}, 263 {Opt_err, NULL}, 264 }; 265 266 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, 267 const char *fmt, ...) 268 { 269 struct va_format vaf; 270 va_list args; 271 int level; 272 273 va_start(args, fmt); 274 275 level = printk_get_level(fmt); 276 vaf.fmt = printk_skip_level(fmt); 277 vaf.va = &args; 278 if (limit_rate) 279 printk_ratelimited("%c%cF2FS-fs (%s): %pV\n", 280 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 281 else 282 printk("%c%cF2FS-fs (%s): %pV\n", 283 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 284 285 va_end(args); 286 } 287 288 #if IS_ENABLED(CONFIG_UNICODE) 289 static const struct f2fs_sb_encodings { 290 __u16 magic; 291 char *name; 292 unsigned int version; 293 } f2fs_sb_encoding_map[] = { 294 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 295 }; 296 297 static const struct f2fs_sb_encodings * 298 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 299 { 300 __u16 magic = le16_to_cpu(sb->s_encoding); 301 int i; 302 303 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 304 if (magic == f2fs_sb_encoding_map[i].magic) 305 return &f2fs_sb_encoding_map[i]; 306 307 return NULL; 308 } 309 310 struct kmem_cache *f2fs_cf_name_slab; 311 static int __init f2fs_create_casefold_cache(void) 312 { 313 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 314 F2FS_NAME_LEN); 315 return f2fs_cf_name_slab ? 0 : -ENOMEM; 316 } 317 318 static void f2fs_destroy_casefold_cache(void) 319 { 320 kmem_cache_destroy(f2fs_cf_name_slab); 321 } 322 #else 323 static int __init f2fs_create_casefold_cache(void) { return 0; } 324 static void f2fs_destroy_casefold_cache(void) { } 325 #endif 326 327 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 328 { 329 block_t limit = min((sbi->user_block_count >> 3), 330 sbi->user_block_count - sbi->reserved_blocks); 331 332 /* limit is 12.5% */ 333 if (test_opt(sbi, RESERVE_ROOT) && 334 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 335 F2FS_OPTION(sbi).root_reserved_blocks = limit; 336 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 337 F2FS_OPTION(sbi).root_reserved_blocks); 338 } 339 if (!test_opt(sbi, RESERVE_ROOT) && 340 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 341 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 342 !gid_eq(F2FS_OPTION(sbi).s_resgid, 343 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 344 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 345 from_kuid_munged(&init_user_ns, 346 F2FS_OPTION(sbi).s_resuid), 347 from_kgid_munged(&init_user_ns, 348 F2FS_OPTION(sbi).s_resgid)); 349 } 350 351 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 352 { 353 if (!F2FS_OPTION(sbi).unusable_cap_perc) 354 return; 355 356 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 357 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 358 else 359 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 360 F2FS_OPTION(sbi).unusable_cap_perc; 361 362 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 363 F2FS_OPTION(sbi).unusable_cap, 364 F2FS_OPTION(sbi).unusable_cap_perc); 365 } 366 367 static void init_once(void *foo) 368 { 369 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 370 371 inode_init_once(&fi->vfs_inode); 372 } 373 374 #ifdef CONFIG_QUOTA 375 static const char * const quotatypes[] = INITQFNAMES; 376 #define QTYPE2NAME(t) (quotatypes[t]) 377 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 378 substring_t *args) 379 { 380 struct f2fs_sb_info *sbi = F2FS_SB(sb); 381 char *qname; 382 int ret = -EINVAL; 383 384 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 385 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 386 return -EINVAL; 387 } 388 if (f2fs_sb_has_quota_ino(sbi)) { 389 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 390 return 0; 391 } 392 393 qname = match_strdup(args); 394 if (!qname) { 395 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 396 return -ENOMEM; 397 } 398 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 399 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 400 ret = 0; 401 else 402 f2fs_err(sbi, "%s quota file already specified", 403 QTYPE2NAME(qtype)); 404 goto errout; 405 } 406 if (strchr(qname, '/')) { 407 f2fs_err(sbi, "quotafile must be on filesystem root"); 408 goto errout; 409 } 410 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 411 set_opt(sbi, QUOTA); 412 return 0; 413 errout: 414 kfree(qname); 415 return ret; 416 } 417 418 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 419 { 420 struct f2fs_sb_info *sbi = F2FS_SB(sb); 421 422 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 423 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 424 return -EINVAL; 425 } 426 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 427 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 428 return 0; 429 } 430 431 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 432 { 433 /* 434 * We do the test below only for project quotas. 'usrquota' and 435 * 'grpquota' mount options are allowed even without quota feature 436 * to support legacy quotas in quota files. 437 */ 438 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 439 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 440 return -1; 441 } 442 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 443 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 444 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 445 if (test_opt(sbi, USRQUOTA) && 446 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 447 clear_opt(sbi, USRQUOTA); 448 449 if (test_opt(sbi, GRPQUOTA) && 450 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 451 clear_opt(sbi, GRPQUOTA); 452 453 if (test_opt(sbi, PRJQUOTA) && 454 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 455 clear_opt(sbi, PRJQUOTA); 456 457 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 458 test_opt(sbi, PRJQUOTA)) { 459 f2fs_err(sbi, "old and new quota format mixing"); 460 return -1; 461 } 462 463 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 464 f2fs_err(sbi, "journaled quota format not specified"); 465 return -1; 466 } 467 } 468 469 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 470 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 471 F2FS_OPTION(sbi).s_jquota_fmt = 0; 472 } 473 return 0; 474 } 475 #endif 476 477 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 478 const char *opt, 479 const substring_t *arg, 480 bool is_remount) 481 { 482 struct f2fs_sb_info *sbi = F2FS_SB(sb); 483 struct fs_parameter param = { 484 .type = fs_value_is_string, 485 .string = arg->from ? arg->from : "", 486 }; 487 struct fscrypt_dummy_policy *policy = 488 &F2FS_OPTION(sbi).dummy_enc_policy; 489 int err; 490 491 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 492 f2fs_warn(sbi, "test_dummy_encryption option not supported"); 493 return -EINVAL; 494 } 495 496 if (!f2fs_sb_has_encrypt(sbi)) { 497 f2fs_err(sbi, "Encrypt feature is off"); 498 return -EINVAL; 499 } 500 501 /* 502 * This mount option is just for testing, and it's not worthwhile to 503 * implement the extra complexity (e.g. RCU protection) that would be 504 * needed to allow it to be set or changed during remount. We do allow 505 * it to be specified during remount, but only if there is no change. 506 */ 507 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { 508 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 509 return -EINVAL; 510 } 511 512 err = fscrypt_parse_test_dummy_encryption(¶m, policy); 513 if (err) { 514 if (err == -EEXIST) 515 f2fs_warn(sbi, 516 "Can't change test_dummy_encryption on remount"); 517 else if (err == -EINVAL) 518 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 519 opt); 520 else 521 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 522 opt, err); 523 return -EINVAL; 524 } 525 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 526 return 0; 527 } 528 529 #ifdef CONFIG_F2FS_FS_COMPRESSION 530 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi, 531 const char *new_ext, bool is_ext) 532 { 533 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 534 int ext_cnt; 535 int i; 536 537 if (is_ext) { 538 ext = F2FS_OPTION(sbi).extensions; 539 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 540 } else { 541 ext = F2FS_OPTION(sbi).noextensions; 542 ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 543 } 544 545 for (i = 0; i < ext_cnt; i++) { 546 if (!strcasecmp(new_ext, ext[i])) 547 return true; 548 } 549 550 return false; 551 } 552 553 /* 554 * 1. The same extension name cannot not appear in both compress and non-compress extension 555 * at the same time. 556 * 2. If the compress extension specifies all files, the types specified by the non-compress 557 * extension will be treated as special cases and will not be compressed. 558 * 3. Don't allow the non-compress extension specifies all files. 559 */ 560 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 561 { 562 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 563 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 564 int ext_cnt, noext_cnt, index = 0, no_index = 0; 565 566 ext = F2FS_OPTION(sbi).extensions; 567 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 568 noext = F2FS_OPTION(sbi).noextensions; 569 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 570 571 if (!noext_cnt) 572 return 0; 573 574 for (no_index = 0; no_index < noext_cnt; no_index++) { 575 if (!strcasecmp("*", noext[no_index])) { 576 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 577 return -EINVAL; 578 } 579 for (index = 0; index < ext_cnt; index++) { 580 if (!strcasecmp(ext[index], noext[no_index])) { 581 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 582 ext[index]); 583 return -EINVAL; 584 } 585 } 586 } 587 return 0; 588 } 589 590 #ifdef CONFIG_F2FS_FS_LZ4 591 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 592 { 593 #ifdef CONFIG_F2FS_FS_LZ4HC 594 unsigned int level; 595 596 if (strlen(str) == 3) { 597 F2FS_OPTION(sbi).compress_level = 0; 598 return 0; 599 } 600 601 str += 3; 602 603 if (str[0] != ':') { 604 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 605 return -EINVAL; 606 } 607 if (kstrtouint(str + 1, 10, &level)) 608 return -EINVAL; 609 610 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { 611 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 612 return -EINVAL; 613 } 614 615 F2FS_OPTION(sbi).compress_level = level; 616 return 0; 617 #else 618 if (strlen(str) == 3) { 619 F2FS_OPTION(sbi).compress_level = 0; 620 return 0; 621 } 622 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 623 return -EINVAL; 624 #endif 625 } 626 #endif 627 628 #ifdef CONFIG_F2FS_FS_ZSTD 629 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 630 { 631 int level; 632 int len = 4; 633 634 if (strlen(str) == len) { 635 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 636 return 0; 637 } 638 639 str += len; 640 641 if (str[0] != ':') { 642 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 643 return -EINVAL; 644 } 645 if (kstrtoint(str + 1, 10, &level)) 646 return -EINVAL; 647 648 /* f2fs does not support negative compress level now */ 649 if (level < 0) { 650 f2fs_info(sbi, "do not support negative compress level: %d", level); 651 return -ERANGE; 652 } 653 654 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { 655 f2fs_info(sbi, "invalid zstd compress level: %d", level); 656 return -EINVAL; 657 } 658 659 F2FS_OPTION(sbi).compress_level = level; 660 return 0; 661 } 662 #endif 663 #endif 664 665 static int parse_options(struct super_block *sb, char *options, bool is_remount) 666 { 667 struct f2fs_sb_info *sbi = F2FS_SB(sb); 668 substring_t args[MAX_OPT_ARGS]; 669 #ifdef CONFIG_F2FS_FS_COMPRESSION 670 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 671 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 672 int ext_cnt, noext_cnt; 673 #endif 674 char *p, *name; 675 int arg = 0; 676 kuid_t uid; 677 kgid_t gid; 678 int ret; 679 680 if (!options) 681 goto default_check; 682 683 while ((p = strsep(&options, ",")) != NULL) { 684 int token; 685 686 if (!*p) 687 continue; 688 /* 689 * Initialize args struct so we know whether arg was 690 * found; some options take optional arguments. 691 */ 692 args[0].to = args[0].from = NULL; 693 token = match_token(p, f2fs_tokens, args); 694 695 switch (token) { 696 case Opt_gc_background: 697 name = match_strdup(&args[0]); 698 699 if (!name) 700 return -ENOMEM; 701 if (!strcmp(name, "on")) { 702 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 703 } else if (!strcmp(name, "off")) { 704 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 705 } else if (!strcmp(name, "sync")) { 706 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 707 } else { 708 kfree(name); 709 return -EINVAL; 710 } 711 kfree(name); 712 break; 713 case Opt_disable_roll_forward: 714 set_opt(sbi, DISABLE_ROLL_FORWARD); 715 break; 716 case Opt_norecovery: 717 /* this option mounts f2fs with ro */ 718 set_opt(sbi, NORECOVERY); 719 if (!f2fs_readonly(sb)) 720 return -EINVAL; 721 break; 722 case Opt_discard: 723 if (!f2fs_hw_support_discard(sbi)) { 724 f2fs_warn(sbi, "device does not support discard"); 725 break; 726 } 727 set_opt(sbi, DISCARD); 728 break; 729 case Opt_nodiscard: 730 if (f2fs_hw_should_discard(sbi)) { 731 f2fs_warn(sbi, "discard is required for zoned block devices"); 732 return -EINVAL; 733 } 734 clear_opt(sbi, DISCARD); 735 break; 736 case Opt_noheap: 737 case Opt_heap: 738 f2fs_warn(sbi, "heap/no_heap options were deprecated"); 739 break; 740 #ifdef CONFIG_F2FS_FS_XATTR 741 case Opt_user_xattr: 742 set_opt(sbi, XATTR_USER); 743 break; 744 case Opt_nouser_xattr: 745 clear_opt(sbi, XATTR_USER); 746 break; 747 case Opt_inline_xattr: 748 set_opt(sbi, INLINE_XATTR); 749 break; 750 case Opt_noinline_xattr: 751 clear_opt(sbi, INLINE_XATTR); 752 break; 753 case Opt_inline_xattr_size: 754 if (args->from && match_int(args, &arg)) 755 return -EINVAL; 756 set_opt(sbi, INLINE_XATTR_SIZE); 757 F2FS_OPTION(sbi).inline_xattr_size = arg; 758 break; 759 #else 760 case Opt_user_xattr: 761 f2fs_info(sbi, "user_xattr options not supported"); 762 break; 763 case Opt_nouser_xattr: 764 f2fs_info(sbi, "nouser_xattr options not supported"); 765 break; 766 case Opt_inline_xattr: 767 f2fs_info(sbi, "inline_xattr options not supported"); 768 break; 769 case Opt_noinline_xattr: 770 f2fs_info(sbi, "noinline_xattr options not supported"); 771 break; 772 #endif 773 #ifdef CONFIG_F2FS_FS_POSIX_ACL 774 case Opt_acl: 775 set_opt(sbi, POSIX_ACL); 776 break; 777 case Opt_noacl: 778 clear_opt(sbi, POSIX_ACL); 779 break; 780 #else 781 case Opt_acl: 782 f2fs_info(sbi, "acl options not supported"); 783 break; 784 case Opt_noacl: 785 f2fs_info(sbi, "noacl options not supported"); 786 break; 787 #endif 788 case Opt_active_logs: 789 if (args->from && match_int(args, &arg)) 790 return -EINVAL; 791 if (arg != 2 && arg != 4 && 792 arg != NR_CURSEG_PERSIST_TYPE) 793 return -EINVAL; 794 F2FS_OPTION(sbi).active_logs = arg; 795 break; 796 case Opt_disable_ext_identify: 797 set_opt(sbi, DISABLE_EXT_IDENTIFY); 798 break; 799 case Opt_inline_data: 800 set_opt(sbi, INLINE_DATA); 801 break; 802 case Opt_inline_dentry: 803 set_opt(sbi, INLINE_DENTRY); 804 break; 805 case Opt_noinline_dentry: 806 clear_opt(sbi, INLINE_DENTRY); 807 break; 808 case Opt_flush_merge: 809 set_opt(sbi, FLUSH_MERGE); 810 break; 811 case Opt_noflush_merge: 812 clear_opt(sbi, FLUSH_MERGE); 813 break; 814 case Opt_nobarrier: 815 set_opt(sbi, NOBARRIER); 816 break; 817 case Opt_barrier: 818 clear_opt(sbi, NOBARRIER); 819 break; 820 case Opt_fastboot: 821 set_opt(sbi, FASTBOOT); 822 break; 823 case Opt_extent_cache: 824 set_opt(sbi, READ_EXTENT_CACHE); 825 break; 826 case Opt_noextent_cache: 827 clear_opt(sbi, READ_EXTENT_CACHE); 828 break; 829 case Opt_noinline_data: 830 clear_opt(sbi, INLINE_DATA); 831 break; 832 case Opt_data_flush: 833 set_opt(sbi, DATA_FLUSH); 834 break; 835 case Opt_reserve_root: 836 if (args->from && match_int(args, &arg)) 837 return -EINVAL; 838 if (test_opt(sbi, RESERVE_ROOT)) { 839 f2fs_info(sbi, "Preserve previous reserve_root=%u", 840 F2FS_OPTION(sbi).root_reserved_blocks); 841 } else { 842 F2FS_OPTION(sbi).root_reserved_blocks = arg; 843 set_opt(sbi, RESERVE_ROOT); 844 } 845 break; 846 case Opt_resuid: 847 if (args->from && match_int(args, &arg)) 848 return -EINVAL; 849 uid = make_kuid(current_user_ns(), arg); 850 if (!uid_valid(uid)) { 851 f2fs_err(sbi, "Invalid uid value %d", arg); 852 return -EINVAL; 853 } 854 F2FS_OPTION(sbi).s_resuid = uid; 855 break; 856 case Opt_resgid: 857 if (args->from && match_int(args, &arg)) 858 return -EINVAL; 859 gid = make_kgid(current_user_ns(), arg); 860 if (!gid_valid(gid)) { 861 f2fs_err(sbi, "Invalid gid value %d", arg); 862 return -EINVAL; 863 } 864 F2FS_OPTION(sbi).s_resgid = gid; 865 break; 866 case Opt_mode: 867 name = match_strdup(&args[0]); 868 869 if (!name) 870 return -ENOMEM; 871 if (!strcmp(name, "adaptive")) { 872 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 873 } else if (!strcmp(name, "lfs")) { 874 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 875 } else if (!strcmp(name, "fragment:segment")) { 876 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 877 } else if (!strcmp(name, "fragment:block")) { 878 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 879 } else { 880 kfree(name); 881 return -EINVAL; 882 } 883 kfree(name); 884 break; 885 #ifdef CONFIG_F2FS_FAULT_INJECTION 886 case Opt_fault_injection: 887 if (args->from && match_int(args, &arg)) 888 return -EINVAL; 889 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 890 set_opt(sbi, FAULT_INJECTION); 891 break; 892 893 case Opt_fault_type: 894 if (args->from && match_int(args, &arg)) 895 return -EINVAL; 896 f2fs_build_fault_attr(sbi, 0, arg); 897 set_opt(sbi, FAULT_INJECTION); 898 break; 899 #else 900 case Opt_fault_injection: 901 f2fs_info(sbi, "fault_injection options not supported"); 902 break; 903 904 case Opt_fault_type: 905 f2fs_info(sbi, "fault_type options not supported"); 906 break; 907 #endif 908 case Opt_lazytime: 909 sb->s_flags |= SB_LAZYTIME; 910 break; 911 case Opt_nolazytime: 912 sb->s_flags &= ~SB_LAZYTIME; 913 break; 914 #ifdef CONFIG_QUOTA 915 case Opt_quota: 916 case Opt_usrquota: 917 set_opt(sbi, USRQUOTA); 918 break; 919 case Opt_grpquota: 920 set_opt(sbi, GRPQUOTA); 921 break; 922 case Opt_prjquota: 923 set_opt(sbi, PRJQUOTA); 924 break; 925 case Opt_usrjquota: 926 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 927 if (ret) 928 return ret; 929 break; 930 case Opt_grpjquota: 931 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 932 if (ret) 933 return ret; 934 break; 935 case Opt_prjjquota: 936 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 937 if (ret) 938 return ret; 939 break; 940 case Opt_offusrjquota: 941 ret = f2fs_clear_qf_name(sb, USRQUOTA); 942 if (ret) 943 return ret; 944 break; 945 case Opt_offgrpjquota: 946 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 947 if (ret) 948 return ret; 949 break; 950 case Opt_offprjjquota: 951 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 952 if (ret) 953 return ret; 954 break; 955 case Opt_jqfmt_vfsold: 956 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 957 break; 958 case Opt_jqfmt_vfsv0: 959 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 960 break; 961 case Opt_jqfmt_vfsv1: 962 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 963 break; 964 case Opt_noquota: 965 clear_opt(sbi, QUOTA); 966 clear_opt(sbi, USRQUOTA); 967 clear_opt(sbi, GRPQUOTA); 968 clear_opt(sbi, PRJQUOTA); 969 break; 970 #else 971 case Opt_quota: 972 case Opt_usrquota: 973 case Opt_grpquota: 974 case Opt_prjquota: 975 case Opt_usrjquota: 976 case Opt_grpjquota: 977 case Opt_prjjquota: 978 case Opt_offusrjquota: 979 case Opt_offgrpjquota: 980 case Opt_offprjjquota: 981 case Opt_jqfmt_vfsold: 982 case Opt_jqfmt_vfsv0: 983 case Opt_jqfmt_vfsv1: 984 case Opt_noquota: 985 f2fs_info(sbi, "quota operations not supported"); 986 break; 987 #endif 988 case Opt_alloc: 989 name = match_strdup(&args[0]); 990 if (!name) 991 return -ENOMEM; 992 993 if (!strcmp(name, "default")) { 994 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 995 } else if (!strcmp(name, "reuse")) { 996 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 997 } else { 998 kfree(name); 999 return -EINVAL; 1000 } 1001 kfree(name); 1002 break; 1003 case Opt_fsync: 1004 name = match_strdup(&args[0]); 1005 if (!name) 1006 return -ENOMEM; 1007 if (!strcmp(name, "posix")) { 1008 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1009 } else if (!strcmp(name, "strict")) { 1010 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1011 } else if (!strcmp(name, "nobarrier")) { 1012 F2FS_OPTION(sbi).fsync_mode = 1013 FSYNC_MODE_NOBARRIER; 1014 } else { 1015 kfree(name); 1016 return -EINVAL; 1017 } 1018 kfree(name); 1019 break; 1020 case Opt_test_dummy_encryption: 1021 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1022 is_remount); 1023 if (ret) 1024 return ret; 1025 break; 1026 case Opt_inlinecrypt: 1027 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1028 sb->s_flags |= SB_INLINECRYPT; 1029 #else 1030 f2fs_info(sbi, "inline encryption not supported"); 1031 #endif 1032 break; 1033 case Opt_checkpoint_disable_cap_perc: 1034 if (args->from && match_int(args, &arg)) 1035 return -EINVAL; 1036 if (arg < 0 || arg > 100) 1037 return -EINVAL; 1038 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1039 set_opt(sbi, DISABLE_CHECKPOINT); 1040 break; 1041 case Opt_checkpoint_disable_cap: 1042 if (args->from && match_int(args, &arg)) 1043 return -EINVAL; 1044 F2FS_OPTION(sbi).unusable_cap = arg; 1045 set_opt(sbi, DISABLE_CHECKPOINT); 1046 break; 1047 case Opt_checkpoint_disable: 1048 set_opt(sbi, DISABLE_CHECKPOINT); 1049 break; 1050 case Opt_checkpoint_enable: 1051 clear_opt(sbi, DISABLE_CHECKPOINT); 1052 break; 1053 case Opt_checkpoint_merge: 1054 set_opt(sbi, MERGE_CHECKPOINT); 1055 break; 1056 case Opt_nocheckpoint_merge: 1057 clear_opt(sbi, MERGE_CHECKPOINT); 1058 break; 1059 #ifdef CONFIG_F2FS_FS_COMPRESSION 1060 case Opt_compress_algorithm: 1061 if (!f2fs_sb_has_compression(sbi)) { 1062 f2fs_info(sbi, "Image doesn't support compression"); 1063 break; 1064 } 1065 name = match_strdup(&args[0]); 1066 if (!name) 1067 return -ENOMEM; 1068 if (!strcmp(name, "lzo")) { 1069 #ifdef CONFIG_F2FS_FS_LZO 1070 F2FS_OPTION(sbi).compress_level = 0; 1071 F2FS_OPTION(sbi).compress_algorithm = 1072 COMPRESS_LZO; 1073 #else 1074 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1075 #endif 1076 } else if (!strncmp(name, "lz4", 3)) { 1077 #ifdef CONFIG_F2FS_FS_LZ4 1078 ret = f2fs_set_lz4hc_level(sbi, name); 1079 if (ret) { 1080 kfree(name); 1081 return -EINVAL; 1082 } 1083 F2FS_OPTION(sbi).compress_algorithm = 1084 COMPRESS_LZ4; 1085 #else 1086 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1087 #endif 1088 } else if (!strncmp(name, "zstd", 4)) { 1089 #ifdef CONFIG_F2FS_FS_ZSTD 1090 ret = f2fs_set_zstd_level(sbi, name); 1091 if (ret) { 1092 kfree(name); 1093 return -EINVAL; 1094 } 1095 F2FS_OPTION(sbi).compress_algorithm = 1096 COMPRESS_ZSTD; 1097 #else 1098 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1099 #endif 1100 } else if (!strcmp(name, "lzo-rle")) { 1101 #ifdef CONFIG_F2FS_FS_LZORLE 1102 F2FS_OPTION(sbi).compress_level = 0; 1103 F2FS_OPTION(sbi).compress_algorithm = 1104 COMPRESS_LZORLE; 1105 #else 1106 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1107 #endif 1108 } else { 1109 kfree(name); 1110 return -EINVAL; 1111 } 1112 kfree(name); 1113 break; 1114 case Opt_compress_log_size: 1115 if (!f2fs_sb_has_compression(sbi)) { 1116 f2fs_info(sbi, "Image doesn't support compression"); 1117 break; 1118 } 1119 if (args->from && match_int(args, &arg)) 1120 return -EINVAL; 1121 if (arg < MIN_COMPRESS_LOG_SIZE || 1122 arg > MAX_COMPRESS_LOG_SIZE) { 1123 f2fs_err(sbi, 1124 "Compress cluster log size is out of range"); 1125 return -EINVAL; 1126 } 1127 F2FS_OPTION(sbi).compress_log_size = arg; 1128 break; 1129 case Opt_compress_extension: 1130 if (!f2fs_sb_has_compression(sbi)) { 1131 f2fs_info(sbi, "Image doesn't support compression"); 1132 break; 1133 } 1134 name = match_strdup(&args[0]); 1135 if (!name) 1136 return -ENOMEM; 1137 1138 ext = F2FS_OPTION(sbi).extensions; 1139 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1140 1141 if (strlen(name) >= F2FS_EXTENSION_LEN || 1142 ext_cnt >= COMPRESS_EXT_NUM) { 1143 f2fs_err(sbi, 1144 "invalid extension length/number"); 1145 kfree(name); 1146 return -EINVAL; 1147 } 1148 1149 if (is_compress_extension_exist(sbi, name, true)) { 1150 kfree(name); 1151 break; 1152 } 1153 1154 strcpy(ext[ext_cnt], name); 1155 F2FS_OPTION(sbi).compress_ext_cnt++; 1156 kfree(name); 1157 break; 1158 case Opt_nocompress_extension: 1159 if (!f2fs_sb_has_compression(sbi)) { 1160 f2fs_info(sbi, "Image doesn't support compression"); 1161 break; 1162 } 1163 name = match_strdup(&args[0]); 1164 if (!name) 1165 return -ENOMEM; 1166 1167 noext = F2FS_OPTION(sbi).noextensions; 1168 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1169 1170 if (strlen(name) >= F2FS_EXTENSION_LEN || 1171 noext_cnt >= COMPRESS_EXT_NUM) { 1172 f2fs_err(sbi, 1173 "invalid extension length/number"); 1174 kfree(name); 1175 return -EINVAL; 1176 } 1177 1178 if (is_compress_extension_exist(sbi, name, false)) { 1179 kfree(name); 1180 break; 1181 } 1182 1183 strcpy(noext[noext_cnt], name); 1184 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1185 kfree(name); 1186 break; 1187 case Opt_compress_chksum: 1188 if (!f2fs_sb_has_compression(sbi)) { 1189 f2fs_info(sbi, "Image doesn't support compression"); 1190 break; 1191 } 1192 F2FS_OPTION(sbi).compress_chksum = true; 1193 break; 1194 case Opt_compress_mode: 1195 if (!f2fs_sb_has_compression(sbi)) { 1196 f2fs_info(sbi, "Image doesn't support compression"); 1197 break; 1198 } 1199 name = match_strdup(&args[0]); 1200 if (!name) 1201 return -ENOMEM; 1202 if (!strcmp(name, "fs")) { 1203 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1204 } else if (!strcmp(name, "user")) { 1205 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1206 } else { 1207 kfree(name); 1208 return -EINVAL; 1209 } 1210 kfree(name); 1211 break; 1212 case Opt_compress_cache: 1213 if (!f2fs_sb_has_compression(sbi)) { 1214 f2fs_info(sbi, "Image doesn't support compression"); 1215 break; 1216 } 1217 set_opt(sbi, COMPRESS_CACHE); 1218 break; 1219 #else 1220 case Opt_compress_algorithm: 1221 case Opt_compress_log_size: 1222 case Opt_compress_extension: 1223 case Opt_nocompress_extension: 1224 case Opt_compress_chksum: 1225 case Opt_compress_mode: 1226 case Opt_compress_cache: 1227 f2fs_info(sbi, "compression options not supported"); 1228 break; 1229 #endif 1230 case Opt_atgc: 1231 set_opt(sbi, ATGC); 1232 break; 1233 case Opt_gc_merge: 1234 set_opt(sbi, GC_MERGE); 1235 break; 1236 case Opt_nogc_merge: 1237 clear_opt(sbi, GC_MERGE); 1238 break; 1239 case Opt_discard_unit: 1240 name = match_strdup(&args[0]); 1241 if (!name) 1242 return -ENOMEM; 1243 if (!strcmp(name, "block")) { 1244 F2FS_OPTION(sbi).discard_unit = 1245 DISCARD_UNIT_BLOCK; 1246 } else if (!strcmp(name, "segment")) { 1247 F2FS_OPTION(sbi).discard_unit = 1248 DISCARD_UNIT_SEGMENT; 1249 } else if (!strcmp(name, "section")) { 1250 F2FS_OPTION(sbi).discard_unit = 1251 DISCARD_UNIT_SECTION; 1252 } else { 1253 kfree(name); 1254 return -EINVAL; 1255 } 1256 kfree(name); 1257 break; 1258 case Opt_memory_mode: 1259 name = match_strdup(&args[0]); 1260 if (!name) 1261 return -ENOMEM; 1262 if (!strcmp(name, "normal")) { 1263 F2FS_OPTION(sbi).memory_mode = 1264 MEMORY_MODE_NORMAL; 1265 } else if (!strcmp(name, "low")) { 1266 F2FS_OPTION(sbi).memory_mode = 1267 MEMORY_MODE_LOW; 1268 } else { 1269 kfree(name); 1270 return -EINVAL; 1271 } 1272 kfree(name); 1273 break; 1274 case Opt_age_extent_cache: 1275 set_opt(sbi, AGE_EXTENT_CACHE); 1276 break; 1277 case Opt_errors: 1278 name = match_strdup(&args[0]); 1279 if (!name) 1280 return -ENOMEM; 1281 if (!strcmp(name, "remount-ro")) { 1282 F2FS_OPTION(sbi).errors = 1283 MOUNT_ERRORS_READONLY; 1284 } else if (!strcmp(name, "continue")) { 1285 F2FS_OPTION(sbi).errors = 1286 MOUNT_ERRORS_CONTINUE; 1287 } else if (!strcmp(name, "panic")) { 1288 F2FS_OPTION(sbi).errors = 1289 MOUNT_ERRORS_PANIC; 1290 } else { 1291 kfree(name); 1292 return -EINVAL; 1293 } 1294 kfree(name); 1295 break; 1296 default: 1297 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1298 p); 1299 return -EINVAL; 1300 } 1301 } 1302 default_check: 1303 #ifdef CONFIG_QUOTA 1304 if (f2fs_check_quota_options(sbi)) 1305 return -EINVAL; 1306 #else 1307 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1308 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1309 return -EINVAL; 1310 } 1311 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1312 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1313 return -EINVAL; 1314 } 1315 #endif 1316 #if !IS_ENABLED(CONFIG_UNICODE) 1317 if (f2fs_sb_has_casefold(sbi)) { 1318 f2fs_err(sbi, 1319 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1320 return -EINVAL; 1321 } 1322 #endif 1323 /* 1324 * The BLKZONED feature indicates that the drive was formatted with 1325 * zone alignment optimization. This is optional for host-aware 1326 * devices, but mandatory for host-managed zoned block devices. 1327 */ 1328 if (f2fs_sb_has_blkzoned(sbi)) { 1329 #ifdef CONFIG_BLK_DEV_ZONED 1330 if (F2FS_OPTION(sbi).discard_unit != 1331 DISCARD_UNIT_SECTION) { 1332 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1333 F2FS_OPTION(sbi).discard_unit = 1334 DISCARD_UNIT_SECTION; 1335 } 1336 1337 if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) { 1338 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature"); 1339 return -EINVAL; 1340 } 1341 #else 1342 f2fs_err(sbi, "Zoned block device support is not enabled"); 1343 return -EINVAL; 1344 #endif 1345 } 1346 1347 #ifdef CONFIG_F2FS_FS_COMPRESSION 1348 if (f2fs_test_compress_extension(sbi)) { 1349 f2fs_err(sbi, "invalid compress or nocompress extension"); 1350 return -EINVAL; 1351 } 1352 #endif 1353 1354 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1355 int min_size, max_size; 1356 1357 if (!f2fs_sb_has_extra_attr(sbi) || 1358 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1359 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1360 return -EINVAL; 1361 } 1362 if (!test_opt(sbi, INLINE_XATTR)) { 1363 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1364 return -EINVAL; 1365 } 1366 1367 min_size = MIN_INLINE_XATTR_SIZE; 1368 max_size = MAX_INLINE_XATTR_SIZE; 1369 1370 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1371 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1372 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1373 min_size, max_size); 1374 return -EINVAL; 1375 } 1376 } 1377 1378 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) { 1379 f2fs_err(sbi, "LFS is not compatible with ATGC"); 1380 return -EINVAL; 1381 } 1382 1383 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) { 1384 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); 1385 return -EINVAL; 1386 } 1387 1388 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1389 f2fs_err(sbi, "Allow to mount readonly mode only"); 1390 return -EROFS; 1391 } 1392 return 0; 1393 } 1394 1395 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1396 { 1397 struct f2fs_inode_info *fi; 1398 1399 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) 1400 return NULL; 1401 1402 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1403 if (!fi) 1404 return NULL; 1405 1406 init_once((void *) fi); 1407 1408 /* Initialize f2fs-specific inode info */ 1409 atomic_set(&fi->dirty_pages, 0); 1410 atomic_set(&fi->i_compr_blocks, 0); 1411 init_f2fs_rwsem(&fi->i_sem); 1412 spin_lock_init(&fi->i_size_lock); 1413 INIT_LIST_HEAD(&fi->dirty_list); 1414 INIT_LIST_HEAD(&fi->gdirty_list); 1415 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1416 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1417 init_f2fs_rwsem(&fi->i_xattr_sem); 1418 1419 /* Will be used by directory only */ 1420 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1421 1422 return &fi->vfs_inode; 1423 } 1424 1425 static int f2fs_drop_inode(struct inode *inode) 1426 { 1427 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1428 int ret; 1429 1430 /* 1431 * during filesystem shutdown, if checkpoint is disabled, 1432 * drop useless meta/node dirty pages. 1433 */ 1434 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1435 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1436 inode->i_ino == F2FS_META_INO(sbi)) { 1437 trace_f2fs_drop_inode(inode, 1); 1438 return 1; 1439 } 1440 } 1441 1442 /* 1443 * This is to avoid a deadlock condition like below. 1444 * writeback_single_inode(inode) 1445 * - f2fs_write_data_page 1446 * - f2fs_gc -> iput -> evict 1447 * - inode_wait_for_writeback(inode) 1448 */ 1449 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1450 if (!inode->i_nlink && !is_bad_inode(inode)) { 1451 /* to avoid evict_inode call simultaneously */ 1452 atomic_inc(&inode->i_count); 1453 spin_unlock(&inode->i_lock); 1454 1455 /* should remain fi->extent_tree for writepage */ 1456 f2fs_destroy_extent_node(inode); 1457 1458 sb_start_intwrite(inode->i_sb); 1459 f2fs_i_size_write(inode, 0); 1460 1461 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1462 inode, NULL, 0, DATA); 1463 truncate_inode_pages_final(inode->i_mapping); 1464 1465 if (F2FS_HAS_BLOCKS(inode)) 1466 f2fs_truncate(inode); 1467 1468 sb_end_intwrite(inode->i_sb); 1469 1470 spin_lock(&inode->i_lock); 1471 atomic_dec(&inode->i_count); 1472 } 1473 trace_f2fs_drop_inode(inode, 0); 1474 return 0; 1475 } 1476 ret = generic_drop_inode(inode); 1477 if (!ret) 1478 ret = fscrypt_drop_inode(inode); 1479 trace_f2fs_drop_inode(inode, ret); 1480 return ret; 1481 } 1482 1483 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1484 { 1485 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1486 int ret = 0; 1487 1488 spin_lock(&sbi->inode_lock[DIRTY_META]); 1489 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1490 ret = 1; 1491 } else { 1492 set_inode_flag(inode, FI_DIRTY_INODE); 1493 stat_inc_dirty_inode(sbi, DIRTY_META); 1494 } 1495 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1496 list_add_tail(&F2FS_I(inode)->gdirty_list, 1497 &sbi->inode_list[DIRTY_META]); 1498 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1499 } 1500 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1501 return ret; 1502 } 1503 1504 void f2fs_inode_synced(struct inode *inode) 1505 { 1506 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1507 1508 spin_lock(&sbi->inode_lock[DIRTY_META]); 1509 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1510 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1511 return; 1512 } 1513 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1514 list_del_init(&F2FS_I(inode)->gdirty_list); 1515 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1516 } 1517 clear_inode_flag(inode, FI_DIRTY_INODE); 1518 clear_inode_flag(inode, FI_AUTO_RECOVER); 1519 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1520 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1521 } 1522 1523 /* 1524 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1525 * 1526 * We should call set_dirty_inode to write the dirty inode through write_inode. 1527 */ 1528 static void f2fs_dirty_inode(struct inode *inode, int flags) 1529 { 1530 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1531 1532 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1533 inode->i_ino == F2FS_META_INO(sbi)) 1534 return; 1535 1536 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1537 clear_inode_flag(inode, FI_AUTO_RECOVER); 1538 1539 f2fs_inode_dirtied(inode, false); 1540 } 1541 1542 static void f2fs_free_inode(struct inode *inode) 1543 { 1544 fscrypt_free_inode(inode); 1545 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1546 } 1547 1548 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1549 { 1550 percpu_counter_destroy(&sbi->total_valid_inode_count); 1551 percpu_counter_destroy(&sbi->rf_node_block_count); 1552 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1553 } 1554 1555 static void destroy_device_list(struct f2fs_sb_info *sbi) 1556 { 1557 int i; 1558 1559 for (i = 0; i < sbi->s_ndevs; i++) { 1560 if (i > 0) 1561 fput(FDEV(i).bdev_file); 1562 #ifdef CONFIG_BLK_DEV_ZONED 1563 kvfree(FDEV(i).blkz_seq); 1564 #endif 1565 } 1566 kvfree(sbi->devs); 1567 } 1568 1569 static void f2fs_put_super(struct super_block *sb) 1570 { 1571 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1572 int i; 1573 int err = 0; 1574 bool done; 1575 1576 /* unregister procfs/sysfs entries in advance to avoid race case */ 1577 f2fs_unregister_sysfs(sbi); 1578 1579 f2fs_quota_off_umount(sb); 1580 1581 /* prevent remaining shrinker jobs */ 1582 mutex_lock(&sbi->umount_mutex); 1583 1584 /* 1585 * flush all issued checkpoints and stop checkpoint issue thread. 1586 * after then, all checkpoints should be done by each process context. 1587 */ 1588 f2fs_stop_ckpt_thread(sbi); 1589 1590 /* 1591 * We don't need to do checkpoint when superblock is clean. 1592 * But, the previous checkpoint was not done by umount, it needs to do 1593 * clean checkpoint again. 1594 */ 1595 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1596 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1597 struct cp_control cpc = { 1598 .reason = CP_UMOUNT, 1599 }; 1600 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1601 err = f2fs_write_checkpoint(sbi, &cpc); 1602 } 1603 1604 /* be sure to wait for any on-going discard commands */ 1605 done = f2fs_issue_discard_timeout(sbi); 1606 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { 1607 struct cp_control cpc = { 1608 .reason = CP_UMOUNT | CP_TRIMMED, 1609 }; 1610 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1611 err = f2fs_write_checkpoint(sbi, &cpc); 1612 } 1613 1614 /* 1615 * normally superblock is clean, so we need to release this. 1616 * In addition, EIO will skip do checkpoint, we need this as well. 1617 */ 1618 f2fs_release_ino_entry(sbi, true); 1619 1620 f2fs_leave_shrinker(sbi); 1621 mutex_unlock(&sbi->umount_mutex); 1622 1623 /* our cp_error case, we can wait for any writeback page */ 1624 f2fs_flush_merged_writes(sbi); 1625 1626 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1627 1628 if (err || f2fs_cp_error(sbi)) { 1629 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1630 truncate_inode_pages_final(META_MAPPING(sbi)); 1631 } 1632 1633 for (i = 0; i < NR_COUNT_TYPE; i++) { 1634 if (!get_pages(sbi, i)) 1635 continue; 1636 f2fs_err(sbi, "detect filesystem reference count leak during " 1637 "umount, type: %d, count: %lld", i, get_pages(sbi, i)); 1638 f2fs_bug_on(sbi, 1); 1639 } 1640 1641 f2fs_bug_on(sbi, sbi->fsync_node_num); 1642 1643 f2fs_destroy_compress_inode(sbi); 1644 1645 iput(sbi->node_inode); 1646 sbi->node_inode = NULL; 1647 1648 iput(sbi->meta_inode); 1649 sbi->meta_inode = NULL; 1650 1651 /* 1652 * iput() can update stat information, if f2fs_write_checkpoint() 1653 * above failed with error. 1654 */ 1655 f2fs_destroy_stats(sbi); 1656 1657 /* destroy f2fs internal modules */ 1658 f2fs_destroy_node_manager(sbi); 1659 f2fs_destroy_segment_manager(sbi); 1660 1661 /* flush s_error_work before sbi destroy */ 1662 flush_work(&sbi->s_error_work); 1663 1664 f2fs_destroy_post_read_wq(sbi); 1665 1666 kvfree(sbi->ckpt); 1667 1668 if (sbi->s_chksum_driver) 1669 crypto_free_shash(sbi->s_chksum_driver); 1670 kfree(sbi->raw_super); 1671 1672 f2fs_destroy_page_array_cache(sbi); 1673 f2fs_destroy_xattr_caches(sbi); 1674 #ifdef CONFIG_QUOTA 1675 for (i = 0; i < MAXQUOTAS; i++) 1676 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1677 #endif 1678 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1679 destroy_percpu_info(sbi); 1680 f2fs_destroy_iostat(sbi); 1681 for (i = 0; i < NR_PAGE_TYPE; i++) 1682 kvfree(sbi->write_io[i]); 1683 #if IS_ENABLED(CONFIG_UNICODE) 1684 utf8_unload(sb->s_encoding); 1685 #endif 1686 } 1687 1688 int f2fs_sync_fs(struct super_block *sb, int sync) 1689 { 1690 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1691 int err = 0; 1692 1693 if (unlikely(f2fs_cp_error(sbi))) 1694 return 0; 1695 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1696 return 0; 1697 1698 trace_f2fs_sync_fs(sb, sync); 1699 1700 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1701 return -EAGAIN; 1702 1703 if (sync) { 1704 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1705 err = f2fs_issue_checkpoint(sbi); 1706 } 1707 1708 return err; 1709 } 1710 1711 static int f2fs_freeze(struct super_block *sb) 1712 { 1713 if (f2fs_readonly(sb)) 1714 return 0; 1715 1716 /* IO error happened before */ 1717 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1718 return -EIO; 1719 1720 /* must be clean, since sync_filesystem() was already called */ 1721 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1722 return -EINVAL; 1723 1724 /* Let's flush checkpoints and stop the thread. */ 1725 f2fs_flush_ckpt_thread(F2FS_SB(sb)); 1726 1727 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1728 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1729 return 0; 1730 } 1731 1732 static int f2fs_unfreeze(struct super_block *sb) 1733 { 1734 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1735 return 0; 1736 } 1737 1738 #ifdef CONFIG_QUOTA 1739 static int f2fs_statfs_project(struct super_block *sb, 1740 kprojid_t projid, struct kstatfs *buf) 1741 { 1742 struct kqid qid; 1743 struct dquot *dquot; 1744 u64 limit; 1745 u64 curblock; 1746 1747 qid = make_kqid_projid(projid); 1748 dquot = dqget(sb, qid); 1749 if (IS_ERR(dquot)) 1750 return PTR_ERR(dquot); 1751 spin_lock(&dquot->dq_dqb_lock); 1752 1753 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1754 dquot->dq_dqb.dqb_bhardlimit); 1755 if (limit) 1756 limit >>= sb->s_blocksize_bits; 1757 1758 if (limit && buf->f_blocks > limit) { 1759 curblock = (dquot->dq_dqb.dqb_curspace + 1760 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1761 buf->f_blocks = limit; 1762 buf->f_bfree = buf->f_bavail = 1763 (buf->f_blocks > curblock) ? 1764 (buf->f_blocks - curblock) : 0; 1765 } 1766 1767 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1768 dquot->dq_dqb.dqb_ihardlimit); 1769 1770 if (limit && buf->f_files > limit) { 1771 buf->f_files = limit; 1772 buf->f_ffree = 1773 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1774 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1775 } 1776 1777 spin_unlock(&dquot->dq_dqb_lock); 1778 dqput(dquot); 1779 return 0; 1780 } 1781 #endif 1782 1783 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1784 { 1785 struct super_block *sb = dentry->d_sb; 1786 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1787 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1788 block_t total_count, user_block_count, start_count; 1789 u64 avail_node_count; 1790 unsigned int total_valid_node_count; 1791 1792 total_count = le64_to_cpu(sbi->raw_super->block_count); 1793 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1794 buf->f_type = F2FS_SUPER_MAGIC; 1795 buf->f_bsize = sbi->blocksize; 1796 1797 buf->f_blocks = total_count - start_count; 1798 1799 spin_lock(&sbi->stat_lock); 1800 1801 user_block_count = sbi->user_block_count; 1802 total_valid_node_count = valid_node_count(sbi); 1803 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1804 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1805 sbi->current_reserved_blocks; 1806 1807 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1808 buf->f_bfree = 0; 1809 else 1810 buf->f_bfree -= sbi->unusable_block_count; 1811 spin_unlock(&sbi->stat_lock); 1812 1813 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1814 buf->f_bavail = buf->f_bfree - 1815 F2FS_OPTION(sbi).root_reserved_blocks; 1816 else 1817 buf->f_bavail = 0; 1818 1819 if (avail_node_count > user_block_count) { 1820 buf->f_files = user_block_count; 1821 buf->f_ffree = buf->f_bavail; 1822 } else { 1823 buf->f_files = avail_node_count; 1824 buf->f_ffree = min(avail_node_count - total_valid_node_count, 1825 buf->f_bavail); 1826 } 1827 1828 buf->f_namelen = F2FS_NAME_LEN; 1829 buf->f_fsid = u64_to_fsid(id); 1830 1831 #ifdef CONFIG_QUOTA 1832 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1833 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1834 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1835 } 1836 #endif 1837 return 0; 1838 } 1839 1840 static inline void f2fs_show_quota_options(struct seq_file *seq, 1841 struct super_block *sb) 1842 { 1843 #ifdef CONFIG_QUOTA 1844 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1845 1846 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1847 char *fmtname = ""; 1848 1849 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1850 case QFMT_VFS_OLD: 1851 fmtname = "vfsold"; 1852 break; 1853 case QFMT_VFS_V0: 1854 fmtname = "vfsv0"; 1855 break; 1856 case QFMT_VFS_V1: 1857 fmtname = "vfsv1"; 1858 break; 1859 } 1860 seq_printf(seq, ",jqfmt=%s", fmtname); 1861 } 1862 1863 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1864 seq_show_option(seq, "usrjquota", 1865 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1866 1867 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1868 seq_show_option(seq, "grpjquota", 1869 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1870 1871 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1872 seq_show_option(seq, "prjjquota", 1873 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1874 #endif 1875 } 1876 1877 #ifdef CONFIG_F2FS_FS_COMPRESSION 1878 static inline void f2fs_show_compress_options(struct seq_file *seq, 1879 struct super_block *sb) 1880 { 1881 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1882 char *algtype = ""; 1883 int i; 1884 1885 if (!f2fs_sb_has_compression(sbi)) 1886 return; 1887 1888 switch (F2FS_OPTION(sbi).compress_algorithm) { 1889 case COMPRESS_LZO: 1890 algtype = "lzo"; 1891 break; 1892 case COMPRESS_LZ4: 1893 algtype = "lz4"; 1894 break; 1895 case COMPRESS_ZSTD: 1896 algtype = "zstd"; 1897 break; 1898 case COMPRESS_LZORLE: 1899 algtype = "lzo-rle"; 1900 break; 1901 } 1902 seq_printf(seq, ",compress_algorithm=%s", algtype); 1903 1904 if (F2FS_OPTION(sbi).compress_level) 1905 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1906 1907 seq_printf(seq, ",compress_log_size=%u", 1908 F2FS_OPTION(sbi).compress_log_size); 1909 1910 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1911 seq_printf(seq, ",compress_extension=%s", 1912 F2FS_OPTION(sbi).extensions[i]); 1913 } 1914 1915 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1916 seq_printf(seq, ",nocompress_extension=%s", 1917 F2FS_OPTION(sbi).noextensions[i]); 1918 } 1919 1920 if (F2FS_OPTION(sbi).compress_chksum) 1921 seq_puts(seq, ",compress_chksum"); 1922 1923 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1924 seq_printf(seq, ",compress_mode=%s", "fs"); 1925 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1926 seq_printf(seq, ",compress_mode=%s", "user"); 1927 1928 if (test_opt(sbi, COMPRESS_CACHE)) 1929 seq_puts(seq, ",compress_cache"); 1930 } 1931 #endif 1932 1933 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1934 { 1935 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1936 1937 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1938 seq_printf(seq, ",background_gc=%s", "sync"); 1939 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1940 seq_printf(seq, ",background_gc=%s", "on"); 1941 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1942 seq_printf(seq, ",background_gc=%s", "off"); 1943 1944 if (test_opt(sbi, GC_MERGE)) 1945 seq_puts(seq, ",gc_merge"); 1946 else 1947 seq_puts(seq, ",nogc_merge"); 1948 1949 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1950 seq_puts(seq, ",disable_roll_forward"); 1951 if (test_opt(sbi, NORECOVERY)) 1952 seq_puts(seq, ",norecovery"); 1953 if (test_opt(sbi, DISCARD)) { 1954 seq_puts(seq, ",discard"); 1955 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 1956 seq_printf(seq, ",discard_unit=%s", "block"); 1957 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 1958 seq_printf(seq, ",discard_unit=%s", "segment"); 1959 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 1960 seq_printf(seq, ",discard_unit=%s", "section"); 1961 } else { 1962 seq_puts(seq, ",nodiscard"); 1963 } 1964 #ifdef CONFIG_F2FS_FS_XATTR 1965 if (test_opt(sbi, XATTR_USER)) 1966 seq_puts(seq, ",user_xattr"); 1967 else 1968 seq_puts(seq, ",nouser_xattr"); 1969 if (test_opt(sbi, INLINE_XATTR)) 1970 seq_puts(seq, ",inline_xattr"); 1971 else 1972 seq_puts(seq, ",noinline_xattr"); 1973 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1974 seq_printf(seq, ",inline_xattr_size=%u", 1975 F2FS_OPTION(sbi).inline_xattr_size); 1976 #endif 1977 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1978 if (test_opt(sbi, POSIX_ACL)) 1979 seq_puts(seq, ",acl"); 1980 else 1981 seq_puts(seq, ",noacl"); 1982 #endif 1983 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1984 seq_puts(seq, ",disable_ext_identify"); 1985 if (test_opt(sbi, INLINE_DATA)) 1986 seq_puts(seq, ",inline_data"); 1987 else 1988 seq_puts(seq, ",noinline_data"); 1989 if (test_opt(sbi, INLINE_DENTRY)) 1990 seq_puts(seq, ",inline_dentry"); 1991 else 1992 seq_puts(seq, ",noinline_dentry"); 1993 if (test_opt(sbi, FLUSH_MERGE)) 1994 seq_puts(seq, ",flush_merge"); 1995 else 1996 seq_puts(seq, ",noflush_merge"); 1997 if (test_opt(sbi, NOBARRIER)) 1998 seq_puts(seq, ",nobarrier"); 1999 else 2000 seq_puts(seq, ",barrier"); 2001 if (test_opt(sbi, FASTBOOT)) 2002 seq_puts(seq, ",fastboot"); 2003 if (test_opt(sbi, READ_EXTENT_CACHE)) 2004 seq_puts(seq, ",extent_cache"); 2005 else 2006 seq_puts(seq, ",noextent_cache"); 2007 if (test_opt(sbi, AGE_EXTENT_CACHE)) 2008 seq_puts(seq, ",age_extent_cache"); 2009 if (test_opt(sbi, DATA_FLUSH)) 2010 seq_puts(seq, ",data_flush"); 2011 2012 seq_puts(seq, ",mode="); 2013 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 2014 seq_puts(seq, "adaptive"); 2015 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 2016 seq_puts(seq, "lfs"); 2017 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 2018 seq_puts(seq, "fragment:segment"); 2019 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2020 seq_puts(seq, "fragment:block"); 2021 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 2022 if (test_opt(sbi, RESERVE_ROOT)) 2023 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 2024 F2FS_OPTION(sbi).root_reserved_blocks, 2025 from_kuid_munged(&init_user_ns, 2026 F2FS_OPTION(sbi).s_resuid), 2027 from_kgid_munged(&init_user_ns, 2028 F2FS_OPTION(sbi).s_resgid)); 2029 #ifdef CONFIG_F2FS_FAULT_INJECTION 2030 if (test_opt(sbi, FAULT_INJECTION)) { 2031 seq_printf(seq, ",fault_injection=%u", 2032 F2FS_OPTION(sbi).fault_info.inject_rate); 2033 seq_printf(seq, ",fault_type=%u", 2034 F2FS_OPTION(sbi).fault_info.inject_type); 2035 } 2036 #endif 2037 #ifdef CONFIG_QUOTA 2038 if (test_opt(sbi, QUOTA)) 2039 seq_puts(seq, ",quota"); 2040 if (test_opt(sbi, USRQUOTA)) 2041 seq_puts(seq, ",usrquota"); 2042 if (test_opt(sbi, GRPQUOTA)) 2043 seq_puts(seq, ",grpquota"); 2044 if (test_opt(sbi, PRJQUOTA)) 2045 seq_puts(seq, ",prjquota"); 2046 #endif 2047 f2fs_show_quota_options(seq, sbi->sb); 2048 2049 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 2050 2051 if (sbi->sb->s_flags & SB_INLINECRYPT) 2052 seq_puts(seq, ",inlinecrypt"); 2053 2054 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 2055 seq_printf(seq, ",alloc_mode=%s", "default"); 2056 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2057 seq_printf(seq, ",alloc_mode=%s", "reuse"); 2058 2059 if (test_opt(sbi, DISABLE_CHECKPOINT)) 2060 seq_printf(seq, ",checkpoint=disable:%u", 2061 F2FS_OPTION(sbi).unusable_cap); 2062 if (test_opt(sbi, MERGE_CHECKPOINT)) 2063 seq_puts(seq, ",checkpoint_merge"); 2064 else 2065 seq_puts(seq, ",nocheckpoint_merge"); 2066 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2067 seq_printf(seq, ",fsync_mode=%s", "posix"); 2068 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2069 seq_printf(seq, ",fsync_mode=%s", "strict"); 2070 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2071 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2072 2073 #ifdef CONFIG_F2FS_FS_COMPRESSION 2074 f2fs_show_compress_options(seq, sbi->sb); 2075 #endif 2076 2077 if (test_opt(sbi, ATGC)) 2078 seq_puts(seq, ",atgc"); 2079 2080 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2081 seq_printf(seq, ",memory=%s", "normal"); 2082 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2083 seq_printf(seq, ",memory=%s", "low"); 2084 2085 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2086 seq_printf(seq, ",errors=%s", "remount-ro"); 2087 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) 2088 seq_printf(seq, ",errors=%s", "continue"); 2089 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) 2090 seq_printf(seq, ",errors=%s", "panic"); 2091 2092 return 0; 2093 } 2094 2095 static void default_options(struct f2fs_sb_info *sbi, bool remount) 2096 { 2097 /* init some FS parameters */ 2098 if (!remount) { 2099 set_opt(sbi, READ_EXTENT_CACHE); 2100 clear_opt(sbi, DISABLE_CHECKPOINT); 2101 2102 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2103 set_opt(sbi, DISCARD); 2104 2105 if (f2fs_sb_has_blkzoned(sbi)) 2106 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2107 else 2108 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2109 } 2110 2111 if (f2fs_sb_has_readonly(sbi)) 2112 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2113 else 2114 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2115 2116 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2117 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= 2118 SMALL_VOLUME_SEGMENTS) 2119 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2120 else 2121 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2122 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2123 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2124 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2125 if (f2fs_sb_has_compression(sbi)) { 2126 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2127 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2128 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2129 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2130 } 2131 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2132 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2133 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; 2134 2135 sbi->sb->s_flags &= ~SB_INLINECRYPT; 2136 2137 set_opt(sbi, INLINE_XATTR); 2138 set_opt(sbi, INLINE_DATA); 2139 set_opt(sbi, INLINE_DENTRY); 2140 set_opt(sbi, MERGE_CHECKPOINT); 2141 F2FS_OPTION(sbi).unusable_cap = 0; 2142 sbi->sb->s_flags |= SB_LAZYTIME; 2143 if (!f2fs_is_readonly(sbi)) 2144 set_opt(sbi, FLUSH_MERGE); 2145 if (f2fs_sb_has_blkzoned(sbi)) 2146 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2147 else 2148 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2149 2150 #ifdef CONFIG_F2FS_FS_XATTR 2151 set_opt(sbi, XATTR_USER); 2152 #endif 2153 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2154 set_opt(sbi, POSIX_ACL); 2155 #endif 2156 2157 f2fs_build_fault_attr(sbi, 0, 0); 2158 } 2159 2160 #ifdef CONFIG_QUOTA 2161 static int f2fs_enable_quotas(struct super_block *sb); 2162 #endif 2163 2164 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2165 { 2166 unsigned int s_flags = sbi->sb->s_flags; 2167 struct cp_control cpc; 2168 unsigned int gc_mode = sbi->gc_mode; 2169 int err = 0; 2170 int ret; 2171 block_t unusable; 2172 2173 if (s_flags & SB_RDONLY) { 2174 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2175 return -EINVAL; 2176 } 2177 sbi->sb->s_flags |= SB_ACTIVE; 2178 2179 /* check if we need more GC first */ 2180 unusable = f2fs_get_unusable_blocks(sbi); 2181 if (!f2fs_disable_cp_again(sbi, unusable)) 2182 goto skip_gc; 2183 2184 f2fs_update_time(sbi, DISABLE_TIME); 2185 2186 sbi->gc_mode = GC_URGENT_HIGH; 2187 2188 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2189 struct f2fs_gc_control gc_control = { 2190 .victim_segno = NULL_SEGNO, 2191 .init_gc_type = FG_GC, 2192 .should_migrate_blocks = false, 2193 .err_gc_skipped = true, 2194 .no_bg_gc = true, 2195 .nr_free_secs = 1 }; 2196 2197 f2fs_down_write(&sbi->gc_lock); 2198 stat_inc_gc_call_count(sbi, FOREGROUND); 2199 err = f2fs_gc(sbi, &gc_control); 2200 if (err == -ENODATA) { 2201 err = 0; 2202 break; 2203 } 2204 if (err && err != -EAGAIN) 2205 break; 2206 } 2207 2208 ret = sync_filesystem(sbi->sb); 2209 if (ret || err) { 2210 err = ret ? ret : err; 2211 goto restore_flag; 2212 } 2213 2214 unusable = f2fs_get_unusable_blocks(sbi); 2215 if (f2fs_disable_cp_again(sbi, unusable)) { 2216 err = -EAGAIN; 2217 goto restore_flag; 2218 } 2219 2220 skip_gc: 2221 f2fs_down_write(&sbi->gc_lock); 2222 cpc.reason = CP_PAUSE; 2223 set_sbi_flag(sbi, SBI_CP_DISABLED); 2224 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2225 err = f2fs_write_checkpoint(sbi, &cpc); 2226 if (err) 2227 goto out_unlock; 2228 2229 spin_lock(&sbi->stat_lock); 2230 sbi->unusable_block_count = unusable; 2231 spin_unlock(&sbi->stat_lock); 2232 2233 out_unlock: 2234 f2fs_up_write(&sbi->gc_lock); 2235 restore_flag: 2236 sbi->gc_mode = gc_mode; 2237 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2238 return err; 2239 } 2240 2241 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2242 { 2243 int retry = DEFAULT_RETRY_IO_COUNT; 2244 2245 /* we should flush all the data to keep data consistency */ 2246 do { 2247 sync_inodes_sb(sbi->sb); 2248 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2249 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2250 2251 if (unlikely(retry < 0)) 2252 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2253 2254 f2fs_down_write(&sbi->gc_lock); 2255 f2fs_dirty_to_prefree(sbi); 2256 2257 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2258 set_sbi_flag(sbi, SBI_IS_DIRTY); 2259 f2fs_up_write(&sbi->gc_lock); 2260 2261 f2fs_sync_fs(sbi->sb, 1); 2262 2263 /* Let's ensure there's no pending checkpoint anymore */ 2264 f2fs_flush_ckpt_thread(sbi); 2265 } 2266 2267 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2268 { 2269 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2270 struct f2fs_mount_info org_mount_opt; 2271 unsigned long old_sb_flags; 2272 int err; 2273 bool need_restart_gc = false, need_stop_gc = false; 2274 bool need_restart_flush = false, need_stop_flush = false; 2275 bool need_restart_discard = false, need_stop_discard = false; 2276 bool need_enable_checkpoint = false, need_disable_checkpoint = false; 2277 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); 2278 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); 2279 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2280 bool no_atgc = !test_opt(sbi, ATGC); 2281 bool no_discard = !test_opt(sbi, DISCARD); 2282 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2283 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2284 #ifdef CONFIG_QUOTA 2285 int i, j; 2286 #endif 2287 2288 /* 2289 * Save the old mount options in case we 2290 * need to restore them. 2291 */ 2292 org_mount_opt = sbi->mount_opt; 2293 old_sb_flags = sb->s_flags; 2294 2295 #ifdef CONFIG_QUOTA 2296 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2297 for (i = 0; i < MAXQUOTAS; i++) { 2298 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2299 org_mount_opt.s_qf_names[i] = 2300 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2301 GFP_KERNEL); 2302 if (!org_mount_opt.s_qf_names[i]) { 2303 for (j = 0; j < i; j++) 2304 kfree(org_mount_opt.s_qf_names[j]); 2305 return -ENOMEM; 2306 } 2307 } else { 2308 org_mount_opt.s_qf_names[i] = NULL; 2309 } 2310 } 2311 #endif 2312 2313 /* recover superblocks we couldn't write due to previous RO mount */ 2314 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2315 err = f2fs_commit_super(sbi, false); 2316 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2317 err); 2318 if (!err) 2319 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2320 } 2321 2322 default_options(sbi, true); 2323 2324 /* parse mount options */ 2325 err = parse_options(sb, data, true); 2326 if (err) 2327 goto restore_opts; 2328 2329 /* flush outstanding errors before changing fs state */ 2330 flush_work(&sbi->s_error_work); 2331 2332 /* 2333 * Previous and new state of filesystem is RO, 2334 * so skip checking GC and FLUSH_MERGE conditions. 2335 */ 2336 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2337 goto skip; 2338 2339 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) { 2340 err = -EROFS; 2341 goto restore_opts; 2342 } 2343 2344 #ifdef CONFIG_QUOTA 2345 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2346 err = dquot_suspend(sb, -1); 2347 if (err < 0) 2348 goto restore_opts; 2349 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2350 /* dquot_resume needs RW */ 2351 sb->s_flags &= ~SB_RDONLY; 2352 if (sb_any_quota_suspended(sb)) { 2353 dquot_resume(sb, -1); 2354 } else if (f2fs_sb_has_quota_ino(sbi)) { 2355 err = f2fs_enable_quotas(sb); 2356 if (err) 2357 goto restore_opts; 2358 } 2359 } 2360 #endif 2361 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { 2362 err = -EINVAL; 2363 f2fs_warn(sbi, "LFS is not compatible with IPU"); 2364 goto restore_opts; 2365 } 2366 2367 /* disallow enable atgc dynamically */ 2368 if (no_atgc == !!test_opt(sbi, ATGC)) { 2369 err = -EINVAL; 2370 f2fs_warn(sbi, "switch atgc option is not allowed"); 2371 goto restore_opts; 2372 } 2373 2374 /* disallow enable/disable extent_cache dynamically */ 2375 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { 2376 err = -EINVAL; 2377 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2378 goto restore_opts; 2379 } 2380 /* disallow enable/disable age extent_cache dynamically */ 2381 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { 2382 err = -EINVAL; 2383 f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); 2384 goto restore_opts; 2385 } 2386 2387 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2388 err = -EINVAL; 2389 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2390 goto restore_opts; 2391 } 2392 2393 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2394 err = -EINVAL; 2395 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2396 goto restore_opts; 2397 } 2398 2399 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2400 err = -EINVAL; 2401 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2402 goto restore_opts; 2403 } 2404 2405 /* 2406 * We stop the GC thread if FS is mounted as RO 2407 * or if background_gc = off is passed in mount 2408 * option. Also sync the filesystem. 2409 */ 2410 if ((*flags & SB_RDONLY) || 2411 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2412 !test_opt(sbi, GC_MERGE))) { 2413 if (sbi->gc_thread) { 2414 f2fs_stop_gc_thread(sbi); 2415 need_restart_gc = true; 2416 } 2417 } else if (!sbi->gc_thread) { 2418 err = f2fs_start_gc_thread(sbi); 2419 if (err) 2420 goto restore_opts; 2421 need_stop_gc = true; 2422 } 2423 2424 if (*flags & SB_RDONLY) { 2425 sync_inodes_sb(sb); 2426 2427 set_sbi_flag(sbi, SBI_IS_DIRTY); 2428 set_sbi_flag(sbi, SBI_IS_CLOSE); 2429 f2fs_sync_fs(sb, 1); 2430 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2431 } 2432 2433 /* 2434 * We stop issue flush thread if FS is mounted as RO 2435 * or if flush_merge is not passed in mount option. 2436 */ 2437 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2438 clear_opt(sbi, FLUSH_MERGE); 2439 f2fs_destroy_flush_cmd_control(sbi, false); 2440 need_restart_flush = true; 2441 } else { 2442 err = f2fs_create_flush_cmd_control(sbi); 2443 if (err) 2444 goto restore_gc; 2445 need_stop_flush = true; 2446 } 2447 2448 if (no_discard == !!test_opt(sbi, DISCARD)) { 2449 if (test_opt(sbi, DISCARD)) { 2450 err = f2fs_start_discard_thread(sbi); 2451 if (err) 2452 goto restore_flush; 2453 need_stop_discard = true; 2454 } else { 2455 f2fs_stop_discard_thread(sbi); 2456 f2fs_issue_discard_timeout(sbi); 2457 need_restart_discard = true; 2458 } 2459 } 2460 2461 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2462 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2463 err = f2fs_disable_checkpoint(sbi); 2464 if (err) 2465 goto restore_discard; 2466 need_enable_checkpoint = true; 2467 } else { 2468 f2fs_enable_checkpoint(sbi); 2469 need_disable_checkpoint = true; 2470 } 2471 } 2472 2473 /* 2474 * Place this routine at the end, since a new checkpoint would be 2475 * triggered while remount and we need to take care of it before 2476 * returning from remount. 2477 */ 2478 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2479 !test_opt(sbi, MERGE_CHECKPOINT)) { 2480 f2fs_stop_ckpt_thread(sbi); 2481 } else { 2482 /* Flush if the prevous checkpoint, if exists. */ 2483 f2fs_flush_ckpt_thread(sbi); 2484 2485 err = f2fs_start_ckpt_thread(sbi); 2486 if (err) { 2487 f2fs_err(sbi, 2488 "Failed to start F2FS issue_checkpoint_thread (%d)", 2489 err); 2490 goto restore_checkpoint; 2491 } 2492 } 2493 2494 skip: 2495 #ifdef CONFIG_QUOTA 2496 /* Release old quota file names */ 2497 for (i = 0; i < MAXQUOTAS; i++) 2498 kfree(org_mount_opt.s_qf_names[i]); 2499 #endif 2500 /* Update the POSIXACL Flag */ 2501 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2502 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2503 2504 limit_reserve_root(sbi); 2505 adjust_unusable_cap_perc(sbi); 2506 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2507 return 0; 2508 restore_checkpoint: 2509 if (need_enable_checkpoint) { 2510 f2fs_enable_checkpoint(sbi); 2511 } else if (need_disable_checkpoint) { 2512 if (f2fs_disable_checkpoint(sbi)) 2513 f2fs_warn(sbi, "checkpoint has not been disabled"); 2514 } 2515 restore_discard: 2516 if (need_restart_discard) { 2517 if (f2fs_start_discard_thread(sbi)) 2518 f2fs_warn(sbi, "discard has been stopped"); 2519 } else if (need_stop_discard) { 2520 f2fs_stop_discard_thread(sbi); 2521 } 2522 restore_flush: 2523 if (need_restart_flush) { 2524 if (f2fs_create_flush_cmd_control(sbi)) 2525 f2fs_warn(sbi, "background flush thread has stopped"); 2526 } else if (need_stop_flush) { 2527 clear_opt(sbi, FLUSH_MERGE); 2528 f2fs_destroy_flush_cmd_control(sbi, false); 2529 } 2530 restore_gc: 2531 if (need_restart_gc) { 2532 if (f2fs_start_gc_thread(sbi)) 2533 f2fs_warn(sbi, "background gc thread has stopped"); 2534 } else if (need_stop_gc) { 2535 f2fs_stop_gc_thread(sbi); 2536 } 2537 restore_opts: 2538 #ifdef CONFIG_QUOTA 2539 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2540 for (i = 0; i < MAXQUOTAS; i++) { 2541 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2542 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2543 } 2544 #endif 2545 sbi->mount_opt = org_mount_opt; 2546 sb->s_flags = old_sb_flags; 2547 return err; 2548 } 2549 2550 #ifdef CONFIG_QUOTA 2551 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) 2552 { 2553 /* need to recovery orphan */ 2554 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 2555 return true; 2556 /* need to recovery data */ 2557 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2558 return false; 2559 if (test_opt(sbi, NORECOVERY)) 2560 return false; 2561 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); 2562 } 2563 2564 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) 2565 { 2566 bool readonly = f2fs_readonly(sbi->sb); 2567 2568 if (!f2fs_need_recovery(sbi)) 2569 return false; 2570 2571 /* it doesn't need to check f2fs_sb_has_readonly() */ 2572 if (f2fs_hw_is_readonly(sbi)) 2573 return false; 2574 2575 if (readonly) { 2576 sbi->sb->s_flags &= ~SB_RDONLY; 2577 set_sbi_flag(sbi, SBI_IS_WRITABLE); 2578 } 2579 2580 /* 2581 * Turn on quotas which were not enabled for read-only mounts if 2582 * filesystem has quota feature, so that they are updated correctly. 2583 */ 2584 return f2fs_enable_quota_files(sbi, readonly); 2585 } 2586 2587 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, 2588 bool quota_enabled) 2589 { 2590 if (quota_enabled) 2591 f2fs_quota_off_umount(sbi->sb); 2592 2593 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { 2594 clear_sbi_flag(sbi, SBI_IS_WRITABLE); 2595 sbi->sb->s_flags |= SB_RDONLY; 2596 } 2597 } 2598 2599 /* Read data from quotafile */ 2600 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2601 size_t len, loff_t off) 2602 { 2603 struct inode *inode = sb_dqopt(sb)->files[type]; 2604 struct address_space *mapping = inode->i_mapping; 2605 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2606 int offset = off & (sb->s_blocksize - 1); 2607 int tocopy; 2608 size_t toread; 2609 loff_t i_size = i_size_read(inode); 2610 struct page *page; 2611 2612 if (off > i_size) 2613 return 0; 2614 2615 if (off + len > i_size) 2616 len = i_size - off; 2617 toread = len; 2618 while (toread > 0) { 2619 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2620 repeat: 2621 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2622 if (IS_ERR(page)) { 2623 if (PTR_ERR(page) == -ENOMEM) { 2624 memalloc_retry_wait(GFP_NOFS); 2625 goto repeat; 2626 } 2627 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2628 return PTR_ERR(page); 2629 } 2630 2631 lock_page(page); 2632 2633 if (unlikely(page->mapping != mapping)) { 2634 f2fs_put_page(page, 1); 2635 goto repeat; 2636 } 2637 if (unlikely(!PageUptodate(page))) { 2638 f2fs_put_page(page, 1); 2639 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2640 return -EIO; 2641 } 2642 2643 memcpy_from_page(data, page, offset, tocopy); 2644 f2fs_put_page(page, 1); 2645 2646 offset = 0; 2647 toread -= tocopy; 2648 data += tocopy; 2649 blkidx++; 2650 } 2651 return len; 2652 } 2653 2654 /* Write to quotafile */ 2655 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2656 const char *data, size_t len, loff_t off) 2657 { 2658 struct inode *inode = sb_dqopt(sb)->files[type]; 2659 struct address_space *mapping = inode->i_mapping; 2660 const struct address_space_operations *a_ops = mapping->a_ops; 2661 int offset = off & (sb->s_blocksize - 1); 2662 size_t towrite = len; 2663 struct page *page; 2664 void *fsdata = NULL; 2665 int err = 0; 2666 int tocopy; 2667 2668 while (towrite > 0) { 2669 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2670 towrite); 2671 retry: 2672 err = a_ops->write_begin(NULL, mapping, off, tocopy, 2673 &page, &fsdata); 2674 if (unlikely(err)) { 2675 if (err == -ENOMEM) { 2676 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2677 goto retry; 2678 } 2679 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2680 break; 2681 } 2682 2683 memcpy_to_page(page, offset, data, tocopy); 2684 2685 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2686 page, fsdata); 2687 offset = 0; 2688 towrite -= tocopy; 2689 off += tocopy; 2690 data += tocopy; 2691 cond_resched(); 2692 } 2693 2694 if (len == towrite) 2695 return err; 2696 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2697 f2fs_mark_inode_dirty_sync(inode, false); 2698 return len - towrite; 2699 } 2700 2701 int f2fs_dquot_initialize(struct inode *inode) 2702 { 2703 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) 2704 return -ESRCH; 2705 2706 return dquot_initialize(inode); 2707 } 2708 2709 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode) 2710 { 2711 return F2FS_I(inode)->i_dquot; 2712 } 2713 2714 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2715 { 2716 return &F2FS_I(inode)->i_reserved_quota; 2717 } 2718 2719 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2720 { 2721 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2722 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2723 return 0; 2724 } 2725 2726 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2727 F2FS_OPTION(sbi).s_jquota_fmt, type); 2728 } 2729 2730 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2731 { 2732 int enabled = 0; 2733 int i, err; 2734 2735 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2736 err = f2fs_enable_quotas(sbi->sb); 2737 if (err) { 2738 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2739 return 0; 2740 } 2741 return 1; 2742 } 2743 2744 for (i = 0; i < MAXQUOTAS; i++) { 2745 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2746 err = f2fs_quota_on_mount(sbi, i); 2747 if (!err) { 2748 enabled = 1; 2749 continue; 2750 } 2751 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2752 err, i); 2753 } 2754 } 2755 return enabled; 2756 } 2757 2758 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2759 unsigned int flags) 2760 { 2761 struct inode *qf_inode; 2762 unsigned long qf_inum; 2763 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; 2764 int err; 2765 2766 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2767 2768 qf_inum = f2fs_qf_ino(sb, type); 2769 if (!qf_inum) 2770 return -EPERM; 2771 2772 qf_inode = f2fs_iget(sb, qf_inum); 2773 if (IS_ERR(qf_inode)) { 2774 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2775 return PTR_ERR(qf_inode); 2776 } 2777 2778 /* Don't account quota for quota files to avoid recursion */ 2779 inode_lock(qf_inode); 2780 qf_inode->i_flags |= S_NOQUOTA; 2781 2782 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { 2783 F2FS_I(qf_inode)->i_flags |= qf_flag; 2784 f2fs_set_inode_flags(qf_inode); 2785 } 2786 inode_unlock(qf_inode); 2787 2788 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2789 iput(qf_inode); 2790 return err; 2791 } 2792 2793 static int f2fs_enable_quotas(struct super_block *sb) 2794 { 2795 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2796 int type, err = 0; 2797 unsigned long qf_inum; 2798 bool quota_mopt[MAXQUOTAS] = { 2799 test_opt(sbi, USRQUOTA), 2800 test_opt(sbi, GRPQUOTA), 2801 test_opt(sbi, PRJQUOTA), 2802 }; 2803 2804 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2805 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2806 return 0; 2807 } 2808 2809 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2810 2811 for (type = 0; type < MAXQUOTAS; type++) { 2812 qf_inum = f2fs_qf_ino(sb, type); 2813 if (qf_inum) { 2814 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2815 DQUOT_USAGE_ENABLED | 2816 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2817 if (err) { 2818 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2819 type, err); 2820 for (type--; type >= 0; type--) 2821 dquot_quota_off(sb, type); 2822 set_sbi_flag(F2FS_SB(sb), 2823 SBI_QUOTA_NEED_REPAIR); 2824 return err; 2825 } 2826 } 2827 } 2828 return 0; 2829 } 2830 2831 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2832 { 2833 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2834 struct address_space *mapping = dqopt->files[type]->i_mapping; 2835 int ret = 0; 2836 2837 ret = dquot_writeback_dquots(sbi->sb, type); 2838 if (ret) 2839 goto out; 2840 2841 ret = filemap_fdatawrite(mapping); 2842 if (ret) 2843 goto out; 2844 2845 /* if we are using journalled quota */ 2846 if (is_journalled_quota(sbi)) 2847 goto out; 2848 2849 ret = filemap_fdatawait(mapping); 2850 2851 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2852 out: 2853 if (ret) 2854 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2855 return ret; 2856 } 2857 2858 int f2fs_quota_sync(struct super_block *sb, int type) 2859 { 2860 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2861 struct quota_info *dqopt = sb_dqopt(sb); 2862 int cnt; 2863 int ret = 0; 2864 2865 /* 2866 * Now when everything is written we can discard the pagecache so 2867 * that userspace sees the changes. 2868 */ 2869 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2870 2871 if (type != -1 && cnt != type) 2872 continue; 2873 2874 if (!sb_has_quota_active(sb, cnt)) 2875 continue; 2876 2877 if (!f2fs_sb_has_quota_ino(sbi)) 2878 inode_lock(dqopt->files[cnt]); 2879 2880 /* 2881 * do_quotactl 2882 * f2fs_quota_sync 2883 * f2fs_down_read(quota_sem) 2884 * dquot_writeback_dquots() 2885 * f2fs_dquot_commit 2886 * block_operation 2887 * f2fs_down_read(quota_sem) 2888 */ 2889 f2fs_lock_op(sbi); 2890 f2fs_down_read(&sbi->quota_sem); 2891 2892 ret = f2fs_quota_sync_file(sbi, cnt); 2893 2894 f2fs_up_read(&sbi->quota_sem); 2895 f2fs_unlock_op(sbi); 2896 2897 if (!f2fs_sb_has_quota_ino(sbi)) 2898 inode_unlock(dqopt->files[cnt]); 2899 2900 if (ret) 2901 break; 2902 } 2903 return ret; 2904 } 2905 2906 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2907 const struct path *path) 2908 { 2909 struct inode *inode; 2910 int err; 2911 2912 /* if quota sysfile exists, deny enabling quota with specific file */ 2913 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2914 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2915 return -EBUSY; 2916 } 2917 2918 if (path->dentry->d_sb != sb) 2919 return -EXDEV; 2920 2921 err = f2fs_quota_sync(sb, type); 2922 if (err) 2923 return err; 2924 2925 inode = d_inode(path->dentry); 2926 2927 err = filemap_fdatawrite(inode->i_mapping); 2928 if (err) 2929 return err; 2930 2931 err = filemap_fdatawait(inode->i_mapping); 2932 if (err) 2933 return err; 2934 2935 err = dquot_quota_on(sb, type, format_id, path); 2936 if (err) 2937 return err; 2938 2939 inode_lock(inode); 2940 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; 2941 f2fs_set_inode_flags(inode); 2942 inode_unlock(inode); 2943 f2fs_mark_inode_dirty_sync(inode, false); 2944 2945 return 0; 2946 } 2947 2948 static int __f2fs_quota_off(struct super_block *sb, int type) 2949 { 2950 struct inode *inode = sb_dqopt(sb)->files[type]; 2951 int err; 2952 2953 if (!inode || !igrab(inode)) 2954 return dquot_quota_off(sb, type); 2955 2956 err = f2fs_quota_sync(sb, type); 2957 if (err) 2958 goto out_put; 2959 2960 err = dquot_quota_off(sb, type); 2961 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2962 goto out_put; 2963 2964 inode_lock(inode); 2965 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; 2966 f2fs_set_inode_flags(inode); 2967 inode_unlock(inode); 2968 f2fs_mark_inode_dirty_sync(inode, false); 2969 out_put: 2970 iput(inode); 2971 return err; 2972 } 2973 2974 static int f2fs_quota_off(struct super_block *sb, int type) 2975 { 2976 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2977 int err; 2978 2979 err = __f2fs_quota_off(sb, type); 2980 2981 /* 2982 * quotactl can shutdown journalled quota, result in inconsistence 2983 * between quota record and fs data by following updates, tag the 2984 * flag to let fsck be aware of it. 2985 */ 2986 if (is_journalled_quota(sbi)) 2987 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2988 return err; 2989 } 2990 2991 void f2fs_quota_off_umount(struct super_block *sb) 2992 { 2993 int type; 2994 int err; 2995 2996 for (type = 0; type < MAXQUOTAS; type++) { 2997 err = __f2fs_quota_off(sb, type); 2998 if (err) { 2999 int ret = dquot_quota_off(sb, type); 3000 3001 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 3002 type, err, ret); 3003 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3004 } 3005 } 3006 /* 3007 * In case of checkpoint=disable, we must flush quota blocks. 3008 * This can cause NULL exception for node_inode in end_io, since 3009 * put_super already dropped it. 3010 */ 3011 sync_filesystem(sb); 3012 } 3013 3014 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 3015 { 3016 struct quota_info *dqopt = sb_dqopt(sb); 3017 int type; 3018 3019 for (type = 0; type < MAXQUOTAS; type++) { 3020 if (!dqopt->files[type]) 3021 continue; 3022 f2fs_inode_synced(dqopt->files[type]); 3023 } 3024 } 3025 3026 static int f2fs_dquot_commit(struct dquot *dquot) 3027 { 3028 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3029 int ret; 3030 3031 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 3032 ret = dquot_commit(dquot); 3033 if (ret < 0) 3034 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3035 f2fs_up_read(&sbi->quota_sem); 3036 return ret; 3037 } 3038 3039 static int f2fs_dquot_acquire(struct dquot *dquot) 3040 { 3041 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3042 int ret; 3043 3044 f2fs_down_read(&sbi->quota_sem); 3045 ret = dquot_acquire(dquot); 3046 if (ret < 0) 3047 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3048 f2fs_up_read(&sbi->quota_sem); 3049 return ret; 3050 } 3051 3052 static int f2fs_dquot_release(struct dquot *dquot) 3053 { 3054 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3055 int ret = dquot_release(dquot); 3056 3057 if (ret < 0) 3058 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3059 return ret; 3060 } 3061 3062 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 3063 { 3064 struct super_block *sb = dquot->dq_sb; 3065 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3066 int ret = dquot_mark_dquot_dirty(dquot); 3067 3068 /* if we are using journalled quota */ 3069 if (is_journalled_quota(sbi)) 3070 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 3071 3072 return ret; 3073 } 3074 3075 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 3076 { 3077 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3078 int ret = dquot_commit_info(sb, type); 3079 3080 if (ret < 0) 3081 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3082 return ret; 3083 } 3084 3085 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 3086 { 3087 *projid = F2FS_I(inode)->i_projid; 3088 return 0; 3089 } 3090 3091 static const struct dquot_operations f2fs_quota_operations = { 3092 .get_reserved_space = f2fs_get_reserved_space, 3093 .write_dquot = f2fs_dquot_commit, 3094 .acquire_dquot = f2fs_dquot_acquire, 3095 .release_dquot = f2fs_dquot_release, 3096 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 3097 .write_info = f2fs_dquot_commit_info, 3098 .alloc_dquot = dquot_alloc, 3099 .destroy_dquot = dquot_destroy, 3100 .get_projid = f2fs_get_projid, 3101 .get_next_id = dquot_get_next_id, 3102 }; 3103 3104 static const struct quotactl_ops f2fs_quotactl_ops = { 3105 .quota_on = f2fs_quota_on, 3106 .quota_off = f2fs_quota_off, 3107 .quota_sync = f2fs_quota_sync, 3108 .get_state = dquot_get_state, 3109 .set_info = dquot_set_dqinfo, 3110 .get_dqblk = dquot_get_dqblk, 3111 .set_dqblk = dquot_set_dqblk, 3112 .get_nextdqblk = dquot_get_next_dqblk, 3113 }; 3114 #else 3115 int f2fs_dquot_initialize(struct inode *inode) 3116 { 3117 return 0; 3118 } 3119 3120 int f2fs_quota_sync(struct super_block *sb, int type) 3121 { 3122 return 0; 3123 } 3124 3125 void f2fs_quota_off_umount(struct super_block *sb) 3126 { 3127 } 3128 #endif 3129 3130 static const struct super_operations f2fs_sops = { 3131 .alloc_inode = f2fs_alloc_inode, 3132 .free_inode = f2fs_free_inode, 3133 .drop_inode = f2fs_drop_inode, 3134 .write_inode = f2fs_write_inode, 3135 .dirty_inode = f2fs_dirty_inode, 3136 .show_options = f2fs_show_options, 3137 #ifdef CONFIG_QUOTA 3138 .quota_read = f2fs_quota_read, 3139 .quota_write = f2fs_quota_write, 3140 .get_dquots = f2fs_get_dquots, 3141 #endif 3142 .evict_inode = f2fs_evict_inode, 3143 .put_super = f2fs_put_super, 3144 .sync_fs = f2fs_sync_fs, 3145 .freeze_fs = f2fs_freeze, 3146 .unfreeze_fs = f2fs_unfreeze, 3147 .statfs = f2fs_statfs, 3148 .remount_fs = f2fs_remount, 3149 }; 3150 3151 #ifdef CONFIG_FS_ENCRYPTION 3152 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 3153 { 3154 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3155 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3156 ctx, len, NULL); 3157 } 3158 3159 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3160 void *fs_data) 3161 { 3162 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3163 3164 /* 3165 * Encrypting the root directory is not allowed because fsck 3166 * expects lost+found directory to exist and remain unencrypted 3167 * if LOST_FOUND feature is enabled. 3168 * 3169 */ 3170 if (f2fs_sb_has_lost_found(sbi) && 3171 inode->i_ino == F2FS_ROOT_INO(sbi)) 3172 return -EPERM; 3173 3174 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3175 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3176 ctx, len, fs_data, XATTR_CREATE); 3177 } 3178 3179 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3180 { 3181 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3182 } 3183 3184 static bool f2fs_has_stable_inodes(struct super_block *sb) 3185 { 3186 return true; 3187 } 3188 3189 static struct block_device **f2fs_get_devices(struct super_block *sb, 3190 unsigned int *num_devs) 3191 { 3192 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3193 struct block_device **devs; 3194 int i; 3195 3196 if (!f2fs_is_multi_device(sbi)) 3197 return NULL; 3198 3199 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); 3200 if (!devs) 3201 return ERR_PTR(-ENOMEM); 3202 3203 for (i = 0; i < sbi->s_ndevs; i++) 3204 devs[i] = FDEV(i).bdev; 3205 *num_devs = sbi->s_ndevs; 3206 return devs; 3207 } 3208 3209 static const struct fscrypt_operations f2fs_cryptops = { 3210 .needs_bounce_pages = 1, 3211 .has_32bit_inodes = 1, 3212 .supports_subblock_data_units = 1, 3213 .legacy_key_prefix = "f2fs:", 3214 .get_context = f2fs_get_context, 3215 .set_context = f2fs_set_context, 3216 .get_dummy_policy = f2fs_get_dummy_policy, 3217 .empty_dir = f2fs_empty_dir, 3218 .has_stable_inodes = f2fs_has_stable_inodes, 3219 .get_devices = f2fs_get_devices, 3220 }; 3221 #endif 3222 3223 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3224 u64 ino, u32 generation) 3225 { 3226 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3227 struct inode *inode; 3228 3229 if (f2fs_check_nid_range(sbi, ino)) 3230 return ERR_PTR(-ESTALE); 3231 3232 /* 3233 * f2fs_iget isn't quite right if the inode is currently unallocated! 3234 * However f2fs_iget currently does appropriate checks to handle stale 3235 * inodes so everything is OK. 3236 */ 3237 inode = f2fs_iget(sb, ino); 3238 if (IS_ERR(inode)) 3239 return ERR_CAST(inode); 3240 if (unlikely(generation && inode->i_generation != generation)) { 3241 /* we didn't find the right inode.. */ 3242 iput(inode); 3243 return ERR_PTR(-ESTALE); 3244 } 3245 return inode; 3246 } 3247 3248 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3249 int fh_len, int fh_type) 3250 { 3251 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3252 f2fs_nfs_get_inode); 3253 } 3254 3255 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3256 int fh_len, int fh_type) 3257 { 3258 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3259 f2fs_nfs_get_inode); 3260 } 3261 3262 static const struct export_operations f2fs_export_ops = { 3263 .encode_fh = generic_encode_ino32_fh, 3264 .fh_to_dentry = f2fs_fh_to_dentry, 3265 .fh_to_parent = f2fs_fh_to_parent, 3266 .get_parent = f2fs_get_parent, 3267 }; 3268 3269 loff_t max_file_blocks(struct inode *inode) 3270 { 3271 loff_t result = 0; 3272 loff_t leaf_count; 3273 3274 /* 3275 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3276 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3277 * space in inode.i_addr, it will be more safe to reassign 3278 * result as zero. 3279 */ 3280 3281 if (inode && f2fs_compressed_file(inode)) 3282 leaf_count = ADDRS_PER_BLOCK(inode); 3283 else 3284 leaf_count = DEF_ADDRS_PER_BLOCK; 3285 3286 /* two direct node blocks */ 3287 result += (leaf_count * 2); 3288 3289 /* two indirect node blocks */ 3290 leaf_count *= NIDS_PER_BLOCK; 3291 result += (leaf_count * 2); 3292 3293 /* one double indirect node block */ 3294 leaf_count *= NIDS_PER_BLOCK; 3295 result += leaf_count; 3296 3297 /* 3298 * For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with 3299 * a 4K crypto data unit, we must restrict the max filesize to what can 3300 * fit within U32_MAX + 1 data units. 3301 */ 3302 3303 result = min(result, (((loff_t)U32_MAX + 1) * 4096) >> F2FS_BLKSIZE_BITS); 3304 3305 return result; 3306 } 3307 3308 static int __f2fs_commit_super(struct buffer_head *bh, 3309 struct f2fs_super_block *super) 3310 { 3311 lock_buffer(bh); 3312 if (super) 3313 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 3314 set_buffer_dirty(bh); 3315 unlock_buffer(bh); 3316 3317 /* it's rare case, we can do fua all the time */ 3318 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 3319 } 3320 3321 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3322 struct buffer_head *bh) 3323 { 3324 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3325 (bh->b_data + F2FS_SUPER_OFFSET); 3326 struct super_block *sb = sbi->sb; 3327 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3328 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3329 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3330 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3331 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3332 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3333 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3334 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3335 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3336 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3337 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3338 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3339 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3340 u64 main_end_blkaddr = main_blkaddr + 3341 (segment_count_main << log_blocks_per_seg); 3342 u64 seg_end_blkaddr = segment0_blkaddr + 3343 (segment_count << log_blocks_per_seg); 3344 3345 if (segment0_blkaddr != cp_blkaddr) { 3346 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3347 segment0_blkaddr, cp_blkaddr); 3348 return true; 3349 } 3350 3351 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3352 sit_blkaddr) { 3353 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3354 cp_blkaddr, sit_blkaddr, 3355 segment_count_ckpt << log_blocks_per_seg); 3356 return true; 3357 } 3358 3359 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3360 nat_blkaddr) { 3361 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3362 sit_blkaddr, nat_blkaddr, 3363 segment_count_sit << log_blocks_per_seg); 3364 return true; 3365 } 3366 3367 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3368 ssa_blkaddr) { 3369 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3370 nat_blkaddr, ssa_blkaddr, 3371 segment_count_nat << log_blocks_per_seg); 3372 return true; 3373 } 3374 3375 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3376 main_blkaddr) { 3377 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3378 ssa_blkaddr, main_blkaddr, 3379 segment_count_ssa << log_blocks_per_seg); 3380 return true; 3381 } 3382 3383 if (main_end_blkaddr > seg_end_blkaddr) { 3384 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3385 main_blkaddr, seg_end_blkaddr, 3386 segment_count_main << log_blocks_per_seg); 3387 return true; 3388 } else if (main_end_blkaddr < seg_end_blkaddr) { 3389 int err = 0; 3390 char *res; 3391 3392 /* fix in-memory information all the time */ 3393 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3394 segment0_blkaddr) >> log_blocks_per_seg); 3395 3396 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { 3397 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3398 res = "internally"; 3399 } else { 3400 err = __f2fs_commit_super(bh, NULL); 3401 res = err ? "failed" : "done"; 3402 } 3403 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3404 res, main_blkaddr, seg_end_blkaddr, 3405 segment_count_main << log_blocks_per_seg); 3406 if (err) 3407 return true; 3408 } 3409 return false; 3410 } 3411 3412 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3413 struct buffer_head *bh) 3414 { 3415 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3416 block_t total_sections, blocks_per_seg; 3417 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3418 (bh->b_data + F2FS_SUPER_OFFSET); 3419 size_t crc_offset = 0; 3420 __u32 crc = 0; 3421 3422 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3423 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3424 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3425 return -EINVAL; 3426 } 3427 3428 /* Check checksum_offset and crc in superblock */ 3429 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3430 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3431 if (crc_offset != 3432 offsetof(struct f2fs_super_block, crc)) { 3433 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3434 crc_offset); 3435 return -EFSCORRUPTED; 3436 } 3437 crc = le32_to_cpu(raw_super->crc); 3438 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3439 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3440 return -EFSCORRUPTED; 3441 } 3442 } 3443 3444 /* Currently, support only 4KB block size */ 3445 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3446 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3447 le32_to_cpu(raw_super->log_blocksize), 3448 F2FS_BLKSIZE_BITS); 3449 return -EFSCORRUPTED; 3450 } 3451 3452 /* check log blocks per segment */ 3453 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3454 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3455 le32_to_cpu(raw_super->log_blocks_per_seg)); 3456 return -EFSCORRUPTED; 3457 } 3458 3459 /* Currently, support 512/1024/2048/4096/16K bytes sector size */ 3460 if (le32_to_cpu(raw_super->log_sectorsize) > 3461 F2FS_MAX_LOG_SECTOR_SIZE || 3462 le32_to_cpu(raw_super->log_sectorsize) < 3463 F2FS_MIN_LOG_SECTOR_SIZE) { 3464 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3465 le32_to_cpu(raw_super->log_sectorsize)); 3466 return -EFSCORRUPTED; 3467 } 3468 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3469 le32_to_cpu(raw_super->log_sectorsize) != 3470 F2FS_MAX_LOG_SECTOR_SIZE) { 3471 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3472 le32_to_cpu(raw_super->log_sectors_per_block), 3473 le32_to_cpu(raw_super->log_sectorsize)); 3474 return -EFSCORRUPTED; 3475 } 3476 3477 segment_count = le32_to_cpu(raw_super->segment_count); 3478 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3479 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3480 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3481 total_sections = le32_to_cpu(raw_super->section_count); 3482 3483 /* blocks_per_seg should be 512, given the above check */ 3484 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); 3485 3486 if (segment_count > F2FS_MAX_SEGMENT || 3487 segment_count < F2FS_MIN_SEGMENTS) { 3488 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3489 return -EFSCORRUPTED; 3490 } 3491 3492 if (total_sections > segment_count_main || total_sections < 1 || 3493 segs_per_sec > segment_count || !segs_per_sec) { 3494 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3495 segment_count, total_sections, segs_per_sec); 3496 return -EFSCORRUPTED; 3497 } 3498 3499 if (segment_count_main != total_sections * segs_per_sec) { 3500 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3501 segment_count_main, total_sections, segs_per_sec); 3502 return -EFSCORRUPTED; 3503 } 3504 3505 if ((segment_count / segs_per_sec) < total_sections) { 3506 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3507 segment_count, segs_per_sec, total_sections); 3508 return -EFSCORRUPTED; 3509 } 3510 3511 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3512 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3513 segment_count, le64_to_cpu(raw_super->block_count)); 3514 return -EFSCORRUPTED; 3515 } 3516 3517 if (RDEV(0).path[0]) { 3518 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3519 int i = 1; 3520 3521 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3522 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3523 i++; 3524 } 3525 if (segment_count != dev_seg_count) { 3526 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3527 segment_count, dev_seg_count); 3528 return -EFSCORRUPTED; 3529 } 3530 } else { 3531 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3532 !bdev_is_zoned(sbi->sb->s_bdev)) { 3533 f2fs_info(sbi, "Zoned block device path is missing"); 3534 return -EFSCORRUPTED; 3535 } 3536 } 3537 3538 if (secs_per_zone > total_sections || !secs_per_zone) { 3539 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3540 secs_per_zone, total_sections); 3541 return -EFSCORRUPTED; 3542 } 3543 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3544 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3545 (le32_to_cpu(raw_super->extension_count) + 3546 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3547 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3548 le32_to_cpu(raw_super->extension_count), 3549 raw_super->hot_ext_count, 3550 F2FS_MAX_EXTENSION); 3551 return -EFSCORRUPTED; 3552 } 3553 3554 if (le32_to_cpu(raw_super->cp_payload) >= 3555 (blocks_per_seg - F2FS_CP_PACKS - 3556 NR_CURSEG_PERSIST_TYPE)) { 3557 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3558 le32_to_cpu(raw_super->cp_payload), 3559 blocks_per_seg - F2FS_CP_PACKS - 3560 NR_CURSEG_PERSIST_TYPE); 3561 return -EFSCORRUPTED; 3562 } 3563 3564 /* check reserved ino info */ 3565 if (le32_to_cpu(raw_super->node_ino) != 1 || 3566 le32_to_cpu(raw_super->meta_ino) != 2 || 3567 le32_to_cpu(raw_super->root_ino) != 3) { 3568 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3569 le32_to_cpu(raw_super->node_ino), 3570 le32_to_cpu(raw_super->meta_ino), 3571 le32_to_cpu(raw_super->root_ino)); 3572 return -EFSCORRUPTED; 3573 } 3574 3575 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3576 if (sanity_check_area_boundary(sbi, bh)) 3577 return -EFSCORRUPTED; 3578 3579 return 0; 3580 } 3581 3582 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3583 { 3584 unsigned int total, fsmeta; 3585 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3586 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3587 unsigned int ovp_segments, reserved_segments; 3588 unsigned int main_segs, blocks_per_seg; 3589 unsigned int sit_segs, nat_segs; 3590 unsigned int sit_bitmap_size, nat_bitmap_size; 3591 unsigned int log_blocks_per_seg; 3592 unsigned int segment_count_main; 3593 unsigned int cp_pack_start_sum, cp_payload; 3594 block_t user_block_count, valid_user_blocks; 3595 block_t avail_node_count, valid_node_count; 3596 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3597 int i, j; 3598 3599 total = le32_to_cpu(raw_super->segment_count); 3600 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3601 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3602 fsmeta += sit_segs; 3603 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3604 fsmeta += nat_segs; 3605 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3606 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3607 3608 if (unlikely(fsmeta >= total)) 3609 return 1; 3610 3611 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3612 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3613 3614 if (!f2fs_sb_has_readonly(sbi) && 3615 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3616 ovp_segments == 0 || reserved_segments == 0)) { 3617 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3618 return 1; 3619 } 3620 user_block_count = le64_to_cpu(ckpt->user_block_count); 3621 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3622 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3623 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3624 if (!user_block_count || user_block_count >= 3625 segment_count_main << log_blocks_per_seg) { 3626 f2fs_err(sbi, "Wrong user_block_count: %u", 3627 user_block_count); 3628 return 1; 3629 } 3630 3631 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3632 if (valid_user_blocks > user_block_count) { 3633 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3634 valid_user_blocks, user_block_count); 3635 return 1; 3636 } 3637 3638 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3639 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3640 if (valid_node_count > avail_node_count) { 3641 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3642 valid_node_count, avail_node_count); 3643 return 1; 3644 } 3645 3646 main_segs = le32_to_cpu(raw_super->segment_count_main); 3647 blocks_per_seg = BLKS_PER_SEG(sbi); 3648 3649 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3650 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3651 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3652 return 1; 3653 3654 if (f2fs_sb_has_readonly(sbi)) 3655 goto check_data; 3656 3657 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3658 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3659 le32_to_cpu(ckpt->cur_node_segno[j])) { 3660 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3661 i, j, 3662 le32_to_cpu(ckpt->cur_node_segno[i])); 3663 return 1; 3664 } 3665 } 3666 } 3667 check_data: 3668 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3669 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3670 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3671 return 1; 3672 3673 if (f2fs_sb_has_readonly(sbi)) 3674 goto skip_cross; 3675 3676 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3677 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3678 le32_to_cpu(ckpt->cur_data_segno[j])) { 3679 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3680 i, j, 3681 le32_to_cpu(ckpt->cur_data_segno[i])); 3682 return 1; 3683 } 3684 } 3685 } 3686 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3687 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3688 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3689 le32_to_cpu(ckpt->cur_data_segno[j])) { 3690 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3691 i, j, 3692 le32_to_cpu(ckpt->cur_node_segno[i])); 3693 return 1; 3694 } 3695 } 3696 } 3697 skip_cross: 3698 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3699 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3700 3701 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3702 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3703 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3704 sit_bitmap_size, nat_bitmap_size); 3705 return 1; 3706 } 3707 3708 cp_pack_start_sum = __start_sum_addr(sbi); 3709 cp_payload = __cp_payload(sbi); 3710 if (cp_pack_start_sum < cp_payload + 1 || 3711 cp_pack_start_sum > blocks_per_seg - 1 - 3712 NR_CURSEG_PERSIST_TYPE) { 3713 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3714 cp_pack_start_sum); 3715 return 1; 3716 } 3717 3718 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3719 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3720 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3721 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3722 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3723 le32_to_cpu(ckpt->checksum_offset)); 3724 return 1; 3725 } 3726 3727 nat_blocks = nat_segs << log_blocks_per_seg; 3728 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3729 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3730 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3731 (cp_payload + F2FS_CP_PACKS + 3732 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3733 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3734 cp_payload, nat_bits_blocks); 3735 return 1; 3736 } 3737 3738 if (unlikely(f2fs_cp_error(sbi))) { 3739 f2fs_err(sbi, "A bug case: need to run fsck"); 3740 return 1; 3741 } 3742 return 0; 3743 } 3744 3745 static void init_sb_info(struct f2fs_sb_info *sbi) 3746 { 3747 struct f2fs_super_block *raw_super = sbi->raw_super; 3748 int i; 3749 3750 sbi->log_sectors_per_block = 3751 le32_to_cpu(raw_super->log_sectors_per_block); 3752 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3753 sbi->blocksize = BIT(sbi->log_blocksize); 3754 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3755 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); 3756 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3757 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3758 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3759 sbi->total_node_count = SEGS_TO_BLKS(sbi, 3760 ((le32_to_cpu(raw_super->segment_count_nat) / 2) * 3761 NAT_ENTRY_PER_BLOCK)); 3762 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3763 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3764 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3765 sbi->cur_victim_sec = NULL_SECNO; 3766 sbi->gc_mode = GC_NORMAL; 3767 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3768 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3769 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3770 sbi->migration_granularity = SEGS_PER_SEC(sbi); 3771 sbi->seq_file_ra_mul = MIN_RA_MUL; 3772 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3773 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3774 spin_lock_init(&sbi->gc_remaining_trials_lock); 3775 atomic64_set(&sbi->current_atomic_write, 0); 3776 3777 sbi->dir_level = DEF_DIR_LEVEL; 3778 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3779 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3780 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3781 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3782 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3783 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3784 DEF_UMOUNT_DISCARD_TIMEOUT; 3785 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3786 3787 for (i = 0; i < NR_COUNT_TYPE; i++) 3788 atomic_set(&sbi->nr_pages[i], 0); 3789 3790 for (i = 0; i < META; i++) 3791 atomic_set(&sbi->wb_sync_req[i], 0); 3792 3793 INIT_LIST_HEAD(&sbi->s_list); 3794 mutex_init(&sbi->umount_mutex); 3795 init_f2fs_rwsem(&sbi->io_order_lock); 3796 spin_lock_init(&sbi->cp_lock); 3797 3798 sbi->dirty_device = 0; 3799 spin_lock_init(&sbi->dev_lock); 3800 3801 init_f2fs_rwsem(&sbi->sb_lock); 3802 init_f2fs_rwsem(&sbi->pin_sem); 3803 } 3804 3805 static int init_percpu_info(struct f2fs_sb_info *sbi) 3806 { 3807 int err; 3808 3809 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3810 if (err) 3811 return err; 3812 3813 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3814 if (err) 3815 goto err_valid_block; 3816 3817 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3818 GFP_KERNEL); 3819 if (err) 3820 goto err_node_block; 3821 return 0; 3822 3823 err_node_block: 3824 percpu_counter_destroy(&sbi->rf_node_block_count); 3825 err_valid_block: 3826 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3827 return err; 3828 } 3829 3830 #ifdef CONFIG_BLK_DEV_ZONED 3831 3832 struct f2fs_report_zones_args { 3833 struct f2fs_sb_info *sbi; 3834 struct f2fs_dev_info *dev; 3835 }; 3836 3837 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3838 void *data) 3839 { 3840 struct f2fs_report_zones_args *rz_args = data; 3841 block_t unusable_blocks = (zone->len - zone->capacity) >> 3842 F2FS_LOG_SECTORS_PER_BLOCK; 3843 3844 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3845 return 0; 3846 3847 set_bit(idx, rz_args->dev->blkz_seq); 3848 if (!rz_args->sbi->unusable_blocks_per_sec) { 3849 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3850 return 0; 3851 } 3852 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3853 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 3854 return -EINVAL; 3855 } 3856 return 0; 3857 } 3858 3859 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3860 { 3861 struct block_device *bdev = FDEV(devi).bdev; 3862 sector_t nr_sectors = bdev_nr_sectors(bdev); 3863 struct f2fs_report_zones_args rep_zone_arg; 3864 u64 zone_sectors; 3865 int ret; 3866 3867 if (!f2fs_sb_has_blkzoned(sbi)) 3868 return 0; 3869 3870 zone_sectors = bdev_zone_sectors(bdev); 3871 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3872 SECTOR_TO_BLOCK(zone_sectors)) 3873 return -EINVAL; 3874 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 3875 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), 3876 sbi->blocks_per_blkz); 3877 if (nr_sectors & (zone_sectors - 1)) 3878 FDEV(devi).nr_blkz++; 3879 3880 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3881 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3882 * sizeof(unsigned long), 3883 GFP_KERNEL); 3884 if (!FDEV(devi).blkz_seq) 3885 return -ENOMEM; 3886 3887 rep_zone_arg.sbi = sbi; 3888 rep_zone_arg.dev = &FDEV(devi); 3889 3890 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3891 &rep_zone_arg); 3892 if (ret < 0) 3893 return ret; 3894 return 0; 3895 } 3896 #endif 3897 3898 /* 3899 * Read f2fs raw super block. 3900 * Because we have two copies of super block, so read both of them 3901 * to get the first valid one. If any one of them is broken, we pass 3902 * them recovery flag back to the caller. 3903 */ 3904 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3905 struct f2fs_super_block **raw_super, 3906 int *valid_super_block, int *recovery) 3907 { 3908 struct super_block *sb = sbi->sb; 3909 int block; 3910 struct buffer_head *bh; 3911 struct f2fs_super_block *super; 3912 int err = 0; 3913 3914 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3915 if (!super) 3916 return -ENOMEM; 3917 3918 for (block = 0; block < 2; block++) { 3919 bh = sb_bread(sb, block); 3920 if (!bh) { 3921 f2fs_err(sbi, "Unable to read %dth superblock", 3922 block + 1); 3923 err = -EIO; 3924 *recovery = 1; 3925 continue; 3926 } 3927 3928 /* sanity checking of raw super */ 3929 err = sanity_check_raw_super(sbi, bh); 3930 if (err) { 3931 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3932 block + 1); 3933 brelse(bh); 3934 *recovery = 1; 3935 continue; 3936 } 3937 3938 if (!*raw_super) { 3939 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3940 sizeof(*super)); 3941 *valid_super_block = block; 3942 *raw_super = super; 3943 } 3944 brelse(bh); 3945 } 3946 3947 /* No valid superblock */ 3948 if (!*raw_super) 3949 kfree(super); 3950 else 3951 err = 0; 3952 3953 return err; 3954 } 3955 3956 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3957 { 3958 struct buffer_head *bh; 3959 __u32 crc = 0; 3960 int err; 3961 3962 if ((recover && f2fs_readonly(sbi->sb)) || 3963 f2fs_hw_is_readonly(sbi)) { 3964 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3965 return -EROFS; 3966 } 3967 3968 /* we should update superblock crc here */ 3969 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3970 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3971 offsetof(struct f2fs_super_block, crc)); 3972 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3973 } 3974 3975 /* write back-up superblock first */ 3976 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3977 if (!bh) 3978 return -EIO; 3979 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3980 brelse(bh); 3981 3982 /* if we are in recovery path, skip writing valid superblock */ 3983 if (recover || err) 3984 return err; 3985 3986 /* write current valid superblock */ 3987 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3988 if (!bh) 3989 return -EIO; 3990 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3991 brelse(bh); 3992 return err; 3993 } 3994 3995 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) 3996 { 3997 unsigned long flags; 3998 3999 spin_lock_irqsave(&sbi->error_lock, flags); 4000 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) 4001 sbi->stop_reason[reason]++; 4002 spin_unlock_irqrestore(&sbi->error_lock, flags); 4003 } 4004 4005 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) 4006 { 4007 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4008 unsigned long flags; 4009 int err; 4010 4011 f2fs_down_write(&sbi->sb_lock); 4012 4013 spin_lock_irqsave(&sbi->error_lock, flags); 4014 if (sbi->error_dirty) { 4015 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4016 MAX_F2FS_ERRORS); 4017 sbi->error_dirty = false; 4018 } 4019 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); 4020 spin_unlock_irqrestore(&sbi->error_lock, flags); 4021 4022 err = f2fs_commit_super(sbi, false); 4023 4024 f2fs_up_write(&sbi->sb_lock); 4025 if (err) 4026 f2fs_err_ratelimited(sbi, 4027 "f2fs_commit_super fails to record stop_reason, err:%d", 4028 err); 4029 } 4030 4031 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) 4032 { 4033 unsigned long flags; 4034 4035 spin_lock_irqsave(&sbi->error_lock, flags); 4036 if (!test_bit(flag, (unsigned long *)sbi->errors)) { 4037 set_bit(flag, (unsigned long *)sbi->errors); 4038 sbi->error_dirty = true; 4039 } 4040 spin_unlock_irqrestore(&sbi->error_lock, flags); 4041 } 4042 4043 static bool f2fs_update_errors(struct f2fs_sb_info *sbi) 4044 { 4045 unsigned long flags; 4046 bool need_update = false; 4047 4048 spin_lock_irqsave(&sbi->error_lock, flags); 4049 if (sbi->error_dirty) { 4050 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4051 MAX_F2FS_ERRORS); 4052 sbi->error_dirty = false; 4053 need_update = true; 4054 } 4055 spin_unlock_irqrestore(&sbi->error_lock, flags); 4056 4057 return need_update; 4058 } 4059 4060 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error) 4061 { 4062 int err; 4063 4064 f2fs_down_write(&sbi->sb_lock); 4065 4066 if (!f2fs_update_errors(sbi)) 4067 goto out_unlock; 4068 4069 err = f2fs_commit_super(sbi, false); 4070 if (err) 4071 f2fs_err_ratelimited(sbi, 4072 "f2fs_commit_super fails to record errors:%u, err:%d", 4073 error, err); 4074 out_unlock: 4075 f2fs_up_write(&sbi->sb_lock); 4076 } 4077 4078 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) 4079 { 4080 f2fs_save_errors(sbi, error); 4081 f2fs_record_errors(sbi, error); 4082 } 4083 4084 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error) 4085 { 4086 f2fs_save_errors(sbi, error); 4087 4088 if (!sbi->error_dirty) 4089 return; 4090 if (!test_bit(error, (unsigned long *)sbi->errors)) 4091 return; 4092 schedule_work(&sbi->s_error_work); 4093 } 4094 4095 static bool system_going_down(void) 4096 { 4097 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 4098 || system_state == SYSTEM_RESTART; 4099 } 4100 4101 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 4102 bool irq_context) 4103 { 4104 struct super_block *sb = sbi->sb; 4105 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; 4106 bool continue_fs = !shutdown && 4107 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; 4108 4109 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4110 4111 if (!f2fs_hw_is_readonly(sbi)) { 4112 save_stop_reason(sbi, reason); 4113 4114 if (irq_context && !shutdown) 4115 schedule_work(&sbi->s_error_work); 4116 else 4117 f2fs_record_stop_reason(sbi); 4118 } 4119 4120 /* 4121 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 4122 * could panic during 'reboot -f' as the underlying device got already 4123 * disabled. 4124 */ 4125 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && 4126 !shutdown && !system_going_down() && 4127 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) 4128 panic("F2FS-fs (device %s): panic forced after error\n", 4129 sb->s_id); 4130 4131 if (shutdown) 4132 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 4133 4134 /* continue filesystem operators if errors=continue */ 4135 if (continue_fs || f2fs_readonly(sb)) 4136 return; 4137 4138 f2fs_warn(sbi, "Remounting filesystem read-only"); 4139 /* 4140 * Make sure updated value of ->s_mount_flags will be visible before 4141 * ->s_flags update 4142 */ 4143 smp_wmb(); 4144 sb->s_flags |= SB_RDONLY; 4145 } 4146 4147 static void f2fs_record_error_work(struct work_struct *work) 4148 { 4149 struct f2fs_sb_info *sbi = container_of(work, 4150 struct f2fs_sb_info, s_error_work); 4151 4152 f2fs_record_stop_reason(sbi); 4153 } 4154 4155 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 4156 { 4157 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4158 unsigned int max_devices = MAX_DEVICES; 4159 unsigned int logical_blksize; 4160 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); 4161 int i; 4162 4163 /* Initialize single device information */ 4164 if (!RDEV(0).path[0]) { 4165 if (!bdev_is_zoned(sbi->sb->s_bdev)) 4166 return 0; 4167 max_devices = 1; 4168 } 4169 4170 /* 4171 * Initialize multiple devices information, or single 4172 * zoned block device information. 4173 */ 4174 sbi->devs = f2fs_kzalloc(sbi, 4175 array_size(max_devices, 4176 sizeof(struct f2fs_dev_info)), 4177 GFP_KERNEL); 4178 if (!sbi->devs) 4179 return -ENOMEM; 4180 4181 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 4182 sbi->aligned_blksize = true; 4183 4184 for (i = 0; i < max_devices; i++) { 4185 if (i == 0) 4186 FDEV(0).bdev_file = sbi->sb->s_bdev_file; 4187 else if (!RDEV(i).path[0]) 4188 break; 4189 4190 if (max_devices > 1) { 4191 /* Multi-device mount */ 4192 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 4193 FDEV(i).total_segments = 4194 le32_to_cpu(RDEV(i).total_segments); 4195 if (i == 0) { 4196 FDEV(i).start_blk = 0; 4197 FDEV(i).end_blk = FDEV(i).start_blk + 4198 SEGS_TO_BLKS(sbi, 4199 FDEV(i).total_segments) - 1 + 4200 le32_to_cpu(raw_super->segment0_blkaddr); 4201 } else { 4202 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 4203 FDEV(i).end_blk = FDEV(i).start_blk + 4204 SEGS_TO_BLKS(sbi, 4205 FDEV(i).total_segments) - 1; 4206 FDEV(i).bdev_file = bdev_file_open_by_path( 4207 FDEV(i).path, mode, sbi->sb, NULL); 4208 } 4209 } 4210 if (IS_ERR(FDEV(i).bdev_file)) 4211 return PTR_ERR(FDEV(i).bdev_file); 4212 4213 FDEV(i).bdev = file_bdev(FDEV(i).bdev_file); 4214 /* to release errored devices */ 4215 sbi->s_ndevs = i + 1; 4216 4217 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 4218 sbi->aligned_blksize = false; 4219 4220 #ifdef CONFIG_BLK_DEV_ZONED 4221 if (bdev_is_zoned(FDEV(i).bdev)) { 4222 if (!f2fs_sb_has_blkzoned(sbi)) { 4223 f2fs_err(sbi, "Zoned block device feature not enabled"); 4224 return -EINVAL; 4225 } 4226 if (init_blkz_info(sbi, i)) { 4227 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 4228 return -EINVAL; 4229 } 4230 if (max_devices == 1) 4231 break; 4232 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)", 4233 i, FDEV(i).path, 4234 FDEV(i).total_segments, 4235 FDEV(i).start_blk, FDEV(i).end_blk); 4236 continue; 4237 } 4238 #endif 4239 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 4240 i, FDEV(i).path, 4241 FDEV(i).total_segments, 4242 FDEV(i).start_blk, FDEV(i).end_blk); 4243 } 4244 return 0; 4245 } 4246 4247 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 4248 { 4249 #if IS_ENABLED(CONFIG_UNICODE) 4250 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 4251 const struct f2fs_sb_encodings *encoding_info; 4252 struct unicode_map *encoding; 4253 __u16 encoding_flags; 4254 4255 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 4256 if (!encoding_info) { 4257 f2fs_err(sbi, 4258 "Encoding requested by superblock is unknown"); 4259 return -EINVAL; 4260 } 4261 4262 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 4263 encoding = utf8_load(encoding_info->version); 4264 if (IS_ERR(encoding)) { 4265 f2fs_err(sbi, 4266 "can't mount with superblock charset: %s-%u.%u.%u " 4267 "not supported by the kernel. flags: 0x%x.", 4268 encoding_info->name, 4269 unicode_major(encoding_info->version), 4270 unicode_minor(encoding_info->version), 4271 unicode_rev(encoding_info->version), 4272 encoding_flags); 4273 return PTR_ERR(encoding); 4274 } 4275 f2fs_info(sbi, "Using encoding defined by superblock: " 4276 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4277 unicode_major(encoding_info->version), 4278 unicode_minor(encoding_info->version), 4279 unicode_rev(encoding_info->version), 4280 encoding_flags); 4281 4282 sbi->sb->s_encoding = encoding; 4283 sbi->sb->s_encoding_flags = encoding_flags; 4284 } 4285 #else 4286 if (f2fs_sb_has_casefold(sbi)) { 4287 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 4288 return -EINVAL; 4289 } 4290 #endif 4291 return 0; 4292 } 4293 4294 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 4295 { 4296 /* adjust parameters according to the volume size */ 4297 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { 4298 if (f2fs_block_unit_discard(sbi)) 4299 SM_I(sbi)->dcc_info->discard_granularity = 4300 MIN_DISCARD_GRANULARITY; 4301 if (!f2fs_lfs_mode(sbi)) 4302 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | 4303 BIT(F2FS_IPU_HONOR_OPU_WRITE); 4304 } 4305 4306 sbi->readdir_ra = true; 4307 } 4308 4309 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 4310 { 4311 struct f2fs_sb_info *sbi; 4312 struct f2fs_super_block *raw_super; 4313 struct inode *root; 4314 int err; 4315 bool skip_recovery = false, need_fsck = false; 4316 char *options = NULL; 4317 int recovery, i, valid_super_block; 4318 struct curseg_info *seg_i; 4319 int retry_cnt = 1; 4320 #ifdef CONFIG_QUOTA 4321 bool quota_enabled = false; 4322 #endif 4323 4324 try_onemore: 4325 err = -EINVAL; 4326 raw_super = NULL; 4327 valid_super_block = -1; 4328 recovery = 0; 4329 4330 /* allocate memory for f2fs-specific super block info */ 4331 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4332 if (!sbi) 4333 return -ENOMEM; 4334 4335 sbi->sb = sb; 4336 4337 /* initialize locks within allocated memory */ 4338 init_f2fs_rwsem(&sbi->gc_lock); 4339 mutex_init(&sbi->writepages); 4340 init_f2fs_rwsem(&sbi->cp_global_sem); 4341 init_f2fs_rwsem(&sbi->node_write); 4342 init_f2fs_rwsem(&sbi->node_change); 4343 spin_lock_init(&sbi->stat_lock); 4344 init_f2fs_rwsem(&sbi->cp_rwsem); 4345 init_f2fs_rwsem(&sbi->quota_sem); 4346 init_waitqueue_head(&sbi->cp_wait); 4347 spin_lock_init(&sbi->error_lock); 4348 4349 for (i = 0; i < NR_INODE_TYPE; i++) { 4350 INIT_LIST_HEAD(&sbi->inode_list[i]); 4351 spin_lock_init(&sbi->inode_lock[i]); 4352 } 4353 mutex_init(&sbi->flush_lock); 4354 4355 /* Load the checksum driver */ 4356 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 4357 if (IS_ERR(sbi->s_chksum_driver)) { 4358 f2fs_err(sbi, "Cannot load crc32 driver."); 4359 err = PTR_ERR(sbi->s_chksum_driver); 4360 sbi->s_chksum_driver = NULL; 4361 goto free_sbi; 4362 } 4363 4364 /* set a block size */ 4365 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4366 f2fs_err(sbi, "unable to set blocksize"); 4367 goto free_sbi; 4368 } 4369 4370 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4371 &recovery); 4372 if (err) 4373 goto free_sbi; 4374 4375 sb->s_fs_info = sbi; 4376 sbi->raw_super = raw_super; 4377 4378 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); 4379 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); 4380 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); 4381 4382 /* precompute checksum seed for metadata */ 4383 if (f2fs_sb_has_inode_chksum(sbi)) 4384 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4385 sizeof(raw_super->uuid)); 4386 4387 default_options(sbi, false); 4388 /* parse mount options */ 4389 options = kstrdup((const char *)data, GFP_KERNEL); 4390 if (data && !options) { 4391 err = -ENOMEM; 4392 goto free_sb_buf; 4393 } 4394 4395 err = parse_options(sb, options, false); 4396 if (err) 4397 goto free_options; 4398 4399 sb->s_maxbytes = max_file_blocks(NULL) << 4400 le32_to_cpu(raw_super->log_blocksize); 4401 sb->s_max_links = F2FS_LINK_MAX; 4402 4403 err = f2fs_setup_casefold(sbi); 4404 if (err) 4405 goto free_options; 4406 4407 #ifdef CONFIG_QUOTA 4408 sb->dq_op = &f2fs_quota_operations; 4409 sb->s_qcop = &f2fs_quotactl_ops; 4410 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4411 4412 if (f2fs_sb_has_quota_ino(sbi)) { 4413 for (i = 0; i < MAXQUOTAS; i++) { 4414 if (f2fs_qf_ino(sbi->sb, i)) 4415 sbi->nquota_files++; 4416 } 4417 } 4418 #endif 4419 4420 sb->s_op = &f2fs_sops; 4421 #ifdef CONFIG_FS_ENCRYPTION 4422 sb->s_cop = &f2fs_cryptops; 4423 #endif 4424 #ifdef CONFIG_FS_VERITY 4425 sb->s_vop = &f2fs_verityops; 4426 #endif 4427 sb->s_xattr = f2fs_xattr_handlers; 4428 sb->s_export_op = &f2fs_export_ops; 4429 sb->s_magic = F2FS_SUPER_MAGIC; 4430 sb->s_time_gran = 1; 4431 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4432 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4433 super_set_uuid(sb, (void *) raw_super->uuid, sizeof(raw_super->uuid)); 4434 sb->s_iflags |= SB_I_CGROUPWB; 4435 4436 /* init f2fs-specific super block info */ 4437 sbi->valid_super_block = valid_super_block; 4438 4439 /* disallow all the data/node/meta page writes */ 4440 set_sbi_flag(sbi, SBI_POR_DOING); 4441 4442 err = f2fs_init_write_merge_io(sbi); 4443 if (err) 4444 goto free_bio_info; 4445 4446 init_sb_info(sbi); 4447 4448 err = f2fs_init_iostat(sbi); 4449 if (err) 4450 goto free_bio_info; 4451 4452 err = init_percpu_info(sbi); 4453 if (err) 4454 goto free_iostat; 4455 4456 /* init per sbi slab cache */ 4457 err = f2fs_init_xattr_caches(sbi); 4458 if (err) 4459 goto free_percpu; 4460 err = f2fs_init_page_array_cache(sbi); 4461 if (err) 4462 goto free_xattr_cache; 4463 4464 /* get an inode for meta space */ 4465 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4466 if (IS_ERR(sbi->meta_inode)) { 4467 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4468 err = PTR_ERR(sbi->meta_inode); 4469 goto free_page_array_cache; 4470 } 4471 4472 err = f2fs_get_valid_checkpoint(sbi); 4473 if (err) { 4474 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4475 goto free_meta_inode; 4476 } 4477 4478 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4479 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4480 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4481 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4482 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4483 } 4484 4485 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4486 set_sbi_flag(sbi, SBI_NEED_FSCK); 4487 4488 /* Initialize device list */ 4489 err = f2fs_scan_devices(sbi); 4490 if (err) { 4491 f2fs_err(sbi, "Failed to find devices"); 4492 goto free_devices; 4493 } 4494 4495 err = f2fs_init_post_read_wq(sbi); 4496 if (err) { 4497 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4498 goto free_devices; 4499 } 4500 4501 sbi->total_valid_node_count = 4502 le32_to_cpu(sbi->ckpt->valid_node_count); 4503 percpu_counter_set(&sbi->total_valid_inode_count, 4504 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4505 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4506 sbi->total_valid_block_count = 4507 le64_to_cpu(sbi->ckpt->valid_block_count); 4508 sbi->last_valid_block_count = sbi->total_valid_block_count; 4509 sbi->reserved_blocks = 0; 4510 sbi->current_reserved_blocks = 0; 4511 limit_reserve_root(sbi); 4512 adjust_unusable_cap_perc(sbi); 4513 4514 f2fs_init_extent_cache_info(sbi); 4515 4516 f2fs_init_ino_entry_info(sbi); 4517 4518 f2fs_init_fsync_node_info(sbi); 4519 4520 /* setup checkpoint request control and start checkpoint issue thread */ 4521 f2fs_init_ckpt_req_control(sbi); 4522 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4523 test_opt(sbi, MERGE_CHECKPOINT)) { 4524 err = f2fs_start_ckpt_thread(sbi); 4525 if (err) { 4526 f2fs_err(sbi, 4527 "Failed to start F2FS issue_checkpoint_thread (%d)", 4528 err); 4529 goto stop_ckpt_thread; 4530 } 4531 } 4532 4533 /* setup f2fs internal modules */ 4534 err = f2fs_build_segment_manager(sbi); 4535 if (err) { 4536 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4537 err); 4538 goto free_sm; 4539 } 4540 err = f2fs_build_node_manager(sbi); 4541 if (err) { 4542 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4543 err); 4544 goto free_nm; 4545 } 4546 4547 /* For write statistics */ 4548 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4549 4550 /* Read accumulated write IO statistics if exists */ 4551 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4552 if (__exist_node_summaries(sbi)) 4553 sbi->kbytes_written = 4554 le64_to_cpu(seg_i->journal->info.kbytes_written); 4555 4556 f2fs_build_gc_manager(sbi); 4557 4558 err = f2fs_build_stats(sbi); 4559 if (err) 4560 goto free_nm; 4561 4562 /* get an inode for node space */ 4563 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4564 if (IS_ERR(sbi->node_inode)) { 4565 f2fs_err(sbi, "Failed to read node inode"); 4566 err = PTR_ERR(sbi->node_inode); 4567 goto free_stats; 4568 } 4569 4570 /* read root inode and dentry */ 4571 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4572 if (IS_ERR(root)) { 4573 f2fs_err(sbi, "Failed to read root inode"); 4574 err = PTR_ERR(root); 4575 goto free_node_inode; 4576 } 4577 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4578 !root->i_size || !root->i_nlink) { 4579 iput(root); 4580 err = -EINVAL; 4581 goto free_node_inode; 4582 } 4583 4584 generic_set_sb_d_ops(sb); 4585 sb->s_root = d_make_root(root); /* allocate root dentry */ 4586 if (!sb->s_root) { 4587 err = -ENOMEM; 4588 goto free_node_inode; 4589 } 4590 4591 err = f2fs_init_compress_inode(sbi); 4592 if (err) 4593 goto free_root_inode; 4594 4595 err = f2fs_register_sysfs(sbi); 4596 if (err) 4597 goto free_compress_inode; 4598 4599 #ifdef CONFIG_QUOTA 4600 /* Enable quota usage during mount */ 4601 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4602 err = f2fs_enable_quotas(sb); 4603 if (err) 4604 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4605 } 4606 4607 quota_enabled = f2fs_recover_quota_begin(sbi); 4608 #endif 4609 /* if there are any orphan inodes, free them */ 4610 err = f2fs_recover_orphan_inodes(sbi); 4611 if (err) 4612 goto free_meta; 4613 4614 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4615 goto reset_checkpoint; 4616 4617 /* recover fsynced data */ 4618 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4619 !test_opt(sbi, NORECOVERY)) { 4620 /* 4621 * mount should be failed, when device has readonly mode, and 4622 * previous checkpoint was not done by clean system shutdown. 4623 */ 4624 if (f2fs_hw_is_readonly(sbi)) { 4625 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4626 err = f2fs_recover_fsync_data(sbi, true); 4627 if (err > 0) { 4628 err = -EROFS; 4629 f2fs_err(sbi, "Need to recover fsync data, but " 4630 "write access unavailable, please try " 4631 "mount w/ disable_roll_forward or norecovery"); 4632 } 4633 if (err < 0) 4634 goto free_meta; 4635 } 4636 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4637 goto reset_checkpoint; 4638 } 4639 4640 if (need_fsck) 4641 set_sbi_flag(sbi, SBI_NEED_FSCK); 4642 4643 if (skip_recovery) 4644 goto reset_checkpoint; 4645 4646 err = f2fs_recover_fsync_data(sbi, false); 4647 if (err < 0) { 4648 if (err != -ENOMEM) 4649 skip_recovery = true; 4650 need_fsck = true; 4651 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4652 err); 4653 goto free_meta; 4654 } 4655 } else { 4656 err = f2fs_recover_fsync_data(sbi, true); 4657 4658 if (!f2fs_readonly(sb) && err > 0) { 4659 err = -EINVAL; 4660 f2fs_err(sbi, "Need to recover fsync data"); 4661 goto free_meta; 4662 } 4663 } 4664 4665 #ifdef CONFIG_QUOTA 4666 f2fs_recover_quota_end(sbi, quota_enabled); 4667 #endif 4668 reset_checkpoint: 4669 /* 4670 * If the f2fs is not readonly and fsync data recovery succeeds, 4671 * check zoned block devices' write pointer consistency. 4672 */ 4673 if (f2fs_sb_has_blkzoned(sbi) && !f2fs_readonly(sb)) { 4674 int err2; 4675 4676 f2fs_notice(sbi, "Checking entire write pointers"); 4677 err2 = f2fs_check_write_pointer(sbi); 4678 if (err2) 4679 err = err2; 4680 } 4681 if (err) 4682 goto free_meta; 4683 4684 err = f2fs_init_inmem_curseg(sbi); 4685 if (err) 4686 goto sync_free_meta; 4687 4688 /* f2fs_recover_fsync_data() cleared this already */ 4689 clear_sbi_flag(sbi, SBI_POR_DOING); 4690 4691 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4692 err = f2fs_disable_checkpoint(sbi); 4693 if (err) 4694 goto sync_free_meta; 4695 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4696 f2fs_enable_checkpoint(sbi); 4697 } 4698 4699 /* 4700 * If filesystem is not mounted as read-only then 4701 * do start the gc_thread. 4702 */ 4703 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4704 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4705 /* After POR, we can run background GC thread.*/ 4706 err = f2fs_start_gc_thread(sbi); 4707 if (err) 4708 goto sync_free_meta; 4709 } 4710 kvfree(options); 4711 4712 /* recover broken superblock */ 4713 if (recovery) { 4714 err = f2fs_commit_super(sbi, true); 4715 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4716 sbi->valid_super_block ? 1 : 2, err); 4717 } 4718 4719 f2fs_join_shrinker(sbi); 4720 4721 f2fs_tuning_parameters(sbi); 4722 4723 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4724 cur_cp_version(F2FS_CKPT(sbi))); 4725 f2fs_update_time(sbi, CP_TIME); 4726 f2fs_update_time(sbi, REQ_TIME); 4727 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4728 return 0; 4729 4730 sync_free_meta: 4731 /* safe to flush all the data */ 4732 sync_filesystem(sbi->sb); 4733 retry_cnt = 0; 4734 4735 free_meta: 4736 #ifdef CONFIG_QUOTA 4737 f2fs_truncate_quota_inode_pages(sb); 4738 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4739 f2fs_quota_off_umount(sbi->sb); 4740 #endif 4741 /* 4742 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4743 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4744 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4745 * falls into an infinite loop in f2fs_sync_meta_pages(). 4746 */ 4747 truncate_inode_pages_final(META_MAPPING(sbi)); 4748 /* evict some inodes being cached by GC */ 4749 evict_inodes(sb); 4750 f2fs_unregister_sysfs(sbi); 4751 free_compress_inode: 4752 f2fs_destroy_compress_inode(sbi); 4753 free_root_inode: 4754 dput(sb->s_root); 4755 sb->s_root = NULL; 4756 free_node_inode: 4757 f2fs_release_ino_entry(sbi, true); 4758 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4759 iput(sbi->node_inode); 4760 sbi->node_inode = NULL; 4761 free_stats: 4762 f2fs_destroy_stats(sbi); 4763 free_nm: 4764 /* stop discard thread before destroying node manager */ 4765 f2fs_stop_discard_thread(sbi); 4766 f2fs_destroy_node_manager(sbi); 4767 free_sm: 4768 f2fs_destroy_segment_manager(sbi); 4769 stop_ckpt_thread: 4770 f2fs_stop_ckpt_thread(sbi); 4771 /* flush s_error_work before sbi destroy */ 4772 flush_work(&sbi->s_error_work); 4773 f2fs_destroy_post_read_wq(sbi); 4774 free_devices: 4775 destroy_device_list(sbi); 4776 kvfree(sbi->ckpt); 4777 free_meta_inode: 4778 make_bad_inode(sbi->meta_inode); 4779 iput(sbi->meta_inode); 4780 sbi->meta_inode = NULL; 4781 free_page_array_cache: 4782 f2fs_destroy_page_array_cache(sbi); 4783 free_xattr_cache: 4784 f2fs_destroy_xattr_caches(sbi); 4785 free_percpu: 4786 destroy_percpu_info(sbi); 4787 free_iostat: 4788 f2fs_destroy_iostat(sbi); 4789 free_bio_info: 4790 for (i = 0; i < NR_PAGE_TYPE; i++) 4791 kvfree(sbi->write_io[i]); 4792 4793 #if IS_ENABLED(CONFIG_UNICODE) 4794 utf8_unload(sb->s_encoding); 4795 sb->s_encoding = NULL; 4796 #endif 4797 free_options: 4798 #ifdef CONFIG_QUOTA 4799 for (i = 0; i < MAXQUOTAS; i++) 4800 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4801 #endif 4802 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4803 kvfree(options); 4804 free_sb_buf: 4805 kfree(raw_super); 4806 free_sbi: 4807 if (sbi->s_chksum_driver) 4808 crypto_free_shash(sbi->s_chksum_driver); 4809 kfree(sbi); 4810 sb->s_fs_info = NULL; 4811 4812 /* give only one another chance */ 4813 if (retry_cnt > 0 && skip_recovery) { 4814 retry_cnt--; 4815 shrink_dcache_sb(sb); 4816 goto try_onemore; 4817 } 4818 return err; 4819 } 4820 4821 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4822 const char *dev_name, void *data) 4823 { 4824 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4825 } 4826 4827 static void kill_f2fs_super(struct super_block *sb) 4828 { 4829 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4830 4831 if (sb->s_root) { 4832 set_sbi_flag(sbi, SBI_IS_CLOSE); 4833 f2fs_stop_gc_thread(sbi); 4834 f2fs_stop_discard_thread(sbi); 4835 4836 #ifdef CONFIG_F2FS_FS_COMPRESSION 4837 /* 4838 * latter evict_inode() can bypass checking and invalidating 4839 * compress inode cache. 4840 */ 4841 if (test_opt(sbi, COMPRESS_CACHE)) 4842 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4843 #endif 4844 4845 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4846 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4847 struct cp_control cpc = { 4848 .reason = CP_UMOUNT, 4849 }; 4850 stat_inc_cp_call_count(sbi, TOTAL_CALL); 4851 f2fs_write_checkpoint(sbi, &cpc); 4852 } 4853 4854 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4855 sb->s_flags &= ~SB_RDONLY; 4856 } 4857 kill_block_super(sb); 4858 /* Release block devices last, after fscrypt_destroy_keyring(). */ 4859 if (sbi) { 4860 destroy_device_list(sbi); 4861 kfree(sbi); 4862 sb->s_fs_info = NULL; 4863 } 4864 } 4865 4866 static struct file_system_type f2fs_fs_type = { 4867 .owner = THIS_MODULE, 4868 .name = "f2fs", 4869 .mount = f2fs_mount, 4870 .kill_sb = kill_f2fs_super, 4871 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4872 }; 4873 MODULE_ALIAS_FS("f2fs"); 4874 4875 static int __init init_inodecache(void) 4876 { 4877 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4878 sizeof(struct f2fs_inode_info), 0, 4879 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4880 return f2fs_inode_cachep ? 0 : -ENOMEM; 4881 } 4882 4883 static void destroy_inodecache(void) 4884 { 4885 /* 4886 * Make sure all delayed rcu free inodes are flushed before we 4887 * destroy cache. 4888 */ 4889 rcu_barrier(); 4890 kmem_cache_destroy(f2fs_inode_cachep); 4891 } 4892 4893 static int __init init_f2fs_fs(void) 4894 { 4895 int err; 4896 4897 if (PAGE_SIZE != F2FS_BLKSIZE) { 4898 printk("F2FS not supported on PAGE_SIZE(%lu) != BLOCK_SIZE(%lu)\n", 4899 PAGE_SIZE, F2FS_BLKSIZE); 4900 return -EINVAL; 4901 } 4902 4903 err = init_inodecache(); 4904 if (err) 4905 goto fail; 4906 err = f2fs_create_node_manager_caches(); 4907 if (err) 4908 goto free_inodecache; 4909 err = f2fs_create_segment_manager_caches(); 4910 if (err) 4911 goto free_node_manager_caches; 4912 err = f2fs_create_checkpoint_caches(); 4913 if (err) 4914 goto free_segment_manager_caches; 4915 err = f2fs_create_recovery_cache(); 4916 if (err) 4917 goto free_checkpoint_caches; 4918 err = f2fs_create_extent_cache(); 4919 if (err) 4920 goto free_recovery_cache; 4921 err = f2fs_create_garbage_collection_cache(); 4922 if (err) 4923 goto free_extent_cache; 4924 err = f2fs_init_sysfs(); 4925 if (err) 4926 goto free_garbage_collection_cache; 4927 err = f2fs_init_shrinker(); 4928 if (err) 4929 goto free_sysfs; 4930 err = register_filesystem(&f2fs_fs_type); 4931 if (err) 4932 goto free_shrinker; 4933 f2fs_create_root_stats(); 4934 err = f2fs_init_post_read_processing(); 4935 if (err) 4936 goto free_root_stats; 4937 err = f2fs_init_iostat_processing(); 4938 if (err) 4939 goto free_post_read; 4940 err = f2fs_init_bio_entry_cache(); 4941 if (err) 4942 goto free_iostat; 4943 err = f2fs_init_bioset(); 4944 if (err) 4945 goto free_bio_entry_cache; 4946 err = f2fs_init_compress_mempool(); 4947 if (err) 4948 goto free_bioset; 4949 err = f2fs_init_compress_cache(); 4950 if (err) 4951 goto free_compress_mempool; 4952 err = f2fs_create_casefold_cache(); 4953 if (err) 4954 goto free_compress_cache; 4955 return 0; 4956 free_compress_cache: 4957 f2fs_destroy_compress_cache(); 4958 free_compress_mempool: 4959 f2fs_destroy_compress_mempool(); 4960 free_bioset: 4961 f2fs_destroy_bioset(); 4962 free_bio_entry_cache: 4963 f2fs_destroy_bio_entry_cache(); 4964 free_iostat: 4965 f2fs_destroy_iostat_processing(); 4966 free_post_read: 4967 f2fs_destroy_post_read_processing(); 4968 free_root_stats: 4969 f2fs_destroy_root_stats(); 4970 unregister_filesystem(&f2fs_fs_type); 4971 free_shrinker: 4972 f2fs_exit_shrinker(); 4973 free_sysfs: 4974 f2fs_exit_sysfs(); 4975 free_garbage_collection_cache: 4976 f2fs_destroy_garbage_collection_cache(); 4977 free_extent_cache: 4978 f2fs_destroy_extent_cache(); 4979 free_recovery_cache: 4980 f2fs_destroy_recovery_cache(); 4981 free_checkpoint_caches: 4982 f2fs_destroy_checkpoint_caches(); 4983 free_segment_manager_caches: 4984 f2fs_destroy_segment_manager_caches(); 4985 free_node_manager_caches: 4986 f2fs_destroy_node_manager_caches(); 4987 free_inodecache: 4988 destroy_inodecache(); 4989 fail: 4990 return err; 4991 } 4992 4993 static void __exit exit_f2fs_fs(void) 4994 { 4995 f2fs_destroy_casefold_cache(); 4996 f2fs_destroy_compress_cache(); 4997 f2fs_destroy_compress_mempool(); 4998 f2fs_destroy_bioset(); 4999 f2fs_destroy_bio_entry_cache(); 5000 f2fs_destroy_iostat_processing(); 5001 f2fs_destroy_post_read_processing(); 5002 f2fs_destroy_root_stats(); 5003 unregister_filesystem(&f2fs_fs_type); 5004 f2fs_exit_shrinker(); 5005 f2fs_exit_sysfs(); 5006 f2fs_destroy_garbage_collection_cache(); 5007 f2fs_destroy_extent_cache(); 5008 f2fs_destroy_recovery_cache(); 5009 f2fs_destroy_checkpoint_caches(); 5010 f2fs_destroy_segment_manager_caches(); 5011 f2fs_destroy_node_manager_caches(); 5012 destroy_inodecache(); 5013 } 5014 5015 module_init(init_f2fs_fs) 5016 module_exit(exit_f2fs_fs) 5017 5018 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 5019 MODULE_DESCRIPTION("Flash Friendly File System"); 5020 MODULE_LICENSE("GPL"); 5021 MODULE_SOFTDEP("pre: crc32"); 5022 5023